
Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 1 of 18

Pynapple, a toolbox for data analysis
in neuroscience
Guillaume Viejo1,2, Daniel Levenstein1,3, Sofia Skromne Carrasco1,
Dhruv Mehrotra1, Sara Mahallati1, Gilberto R Vite1, Henry Denny1, Lucas Sjulson4,
Francesco P Battaglia5, Adrien Peyrache1*

1Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada;
2Flatiron Institute, Center for Computational Neuroscience, New York, United States;
3MILA – Quebec IA Institute, Montreal, Canada; 4Departments of Psychiatry and
Neuroscience, Albert Einstein College of Medicine, Bronx, United States; 5Donders
Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen,
Netherlands

Abstract Datasets collected in neuroscientific studies are of ever- growing complexity, often
combining high- dimensional time series data from multiple data acquisition modalities. Handling
and manipulating these various data streams in an adequate programming environment is crucial to
ensure reliable analysis, and to facilitate sharing of reproducible analysis pipelines. Here, we present
Pynapple, the PYthon Neural Analysis Package, a lightweight python package designed to process
a broad range of time- resolved data in systems neuroscience. The core feature of this package is a
small number of versatile objects that support the manipulation of any data streams and task param-
eters. The package includes a set of methods to read common data formats and allows users to
easily write their own. The resulting code is easy to read and write, avoids low- level data processing
and other error- prone steps, and is open source. Libraries for higher- level analyses are developed
within the Pynapple framework but are contained within a collaborative repository of specialized and
continuously updated analysis routines. This provides flexibility while ensuring long- term stability
of the core package. In conclusion, Pynapple provides a common framework for data analysis in
neuroscience.

eLife assessment
This paper introduces the python software package Pynapple and a separate package of more
advanced routines (Pynacollada) to the Neuroscience/Neural Engineering community. Pynapple
provides a set of data objects and methods that have the potential to simplify data analysis for
neural and behavioral data types. This represents a valuable contribution to the field. With more
examples and as a live coding notebook, the evidence was judged to be compelling.

Introduction
The increasing size of datasets across scientific disciplines has led to the development of specific
tools to store (Folk et al., 2011; Wells and Greisen, 1979), analyze (Pedregosa, 2011), and visualize
(Maaten and Hinton, 2008) them. While various programming environments such as Matlab and R
have long been commonly used in data science, Python has progressively become one of the most
popular programming languages (McKinney, 2011). This is due to its open nature, large community-
driven development, and versatility of usage. As with virtually all other scientific fields, neuroscience
faced the challenges of handling and analyzing large datasets by rapidly developing a wide range of

TOOLS AND RESOURCES

*For correspondence:
adrien.peyrache@mcgill.ca

Competing interest: See page
13

Funding: See page 13

Preprint posted
07 December 2022
Sent for Review
24 January 2023
Reviewed preprint posted
17 May 2023
Reviewed preprint revised
25 August 2023
Version of Record published
16 October 2023

Reviewing Editor: Caleb
Kemere, Rice University, United
States

 Copyright Viejo et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.85786
mailto:adrien.peyrache@mcgill.ca
https://doi.org/10.1101/2022.12.06.519376
https://doi.org/10.7554/eLife.85786.1
https://doi.org/10.7554/eLife.85786.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 2 of 18

specialized tools to deal with each of these types of data (Abraham et al., 2014; Tadel et al., 2011;
Oostenveld et al., 2011; Bokil et al., 2010; Garcia et al., 2014; Freeman et al., 2014) and corre-
sponding analyses.

In systems neuroscience, calcium imaging and high- density electrophysiology make it possible
to simultaneously monitor the activity of an increasingly large number of neurons (Stevenson and
Kording, 2011; Urai et al., 2022). Often, this is combined with simultaneous behavioral recordings.
As in all other fields, this has required the development of specific pipelines to process (Pachitariu
et al., 2016; Pachitariu et al., 2017; Hazan et al., 2006; Fee et al., 1996; Harris et al., 2000; Yger
et al., 2018; Mathis et al., 2018; Zhou et al., 2018; Mukamel et al., 2009; Romano et al., 2017;
Kaifosh et al., 2014; Pnevmatikakis and Giovannucci, 2017) and store (Teeters et al., 2015; Rübel
et al., 2022) the data. Despite this rapid progress, data analysis often relies on custom- made, lab-
specific code, which is susceptible to error and can be difficult to compare across research groups.
While several toolboxes are available to perform neuronal data analysis (Oostenveld et al., 2011;
Bokil et al., 2010; Garcia et al., 2014; Freeman et al., 2014; Nasiotis et al., 2019; Zugaro, 2018;
Ackermann et al., 2018) (see Unakafova and Gail, 2019, for review), most of these programs focus
on producing high- level analysis from specified types of data, and do not offer the versatility required
for rapidly changing analytical methods and experimental methods. Users can decide to use low- level
data manipulation packages such as Pandas, but in that case, the learning curve can be steep for users
with low, if any, computational background.

The key challenge for scientific code is balancing the need for flexibility and stability. This is espe-
cially true of science because results should be reproducible (between labs, between the past and the
future, and between different experimental setups) while keeping up with rapidly changing require-
ments (e.g., due to new kinds of data, theories, and analysis methods). To meet these needs, we
designed Pynapple, a general toolbox for data analysis in systems neuroscience with a few principles
in mind.

The first property of such a toolbox is that it should be object- oriented, organizing software around
data. This makes the programming environment very efficient for data analysis, particularly in systems
neuroscience where data streams can be of very different types. For example, to compute the rate
of an event, one can write a function that takes an array of event times and divides the number of
elements by the time between the first to the last event. However, this approach neglects to consider
that the appropriate epoch in which to calculate the rate could start earlier, or end later, than the first
or last event. Addressing these concerns requires another argument, which defines the boundaries of
the epoch on which the rate should be computed. Overall, this approach is error prone. The epoch
boundaries and event times must be stored in the same time unit and with the same reference (i.e.,
simultaneous time 0) and the rate function itself can be erroneously called with arrays storing another
type of data. In contrast, an object which is specifically designed to represent a series of event times
can ameliorate these concerns. For example, it can be created from a specific data loader that ensures
proper definition of time units and support epochs (i.e., true beginning and end of the observation
time). It will then be immune to the arithmetic operations that can change the values of a generic array
(e.g., an addition that is misplaced in the code). Further, the object can be endowed with a rate prop-
erty that is specifically written for this object, reducing the odds of a coding error. While this approach
may discourage users who are not familiar with this type of coding, the benefit far exceeds the effort
of learning object- oriented programming, especially if the naming of the methods and properties is
explicit.

Another property of an efficient toolbox is that a small number of objects could virtually represent
all possible data streams in neuroscience, instead of objects made for specific physiological processes
(e.g., spike trains). This ensures that the same code can be used for various datasets and eliminates
the need of adapting the structure of the package to handle rare or yet- to- be- developed data types.
Then, these objects should then be able to interact via a small number of basic and foundational
operations, which are sufficient for most analyses. This allows users to quickly write new code for new
use- cases, and easily understand and adapt code written by others, as the same methods can be used
for any kind of data.

The toolbox should be able to load common data storage types, and the flexibility to create
loaders for future and custom/lab- specific data. It should also support the development of yet-
unknown, lab- specific, and specialized analysis methods. In other words, the customization of the

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 3 of 18

package to adapt to any dataset should happen at the input stage and the development of high-
level analytical methods should take place outside the core package. The properties listed above
ensure the long- term stability of a toolbox, a crucial aspect for maintaining the code repository.
Toolboxes built around these principles will be maximally flexible and will have the most general
application.

In this paper we introduce the Python Neural Analysis Package (Pynapple), designed with these
axioms in mind. The core of Pynapple is five versatile time series objects, whose methods make it
possible to intuitively manipulate and analyze the data. We show how Pynapple can be used with most
raw neuroscience data types to produce the most common analyses used in contemporary neurosci-
ence. Additionally, we introduce Pynacollada, a collaborative repository for higher- level analyses built
from the basic functionality provided by Pynapple. A complete neuroscience data analysis pipeline
using a common language supports open and reproducible code. As all users are also invited to
contribute to the Pynapple ecosystem, this framework also provides a foundation upon which novel
analyses can be shared and collectively built by the neuroscience community.

time

time

rate

time

timestamps

time

time-lag

intervalset

time series

OBJECTS

INPUT DATA

METHODS

ANALYSIS

x,y

un
its

LF
P

po
si

tio
n

time

time

time

V
m

un
its

tri
al

s
lic

ks
le

ve
r

restrict

count

threshold

and other methods

1 1 0 2 11

tri
al

s
R

O
Is

time

current injection

drug wash

cross-corr

tuning curves

peri events

ra
te

x position

y
po

si
tio

n

time

P
decoding

fe
at

ur
e

Figure 1. Data analysis with the Pynapple package. Left, any type of input data can be loaded in a small number of core objects. For example (from
top to bottom): intracellular recordings in slice during which current is injected and drug is applied to the bath solution; extracellular recordings in
freely moving mice whose position is video- tracked; calcium imaging in head- fixed mice during presentation of different visual stimuli and delivery of
precisely timed rewards; extracellular recordings in non- human primates during the execution of cognitive tasks. Middle, object- specific methods allow
the user to perform a wide variety of basic operations and to manipulate the data manipulations. Right, at a higher level, the package contains a set of
foundational analysis methods such as (from top to bottom) peri- event alignment of the data (top), 1- and 2D tuning curves, 1- and 2D decoding; auto-
and cross- correlation of event times (e.g., action potentials). These methods depend only on a few, commonly used, external packages.

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 4 of 18

Results
Core features of Pynapple
At its core, Pynapple is object- oriented. Because objects are designed to be self- contained and
interact with each other through well- defined methods, users are less likely to make errors when
using them. This is because objects can enforce their own internal consistency, reducing the chances
of data inconsistencies or unexpected behavior. Overall, object- oriented programming is a powerful
tool for managing complexity and reducing errors in scientific programming. Pynapple is built around
only five objects that are divided into three categories: two objects represent event timestamps (one
or several), two represent time- varying data (one or several time series at the same sampling times),
and one represents time epochs. Raw or preprocessed data are loaded into these objects in the
coding environment (Figure 1). The data loaders ensure that all loaded objects have the same time
base. Hence, once objects are constructed, the user does not have to remember properties of the
data such as the sampling frequency or alignment of data indices to clock time. Then, these objects
can be manipulated with their own methods (i.e., object- specific functions). A large majority of data
manipulations needed for most users can be achieved with a small number of methods. From there,
Pynapple offer some foundational analyses, such as cross- correlation of event times. On top of this,
the user may write analytical code that is project specific.

The most basic objects are timestamps (Ts), which are typically used for any discrete events, for
example spike or lick times. The timestamped data (Tsd) object holds timestamps and associated data
associated with each timestamp. For example, this object is used to represent an animal’s position in
its environment, electroencephalogram data, or average calcium fluorescence as a function of time.
Two objects were designed to represent groups of Ts and Tsd, namely TsGroup and TsdFrame. The
main difference between the two objects is that TsdFrame has common timestamps for all the data
(and therefore, all data have the same number of samples). TsGroup is more generic as each element
has its own timestamps. These objects are typically used for ensembles of simultaneously recorded
spike trains (TsGroup) or simultaneously acquired calcium fluorescence (TsdFrame). They are useful
when operations need to be performed on a common time basis, for example binning multiple spike
trains. Note however that they can be used for many other data types, for example the position of
the animal (TsdFrame). Last, IntervalSet objects represent time epochs, for example the start and end
times of intervals in which the animal is running.

Pynapple is built with objects from the Pandas library (McKinney, 2011). As such, Pynapple objects
inherit the long- term consistency of the code and the computational flexibility from this widely used
package. Specifically, a Tsd object is an extension of (or ‘inherits’ in object- orienting programming)
Pandas Series object and TsdFrame of Pandas DataFrame object. A TsGroup is a child of UserDict, a
built- in python object for inheriting dictionaries. Finally, IntervalSet inherits Pandas DataFrame. Time-
stamps are by default in units of seconds but can be readily converted to other time units using the
as_units method in any object.

Pynapple objects have a limited number of core methods (Figure 2A), which form the foundation
of further operations. These operations provide a general framework by which users can manipulate
the timestamps and their corresponding values as needed for analysis. For example, the time series
objects have built- in methods: value_from, which gets the value from one time series object at the
(closest) timestamps from another; restrict, which ‘restricts’ a time series object, extracting only
the data contained within a set of time intervals defined by an IntervalSet object; count, which counts
the number of timestamps from a time series object in windows of a given bin size; threshold, which
applies a threshold to the data within a Ts or Tsd object and returns a Tsd containing the data above
or below the threshold. All operations can be restricted to a given epoch, specified by an IntervalSet.

Furthermore, all objects have a time_support property, which keeps track of the time interval
over which the data is valid. The time support is an IntervalSet object that is attached by default to Ts,
Tsd, TsdFrame, and TsGroup objects. This is a crucial property as, otherwise, it is impossible to know
whether periods without data correspond to an epoch during which the underlying event was not
observed or because this period has previously been excluded by a restrict method.

In addition to the ability to restrict methods of time series objects, the IntervalSet object has
methods for logical operations on combinations of IntervalSets, all returning other IntervalSets
(Figure 2b): intersect, which returns the set intersection of two IntervalSet objects; union,
which returns the set union of two IntervalSets; set_diff, which returns the set difference of two

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 5 of 18

IntervalSet; drop_short_intervals, drop_long_intervals, which eliminate interval subsets
that are shorter or longer than a desired duration; and merge_close_intervals, which merge
intervals that are closer in time than a given duration.

Many experiments in neuroscience are based on trials, each associated with different conditions.
IntervalSets are perfectly suited for this, as one IntervalSet can represent all start and end times

threshold(value)

objects

methods

x(
t)

value_from(Tsd)

count(bin_size)

restrict(IntervalSet)

a

intersect(1,2)

union(1,2)

set_diff(1,2)

1

2

timestamps
group

getby_category('Location') getby_threshold('Freq.' , 0.5)

timestamps group metadata

Selecting

getby_intervals('Mod.' , [0, 0.6, 1])

set_info(new_metadata)

C
A1

'Thalamus'
'Thalamus'
'CA1'
'CA1'

Location

0.1
1.2
1.5
1.4

Freq. (Hz)

Bi
n
1

Bi
n
2

Th
al
am
us

3

time

3 32

Mod.

0.7
0.3
0.5
0.8

0.1
1.2
1.5
1.4

Frequency (Hz)

0 1

...

2 1 1 2

1 2 0 2
1 1 2 1
2 1 1 2

c

x(
t)

b

time time time time

timestamps
grouptimestamps timestamped

data frame
timestamped

data
interval set

Figure 2. Core methods of the Pynapple objects. (a) Methods of timestamps (Ts) and timestamped data (Tsd) objects. The same methods can be called
for different objects, leading to qualitatively similar results. For example, object.restrict(intervalset) returns an object now defined on the intersection
of its original time support and the input IntervalSet. Objects can be any of the timestamps and timestamped data objects. These methods can be
called with only one argument, as shown here, since the default parameters are typically the same for most analyses. Yet the methods include additional
arguments for more specific operations. (b) Logical operations on pairs of IntervalSet objects to compute (from top to bottom) the intersection,
union, and difference between epochs. These operations are commonly used to analyze data during specific epochs in a combinatorial manner, such
as ‘exploration period AND running speed is above 5 cm/s NOT left arm’. (c) Methods of TsGroup objects. Each timestamp is associated by default
with its occurrence rate. Additional custom metadata such as recording location can be added. These metadata can then be used to select and filter
timestamps using getby_category for discrete labels, getby_threshold, or getby_intervals for numerical values.

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 6 of 18

of trials. The nature of each trial (e.g., left/right,
correct/error) can be stored as a third column
within the IntervalSet dataframe object. Thus,
subsets of trials can be easily selected to restrict
data of interest on the corresponding epochs. An
alternative approach is to store different Interval-
Sets for different types of trials.

In addition to the ability to apply any methods
of the Ts object to its members, TsGroup has a
set of methods to calculate and store metadata
about the elements of the group (Figure 2c). For
example, one can store and retrieve the anatom-
ical structure from which a neuron was recorded,
or the result from downstream analysis, perform
operations on each element, and filter by various
properties. These methods allow the user to,
for example, calculate, store, and compare the
properties of multiple neurons in a population.
Additional methods for all objects are extensively
documented in the documentation, and exam-
ples for usage are given in the tutorials.

While there are relatively few objects, and while
each object has relatively few methods, they are
the foundation of almost any analysis in systems
neuroscience. However, if not implemented effi-
ciently, they can be computationally intensive and
if not implemented accurately, they are highly
susceptible to user error. The implementation of
core features in Pynapple addresses the concerns
of efficiency and accuracy. Crucially, all units are
indexed by seconds across the entire package,
which limits the need for users to account for
indexing and alignment between different streams
of data at different sampling rates. For example,
a user can simply use spikes.value_from(po-
sition) to get the animal’s position at each spike
time, rather than costly and error- prone routines
in which a user needs to identify matching indices
for the corresponding timestamps across arrays
containing spikes and behavioral information.

Another common issue in data analysis is to analyze two time series that are not recorded at the same
sampling rate. Once data are loaded in the same time base (i.e., the same time 0), they can keep their
original sampling times. Using the function value_from from one object with the other object as
argument will provide two time series with the same number of samples and the same sampling times,
which will simplify further analyses. However, this means it is essential that all objects are loaded in
the same time base for these methods to function correctly. Pynapple anticipates this by providing a
customizable data loader, ensuring time bases are always loaded correctly.

Importing data from common and custom pipelines
The proliferation of experimental methods has come with a proliferation of data formats, as well as the
need to rapidly develop new formats that meet new experimental needs. Usually, these data formats
are dependent on the software that was used to preprocess the raw data, making them difficult to
load for further analysis. Additionally, an experimental setup can generate multiple streams of data
that are saved within multiple files of various types. Thus, a universal toolbox should be able to load

Data file 1
Data file 2
Data file n

session 1

create

Data file 1
Data file 2
Data file n

session 2

load_session class Data
properties
data 1
data 2
data n

methods
read
write

session 1a

species
description
sex
ageage

Session information Epochs

DeepLabCut

Tracking
tracking system

The minimalist session loader (GUI)

Optitrack
custom

class BaseLoader
Session Info
Epochs
Tracking data
...

b

c

X

start end label
ts1 te1 state1
tsn ten staten...
...

class NeuroSuite
load_spikes
load_xml
...

class Phy
load_spikes
load_wavefoms
...

class Suite2p
load_f
load_spikes
...

SessionName.nwb

inherit

Figure 3. Built- in and customizable loading function for
Pynapple. (a) Data is originally organized as separate
files in a folder. A built- in or custom- made load_session
function is called to load the data into a Data class. (b)
Data can be loaded through a customizable graphical
user interface (GUI) to enter all relevant information
regarding the experiment, for example animal strain,
among others. The main epochs of the recording
(e.g., behavioral states, stimuli category, etc.) can
be loaded from standard tabular data files (such as
CSV). Behavioral tracking data extracted from various
common systems and saved as a CSV file can also be
loaded. (c) Pynapple offers various built- in loaders for
commonly used data formats, as well as a template to
easily design a customizable loader to adapt to any
other format or specific task design.

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 7 of 18

popular data formats into a common framework and offer the user the ability to write functions to
load their own data types.

To ease the process of loading and synchronizing data from various streams, Pynapple includes an
I/O layer that allows the user to load multiple types of datasets and write them to a common format
for further analysis and sharing. The primary way by which a user interacts with the I/O layer is an
object that represents an experimental session, with the properties of the object being the various
time series. This I/O object is created by calling the function load_session, which will load all data
associated with that session (Figure 3a). For example, calling load_session for an in vivo electro-
physiology recording would return an object called data, which will have properties data. spikes,
data.position, and data. epochs which respectively store a TsGroup, containing the spike times,
a TsdFrame containing the position of the animal, and an IntervalSet containing the times when the
animal is on the track. With this object- oriented I/O method, the user can interact with the various
data streams associated with a given experimental session and load multiple sessions at once without
the risk of mixing data as each time series is attached to only one I/O object.

Data synchronization is the crux of any analysis pipeline. The load_session function is thus a
crucial step in using the package. For unsupported data types, it is the responsibility of the users to
design the preprocessing scripts that align the data streams in the same absolute time base. The data
loading and synchronizing functions already included in the package for supported data types is a
good starting point for any user writing a custom loading function (details of this process are provided
later).

While data types are usually specific to a recording modality (i.e., calcium imaging and electrophys-
iology), there are several pieces of metadata that are common to many experiments, such as the strain
of the animal, age, sex, and name of the experimenter. When loading a session for the first time, the
I/O process starts with a graphical user interface (GUI) in which the user can quickly and easily input
the general information as well as any session epoch and behavioral tracking data (Figure 3b). This
information is saved in a BaseLoader class.

General session information is common across experimental sessions, however specialized data
streams are usually specific to recording modalities. To cover the variety of preprocessing analysis
pipelines currently used in systems neuroscience, the Pynapple I/O can load data formats from popular
preprocessing pipelines (e.g., CNMF- E, Phy, NeuroSuite, or Suite2P). This is implemented via a set
of specialized object subclasses of the BaseLoader class, avoiding the need to redefine I/O opera-
tions in each subclass. This is a core aspect of object- oriented programming, and it means that these
specialized I/O classes have all the methods and properties of the parent BaseLoader objects. This
ensures compatibility across various loading functions. However, once generated, these specialized
I/O classes are unique and independent from each other, ensuring long- term backward compatibility.
For instance, if the spike sorting tool Phy changes its output in the future, this would not affect the
‘Neurosuite’ IO class as they are independent of each other. This allows each tool to be updated or
modified independently, without requiring changes to the other tool or the overall data format.

Like the BaseLoader class, a specialized GUI for electrophysiology and calcium imaging is provided,
with relevant metadata fields, for example electrode position in electrophysiology and type of fluores-
cence indicator in calcium imaging (Figure 3b).

To avoid repeating the process of inputting session information and synchronization of multiple
data streams, Pynapple saves all synchronized data into a unique file and can accommodate a wide
range of neuroscientific data types. Recently, Neurodata Without Borders (NWB) (Teeters et al.,
2015; Rübel et al., 2022) has emerged as a flexible data format used for public data sharing and large
databases such as those collected by the Allen Institute. Thus, we chose to use the NWB format for
fast and universal data loading and saving with Pynapple. The BaseLoader is responsible for initializing
the NWB file within the session folder (i.e., it creates a new NWB file if none is present) (Figure 3c).
Converting user’s data to NWB format encourages standardization and can facilitate sharing both
data and analysis pipelines written with Pynapple.

Many other preprocessing pipelines exist and can often be unique to a lab or even to an individual
project. To accommodate present and future needs for these specific pipelines, the documentation
of Pynapple provides an easy- to- follow recipe for creating a custom I/O class that inherits the Base-
Loader and can interact with a pre- existing NWB file. There are multiple benefits of the inheritance
approach of data loading classes within the I/O layer of Pynapple. First, future development of new

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 8 of 18

I/O classes will not affect the core and processing layers of Pynapple. This ensures long- term stability
of the package. Second, users can develop their own custom I/O using available template classes.
Pynapple already includes several of such templates and we expect this collection to grow in the
future. Third, users can still use Pynapple without using the I/O layer of Pynapple. Last, in order to
apply previous analyses, or analyses developed in another lab, to new data or data types a user only
needs to develop a new I/O class for their data. This will import the data to the common Pynapple
core from which the same analysis pipeline can be used.

Foundational data processing
The basic methods that manipulate the core objects in Pynapple allow users to perform common, but
powerful, neuroscience analyses (Figure 2). These analyses are easy to use because they describe the
relationships between time series objects, while requiring the fewest number of parameters to be set
by the user. This minimizes complexity, while maximizing generalizability. The operations in Pynapple
can recreate neuroscience analyses from a broad number of subdisciplines. These analyses form the
foundation of neuroscience data analysis in Pynapple. To illustrate the versatility of Pynapple and how
it can be used, we reanalyzed five openly available datasets.

The first foundational analysis is computing neural tuning curves. Tuning curves relate specific
stimuli to the firing rate of neurons. To this end, Pynapple computes the firing rate of a neuron (or
any other timestamped data) during each epoch in an IntervalSet object, for example for discrete
conditions such as ‘ON/OFF’' stimuli. Tuning curves can also be computed with respect to a contin-
uous feature. Once computed, Pynapple is able to use tuning curves from a population of neurons to
decode stimuli using a Bayesian decoder (Zhang et al., 1998; Brown et al., 1998; Figure 4a).

The second foundational analysis is computing auto- and cross- correlograms of event data. In the
most abstract sense, these correlograms show the relationship between previous and future events
and a current event at time 0. In Pynapple, cross- correlograms can be generated for any two series
of events by computing the event rate for each time bin of a target time series relative to each event
of a reference time series. Commonly, this is used to examine the likelihood of an action potential in
a neuron relating to a previous or future action potential in the same neuron (auto- correlogram) or
in another neuron (cross- correlogram) (Figure 4b). However, Pynapple does not limit this function to
spiking data and correlograms may be performed on any event- based data.

The third and final foundational analysis is peri- event alignment. This involves aligning a specified
window from Ts/Tsd/TsGroup data to a specific Ts, known as ‘TimeStamp Reference’'. This allows users
to align data to specific points in time, and measure changes in rates around this specified time point
(Figure 4c). One example where this function is useful is aligning neuronal spikes to specific stimuli,
such as optogenetic illumination, presentation of a tone, or electrical stimulation.

Some of the analyses presented so far are designed for spikes (and discrete events in general) and
cannot be applied for continuous traces such as calcium imaging data. Pynapple includes specialized
functions that can compute the tuning of a continuous value with respect to a feature, as shown for
the modulation of fluorescence in calcium imaging with respect to the speed of the animal (Figure 5a)
or of the position of a vertical bar on a screen in the fly’s ellipsoid body (Figure 5b).

The examples shown in Figures 4 and 5 show how these core analyses are useful for rapid data
screening with just a few lines of code in a Jupyter notebook, for example. Overall, these foundational
functions form the building blocks of most other analyses in systems neuroscience. Importantly, they
are for the most part built- in and only depend on a few widely used external packages. This ensures
that the package can be used in a near stand- alone fashion, without relying on packages that are at
risk of not being maintained or of not being compatible in the near future. All other developments of
analysis pipelines take place outside Pynapple, ensuring the core package is only updated rarely and
remains lightweight.

Pynacollada: a collaborative library for specialized and continuously updated
data analyses
Pynapple is designed to be stable in the foreseeable future and its core functionality is not meant to
be modified. However, actual data analysis usually requires more than the available core functions.
This type of data analysis is ‘fluid’, constantly updated by new software developments and theoretical
work. Furthermore, this kind of development is collaborative in nature and the supervision of such

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 9 of 18

projects is less sensitive than that of a stable package. To balance the needs for stability and flexibility,
high- level functions were separated from Pynapple and included instead in Pynacollada: the Pynapple
Collaborative repository hosted on GitHub.

Complex analyses are added to Pynacollada in the form of libraries. Each library developed for
Pynacollada takes the form of a Jupyter notebook (or python scripts) which guides the user through
the analysis step- by- step. As such, libraries built for Pynacollada should provide training, promote
good practice in programming, and allow users to easily adapt code to their own project. Examples of
complex analyses currently handled by Pynacollada are outlined below (Figure 6).

TsGroup(spikes)

Tsd(angle)

restrict(Wake) compute_1d_tuning_curves

compute_discrete_tuning_curves

compute_perievent count

compute_crosscorrelogram

Wake WakeSleep
decode_1d

decoded HD

2 s

0 0.35
P

1.8

1

-200 2000
lag (ms)

+ Probe... ...

tr
ia
ln
um
be
r 30

1 tr
ia
ln
um
be
r 30

1

4

0

time since scene boundary (s)
0-0.5 1

time since scene boundary (s)
0-0.5 1 fir

in
g
ra
te
(H
z)

time

time

b

c

(Peyrache et al, 2015)

(Siegle et al, 2021)

(Zheng et al, 2022)

an
gle

time

an
gle

time

13

8

5

angle (deg)

an
gl
e
(d
eg
)

an
gl
e
(d
eg
)fir
in
g
ra
te
(H
z)

fir
in
g
ra
te
(H
z)

fir
in
g
ra
te
(H
z)

TsGroup(spikes) restrict(Gratings)
Gratings GratingsMovie

time time

360o

0o

360o

360
0o

0
0

time (s)
0-0.5 1

hard boundary
no boundary

orientation

a

Figure 4. Examples of foundational analysis across various electrophysiological datasets using Pynapple. (a) Analysis of an ensemble of head- direction
cells. From left to right: data were collected in a freely moving mouse randomly foraging for food; all data are restricted to the wake epoch (i.e., during
exploration); the tuning curve of two neurons relative to the animal’s head- direction; animal’s head- direction is decoded from the neuronal ensemble.
Data from Peyrache et al., 2015a; Peyrache et al., 2015b. (b) Analysis of V1 neurons during visual stimulation. From left to right: the mouse was
recorded while being head- fixed and presented with drifting gratings; spikes, stimulation, and epochs are shown; example tuning curves of two V1
neurons, showing their firing rates for different grating orientations; example cross- correlation between two V1 neurons, showing an oscillatory co-
modulation at about 5 Hz during visual stimulation. Data from Siegle et al., 2021. (c) Analysis of medial temporal lobe neurons in human epileptic
subjects. From left to right: subjects, implanted with hybrid deep electrodes, were shown a series of short clips; raster plot of a single neuron around
continuous movie shot trials (green) and hard boundary trials, which are transitions between two unrelated movies (orange); peri- event neuronal
firing rate for both trial types. Data from Zheng et al., 2022. Images in panels b and c are from Olmos and Kingdom, 2004. The analysis code
used to generate this figure can be found on the Pynapple Organization GitHub repository: https://github.com/pynapple-org/pynapple-paper-2023,
swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d; (Viejo, 2023a).

https://doi.org/10.7554/eLife.85786
https://github.com/pynapple-org/pynapple-paper-2023
https://archive.softwareheritage.org/swh:1:dir:e95b6d912a494f80f1d1bd8036cf53c9ce18e457;origin=https://github.com/pynapple-org/pynapple-paper-2023;visit=swh:1:snp:59ad1cb024e145cc665894b49db8556cad3c2846;anchor=swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 10 of 18

Recent advances in the application of manifold theory to neural data analysis have allowed neuro-
scientists to project high- dimensional data into three or fewer dimensions (Chaudhuri et al., 2019;
Viejo and Peyrache, 2020; Gardner et al., 2022). The structure of these projections reflects the
structure of these higher- dimensional processes, allowing us to infer the information encoded by the
population. The Pynacollada ‘neural_manifold’ library contains a Jupyter notebook that provides a
step- by- step process for recreating a ring manifold using spiking data recorded from a population of
head- direction neurons (Figure 6). This code can be adapted by the end- user for analysis of their own
data by simply importing their own data and refactoring the parameters to suit their needs.

A second complex analysis handled by Pynacollada is sharp wave- ripple (SWR) detection. Detecting
oscillatory events is a routine procedure in electrophysiology, yet usually depends on many arbitrary
choices of parameters. In this case, the Jupyter notebook showcases an example of detecting SWRs,
a well- characterized oscillation of the hippocampus (Figure 6).

In addition, Pynacollada currently includes libraries for spike waveform processing, EEG anal-
ysis, and video tracking, among others. We invite the community to contribute to this repository by
improving current libraries or upload new ones. For new libraries, only rapid screening and tests will
be performed, but the code will not go through the kind of validation that is in place for Pynapple as
an external library will never affect the functioning of the core package. The documentation describes
what is expected in each library to simplify readability, sharing, and maintenance and, overall, how
libraries should conform to Pynacollada standards. We hope this will be broadly adopted by the
community, allowing researchers across labs to easily share their code.

Figure 5. Examples of foundational analysis across various calcium imaging datasets using Pynapple. (a) Analysis of a V1 neuron during visual
stimulation. From left to right: the mouse was recorded while being head- fixed on a running wheel and presented with natural scene movies;
fluorescence traces from a preprocessed region of interest and running speed are loaded; continuous tuning curve is directly obtained from
fluorescence and speed. Data from Zhou et al., 2020. Image is from Olmos and Kingdom, 2004. (b) Analysis of neuronal activity in the fly central
complex. From left to right: a Drosophila melanogaster is tethered to a calcium imaging setup while the position of a vertical bar is in closed loop with
the fly’s movements on a ball; calcium activity in the ellipsoid body is divided into 16 wedges; example fluorescence trace and direction of the fly. Tuning
curves are obtained as in (a), with the direction as feature. Data from Turner- Evans et al., 2020.

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 11 of 18

Discussion
Here, we introduced Pynapple, a lightweight and open- source python toolbox for neural data anal-
ysis. The goal of this package is to offer a versatile set of tools to study typical neurophysiological
and behavioral data, specifically time series (e.g., spike times, behavioral events, and continuous time
series) and time intervals (e.g., trials and brain states). It also provides users with generic functions for
neuroscience analyses such as tuning curves and cross- correlograms. Finally, Pynapple was designed
to rely on a minimum number of dependencies, which are themselves very common and thus highly
stable. As such, accessibility is the guiding axiom of Pynapple.

long-term stability

Python script

few dependencies

versatile objects

specialized analysis

community-driven

continuously updated

Pynapple Pynacollada

Jupyter notebook
Documentation

neuronal activity manifold

filtered

Manifold (tutorial)

Oscillation detection (library)

and more...

raw trace

manifold

IntervalSet

envelop

Librairies & tutorials

Figure 6. The Pynapple collaborative data analysis repository (Pynacollada) environment. Unlike Pynapple, which is
designed for long- term stability, Pynacollada is a repository of project- oriented libraries. This way, the community
can collaborate on constantly evolving data analysis code without affecting the functionality of the core pipeline.
Each project should include a script that can be called for specific functions and/or Jupyter notebooks to showcase
the use of the code, as well as proper documentation. Pynacollada already includes several libraries and/or
tutorials, including but not limited to: (1) a tutorial on manifold analysis, covering how to project neuronal data on
low- dimensional subspace using various machine learning techniques; (2) a library for oscillation detection in local
field potentials, which takes raw broadband traces as inputs and outputs IntervalSet objects corresponding to the
start and end times of oscillation bouts.

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 12 of 18

The path from data collection to reliable results involves a number of critical steps: exploratory data
analysis, development of an analysis pipeline that can involve custom- made developed processing
steps, and ideally the use of that pipeline and others to replicate the results. Pynapple provides a
platform for these steps.

The design of Pynapple is centered around the manipulation of simple, abstract objects that are
common to most neurophysiological and behavioral datasets. The core of Pynapple is built around
five objects: timestamps (Ts) and group of timestamps (TsGroup), time series data (Tsd) and ensemble
of co- registered Tsd (TsdFrame), as well as IntervalSets. These objects can be manipulated with prop-
erties that are, in most cases, common to all objects. Building around these fundamental objects and
properties means Pynapple is highly flexible and able to handle most neurophysiological and behav-
ioral datasets, making it accessible to most systems neuroscientists.

Pynapple was developed to be lightweight, stable, and simple. As simplicity does not necessarily
imply backward compatibility (i.e., long- term stability of the code), Pynapple main objects and their
properties will remain the same for the foreseeable future, even if the code in the backend may even-
tually change (e.g., not relying on Pandas in future versions). The small number of external dependen-
cies also decreases the need to adapt the code to new versions of external packages. This approach
favors long- term backward compatibility.

Data in neuroscience vary widely in their structure, size, and need for preprocessing. Pynapple is
built around the idea that raw data have already been preprocessed (e.g., spike sorting and detection
of ROIs). According to the FAIR principles, preprocessed data should interoperate across different
analysis pipelines. Pynapple makes this interoperability possible as, once the data are loaded in the
Pynapple framework, the same code can be used to analyze different datasets. Specifically, to simplify
analysis for users, Pynapple offers simple wrappers for loading data with popular preprocessing pipe-
lines. However, to be fully accessible, it is not sufficient for a package’s core operations to be able to
process all data types in theory. Data produced in neuroscience has a wide variety of file types, which
are often only loaded by specific analysis software. Data is also largely experiment- specific. To unify
these disparate file types and configurations, Pynapple’s data loader is customizable. In addition to
being able to load current popular data formats, this customizable data loader means emerging file
formats may continue to be loaded in the future, without significant overhauls to the main package.
This offers Pynapple long- term stability and means that Pynapple will continue to remain accessible in
the foreseeable future. To note, Pynapple can be used without the I/O layer and independent of NWB
for generic, on- the- fly analysis of data.

In further pursuit of accessibility, from these simple objects and properties, Pynapple has several
built- in, foundational analyses that are common across the field of systems neuroscience. These
foundational analyses include computing neural tuning curves, computing auto/cross- correlograms,
peri- event alignment, and performing Bayesian decoding. From these foundational analyses, higher
order analyses can be developed. However, these higher- order analyses are more prone to customi-
zation, thereby making them relatively more flexible. As such, higher- order analyses are stored in the
collaborative repository known as Pynacollada. This keeps the core Pynapple package stable, while
allowing the user to integrate new advances in neurophysiological and behavioral analysis into their
workflow.

Other software provide programming environments which deal with common neuroscientific data
and an interface between stored data and analytical methods (Garcia et al., 2014). However, one
problem that arises from this structure is that objects and data structures are rigidly defined, leading
to a lack of versatility for new types of data or task design. In contrast, Pynapple offers a more flexible
working environment and will remain accessible even as user requirements change.

While Pynapple expands accessibility to data analysis, it has some limitations inherent to its design.
The first issue is that Pynapple is currently only available through Python. Thus, some transition is
required for those primarily trained in other programming languages commonly used in neuroscience,
including MATLAB and Julia. The design of the package around objects is a strength in many regards
but could represent a challenge for users who are not accustomed to this programming approach.
We have addressed this concern by providing users with detailed documentation, which includes a
broad variety of examples. We will also keep on providing training opportunities for all future users.
Last, Python code may run slower than similar code written in other languages. Pynapple is based
on Pandas, whose methods are already highly optimized. Yet, current development is underway to

https://doi.org/10.7554/eLife.85786

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 13 of 18

improve computation speed and these developments are transparent for the users as they won’t
change the organization of the package.

Soon, Pynapple will be part of an entire suite of plugin libraries that we are developing to further
enhance Pynapple. To keep Pynapple robust and stable, we will develop these plugins as standalone
packages. These external packages will include an automated datalogger for recapitulating anal-
yses, an online visualizer for Pynapple objects, and a package for parallel computing in Pynapple.
This will address the speed issue inherent to code written in Python by allowing multiple analyses to
be performed simultaneously. These packages will begin to address the limitations of Pynapple we
described previously, enhancing the long- term stability of Pynapple, and streamlining accessibility for
its users.

• Pynapple: https://github.com/pynapple-org/pynapple, copy archived at Viejo, 2023b.
• Pynacollada: https://github.com/PeyracheLab/pynacollada, copy archived at Viejo, 2023c.
• Code to generate Figures 4 and 5: https://github.com/pynapple-org/pynapple-paper-2023,

copy archived at Viejo, 2023a.

Code availability

Acknowledgements
This work was supported by a Canadian Research Chair in Systems Neuroscience, CIHR Project Grant
155957 and 180330, NSERC Discovery Grant RGPIN- 2018- 04600, the Canada- Israel Health Research
Initiative, jointly funded by the Canadian Institutes of Health Research, the Israel Science Foundation,
the International Development Research Centre, Canada and the Azrieli Foundation 108877- 001, and
the Tanenbaum Open Science Institute (AP).

Additional information

Competing interests
Adrien Peyrache: Reviewing editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Canadian Institutes of
Health Research

155957 Adrien Peyrache

Canadian Institutes of
Health Research

180330 Adrien Peyrache

Natural Sciences and
Engineering Research
Council of Canada

RGPIN-2018-04600 Adrien Peyrache

International Development
Research Centre

108877-001 Adrien Peyrache

Tanenbaum Open Science
Institute

Adrien Peyrache

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Guillaume Viejo, Conceptualization, Resources, Data curation, Software, Formal analysis, Validation,
Investigation, Visualization, Methodology, Writing – original draft, Writing – review and editing; Daniel
Levenstein, Conceptualization, Software, Validation, Methodology, Writing – original draft, Writing –
review and editing; Sofia Skromne Carrasco, Dhruv Mehrotra, Sara Mahallati, Software, Visualization,
Writing – original draft, Writing – review and editing; Gilberto R Vite, Software, Visualization, Writing
– review and editing; Henry Denny, Visualization, Writing – original draft, Writing – review and editing;

https://doi.org/10.7554/eLife.85786
https://github.com/pynapple-org/pynapple
https://github.com/PeyracheLab/pynacollada
https://github.com/pynapple-org/pynapple-paper-2023

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 14 of 18

Lucas Sjulson, Conceptualization, Writing – review and editing; Francesco P Battaglia, Conceptualiza-
tion, Software, Writing – review and editing; Adrien Peyrache, Conceptualization, Resources, Super-
vision, Funding acquisition, Validation, Visualization, Methodology, Writing – original draft, Writing
– review and editing

Author ORCIDs
Guillaume Viejo http://orcid.org/0000-0002-2450-7397
Daniel Levenstein http://orcid.org/0000-0002-5507-9145
Dhruv Mehrotra http://orcid.org/0000-0001-5813-3218
Adrien Peyrache http://orcid.org/0000-0001-9708-309X

Peer review material
Reviewer #1 (Public Review): https://doi.org/10.7554/eLife.85786.3.sa1
Reviewer #2 (Public Review): https://doi.org/10.7554/eLife.85786.3.sa2
Author Response https://doi.org/10.7554/eLife.85786.3.sa3

Additional files
Supplementary files
• MDAR checklist

Data availability
All data used in this manuscript are publicly available and were previously published.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Peyrache A, Petersen
PC, Buzsaki G

2015 Extracellular recordings
from multi- site silicon
probes in the anterior
thalamus and subicular
formation of freely moving
mice

http:// dx. doi. org/ 10.
6080/ K0G15XS1

Collaborative Research
in Computational
Neuroscience, 10.6080/
K0G15XS1

 Continued on next page

https://doi.org/10.7554/eLife.85786
http://orcid.org/0000-0002-2450-7397
http://orcid.org/0000-0002-5507-9145
http://orcid.org/0000-0001-5813-3218
http://orcid.org/0000-0001-9708-309X
https://doi.org/10.7554/eLife.85786.3.sa1
https://doi.org/10.7554/eLife.85786.3.sa2
https://doi.org/10.7554/eLife.85786.3.sa3
http://dx.doi.org/10.6080/K0G15XS1
http://dx.doi.org/10.6080/K0G15XS1

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 15 of 18

Author(s) Year Dataset title Dataset URL Database and Identifier

Siegle JH, Jia X,
Durand S, Gale S,
Bennett C, Graddis
N, Heller G, Ramirez
TK, Choi H, Luviano
JA, Groblewski PA,
Ahmed R, Arkhipov
A, Bernard A, Billeh
YN, Brown D, Buice
MA, Cain N, Caldejon
S, Casal L, Cho A,
Chvilicek M, Cox
TC, Dai K, Denman
DJ, de Vries SEJ,
Dietzman R, Esposito
L, Farrell C, Feng D,
Galbraith J, Garrett
M, Hancock N, Harris
JA, Howard R, Hu
B, Hytnen R, Iyer R,
Jessett E, Johnson
K, Kato I, Kiggins J,
Lambert S, Lecoq
J, Ledochowitsch
P, Lee JH, Zeng H,
Naylor S, Phillips JW,
Reid C, Mihalas S,
Olsen SR, Koch C,
Leon A, Li Y, Liang
E, Long F, Mace K,
Melchior J, Millman
D, Mollenkopf T,
Nayan C, Ng L, Ngo
K, Nguyen T, Nicovich
PR, North K, Ocker
GK, Ollerenshaw D,
Oliver M, Pachitariu
M, Reding M, Reid
D, Robertson M,
Ronellenfitch K, Seid
S, Slaughterbeck C,
Stoecklin M, Sullivan
D, Sutton B, Swapp
J, Thompson C,
Turner K, Wakeman
W, Whitesell JD,
Williams D, Williford
A, Young R

2021 Survey of spiking in the
mouse visual system
reveals functional hierarchy

https:// gui.
dandiarchive. org/#/
dandiset/ 000021

Dandiset, 000021

Turner- Evans D,
Jensen KT, Ali S,
Paterson T, Sheridan
A, Ray RP, Wolff T,
Lauritzen S, Rubin
GM, Bock DD,
Jayaraman V

2020 The Neuroanatomical
Ultrastructure and Function
of a Biological Ring
Attractor

https:// janelia.
figshare. com/ articles/
dataset/ OneColor_
zip/ 12490373

Allen, 12490373

Schjetnan A, Yebra
M, Gomes BA,
Mosher CP, Kalia SK,
Valiante TA, Mamelak
AN, Kreiman G,
Rutishauser U, Zheng
J

2022 Data for: Neurons detect
cognitive boundaries
to structure episodic
memories in humans
(Zheng et al., 2022, Nat
Neuro in press)

https:// doi. org/ 10.
48324/ dandi. 000207/
0. 220216. 0323

Dandiset, 10.48324/
dandi.000207/0.220216.0323

 Continued on next page

 Continued

https://doi.org/10.7554/eLife.85786
https://gui.dandiarchive.org/#/dandiset/000021
https://gui.dandiarchive.org/#/dandiset/000021
https://gui.dandiarchive.org/#/dandiset/000021
https://janelia.figshare.com/articles/dataset/OneColor_zip/12490373
https://janelia.figshare.com/articles/dataset/OneColor_zip/12490373
https://janelia.figshare.com/articles/dataset/OneColor_zip/12490373
https://janelia.figshare.com/articles/dataset/OneColor_zip/12490373
https://doi.org/10.48324/dandi.000207/0.220216.0323
https://doi.org/10.48324/dandi.000207/0.220216.0323
https://doi.org/10.48324/dandi.000207/0.220216.0323

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 16 of 18

Author(s) Year Dataset title Dataset URL Database and Identifier

Zhou P, Reimer J,
Zhou D, Pasarkar A,
Kinsella I, Froudarakis
E, Yatsenko DV,
Fahey PG, Bodor
A, Buchanan J,
Bumbarger D,
Mahalingam G,
Torres R, Dorkenwald
S, Ih D, Lee K, Lu
R, Macrina T, Wu
J, Costa N, Reid C,
Tolias AS, Paninski L

2020 EASE: EM- Assisted Source
Extraction from calcium
imaging data

https://www. microns-
explorer. org/ cortical-
mm3# f- data

Allen, cortical- mm3#f- data

References
Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G.

2014. Machine learning for neuroimaging with scikit- learn. Frontiers in Neuroinformatics 8:14. DOI: https://doi.
org/10.3389/fninf.2014.00014

Ackermann E, Chu J, Dutta S, Kemere C. 2018. Nelpy: Neuroelectrophysiology object model and data analysis
in python. 43d07f3. Github. https://github.com/nelpy/nelpy

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. 2010. Chronux: A platform for analyzing neural signals.
Journal of Neuroscience Methods 192:146–151. DOI: https://doi.org/10.1016/j.jneumeth.2010.06.020, PMID:
20637804

Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. 1998. A statistical paradigm for neural spike train
decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The
Journal of Neuroscience 18:7411–7425. DOI: https://doi.org/10.1523/JNEUROSCI.18-18-07411.1998, PMID:
9736661

Chaudhuri R, Gerçek B, Pandey B, Peyrache A, Fiete I. 2019. The intrinsic attractor manifold and population
dynamics of a canonical cognitive circuit across waking and sleep. Nature Neuroscience 22:1512–1520. DOI:
https://doi.org/10.1038/s41593-019-0460-x, PMID: 31406365

Fee MS, Mitra PP, Kleinfeld D. 1996. Automatic sorting of multiple unit neuronal signals in the presence of
anisotropic and non- Gaussian variability. Journal of Neuroscience Methods 69:175–188. DOI: https://doi.org/
10.1016/S0165-0270(96)00050-7, PMID: 8946321

Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. 2011. An overview of the HDF5 technology suite and its
applications. Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. , , , 36–47. DOI: https://doi.
org/10.1145/1966895.1966900

Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, Rosen J, Yang C- T, Looger LL,
Ahrens MB. 2014. Mapping brain activity at scale with cluster computing. Nature Methods 11:941–950. DOI:
https://doi.org/10.1038/nmeth.3041, PMID: 25068736

Garcia S, Guarino D, Jaillet F, Jennings T, Pröpper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P,
Davison AP. 2014. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in
Neuroinformatics 8:10. DOI: https://doi.org/10.3389/fninf.2014.00010

Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser M- B, Moser EI. 2022. Toroidal
topology of population activity in grid cells. Nature 602:123–128. DOI: https://doi.org/10.1038/s41586-021-
04268-7, PMID: 35022611

Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G. 2000. Accuracy of tetrode spike separation as determined
by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology 84:401–414. DOI:
https://doi.org/10.1152/jn.2000.84.1.401, PMID: 10899214

Hazan L, Zugaro M, Buzsáki G. 2006. Klusters, NeuroScope, NDManager: A free software suite for
neurophysiological data processing and visualization. Journal of Neuroscience Methods 155:207–216. DOI:
https://doi.org/10.1016/j.jneumeth.2006.01.017

Kaifosh P, Zaremba JD, Danielson NB, Losonczy A. 2014. SIMA: Python software for analysis of dynamic
fluorescence imaging data. Frontiers in Neuroinformatics 8:80. DOI: https://doi.org/10.3389/fninf.2014.00080

Maaten LJP, Hinton GE. 2008. Visualizing high- dimensional data using t- SNE. Journal of Machine Learning
Research: JMLR 9:2579–2605.

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. 2018. DeepLabCut: markerless
pose estimation of user- defined body parts with deep learning. Nature Neuroscience 21:1281–1289. DOI:
https://doi.org/10.1038/s41593-018-0209-y, PMID: 30127430

McKinney W. 2011. pandas: a foundational Python library for data analysis and statistics. Python for High
Performance and Scientific Computing 14:1–9.

Mukamel EA, Nimmerjahn A, Schnitzer MJ. 2009. Automated analysis of cellular signals from large- scale calcium
imaging data. Neuron 63:747–760. DOI: https://doi.org/10.1016/j.neuron.2009.08.009, PMID: 19778505

 Continued

https://doi.org/10.7554/eLife.85786
https://www.microns-explorer.org/cortical-mm3#f-data
https://www.microns-explorer.org/cortical-mm3#f-data
https://www.microns-explorer.org/cortical-mm3#f-data
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://github.com/nelpy/nelpy
https://doi.org/10.1016/j.jneumeth.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20637804
https://doi.org/10.1523/JNEUROSCI.18-18-07411.1998
http://www.ncbi.nlm.nih.gov/pubmed/9736661
https://doi.org/10.1038/s41593-019-0460-x
http://www.ncbi.nlm.nih.gov/pubmed/31406365
https://doi.org/10.1016/S0165-0270(96)00050-7
https://doi.org/10.1016/S0165-0270(96)00050-7
http://www.ncbi.nlm.nih.gov/pubmed/8946321
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1038/nmeth.3041
http://www.ncbi.nlm.nih.gov/pubmed/25068736
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.1038/s41586-021-04268-7
https://doi.org/10.1038/s41586-021-04268-7
http://www.ncbi.nlm.nih.gov/pubmed/35022611
https://doi.org/10.1152/jn.2000.84.1.401
http://www.ncbi.nlm.nih.gov/pubmed/10899214
https://doi.org/10.1016/j.jneumeth.2006.01.017
https://doi.org/10.3389/fninf.2014.00080
https://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430
https://doi.org/10.1016/j.neuron.2009.08.009
http://www.ncbi.nlm.nih.gov/pubmed/19778505

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 17 of 18

Nasiotis K, Cousineau M, Tadel F, Peyrache A, Leahy RM, Pack CC, Baillet S. 2019. Integrated open- source
software for multiscale electrophysiology. Scientific Data 6:231. DOI: https://doi.org/10.1038/s41597-019-
0242-z, PMID: 31653867

Olmos A, Kingdom FAA. 2004. A biologically inspired algorithm for the recovery of shading and reflectance
images. Perception 33:1463–1473. DOI: https://doi.org/10.1068/p5321, PMID: 15729913

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: Open source software for advanced analysis of
MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience 2011:156869.
DOI: https://doi.org/10.1155/2011/156869, PMID: 21253357

Pachitariu M, Steinmetz N, Kadir S, Carandini M, Kenneth H. 2016. Kilosort: realtime spike- sorting for
extracellular electrophysiology with hundreds of channels. bioRxiv. DOI: https://doi.org/10.1101/061481

Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H, Carandini M, Harris KD. 2017. Suite2p:
Beyond 10,000 Neurons with Standard Two- Photon Microscopy. bioRxiv. DOI: https://doi.org/10.1101/061507

Pedregosa F. 2011. Scikit- learn: machine learning in python. Journal of Machine Learning Research: JMLR
12:2825–2830.

Peyrache A, Lacroix MM, Petersen PC, Buzsáki G. 2015a. Internally organized mechanisms of the head direction
sense. Nature Neuroscience 18:569–575. DOI: https://doi.org/10.1038/nn.3968, PMID: 25730672

Peyrache A, Petersen PC, Buzsaki G. 2015b. Extracellular recordings from multi- site Silicon probes in the
anterior thalamus and Subicular formation of freely moving mice. CRCNS.Org.

Pnevmatikakis EA, Giovannucci A. 2017. NoRMCorre: An online algorithm for piecewise rigid motion correction
of calcium imaging data. Journal of Neuroscience Methods 291:83–94. DOI: https://doi.org/10.1016/j.
jneumeth.2017.07.031, PMID: 28782629

Romano SA, Pérez- Schuster V, Jouary A, Boulanger- Weill J, Candeo A, Pietri T, Sumbre G. 2017. An integrated
calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLOS Computational
Biology 13:e1005526. DOI: https://doi.org/10.1371/journal.pcbi.1005526, PMID: 28591182

Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K, Frank L, Bouchard KE.
2022. The Neurodata Without Borders ecosystem for neurophysiological data science. eLife 11:e78362. DOI:
https://doi.org/10.7554/eLife.78362, PMID: 36193886

Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA,
Groblewski PA, Ahmed R, Arkhipov A, Bernard A, Billeh YN, Brown D, Buice MA, Cain N, Caldejon S, Casal L,
et al. 2021. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592:86–92. DOI:
https://doi.org/10.1038/s41586-020-03171-x, PMID: 33473216

Stevenson IH, Kording KP. 2011. How advances in neural recording affect data analysis. Nature Neuroscience
14:139–142. DOI: https://doi.org/10.1038/nn.2731, PMID: 21270781

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. 2011. Brainstorm: A user- friendly application for MEG/EEG
analysis. Computational Intelligence and Neuroscience 2011:879716. DOI: https://doi.org/10.1155/2011/
879716, PMID: 21584256

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G,
Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, et al. 2015.
Neurodata without borders: creating a common data format for neurophysiology. Neuron 88:629–634. DOI:
https://doi.org/10.1016/j.neuron.2015.10.025, PMID: 26590340

Turner- Evans DB, Jensen KT, Ali S, Paterson T, Sheridan A, Ray RP, Wolff T, Lauritzen JS, Rubin GM, Bock DD,
Jayaraman V. 2020. The neuroanatomical ultrastructure and function of a biological ring attractor. Neuron
108:145–163.. DOI: https://doi.org/10.1016/j.neuron.2020.08.006, PMID: 32916090

Unakafova VA, Gail A. 2019. Comparing open- source toolboxes for processing and analysis of spike and local
field potentials data. Frontiers in Neuroinformatics 13:00057. DOI: https://doi.org/10.3389/fninf.2019.00057

Urai AE, Doiron B, Leifer AM, Churchland AK. 2022. Large- scale neural recordings call for new insights to link
brain and behavior. Nature Neuroscience 25:11–19. DOI: https://doi.org/10.1038/s41593-021-00980-9, PMID:
34980926

Viejo G, Peyrache A. 2020. Precise coupling of the thalamic head- direction system to hippocampal ripples.
Nature Communications 11:2524. DOI: https://doi.org/10.1038/s41467-020-15842-4, PMID: 32433538

Viejo G. 2023a. Pynapple- Paper- 2022. swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d. Software
Hertiage. https://archive.softwareheritage.org/swh:1:dir:e95b6d912a494f80f1d1bd8036cf53c9ce18e457;
origin=https://github.com/pynapple-org/pynapple-paper-2023;visit=swh:1:snp:59ad1cb024e145cc665894b4
9db8556cad3c2846;anchor=swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d

Viejo G. 2023b. Pynapple. swh:1:rev:96b756da59fa86ff41e2f8af7395545faf6f1155. Software Heritage. https://
archive.softwareheritage.org/swh:1:dir:51cfbdb0df4dea254322c1a3418374962e26e92e;origin=https://github.
com/pynapple-org/pynapple;visit=swh:1:snp:53c332103158febb6afa14b3936016a482fe2208;anchor=swh:1:
rev:96b756da59fa86ff41e2f8af7395545faf6f1155

Viejo G. 2023c. Pynacollada. swh:1:rev:4dd1adddad54627601f7567354fa7f0af020fc7d. Software Heritage.
https://archive.softwareheritage.org/swh:1:dir:5cac87ae06da43c794a285ec6a2be858ea74f71a;origin=https://
github.com/PeyracheLab/pynacollada;visit=swh:1:snp:472c8b4122787563406089e51e202205f9d95a1a;
anchor=swh:1:rev:4dd1adddad54627601f7567354fa7f0af020fc7d

Wells DC, Greisen EW. 1979. FITS - a flexible image transport system. FITS.
Yger P, Spampinato GL, Esposito E, Lefebvre B, Deny S, Gardella C, Stimberg M, Jetter F, Zeck G, Picaud S,

Duebel J, Marre O. 2018. A spike sorting toolbox for up to thousands of electrodes validated with ground
truth recordings in vitro and in vivo. eLife 7:e34518. DOI: https://doi.org/10.7554/eLife.34518, PMID:
29557782

https://doi.org/10.7554/eLife.85786
https://doi.org/10.1038/s41597-019-0242-z
https://doi.org/10.1038/s41597-019-0242-z
http://www.ncbi.nlm.nih.gov/pubmed/31653867
https://doi.org/10.1068/p5321
http://www.ncbi.nlm.nih.gov/pubmed/15729913
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1101/061481
https://doi.org/10.1101/061507
https://doi.org/10.1038/nn.3968
http://www.ncbi.nlm.nih.gov/pubmed/25730672
https://doi.org/10.1016/j.jneumeth.2017.07.031
https://doi.org/10.1016/j.jneumeth.2017.07.031
http://www.ncbi.nlm.nih.gov/pubmed/28782629
https://doi.org/10.1371/journal.pcbi.1005526
http://www.ncbi.nlm.nih.gov/pubmed/28591182
https://doi.org/10.7554/eLife.78362
http://www.ncbi.nlm.nih.gov/pubmed/36193886
https://doi.org/10.1038/s41586-020-03171-x
http://www.ncbi.nlm.nih.gov/pubmed/33473216
https://doi.org/10.1038/nn.2731
http://www.ncbi.nlm.nih.gov/pubmed/21270781
https://doi.org/10.1155/2011/879716
https://doi.org/10.1155/2011/879716
http://www.ncbi.nlm.nih.gov/pubmed/21584256
https://doi.org/10.1016/j.neuron.2015.10.025
http://www.ncbi.nlm.nih.gov/pubmed/26590340
https://doi.org/10.1016/j.neuron.2020.08.006
http://www.ncbi.nlm.nih.gov/pubmed/32916090
https://doi.org/10.3389/fninf.2019.00057
https://doi.org/10.1038/s41593-021-00980-9
http://www.ncbi.nlm.nih.gov/pubmed/34980926
https://doi.org/10.1038/s41467-020-15842-4
http://www.ncbi.nlm.nih.gov/pubmed/32433538
https://archive.softwareheritage.org/swh:1:dir:e95b6d912a494f80f1d1bd8036cf53c9ce18e457;origin=https://github.com/pynapple-org/pynapple-paper-2023;visit=swh:1:snp:59ad1cb024e145cc665894b49db8556cad3c2846;anchor=swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d
https://archive.softwareheritage.org/swh:1:dir:e95b6d912a494f80f1d1bd8036cf53c9ce18e457;origin=https://github.com/pynapple-org/pynapple-paper-2023;visit=swh:1:snp:59ad1cb024e145cc665894b49db8556cad3c2846;anchor=swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d
https://archive.softwareheritage.org/swh:1:dir:e95b6d912a494f80f1d1bd8036cf53c9ce18e457;origin=https://github.com/pynapple-org/pynapple-paper-2023;visit=swh:1:snp:59ad1cb024e145cc665894b49db8556cad3c2846;anchor=swh:1:rev:2603975ce421a02a30b82a05a2c1bda810246f9d
https://archive.softwareheritage.org/swh:1:dir:51cfbdb0df4dea254322c1a3418374962e26e92e;origin=https://github.com/pynapple-org/pynapple;visit=swh:1:snp:53c332103158febb6afa14b3936016a482fe2208;anchor=swh:1:rev:96b756da59fa86ff41e2f8af7395545faf6f1155
https://archive.softwareheritage.org/swh:1:dir:51cfbdb0df4dea254322c1a3418374962e26e92e;origin=https://github.com/pynapple-org/pynapple;visit=swh:1:snp:53c332103158febb6afa14b3936016a482fe2208;anchor=swh:1:rev:96b756da59fa86ff41e2f8af7395545faf6f1155
https://archive.softwareheritage.org/swh:1:dir:51cfbdb0df4dea254322c1a3418374962e26e92e;origin=https://github.com/pynapple-org/pynapple;visit=swh:1:snp:53c332103158febb6afa14b3936016a482fe2208;anchor=swh:1:rev:96b756da59fa86ff41e2f8af7395545faf6f1155
https://archive.softwareheritage.org/swh:1:dir:51cfbdb0df4dea254322c1a3418374962e26e92e;origin=https://github.com/pynapple-org/pynapple;visit=swh:1:snp:53c332103158febb6afa14b3936016a482fe2208;anchor=swh:1:rev:96b756da59fa86ff41e2f8af7395545faf6f1155
https://archive.softwareheritage.org/swh:1:dir:5cac87ae06da43c794a285ec6a2be858ea74f71a;origin=https://github.com/PeyracheLab/pynacollada;visit=swh:1:snp:472c8b4122787563406089e51e202205f9d95a1a;anchor=swh:1:rev:4dd1adddad54627601f7567354fa7f0af020fc7d
https://archive.softwareheritage.org/swh:1:dir:5cac87ae06da43c794a285ec6a2be858ea74f71a;origin=https://github.com/PeyracheLab/pynacollada;visit=swh:1:snp:472c8b4122787563406089e51e202205f9d95a1a;anchor=swh:1:rev:4dd1adddad54627601f7567354fa7f0af020fc7d
https://archive.softwareheritage.org/swh:1:dir:5cac87ae06da43c794a285ec6a2be858ea74f71a;origin=https://github.com/PeyracheLab/pynacollada;visit=swh:1:snp:472c8b4122787563406089e51e202205f9d95a1a;anchor=swh:1:rev:4dd1adddad54627601f7567354fa7f0af020fc7d
https://doi.org/10.7554/eLife.34518
http://www.ncbi.nlm.nih.gov/pubmed/29557782

 Tools and resources Neuroscience

Viejo et al. eLife 2023;12:RP85786. DOI: https:// doi. org/ 10. 7554/ eLife. 85786 18 of 18

Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ. 1998. Interpreting neuronal population activity by
reconstruction: unified framework with application to hippocampal place cells. Journal of Neurophysiology
79:1017–1044. DOI: https://doi.org/10.1152/jn.1998.79.2.1017, PMID: 9463459

Zheng J, Schjetnan AGP, Yebra M, Gomes BA, Mosher CP, Kalia SK, Valiante TA, Mamelak AN, Kreiman G,
Rutishauser U. 2022. Neurons detect cognitive boundaries to structure episodic memories in humans. Nature
Neuroscience 25:358–368. DOI: https://doi.org/10.1038/s41593-022-01020-w, PMID: 35260859

Zhou P, Resendez SL, Rodriguez- Romaguera J, Jimenez JC, Neufeld SQ, Giovannucci A, Friedrich J,
Pnevmatikakis EA, Stuber GD, Hen R, Kheirbek MA, Sabatini BL, Kass RE, Paninski L. 2018. Efficient and
accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7:e28728. DOI: https://
doi.org/10.7554/eLife.28728, PMID: 29469809

Zhou P, Reimer J, Zhou D, Pasarkar A, Kinsella I, Froudarakis E, Yatsenko DV, Fahey PG, Bodor A, Buchanan J,
Bumbarger D, Mahalingam G, Torres R, Dorkenwald S, Ih D, Lee K, Lu R, Macrina T, Wu J, da Costa N, et al.
2020. EASE: EM- assisted source extraction from calcium imaging data. bioRxiv. DOI: https://doi.org/10.1101/
2020.03.25.007468

Zugaro M. 2018. Freely moving animal (FMA) Toolbox. 6bbb366. Github. https://github.com/michael-zugaro/
FMAToolbox

https://doi.org/10.7554/eLife.85786
https://doi.org/10.1152/jn.1998.79.2.1017
http://www.ncbi.nlm.nih.gov/pubmed/9463459
https://doi.org/10.1038/s41593-022-01020-w
http://www.ncbi.nlm.nih.gov/pubmed/35260859
https://doi.org/10.7554/eLife.28728
https://doi.org/10.7554/eLife.28728
http://www.ncbi.nlm.nih.gov/pubmed/29469809
https://doi.org/10.1101/2020.03.25.007468
https://doi.org/10.1101/2020.03.25.007468
https://github.com/michael-zugaro/FMAToolbox
https://github.com/michael-zugaro/FMAToolbox

	Pynapple, a toolbox for data analysis in neuroscience
	eLife assessment
	Introduction
	Results
	﻿Core features of Pynapple﻿
	Importing data from common and custom pipelines
	Foundational data processing
	Pynacollada: a collaborative library for specialized and continuously updated data analyses

	Discussion
	Code availability

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References

