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Abstract Datasets collected in neuroscientific studies are of ever- growing complexity, often 
combining high- dimensional time series data from multiple data acquisition modalities. Handling 
and manipulating these various data streams in an adequate programming environment is crucial to 
ensure reliable analysis, and to facilitate sharing of reproducible analysis pipelines. Here, we present 
Pynapple, the PYthon Neural Analysis Package, a lightweight python package designed to process 
a broad range of time- resolved data in systems neuroscience. The core feature of this package is a 
small number of versatile objects that support the manipulation of any data streams and task param-
eters. The package includes a set of methods to read common data formats and allows users to 
easily write their own. The resulting code is easy to read and write, avoids low- level data processing 
and other error- prone steps, and is open source. Libraries for higher- level analyses are developed 
within the Pynapple framework but are contained within a collaborative repository of specialized and 
continuously updated analysis routines. This provides flexibility while ensuring long- term stability 
of the core package. In conclusion, Pynapple provides a common framework for data analysis in 
neuroscience.

eLife assessment
This paper introduces the python software package Pynapple and a separate package of more 
advanced routines (Pynacollada) to the Neuroscience/Neural Engineering community. Pynapple 
provides a set of data objects and methods that have the potential to simplify data analysis for 
neural and behavioral data types. This represents a valuable contribution to the field. With more 
examples and as a live coding notebook, the evidence was judged to be compelling.

Introduction
The increasing size of datasets across scientific disciplines has led to the development of specific 
tools to store (Folk et al., 2011; Wells and Greisen, 1979), analyze (Pedregosa, 2011), and visualize 
(Maaten and Hinton, 2008) them. While various programming environments such as Matlab and R 
have long been commonly used in data science, Python has progressively become one of the most 
popular programming languages (McKinney, 2011). This is due to its open nature, large community- 
driven development, and versatility of usage. As with virtually all other scientific fields, neuroscience 
faced the challenges of handling and analyzing large datasets by rapidly developing a wide range of 
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specialized tools to deal with each of these types of data (Abraham et al., 2014; Tadel et al., 2011; 
Oostenveld et al., 2011; Bokil et al., 2010; Garcia et al., 2014; Freeman et al., 2014) and corre-
sponding analyses.

In systems neuroscience, calcium imaging and high- density electrophysiology make it possible 
to simultaneously monitor the activity of an increasingly large number of neurons (Stevenson and 
Kording, 2011; Urai et al., 2022). Often, this is combined with simultaneous behavioral recordings. 
As in all other fields, this has required the development of specific pipelines to process (Pachitariu 
et al., 2016; Pachitariu et al., 2017; Hazan et al., 2006; Fee et al., 1996; Harris et al., 2000; Yger 
et al., 2018; Mathis et al., 2018; Zhou et al., 2018; Mukamel et al., 2009; Romano et al., 2017; 
Kaifosh et al., 2014; Pnevmatikakis and Giovannucci, 2017) and store (Teeters et al., 2015; Rübel 
et al., 2022) the data. Despite this rapid progress, data analysis often relies on custom- made, lab- 
specific code, which is susceptible to error and can be difficult to compare across research groups. 
While several toolboxes are available to perform neuronal data analysis (Oostenveld et al., 2011; 
Bokil et al., 2010; Garcia et al., 2014; Freeman et al., 2014; Nasiotis et al., 2019; Zugaro, 2018; 
Ackermann et al., 2018) (see Unakafova and Gail, 2019, for review), most of these programs focus 
on producing high- level analysis from specified types of data, and do not offer the versatility required 
for rapidly changing analytical methods and experimental methods. Users can decide to use low- level 
data manipulation packages such as Pandas, but in that case, the learning curve can be steep for users 
with low, if any, computational background.

The key challenge for scientific code is balancing the need for flexibility and stability. This is espe-
cially true of science because results should be reproducible (between labs, between the past and the 
future, and between different experimental setups) while keeping up with rapidly changing require-
ments (e.g., due to new kinds of data, theories, and analysis methods). To meet these needs, we 
designed Pynapple, a general toolbox for data analysis in systems neuroscience with a few principles 
in mind.

The first property of such a toolbox is that it should be object- oriented, organizing software around 
data. This makes the programming environment very efficient for data analysis, particularly in systems 
neuroscience where data streams can be of very different types. For example, to compute the rate 
of an event, one can write a function that takes an array of event times and divides the number of 
elements by the time between the first to the last event. However, this approach neglects to consider 
that the appropriate epoch in which to calculate the rate could start earlier, or end later, than the first 
or last event. Addressing these concerns requires another argument, which defines the boundaries of 
the epoch on which the rate should be computed. Overall, this approach is error prone. The epoch 
boundaries and event times must be stored in the same time unit and with the same reference (i.e., 
simultaneous time 0) and the rate function itself can be erroneously called with arrays storing another 
type of data. In contrast, an object which is specifically designed to represent a series of event times 
can ameliorate these concerns. For example, it can be created from a specific data loader that ensures 
proper definition of time units and support epochs (i.e., true beginning and end of the observation 
time). It will then be immune to the arithmetic operations that can change the values of a generic array 
(e.g., an addition that is misplaced in the code). Further, the object can be endowed with a rate prop-
erty that is specifically written for this object, reducing the odds of a coding error. While this approach 
may discourage users who are not familiar with this type of coding, the benefit far exceeds the effort 
of learning object- oriented programming, especially if the naming of the methods and properties is 
explicit.

Another property of an efficient toolbox is that a small number of objects could virtually represent 
all possible data streams in neuroscience, instead of objects made for specific physiological processes 
(e.g., spike trains). This ensures that the same code can be used for various datasets and eliminates 
the need of adapting the structure of the package to handle rare or yet- to- be- developed data types. 
Then, these objects should then be able to interact via a small number of basic and foundational 
operations, which are sufficient for most analyses. This allows users to quickly write new code for new 
use- cases, and easily understand and adapt code written by others, as the same methods can be used 
for any kind of data.

The toolbox should be able to load common data storage types, and the flexibility to create 
loaders for future and custom/lab- specific data. It should also support the development of yet- 
unknown, lab- specific, and specialized analysis methods. In other words, the customization of the 
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package to adapt to any dataset should happen at the input stage and the development of high- 
level analytical methods should take place outside the core package. The properties listed above 
ensure the long- term stability of a toolbox, a crucial aspect for maintaining the code repository. 
Toolboxes built around these principles will be maximally flexible and will have the most general 
application.

In this paper we introduce the Python Neural Analysis Package (Pynapple), designed with these 
axioms in mind. The core of Pynapple is five versatile time series objects, whose methods make it 
possible to intuitively manipulate and analyze the data. We show how Pynapple can be used with most 
raw neuroscience data types to produce the most common analyses used in contemporary neurosci-
ence. Additionally, we introduce Pynacollada, a collaborative repository for higher- level analyses built 
from the basic functionality provided by Pynapple. A complete neuroscience data analysis pipeline 
using a common language supports open and reproducible code. As all users are also invited to 
contribute to the Pynapple ecosystem, this framework also provides a foundation upon which novel 
analyses can be shared and collectively built by the neuroscience community.
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Figure 1. Data analysis with the Pynapple package. Left, any type of input data can be loaded in a small number of core objects. For example (from 
top to bottom): intracellular recordings in slice during which current is injected and drug is applied to the bath solution; extracellular recordings in 
freely moving mice whose position is video- tracked; calcium imaging in head- fixed mice during presentation of different visual stimuli and delivery of 
precisely timed rewards; extracellular recordings in non- human primates during the execution of cognitive tasks. Middle, object- specific methods allow 
the user to perform a wide variety of basic operations and to manipulate the data manipulations. Right, at a higher level, the package contains a set of 
foundational analysis methods such as (from top to bottom) peri- event alignment of the data (top), 1- and 2D tuning curves, 1- and 2D decoding; auto- 
and cross- correlation of event times (e.g., action potentials). These methods depend only on a few, commonly used, external packages.
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Results
Core features of Pynapple
At its core, Pynapple is object- oriented. Because objects are designed to be self- contained and 
interact with each other through well- defined methods, users are less likely to make errors when 
using them. This is because objects can enforce their own internal consistency, reducing the chances 
of data inconsistencies or unexpected behavior. Overall, object- oriented programming is a powerful 
tool for managing complexity and reducing errors in scientific programming. Pynapple is built around 
only five objects that are divided into three categories: two objects represent event timestamps (one 
or several), two represent time- varying data (one or several time series at the same sampling times), 
and one represents time epochs. Raw or preprocessed data are loaded into these objects in the 
coding environment (Figure 1). The data loaders ensure that all loaded objects have the same time 
base. Hence, once objects are constructed, the user does not have to remember properties of the 
data such as the sampling frequency or alignment of data indices to clock time. Then, these objects 
can be manipulated with their own methods (i.e., object- specific functions). A large majority of data 
manipulations needed for most users can be achieved with a small number of methods. From there, 
Pynapple offer some foundational analyses, such as cross- correlation of event times. On top of this, 
the user may write analytical code that is project specific.

The most basic objects are timestamps (Ts), which are typically used for any discrete events, for 
example spike or lick times. The timestamped data (Tsd) object holds timestamps and associated data 
associated with each timestamp. For example, this object is used to represent an animal’s position in 
its environment, electroencephalogram data, or average calcium fluorescence as a function of time. 
Two objects were designed to represent groups of Ts and Tsd, namely TsGroup and TsdFrame. The 
main difference between the two objects is that TsdFrame has common timestamps for all the data 
(and therefore, all data have the same number of samples). TsGroup is more generic as each element 
has its own timestamps. These objects are typically used for ensembles of simultaneously recorded 
spike trains (TsGroup) or simultaneously acquired calcium fluorescence (TsdFrame). They are useful 
when operations need to be performed on a common time basis, for example binning multiple spike 
trains. Note however that they can be used for many other data types, for example the position of 
the animal (TsdFrame). Last, IntervalSet objects represent time epochs, for example the start and end 
times of intervals in which the animal is running.

Pynapple is built with objects from the Pandas library (McKinney, 2011). As such, Pynapple objects 
inherit the long- term consistency of the code and the computational flexibility from this widely used 
package. Specifically, a Tsd object is an extension of (or ‘inherits’ in object- orienting programming) 
Pandas Series object and TsdFrame of Pandas DataFrame object. A TsGroup is a child of UserDict, a 
built- in python object for inheriting dictionaries. Finally, IntervalSet inherits Pandas DataFrame. Time-
stamps are by default in units of seconds but can be readily converted to other time units using the 
as_units method in any object.

Pynapple objects have a limited number of core methods (Figure 2A), which form the foundation 
of further operations. These operations provide a general framework by which users can manipulate 
the timestamps and their corresponding values as needed for analysis. For example, the time series 
objects have built- in methods: value_from, which gets the value from one time series object at the 
(closest) timestamps from another; restrict, which ‘restricts’ a time series object, extracting only 
the data contained within a set of time intervals defined by an IntervalSet object; count, which counts 
the number of timestamps from a time series object in windows of a given bin size; threshold, which 
applies a threshold to the data within a Ts or Tsd object and returns a Tsd containing the data above 
or below the threshold. All operations can be restricted to a given epoch, specified by an IntervalSet.

Furthermore, all objects have a time_support property, which keeps track of the time interval 
over which the data is valid. The time support is an IntervalSet object that is attached by default to Ts, 
Tsd, TsdFrame, and TsGroup objects. This is a crucial property as, otherwise, it is impossible to know 
whether periods without data correspond to an epoch during which the underlying event was not 
observed or because this period has previously been excluded by a restrict method.

In addition to the ability to restrict methods of time series objects, the IntervalSet object has 
methods for logical operations on combinations of IntervalSets, all returning other IntervalSets 
(Figure  2b): intersect, which returns the set intersection of two IntervalSet objects; union, 
which returns the set union of two IntervalSets; set_diff, which returns the set difference of two 
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IntervalSet; drop_short_intervals, drop_long_intervals, which eliminate interval subsets 
that are shorter or longer than a desired duration; and merge_close_intervals, which merge 
intervals that are closer in time than a given duration.

Many experiments in neuroscience are based on trials, each associated with different conditions. 
IntervalSets are perfectly suited for this, as one IntervalSet can represent all start and end times 
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Figure 2. Core methods of the Pynapple objects. (a) Methods of timestamps (Ts) and timestamped data (Tsd) objects. The same methods can be called 
for different objects, leading to qualitatively similar results. For example, object.restrict(intervalset) returns an object now defined on the intersection 
of its original time support and the input IntervalSet. Objects can be any of the timestamps and timestamped data objects. These methods can be 
called with only one argument, as shown here, since the default parameters are typically the same for most analyses. Yet the methods include additional 
arguments for more specific operations. (b) Logical operations on pairs of IntervalSet objects to compute (from top to bottom) the intersection, 
union, and difference between epochs. These operations are commonly used to analyze data during specific epochs in a combinatorial manner, such 
as ‘exploration period AND running speed is above 5 cm/s NOT left arm’. (c) Methods of TsGroup objects. Each timestamp is associated by default 
with its occurrence rate. Additional custom metadata such as recording location can be added. These metadata can then be used to select and filter 
timestamps using getby_category for discrete labels, getby_threshold, or getby_intervals for numerical values.
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of trials. The nature of each trial (e.g., left/right, 
correct/error) can be stored as a third column 
within the IntervalSet dataframe object. Thus, 
subsets of trials can be easily selected to restrict 
data of interest on the corresponding epochs. An 
alternative approach is to store different Interval-
Sets for different types of trials.

In addition to the ability to apply any methods 
of the Ts object to its members, TsGroup has a 
set of methods to calculate and store metadata 
about the elements of the group (Figure 2c). For 
example, one can store and retrieve the anatom-
ical structure from which a neuron was recorded, 
or the result from downstream analysis, perform 
operations on each element, and filter by various 
properties. These methods allow the user to, 
for example, calculate, store, and compare the 
properties of multiple neurons in a population. 
Additional methods for all objects are extensively 
documented in the documentation, and exam-
ples for usage are given in the tutorials.

While there are relatively few objects, and while 
each object has relatively few methods, they are 
the foundation of almost any analysis in systems 
neuroscience. However, if not implemented effi-
ciently, they can be computationally intensive and 
if not implemented accurately, they are highly 
susceptible to user error. The implementation of 
core features in Pynapple addresses the concerns 
of efficiency and accuracy. Crucially, all units are 
indexed by seconds across the entire package, 
which limits the need for users to account for 
indexing and alignment between different streams 
of data at different sampling rates. For example, 
a user can simply use spikes.value_from(po-
sition) to get the animal’s position at each spike 
time, rather than costly and error- prone routines 
in which a user needs to identify matching indices 
for the corresponding timestamps across arrays 
containing spikes and behavioral information. 

Another common issue in data analysis is to analyze two time series that are not recorded at the same 
sampling rate. Once data are loaded in the same time base (i.e., the same time 0), they can keep their 
original sampling times. Using the function value_from from one object with the other object as 
argument will provide two time series with the same number of samples and the same sampling times, 
which will simplify further analyses. However, this means it is essential that all objects are loaded in 
the same time base for these methods to function correctly. Pynapple anticipates this by providing a 
customizable data loader, ensuring time bases are always loaded correctly.

Importing data from common and custom pipelines
The proliferation of experimental methods has come with a proliferation of data formats, as well as the 
need to rapidly develop new formats that meet new experimental needs. Usually, these data formats 
are dependent on the software that was used to preprocess the raw data, making them difficult to 
load for further analysis. Additionally, an experimental setup can generate multiple streams of data 
that are saved within multiple files of various types. Thus, a universal toolbox should be able to load 
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popular data formats into a common framework and offer the user the ability to write functions to 
load their own data types.

To ease the process of loading and synchronizing data from various streams, Pynapple includes an 
I/O layer that allows the user to load multiple types of datasets and write them to a common format 
for further analysis and sharing. The primary way by which a user interacts with the I/O layer is an 
object that represents an experimental session, with the properties of the object being the various 
time series. This I/O object is created by calling the function load_session, which will load all data 
associated with that session (Figure 3a). For example, calling load_session for an in vivo electro-
physiology recording would return an object called data, which will have properties  data. spikes, 
data.position, and  data. epochs which respectively store a TsGroup, containing the spike times, 
a TsdFrame containing the position of the animal, and an IntervalSet containing the times when the 
animal is on the track. With this object- oriented I/O method, the user can interact with the various 
data streams associated with a given experimental session and load multiple sessions at once without 
the risk of mixing data as each time series is attached to only one I/O object.

Data synchronization is the crux of any analysis pipeline. The load_session function is thus a 
crucial step in using the package. For unsupported data types, it is the responsibility of the users to 
design the preprocessing scripts that align the data streams in the same absolute time base. The data 
loading and synchronizing functions already included in the package for supported data types is a 
good starting point for any user writing a custom loading function (details of this process are provided 
later).

While data types are usually specific to a recording modality (i.e., calcium imaging and electrophys-
iology), there are several pieces of metadata that are common to many experiments, such as the strain 
of the animal, age, sex, and name of the experimenter. When loading a session for the first time, the 
I/O process starts with a graphical user interface (GUI) in which the user can quickly and easily input 
the general information as well as any session epoch and behavioral tracking data (Figure 3b). This 
information is saved in a BaseLoader class.

General session information is common across experimental sessions, however specialized data 
streams are usually specific to recording modalities. To cover the variety of preprocessing analysis 
pipelines currently used in systems neuroscience, the Pynapple I/O can load data formats from popular 
preprocessing pipelines (e.g., CNMF- E, Phy, NeuroSuite, or Suite2P). This is implemented via a set 
of specialized object subclasses of the BaseLoader class, avoiding the need to redefine I/O opera-
tions in each subclass. This is a core aspect of object- oriented programming, and it means that these 
specialized I/O classes have all the methods and properties of the parent BaseLoader objects. This 
ensures compatibility across various loading functions. However, once generated, these specialized 
I/O classes are unique and independent from each other, ensuring long- term backward compatibility. 
For instance, if the spike sorting tool Phy changes its output in the future, this would not affect the 
‘Neurosuite’ IO class as they are independent of each other. This allows each tool to be updated or 
modified independently, without requiring changes to the other tool or the overall data format.

Like the BaseLoader class, a specialized GUI for electrophysiology and calcium imaging is provided, 
with relevant metadata fields, for example electrode position in electrophysiology and type of fluores-
cence indicator in calcium imaging (Figure 3b).

To avoid repeating the process of inputting session information and synchronization of multiple 
data streams, Pynapple saves all synchronized data into a unique file and can accommodate a wide 
range of neuroscientific data types. Recently, Neurodata Without Borders (NWB) (Teeters et  al., 
2015; Rübel et al., 2022) has emerged as a flexible data format used for public data sharing and large 
databases such as those collected by the Allen Institute. Thus, we chose to use the NWB format for 
fast and universal data loading and saving with Pynapple. The BaseLoader is responsible for initializing 
the NWB file within the session folder (i.e., it creates a new NWB file if none is present) (Figure 3c). 
Converting user’s data to NWB format encourages standardization and can facilitate sharing both 
data and analysis pipelines written with Pynapple.

Many other preprocessing pipelines exist and can often be unique to a lab or even to an individual 
project. To accommodate present and future needs for these specific pipelines, the documentation 
of Pynapple provides an easy- to- follow recipe for creating a custom I/O class that inherits the Base-
Loader and can interact with a pre- existing NWB file. There are multiple benefits of the inheritance 
approach of data loading classes within the I/O layer of Pynapple. First, future development of new 
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I/O classes will not affect the core and processing layers of Pynapple. This ensures long- term stability 
of the package. Second, users can develop their own custom I/O using available template classes. 
Pynapple already includes several of such templates and we expect this collection to grow in the 
future. Third, users can still use Pynapple without using the I/O layer of Pynapple. Last, in order to 
apply previous analyses, or analyses developed in another lab, to new data or data types a user only 
needs to develop a new I/O class for their data. This will import the data to the common Pynapple 
core from which the same analysis pipeline can be used.

Foundational data processing
The basic methods that manipulate the core objects in Pynapple allow users to perform common, but 
powerful, neuroscience analyses (Figure 2). These analyses are easy to use because they describe the 
relationships between time series objects, while requiring the fewest number of parameters to be set 
by the user. This minimizes complexity, while maximizing generalizability. The operations in Pynapple 
can recreate neuroscience analyses from a broad number of subdisciplines. These analyses form the 
foundation of neuroscience data analysis in Pynapple. To illustrate the versatility of Pynapple and how 
it can be used, we reanalyzed five openly available datasets.

The first foundational analysis is computing neural tuning curves. Tuning curves relate specific 
stimuli to the firing rate of neurons. To this end, Pynapple computes the firing rate of a neuron (or 
any other timestamped data) during each epoch in an IntervalSet object, for example for discrete 
conditions such as ‘ON/OFF’' stimuli. Tuning curves can also be computed with respect to a contin-
uous feature. Once computed, Pynapple is able to use tuning curves from a population of neurons to 
decode stimuli using a Bayesian decoder (Zhang et al., 1998; Brown et al., 1998; Figure 4a).

The second foundational analysis is computing auto- and cross- correlograms of event data. In the 
most abstract sense, these correlograms show the relationship between previous and future events 
and a current event at time 0. In Pynapple, cross- correlograms can be generated for any two series 
of events by computing the event rate for each time bin of a target time series relative to each event 
of a reference time series. Commonly, this is used to examine the likelihood of an action potential in 
a neuron relating to a previous or future action potential in the same neuron (auto- correlogram) or 
in another neuron (cross- correlogram) (Figure 4b). However, Pynapple does not limit this function to 
spiking data and correlograms may be performed on any event- based data.

The third and final foundational analysis is peri- event alignment. This involves aligning a specified 
window from Ts/Tsd/TsGroup data to a specific Ts, known as ‘TimeStamp Reference’'. This allows users 
to align data to specific points in time, and measure changes in rates around this specified time point 
(Figure 4c). One example where this function is useful is aligning neuronal spikes to specific stimuli, 
such as optogenetic illumination, presentation of a tone, or electrical stimulation.

Some of the analyses presented so far are designed for spikes (and discrete events in general) and 
cannot be applied for continuous traces such as calcium imaging data. Pynapple includes specialized 
functions that can compute the tuning of a continuous value with respect to a feature, as shown for 
the modulation of fluorescence in calcium imaging with respect to the speed of the animal (Figure 5a) 
or of the position of a vertical bar on a screen in the fly’s ellipsoid body (Figure 5b).

The examples shown in Figures 4 and 5 show how these core analyses are useful for rapid data 
screening with just a few lines of code in a Jupyter notebook, for example. Overall, these foundational 
functions form the building blocks of most other analyses in systems neuroscience. Importantly, they 
are for the most part built- in and only depend on a few widely used external packages. This ensures 
that the package can be used in a near stand- alone fashion, without relying on packages that are at 
risk of not being maintained or of not being compatible in the near future. All other developments of 
analysis pipelines take place outside Pynapple, ensuring the core package is only updated rarely and 
remains lightweight.

Pynacollada: a collaborative library for specialized and continuously updated 
data analyses
Pynapple is designed to be stable in the foreseeable future and its core functionality is not meant to 
be modified. However, actual data analysis usually requires more than the available core functions. 
This type of data analysis is ‘fluid’, constantly updated by new software developments and theoretical 
work. Furthermore, this kind of development is collaborative in nature and the supervision of such 

https://doi.org/10.7554/eLife.85786
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projects is less sensitive than that of a stable package. To balance the needs for stability and flexibility, 
high- level functions were separated from Pynapple and included instead in Pynacollada: the Pynapple 
Collaborative repository hosted on GitHub.

Complex analyses are added to Pynacollada in the form of libraries. Each library developed for 
Pynacollada takes the form of a Jupyter notebook (or python scripts) which guides the user through 
the analysis step- by- step. As such, libraries built for Pynacollada should provide training, promote 
good practice in programming, and allow users to easily adapt code to their own project. Examples of 
complex analyses currently handled by Pynacollada are outlined below (Figure 6).
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Figure 4. Examples of foundational analysis across various electrophysiological datasets using Pynapple. (a) Analysis of an ensemble of head- direction 
cells. From left to right: data were collected in a freely moving mouse randomly foraging for food; all data are restricted to the wake epoch (i.e., during 
exploration); the tuning curve of two neurons relative to the animal’s head- direction; animal’s head- direction is decoded from the neuronal ensemble. 
Data from Peyrache et al., 2015a; Peyrache et al., 2015b. (b) Analysis of V1 neurons during visual stimulation. From left to right: the mouse was 
recorded while being head- fixed and presented with drifting gratings; spikes, stimulation, and epochs are shown; example tuning curves of two V1 
neurons, showing their firing rates for different grating orientations; example cross- correlation between two V1 neurons, showing an oscillatory co- 
modulation at about 5 Hz during visual stimulation. Data from Siegle et al., 2021. (c) Analysis of medial temporal lobe neurons in human epileptic 
subjects. From left to right: subjects, implanted with hybrid deep electrodes, were shown a series of short clips; raster plot of a single neuron around 
continuous movie shot trials (green) and hard boundary trials, which are transitions between two unrelated movies (orange); peri- event neuronal 
firing rate for both trial types. Data from Zheng et al., 2022. Images in panels b and c are from Olmos and Kingdom, 2004. The analysis code 
used to generate this figure can be found on the Pynapple Organization GitHub repository: https://github.com/pynapple-org/pynapple-paper-2023, 
swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d; (Viejo, 2023a).

https://doi.org/10.7554/eLife.85786
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Recent advances in the application of manifold theory to neural data analysis have allowed neuro-
scientists to project high- dimensional data into three or fewer dimensions (Chaudhuri et al., 2019; 
Viejo and Peyrache, 2020; Gardner et  al., 2022). The structure of these projections reflects the 
structure of these higher- dimensional processes, allowing us to infer the information encoded by the 
population. The Pynacollada ‘neural_manifold’ library contains a Jupyter notebook that provides a 
step- by- step process for recreating a ring manifold using spiking data recorded from a population of 
head- direction neurons (Figure 6). This code can be adapted by the end- user for analysis of their own 
data by simply importing their own data and refactoring the parameters to suit their needs.

A second complex analysis handled by Pynacollada is sharp wave- ripple (SWR) detection. Detecting 
oscillatory events is a routine procedure in electrophysiology, yet usually depends on many arbitrary 
choices of parameters. In this case, the Jupyter notebook showcases an example of detecting SWRs, 
a well- characterized oscillation of the hippocampus (Figure 6).

In addition, Pynacollada currently includes libraries for spike waveform processing, EEG anal-
ysis, and video tracking, among others. We invite the community to contribute to this repository by 
improving current libraries or upload new ones. For new libraries, only rapid screening and tests will 
be performed, but the code will not go through the kind of validation that is in place for Pynapple as 
an external library will never affect the functioning of the core package. The documentation describes 
what is expected in each library to simplify readability, sharing, and maintenance and, overall, how 
libraries should conform to Pynacollada standards. We hope this will be broadly adopted by the 
community, allowing researchers across labs to easily share their code.

Figure 5. Examples of foundational analysis across various calcium imaging datasets using Pynapple. (a) Analysis of a V1 neuron during visual 
stimulation. From left to right: the mouse was recorded while being head- fixed on a running wheel and presented with natural scene movies; 
fluorescence traces from a preprocessed region of interest and running speed are loaded; continuous tuning curve is directly obtained from 
fluorescence and speed. Data from Zhou et al., 2020. Image is from Olmos and Kingdom, 2004. (b) Analysis of neuronal activity in the fly central 
complex. From left to right: a Drosophila melanogaster is tethered to a calcium imaging setup while the position of a vertical bar is in closed loop with 
the fly’s movements on a ball; calcium activity in the ellipsoid body is divided into 16 wedges; example fluorescence trace and direction of the fly. Tuning 
curves are obtained as in (a), with the direction as feature. Data from Turner- Evans et al., 2020.

https://doi.org/10.7554/eLife.85786
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Discussion
Here, we introduced Pynapple, a lightweight and open- source python toolbox for neural data anal-
ysis. The goal of this package is to offer a versatile set of tools to study typical neurophysiological 
and behavioral data, specifically time series (e.g., spike times, behavioral events, and continuous time 
series) and time intervals (e.g., trials and brain states). It also provides users with generic functions for 
neuroscience analyses such as tuning curves and cross- correlograms. Finally, Pynapple was designed 
to rely on a minimum number of dependencies, which are themselves very common and thus highly 
stable. As such, accessibility is the guiding axiom of Pynapple.

long-term stability

Python script

few dependencies

versatile objects

specialized analysis

community-driven

continuously updated

Pynapple Pynacollada

Jupyter notebook
Documentation

neuronal activity manifold

filtered

Manifold (tutorial)

Oscillation detection (library)

and more...

raw trace

manifold

IntervalSet

envelop

Librairies & tutorials

Figure 6. The Pynapple collaborative data analysis repository (Pynacollada) environment. Unlike Pynapple, which is 
designed for long- term stability, Pynacollada is a repository of project- oriented libraries. This way, the community 
can collaborate on constantly evolving data analysis code without affecting the functionality of the core pipeline. 
Each project should include a script that can be called for specific functions and/or Jupyter notebooks to showcase 
the use of the code, as well as proper documentation. Pynacollada already includes several libraries and/or 
tutorials, including but not limited to: (1) a tutorial on manifold analysis, covering how to project neuronal data on 
low- dimensional subspace using various machine learning techniques; (2) a library for oscillation detection in local 
field potentials, which takes raw broadband traces as inputs and outputs IntervalSet objects corresponding to the 
start and end times of oscillation bouts.

https://doi.org/10.7554/eLife.85786
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The path from data collection to reliable results involves a number of critical steps: exploratory data 
analysis, development of an analysis pipeline that can involve custom- made developed processing 
steps, and ideally the use of that pipeline and others to replicate the results. Pynapple provides a 
platform for these steps.

The design of Pynapple is centered around the manipulation of simple, abstract objects that are 
common to most neurophysiological and behavioral datasets. The core of Pynapple is built around 
five objects: timestamps (Ts) and group of timestamps (TsGroup), time series data (Tsd) and ensemble 
of co- registered Tsd (TsdFrame), as well as IntervalSets. These objects can be manipulated with prop-
erties that are, in most cases, common to all objects. Building around these fundamental objects and 
properties means Pynapple is highly flexible and able to handle most neurophysiological and behav-
ioral datasets, making it accessible to most systems neuroscientists.

Pynapple was developed to be lightweight, stable, and simple. As simplicity does not necessarily 
imply backward compatibility (i.e., long- term stability of the code), Pynapple main objects and their 
properties will remain the same for the foreseeable future, even if the code in the backend may even-
tually change (e.g., not relying on Pandas in future versions). The small number of external dependen-
cies also decreases the need to adapt the code to new versions of external packages. This approach 
favors long- term backward compatibility.

Data in neuroscience vary widely in their structure, size, and need for preprocessing. Pynapple is 
built around the idea that raw data have already been preprocessed (e.g., spike sorting and detection 
of ROIs). According to the FAIR principles, preprocessed data should interoperate across different 
analysis pipelines. Pynapple makes this interoperability possible as, once the data are loaded in the 
Pynapple framework, the same code can be used to analyze different datasets. Specifically, to simplify 
analysis for users, Pynapple offers simple wrappers for loading data with popular preprocessing pipe-
lines. However, to be fully accessible, it is not sufficient for a package’s core operations to be able to 
process all data types in theory. Data produced in neuroscience has a wide variety of file types, which 
are often only loaded by specific analysis software. Data is also largely experiment- specific. To unify 
these disparate file types and configurations, Pynapple’s data loader is customizable. In addition to 
being able to load current popular data formats, this customizable data loader means emerging file 
formats may continue to be loaded in the future, without significant overhauls to the main package. 
This offers Pynapple long- term stability and means that Pynapple will continue to remain accessible in 
the foreseeable future. To note, Pynapple can be used without the I/O layer and independent of NWB 
for generic, on- the- fly analysis of data.

In further pursuit of accessibility, from these simple objects and properties, Pynapple has several 
built- in, foundational analyses that are common across the field of systems neuroscience. These 
foundational analyses include computing neural tuning curves, computing auto/cross- correlograms, 
peri- event alignment, and performing Bayesian decoding. From these foundational analyses, higher 
order analyses can be developed. However, these higher- order analyses are more prone to customi-
zation, thereby making them relatively more flexible. As such, higher- order analyses are stored in the 
collaborative repository known as Pynacollada. This keeps the core Pynapple package stable, while 
allowing the user to integrate new advances in neurophysiological and behavioral analysis into their 
workflow.

Other software provide programming environments which deal with common neuroscientific data 
and an interface between stored data and analytical methods (Garcia et al., 2014). However, one 
problem that arises from this structure is that objects and data structures are rigidly defined, leading 
to a lack of versatility for new types of data or task design. In contrast, Pynapple offers a more flexible 
working environment and will remain accessible even as user requirements change.

While Pynapple expands accessibility to data analysis, it has some limitations inherent to its design. 
The first issue is that Pynapple is currently only available through Python. Thus, some transition is 
required for those primarily trained in other programming languages commonly used in neuroscience, 
including MATLAB and Julia. The design of the package around objects is a strength in many regards 
but could represent a challenge for users who are not accustomed to this programming approach. 
We have addressed this concern by providing users with detailed documentation, which includes a 
broad variety of examples. We will also keep on providing training opportunities for all future users. 
Last, Python code may run slower than similar code written in other languages. Pynapple is based 
on Pandas, whose methods are already highly optimized. Yet, current development is underway to 
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improve computation speed and these developments are transparent for the users as they won’t 
change the organization of the package.

Soon, Pynapple will be part of an entire suite of plugin libraries that we are developing to further 
enhance Pynapple. To keep Pynapple robust and stable, we will develop these plugins as standalone 
packages. These external packages will include an automated datalogger for recapitulating anal-
yses, an online visualizer for Pynapple objects, and a package for parallel computing in Pynapple. 
This will address the speed issue inherent to code written in Python by allowing multiple analyses to 
be performed simultaneously. These packages will begin to address the limitations of Pynapple we 
described previously, enhancing the long- term stability of Pynapple, and streamlining accessibility for 
its users.

• Pynapple: https://github.com/pynapple-org/pynapple, copy archived at Viejo, 2023b.
• Pynacollada: https://github.com/PeyracheLab/pynacollada, copy archived at Viejo, 2023c.
• Code to generate Figures 4 and 5: https://github.com/pynapple-org/pynapple-paper-2023, 

copy archived at Viejo, 2023a.
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