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Abstract COVID- 19, with persistent and new onset of symptoms such as fatigue, post- exertional 
malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred 
to as Long COVID under the general category of post- acute sequelae of SARS- CoV- 2 infection 
(PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/
dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary 
damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsy-
chiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. 
A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide 
prevention and treatment. This review addresses potential mechanisms and hypotheses that connect 
SARS- CoV- 2 infection to long- term health consequences. Comparisons between PASC and other 
virus- initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and 
postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic 
syndromes and identifying potentially regulated common underlining pathways may be necessary 
for understanding the true nature of PASC. The discussed contributors to PASC symptoms include 
sequelae from acute SARS- CoV- 2 injury to one or more organs, persistent reservoirs of the repli-
cating virus or its remnants in several tissues, re- activation of latent pathogens such as Epstein–Barr 
and herpes viruses in COVID- 19 immune- dysregulated tissue environment, SARS- CoV- 2 interactions 
with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brain-
stem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed 
immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. 
The individualized nature of PASC symptoms suggests that different therapeutic approaches may be 
required to best manage specific patients.

Introduction
PASC co, which encompasses Long COVID or post- COVID syndrome, is a condition marked by the 
continuation of COVID- 19 symptoms—or the emergence of new ones—4 or more weeks after infection 
with SARS- CoV- 2 (http://www.CDC.gov), or those persistently symptomatic for >30 days from onset of 
infection (http://www.NIH.gov). Alternatively, the World Health Organization describes PASC (or Post 
COVID- 19 condition) as occurring in individuals with a history of probable or confirmed SARS- CoV- 2 
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infection, usually 3 months from the onset of COVID- 19 with symptoms that last for at least 2 months 
and cannot be explained by an alternative diagnosis (http://www.WHO.int). The current PASC defini-
tion in the NIH RECOVER (REsearching COVID to Enhance Recovery) Initiative program is: ‘ongoing, 
relapsing, or new symptoms, or other health effects occurring after the acute phase of SARS- CoV- 2 
infection (i.e., present four or more weeks after the acute infection)’. The RECOVER Initiative is an 
NIH- funded project whose goal is to rapidly improve our understanding of and ability to predict, treat, 
and prevent PASC (post- acute sequelae of SARS- CoV- 2), including Long COVID.

The symptoms of PASC whether in hospitalized or non- hospitalized patients are numerous and 
diverse and include shortness of breath, chest pain, cognitive impairment, and fever, among others 
(Michelen et  al., 2021). Reports also reveal that there are wide and country- specific variations in 
the prevalence of PASC ranging from 3.3% in the UK, 13.9% in the USA, to 39% in Denmark and the 
Faroe Islands (Mantovani et al., 2022; Perlis et al., 2022; Petersen et al., 2022; Subramanian et al., 
2022). The pathophysiologic mechanisms underlying PASC remain to be determined. However, the 
clinical features and epidemiology may provide insights into possible mechanisms. Although PASC 
may be a consequence of long- term organ damage attributable to acute- phase infection, it is postu-
lated that specific mechanistic pathways exacerbate the initial illness adversely affecting many organs 
and resulting in the development of later symptoms. As such, this multifactorial condition displays 
over 200 symptoms and affects multiple tissues, organs, and biological systems (i.e., ears, eyes, head, 
nose, throat, kidney, brain, cardiopulmonary, endocrine, gastrointestinal (GI), musculoskeletal, neuro-
psychiatric, and systemic) to varying degrees. So far, immune dysregulation, autoimmunity, dysau-
tonomia, endothelial dysfunction (ED), occult viral persistence, reactivation of pre- existing chronic 
viral infections as well as coagulopathies are some of the main underlying pathophysiological mech-
anisms described (Ahamed and Laurence, 2022; Al- Ramadan et al., 2021; Amenta et al., 2020; 
Camargo- Martínez et  al., 2021; Carod- Artal, 2021; Choutka et  al., 2022; Cortés- Telles et  al., 
2021; Doykov et  al., 2020; Fernández- de- Las- Peñas et  al., 2021; Gottschalk et  al., 2023; Lee 
et al., 2021; Mantovani et al., 2022; McFarland et al., 2021; Oronsky et al., 2023; Silva Andrade 
et al., 2021; Song et al., 2021; Toniolo et al., 2021; Touyz et al., 2021; Townsend et al., 2021; 
Wirth and Scheibenbogen, 2021; Wong et  al., 2021). Although PASC has been described as ‘a 
mysterious mix of symptoms with no clear pattern’, it bears similarities to other post- viral syndromes, 
and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), certain phenotypic clusters are 
emerging in the literature.

This review will delineate the current knowledge about the underlying mechanisms and/or biolog-
ical pathways responsible for tissue damage including pulmonary, cardiac, GI, neuronal, vascular, etc. 
associated with COVID- 19 and the subsequent generation of symptoms. It will highlight the under-
lying causes of PASC and suggest ways to understand the clinical symptomatology for improved diag-
nostic and therapeutic procedures for the condition. We will also postulate on the pathophysiology 
and pathobiology of PASC by providing working hypotheses that could aid in further exploration of 
this multifaceted syndrome. This review will attempt to decipher the possible underlying tissue injury 
mechanisms for long- term residual illness post- SARS- CoV- 2 infection.

Insight into PASC disease pattern
Epidemiological studies in the UK and USA have found similar symptoms, but differing rates and 
durations of Long COVID (Groff et al., 2021). A UK study discovered that SARS- CoV- 2 infection was 
linked to 62 symptoms lasting beyond 12 weeks, including anosmia, hair loss, sneezing, ejaculation 
difficulties, and reduced libido. The risk of Long COVID was higher among women, ethnic minori-
ties, those with lower socio- economic status, smokers, obese individuals, and those with underlying 
health conditions, and increased with decreasing age (Subramanian et al., 2022). In contrast, Long 
COVID affects 7.3% of 3042 US survey respondents, equivalent to 18.8 million adults. Impacts on 
daily activities were severe for 25.3% of those with Long COVID and 28.9% had SARS- CoV- 2 infec-
tion over a year ago. Women, those with comorbidities, and those unvaccinated or not boosted 
were at higher risk (Robertson et  al., 2022). Studies from the USA and Europe have found that 
the prevalence of Long COVID is higher among women and those with multiple chronic conditions 
(Chen et al., 2022; Fernández- de- Las- Peñas et al., 2022; Robertson et al., 2022; Thompson et al., 
2022). However, there is variation in risk factor data due to differences in study design, population 
studied, and definition of Long COVID. Often, studies lack a COVID- free control group, focus on 
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hospitalized or healthcare- seeking populations, and have different definitions of Long COVID. These 
studies emphasize the high burden of Long COVID and the need for further research on its prevalence 
and risk factors.

Clinical manifestations of PASC that require mechanistic 
understanding
The clinical manifestations of PASC vary widely. Common PASC symptoms include fatigue, dyspnea, 
cough, ‘brain fog’, headaches, sleep disturbance, impaired smell and taste, palpitations, chest pain, 
and orthostatic dizziness (Davis et al., 2021; Hernandez- Romieu et al., 2022; Ozonoff et al., 2022; 
Sneller et al., 2022; Sudre et al., 2021). Using machine- learning algorithms, Estiri et al. uncovered 
33 phenotypes of PASC and it is likely that multiple different pathophysiologic mechanisms account 
for this heterogeneity (Estiri et al., 2021). Indeed, detailed multi- omic profiling of COVID- 19 patients 
revealed unique associations between immunological signatures and specific PASC endotypes (Su 
et al., 2022). Future mechanistic studies will need to recognize the heterogeneity of the disorder. 
PASC is more common in individuals who suffered a severe vs mild acute COVID- 19 illness (Hernandez- 
Romieu et al., 2022; LaVergne et al., 2021; Xie et al., 2021). In such patients, the illness shares 
features of post- intensive care syndrome (PICS) (Rawal et al., 2017) and findings observed in survivors 
of the SARS and MERS coronavirus epidemics (Greenhalgh et al., 2020; Tansey et al., 2007). Patho-
physiologic mechanisms in this group may include the effects of SARS- CoV- 2 infection, reactivation 
of other viruses such as the Epstein–Barr virus (EBV), autoimmunity, incomplete recovery from acute 
organ injury (e.g., lung, heart, kidney, brain, thrombosis), effects of treatments (e.g., mechanical venti-
lation, steroids), and exacerbation of pre- existing conditions (e.g., pre- diabetes, CKD, CHF). However, 
individuals with mild COVID- 19 (Augustin et al., 2021; Estiri et al., 2021), and even individuals with 
no serologic evidence of prior SARS- CoV- 2 infection (Krishna et al., 2022; Sneller et al., 2022), can 
experience PASC symptoms, suggesting that some features of PASC may represent responses to the 
stress of the pandemic, for example, social isolation, anxiety, loss of friends or family, work stress, and 
financial stress, in addition to the viral infection itself. The prevalence of PASC appears to be lower in 
the more recent COVID ‘waves’, especially with the Omicron variant, and lower in people who were 
vaccinated prior to contracting COVID- 19 (Azzolini et al., 2022; Zisis et al., 2022), suggesting that 
SARS- CoV- 2 variants, availability of newer treatments and immune responses may impact the patho-
genesis of PASC. For example, recent research suggests that the use of nirmatrelvir/ritonavir during 
acute SARS- CoV- 2 infection reduces the risk of PASC regardless of vaccination status or history of prior 
infection (Xie et al., 2022). Long COVID may also manifest as residual or new organ dysfunction which 
could be the result of acute organ injury during the COVID- 19 infection, for example, ARDS, acute 
kidney injury, or myocarditis, or the result of chronic inflammation, ED, or autoimmunity triggered by 
the infection. The high incidence of new- onset type I diabetes after COVID- 19 infection, for example, 
could be due to direct viral injury of pancreatic beta cells, induction of autoimmunity to beta cells 
or glucose- regulating pathways or decreases in peripheral insulin sensitivity associated with chronic 
inflammation that is exhibited in PASC patients (Barrett et al., 2022; Rubino et al., 2020). There are 
commonalities of clinical manifestations and symptoms between COVID- 19 and Long COVID- 19 that 
require detailed mechanistic understandings (Davis et al., 2021; Mehandru and Merad, 2022).

Commonalities with ME/CFS and other post-infection 
syndromes
Many PASC features resemble (ME/CFS), which is also commonly preceded by viral infections, 
prompting some to ask whether PASC and ME/CFS are similar diseases (Bornstein et al., 2022; Tate 
et al., 2022). Fatigue, exertion intolerance, and post- exertional malaise are among the most frequent 
symptoms cited for PASC. These same symptoms manifesting in PASC patients had been desig-
nated as ‘core criteria’ of ME/CFS by the National Academy of Medicine in a 2015 report (https:// 
batemanhornecenter.org/wp-content/uploads/filebase/providers/Recognizing-PVS-and-Tools-ECHO- 
5_3_2022-V2.pdf). It is estimated that about half of people with Long COVID will meet the criteria 
for ME/CFS, whether they are given that specific diagnosis or not. It is also important to note the 
multiple types of tissues and organs adversely affected by ME/CFS including cardiovascular problems, 
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central nervous system (CNS), immune system disturbances, ion transport dysfunction, cell energy 
metabolism, GI dysfunction, cognitive impairment, myalgia, arthralgia, orthostatic intolerance, and 
chronic inflammation (Rasa et al., 2018), are also commonly reported in PASC patients. The trigger 
for COVID- 19 is the SARS- CoV- 2 infection. ME/CFS is a complex disease frequently triggered by 
an infection with EBV (the virus that causes mononucleosis) or parvovirus B19 even though various 
other viral and nonviral triggers have also been reported (Chu et al., 2019; Fluge et al., 2021; Jason 
et al., 2022; Sotzny et al., 2018). The evidence is clear that in COVID- 19 and potentially in PASC 
patients, the initial SARS- CoV- 2 infection resurrects latent viruses such as EBV (Fluge et al., 2021), 
which could trigger ME/CFS. Although EBV has been associated with post- viral fatigue in ME/CFS, the 
mechanisms leading to post- viral fatigue syndrome and Long COVID (PASC) are unresolved. The simi-
larities raise two questions: Do these two multi- symptomatic diseases share common molecular and 
pathophysiological pathways in their disruption of homeostasis post- infection? Although the triggers 
may be different, because of their overlapping symptoms, could there be a common pathobiological 
explanation? Indeed, the lessons learned from three decades of studying ME/CFS should help with 
identification of a variety of conceptually distinct medical comorbid conditions found in PASC.

Postural orthostatic tachycardia syndrome (POTS), which can be seen after other viral infections has 
also been observed in PASC and may point toward autoimmune dysfunction of the autonomic system, 
including autoantibodies to acetylcholine and adrenergic receptors (Blitshteyn and Whitelaw, 2021; 
Fluge et al., 2021). However, a recent German study reports that PASC is not associated with auto-
antibodies (Schultheiss et al., 2022). Nevertheless, SARS- CoV- 2 may be responsible for PASC symp-
toms by activating the host’s immune response and leading to long- term autoantibody production. 
Autoantibodies were isolated in acute COVID- 19 patients by several research teams including Wang 
et al. who used REAP to screen a group of 194 SARS- CoV- 2- positive COVID- 19 patients for autoanti-
bodies against 2770 extracellular proteins. Results showed that COVID- 19 patients had a significant 
increase in autoantibody reactivity compared to uninfected controls (Jiang et al., 2023; Wang et al., 
2021). It is currently not well understood what role autoantibodies may play in the pathophysiology 
of Long COVID or PASC. Evidence linking autoantibodies to Long COVID as an etiological factor is 
limited and further research is needed to fully understand their role in the development of PASC. Simi-
larities between PASC symptoms and those of Mast Cell Activation Syndrome (MCAS) have also been 
noted (Akin, 2017; Blitshteyn and Whitelaw, 2021; Schieffer and Schieffer, 2022).

Longitudinal studies need to be conducted to determine the similarities and differences between 
PASC and ME/CFS and other post- infectious syndromes by frequently collecting biological samples 
(as it is being implemented by the RECOVER study—https://recovercovid.org), and up- to- date infor-
mation on the presence of the infectious agent and the severity of various symptoms. Such studies 
should also include continual laboratory studies of the immune system, metabolism, gene structure 
and function, and transcriptome, as well as tests of cognition, sleep, and the functioning of the nervous 
system, heart, and cardiovascular system.

Mechanisms of emerging PASC pathogeneses
Although the COVID- 19 pandemic disproportionately affected patients who had comorbid diabetes 
mellitus, it is now clear from numerous studies across the globe that COVID- 19 causes dysregula-
tion of glucose homeostasis leading to new- onset hyperglycemia and type I diabetes (Genç et al., 
2021) in patients with no previous risk factors for diabetes mellitus (Bode et al., 2020; Sathish 
et al., 2021c; Sathish and Chandrika Anton, 2021b; Tittel et al., 2020; Unsworth et al., 2020; 
Watson, 2022). New- onset COVID- induced type 1 or 2 diabetes has also been documented in 
children (Tittel et al., 2020; Trieu et al., 2021; Unsworth et al., 2020). This novel form of COVID- 
induced diabetes with anomalous glycemic parameters and heightened rates of DKA (diabetic keto-
acidosis), occurs in severely ill patients with higher mortality rates and poorer outcomes compared 
to COVID- 19 patients with pre- existing diabetes (Chandrashekhar Joshi and Pozzilli, 2022). The 
underlying pathobiological mechanism for this induced diabetes in COVID- 19 patients has not 
been clearly delineated although it is suspected that SARS- CoV- 2 could damage the beta cells of 
the pancreas and precipitate insulin resistance (Aluganti Narasimhulu and Singla, 2022). There 
are some plausible mechanisms that underlie this new diabetes onset. SARS- CoV- 2 infection can 
damage beta cells or increase glucose levels via oxidative stress and inflammation; the virus can 
also bind the angiotensin- converting enzyme receptor 2 (ACE2), on acinar cells and cause tissue 
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detriment and pulmonary fibrosis via increasing concentration of the fibrosis- promoting Angiotensin 
II (Morganstein et al., 2021) and hyperglycemia can inhibit lymphocyte proliferation to repair the 
tissue damage. The initial binding of the virus to ACE2 requires the presence of transmembrane 
serine protease 2 (TMPRSS2), a protein that is regulated by androgens. The ACE2 mRNA is also 
expressed in several endocrine glands, including the pancreas, ovaries, testes, and thyroid gland 
(Lazartigues et  al., 2020). At postmortem, both follicular and parafollicular cells of the thyroid 
gland were extensively damaged in patients who died of COVID (Wei et al., 2007). These systems, 
which are physiologically regulated by ACE2 upon viral infection, induce acute cardiopulmonary 
failure, and coagulopathy. Furthermore, the overexpression of the ACE2 receptor can deregulate 
these systems and cause cardiovascular instability (renin–angiotensin system), acute inflammatory 
pulmonary edema (kinin–kallikrein system), and thromboembolism (coagulation system) (Sidarta- 
Oliveira et al., 2020). In fact, ACE2 gene therapy in gene knockout mice promoted better survival 
and function of the beta cells, as well as improved glucose homeostasis (Bindom et  al., 2010). 
Additionally, a downregulation of the transcription factor REST (RE1- silencing transcription factor) 
observed in COVID- 19 patients is linked to the altered gene expression of glucose and lipid metab-
olism involving apelin, myostatin myeloperoxidase (peptides and proteins important for the insulin 
signaling pathway) (He et  al., 2021). COVID- 19 patients also harbored upregulated short- chain 
fatty acids, propionic acid, and isobutyric acid, which are possibly linked to insulin resistance (He 
et al., 2021).

Stress is another factor that can be induced by a viral infection, which causes elevated glucose 
levels in subjects with diabetes via the secretion of glucocorticoids and catecholamines contrib-
uting to further impairment of the immune system (Wang et al., 2020). In addition, the incidence 
of DKA observed in COVID- induced diabetic patients was unusually high in the absence of auto-
antibodies suggesting that acute viral- induced pancreatic damage might have occurred (Li et al., 
2020b; Vellanki and Umpierrez GE - Center ofDiabetes and Metabolism, Emory University 
School of Medicine, 2021). There are also a few reports of cases that have described autoantibody- 
negative insulin- dependent diabetes (Hollstein et al., 2020; Kuchay et al., 2020). Mechanistically, 
the consequence of stress caused by SARS- CoV- 2 infection may be explained by the stimulation of a 
signaling pathway designated as the integrated stress response (ISR) that promotes the activation of 
a family of serine/threonine kinases that is, double- stranded RNA- dependent protein kinase (PKR) 
and PKR- like ER kinase (PERK), and the subsequent induction of serine phosphorylation of insulin 
receptor substrates (IRS) which leads to downregulation of the insulin signaling pathway. Both the 
viral components (RNA or proteins) of SARS- CoV- 2 and ‘cytokine storm’, which activates a family of 
serine/threonine kinases linked to the ISR and is represented by pro- inflammatory cytokines such 
as IL- 6 and tumor necrosis factor (TNF-α, can cause insulin resistance Santos et al., 2021). More-
over, insulin resistance can be caused by the downregulation of insulin receptors in skeletal muscle 
via virally induced interferon gamma (IFN-γ) (Sestan et  al., 2018). This could be an additional 
contributor to the insulin resistance syndrome that has been described in COVID- induced diabetes 
patients.

There are also several other postulated mechanisms including molecular mimicry, that may explain 
the rise in autoimmune diabetes following COVID- 19 infection. SARS- CoV- 2 also downregulates 
ACE2, which degrades Angiotensin II. These mechanisms of unrestricted actions of Angiotensin II lead 
to deleterious effects including inflammatory activity by increasing the infiltration of macrophages and 
monocytes, reducing blood flow to pancreatic islets, and promoting the instability of the beta cells 
leading to glycemic dysregulation (Carlsson et al., 1998; Chee et al., 2020; Montezano et al., 2014). 
There is emerging evidence showing that the new- onset diabetes is also a feature of Long COVID 
(Sathish et al., 2021a) even though the precise mechanism might be multifaceted. It is essential to 
collect biospecimens to design mechanistic studies that might shed light on the underlying causes 
precipitating the various types of symptoms experienced by Long COVID sufferers and specifically 
to follow- up COVID- related diabetes patients by implementing longitudinal and prospective cohort 
studies to distinguish between COVID- induced diabetes from conventional diabetes. There is a digital 
registry that is specifically designed to establish the extent and characteristics of new- onset, COVID- 
19- related diabetes, and to investigate its pathogenesis and outcomes (http://covidiab.e-dendrite. 
com).
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Molecular mechanisms of respiratory PASC
The upper respiratory system is the primary site of the SARS- CoV- 2 viral infection. In the scenario of an 
excessive inflammatory response, the consequence can be irreversible lung fibrosis and the compro-
mise of respiratory effector function (Tanni et al., 2021). Fibrotic remodeling with characteristic find-
ings consists of fibroblast proliferation, micro- honeycombing, and airspace obliteration, which were 
uncovered in pulmonary postmortem findings in a series of COVID- 19 cases (Grosse et al., 2020). This 
suggested a link to respiratory distress syndrome (ARDS) as a long- term complication of COVID- 19. In 
addition to ARDS, fibrotic remodeling resulting in respiratory symptoms can originate from pathologic 
conditions including dyspnea, and even from hospitalization, intensive care unit stays, use of high- flow 
oxygen support, and need for mechanical ventilation (Grillo et al., 2021). Additional mechanisms 
include epithelial and endothelial to mesenchymal transition and the ‘cytokine storm’. Prolonged 
exposure to supplemental oxygen is known to lead to increased oxidative stress and could maintain 
the inflammatory status favorable for activation of post- COVID- 19 pulmonary fibrosis (George et al., 
2020). A fraction of PASC patients present with fatigue, exercise limitation, persistent chest pain, and 
breathlessness. These symptoms may be caused in part by compromised cardiorespiratory function, 
lung vascular damage in microvessels, and hemodynamic complications such as resolved thrombus 
(Kosuge et al., 2012; Yaméogo et al., 2011). Fatigue and breathlessness may also be caused by 
chronic overstimulation of the ergoreflex, activated by exercise to centrally couple ventilation and 
cardiovascular function to exercise intensity (Sze et al., 2022). Exaggerated ergoreflex leads to exces-
sive response relative to work performed, and to the sensation of breathlessness and fatigue. The 
hypercatabolic state, cytokine storm, and stimulation of the renin–angiotensin–aldosterone system by 
SARS- CoV- 2 use of ACE2 to facilitate cell entry might cause a reduction in skeletal muscle mass and 
function, excessive ergoreflex, and sensations of fatigue and breathlessness (Medina- Enríquez et al., 
2020). Further study of the mechanistic involvement and interactions between respiratory systems 
and extrapulmonary systems with reciprocal crosstalk and influence is needed.

Pulmonary dysfunctions are among the most destructive events associated with impaired immune 
responses caused by SARS- CoV- 2 infection. The resulting cytokine storm activates defense events 
that stimulate biochemical pathways that eventually lead to the production of tissue injury markers 
and the collapse of lung tissue (Piazza et al., 2020; Sakr et al., 2020; Sidarta- Oliveira et al., 2020). 
These hematological changes form pulmonary thrombi and capillary microthrombi, which may repre-
sent thromboembolism instead of thrombosis in bone marrow emboli and septic pulmonary thrombo-
embolism (Ackermann et al., 2020; D’Errico et al., 2020; Grosse et al., 2020; Khan et al., 2020). 
Transcriptomic analyses of coexpression data from human lung cells have shown that there are three 
physiological systems directly involved in the pathogenesis of COVID- 19: (1) the kinin–kallikrein system; 
(2) the renin–system angiotensin; and (3) the coagulation system coexpressed with the ACE2 receptor 
in alveolar cells (Sidarta- Oliveira et al., 2020). These systems, which are physiologically regulated 
by ACE2 upon viral infection of the lungs, induce acute cardiovascular failure, coagulopathy, acute 
inflammatory pulmonary edema (kinin–kallikrein system), and thromboembolism (coagulation system) 
(Sidarta- Oliveira et al., 2020). Hyperinflammation induced by immunopathogenic, and biochemical 
mechanisms of SARS- CoV- 2 suggests that cytokines and chemokines contribute to alveolar endo-
thelial damage that promotes apoptosis of alveolar cells (pneumocyte type I) and degeneration of 
pulmonary pneumocyte type II alveolar cells (Hussman, 2020). These cell types are operationally 
connected via narrow junctions that control the transfer of ions, minerals, and fluid through the epithe-
lium (Ackermann et al., 2020). SARS- CoV- 2 infects ACE2- expressing pneumocyte type II cells, which 
act as epithelial immune cells and produce TNF, IL- 6, IL- 1β, and MCP- 1.

Figure 1 depicts the initial entry of SARS- CoV- 2 into the host cell by binding to ACE2 receptor 
in the respiratory tract and causing disruption of homeostasis by persisting in several organ systems 
and leading to the eventual development of PASC in a subset of patients. The depiction is for immu-
nological, neurological, and pulmonary dysregulations, which may likely contribute to the hyperacti-
vation of monocyte- derived macrophages in both acute and post- acute phases of the disease. Type 
I IFN-γ production is delayed leading to increased sensing of microbial threats. This in turn enhances 
the release of monocyte chemokines by alveolar epithelial cells (pneumocyte types 1 and 2), which 
direct blood monocytes into the lungs. There are several signaling molecules that induce monocytes 
to differentiate into pro- inflammatory macrophages via activation of Janus kinase (JAK)–signal trans-
ducer and activator of transcription (STAT) pathways. Activated T cells and natural killer cells enhance 
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the recruitment and stimulation of macrophages (derived from monocytes) through the production of 
granulocyte–macrophage colony- stimulating factor (GM- CSF), IFN-γ, and TNF (see Figure 1).

Alveolar macrophages lead to the activation and release of cytokine and chemokine and aggrega-
tion of neutrophils and monocytes that produce toxic mediators resulting in the death of the alveolar 
cells, fibrin deposition, hyaline membrane formation, the influx of red blood cells, alveolar edema, and 
dyspnea (Ackermann et al., 2020; Al- Khawaga and Abdelalim, 2020).

Whole- transcriptome sequencing of postmortem lung tissue from COVID- 19 patients reveals two 
distinct molecular signatures: Lung damage caused by a massive metabolic reprogramming due to 
the upregulation of the unfolded protein response, steroid biosynthesis, and complement activation; 
and secondarily, ‘cytokine release syndrome’ (CRS) represented by the upregulation of cytokines such 
as IL- 1 and CCL19, but absence of complement activation (Budhraja et al., 2022). Although most 
patients cleared the viral infection, they succumbed to acute dysbiosis overrepresented by Staphylo-
coccus cohnii in ‘classical’ patients and Pasteurella multocida in CRS patients (Budhraja et al., 2022).

The association between insulin resistance and lung dysfunction in humans has also been docu-
mented in the literature. Another recent study confirmed other previous studies that revealed that the 
insulin/insulin- like growth factor 1 (IGF) signaling pathway, which plays an important role in energy 
metabolism, is impaired in organs and tissues of severe COVID- 19 patients (Shin et al., 2022). AKT/
mTOR/MAPK pathway and ligand/receptor interactions that initiate cellular signaling through IRS/
PI3K lie downstream of insulin/IGF signaling pathway but are also additional molecular pathways 
that are associated with energy uptake and utilization. An impaired IGF pathway engenders insulin 
resistance or abnormal insulin/IGF response, which also leads to an enhanced metabolic syndrome 
manifestation such as diabetes, hyperglycemia, hyperlipidemia, and obesity. A COVID- 19- impaired 

Figure 1. SARS- CoV- 2’s entry into the respiratory system and its binding to ACE2 receptor produces a cascade of host responses ranging from chronic 
inflammation to endothelial dysregulation.
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insulin/IGF signaling pathway is also associated with the downregulation of various metabolic path-
ways including the citrate cycle, lipid metabolism, beta- oxidation, amino acid metabolism, carbohy-
drate metabolism, and respiratory electron transport chain affecting the adipose tissue, liver, lungs, 
and pancreas resulting in the development of multiorgan dysfunction (Shin et al., 2022).

Is a persistent virus responsible for the ongoing multi-tissue 
symptoms?
One of the theories of PASC is viral persistence in the tissues. Therefore, some of the mechanisms 
that could potentially contribute to PASC’s lingering symptoms are viral- specific pathophysiologic 
alterations, immunologic aberrations, and inflammation, especially in patients with comorbidities that 
stimulate excessive cytokine release, lead to destructive immune response and result in autoimmune 
phenomena and molecular mimicry that causes autoimmunity (Nalbandian et al., 2021). The CRS is 
a major cause of tissue damage in the pathophysiology of COVID- 19 (Ye et al., 2020), is character-
ized by the activation of innate immunity which along with the epithelial and endothelial cells release 
several cytokines to block the viral replication. A secondary cytokine cascade is induced downstream 
by the sustained release of primary cytokines such as IL- 6, the most important CRS causative cytokine, 
or by immune cell signaling (Guo and Thomas, 2017; Ronco and Reis, 2020). In SARS- CoV- 2 infec-
tion, virus- induced ACE2 downregulation leads to reduced production of Angiotensin 1–7 and accu-
mulation of Angiotensin II, contributing to pulmonary edema, and inflammation (Verdecchia et al., 
2020).

Endocrine system pathophysiology
What are the potential clinical impacts of SARS-CoV-2 on the endocrine 
system and the observed symptoms in PASC patients?
There is a large body of research that implicates viral disruption of multiple endocrine glands and their 
function even though the degree to which endocrine dysfunction contributes to the symptoms expe-
rienced by PASC patients remains to be fully elucidated. In a persistent viral environment, the endo-
crine system not only possesses the requisite ACE2 receptor, but also the TMPRSS2 protein necessary 
to provide the virion cellular access to dysregulate glandular function that may extend beyond the 
acute phase of SARS- CoV- 2 infection into the Long COVID or post- acute phase. Can fatigue, the most 
common reported symptom in PASC, be explained by endocrine dysregulation? Some of the most 
frequently reported symptoms of Long COVID such as fatigue, cognitive impairment, and postural 
hypotension, are also reported by patients with adrenal insufficiency (Kaltsas et al., 2010). However, 
the fatigue in PASC does not seem to be explained by insufficient adrenal function (Clarke et al., 
2022). Moreover, many studies, while offering hypotheses on new- onset diabetes (Gentile et  al., 
2020) and thyroid disorders (Trimboli et al., 2021) reported endocrine disorders that were unrelated 
to organ damage.

On the other hand, there is one area that has not received much attention with respect to endocrine- 
disrupting chemicals (EDCs) such as phthalates, bisphenols, organochlorine pesticides, and perfluori-
nated alkane substances that degrade the immune system and make children and adults susceptible 
to suspected hormonal mode of vulnerability (Drucker, 2020) including COVID- 19 (Trasande et al., 
2016), as supported by experimental studies (Cipelli et al., 2014; Couleau et al., 2015). The investi-
gators conducted biological associations of major EDCs to proteins and diseases known as important 
COVID- 19 comorbidities from the GeneCards and DisGeNET databases, and among the several path-
ways dysregulated by COVID- 19, they found the Th17 and the AGE/RAGE signaling pathways were 
statistically significant and very auspicious (Wu et al., 2021).

Hematologic pathologies and their mechanisms
Are there signaling pathways affected by elevated cytokines in the 
hematological system?
The elevation of certain cytokines in COVID- 19 patients (i.e., IL- 6, IL- 1β, and IFN-γ), may also be 
due to the presence of the virus or its remnants in PASC patients. The cytokines can stimulate many 
processes involved in the activation of immune cells because of changes in the vascular environment, 
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thus promoting greater adhesion and blood procoagulation (Teuwen et al., 2020), and activating 
dispersed intravascular coagulation and the development of thromboembolic states that can antag-
onistically affect different tissues, particularly those that are more vulnerable to ischemic processes, 
such as cardiovascular, cerebrovascular, and pulmonary tissues (Giustino et  al., 2020). When the 
virus binds to the ACE2 receptor and enters the cell, a decreased density of the receptor on the 
vascular tissue ensues leading to negative regulation of ACE2 activity and subsequent accumula-
tion of Angiotensin II, which causes vasoconstriction, profibrotic, pro- inflammatory effects, as well 
as tissue fibrosis (Giustino et al., 2020). Therefore, this signaling stimulates immune cell inflamma-
tory processes that can lead to pulmonary degeneration, pulmonary fibrosis, and loss of function 
accompanied by delayed hypoxemia and anoxia. These cytokines are important activators of the 
JAK/STAT pathway and NF-κB signaling (Jose and Manuel, 2020). IL- 6, which induces the expres-
sion of Angiotensin I is itself expressed via JAK/STAT, which creates a progressive feedback loop and 
results (Jose and Manuel, 2020) in the rapid transmission of extracellular signals from IFNs, cytokines, 
and hormones, supporting changes in downstream gene expression via STAT- related transcription 
factors (O’Shea et al., 2015). There are multiple JAKs and STATs that have been noted to impact this 
pathway, resulting in differential biological outcomes. The cascades of phosphorylation and activation 
of JAK proteins and the recruitment of STAT proteins, induce STAT dimerization and translocation to 
the nucleus, where they bind to specific DNA sequences and regulate gene expression (Figure 1; 
O’Shea et al., 2015).

Do COVID-19 and Long COVID share signaling pathways that are 
aberrant?
Some of the potential signaling pathways involved in COVID- 19 and PASC pathophysiology involve 
Toll- like receptors (TLR- 3 and TLR- 7/8) that recognize SARS- CoV- 2 RNA and recruit the inflammatory 
cascade via type I and II IFN gene expression and NF-κB nuclear translocation (Sabroe et al., 2008; 
Totura et  al., 2015). This stimulates the expression of multiple pro- inflammatory genes including 
pro- IL- 1β, pro- IL- 18, TNF, and IL- 6 (Li and Verma, 2002; Schultheiss et al., 2022; Tergaonkar et al., 
2005). The virus, which may persist as an infectious agent in many different tissues, is also recog-
nized by cytoplasmic NLRP3 that together with ASC and caspase- 1 (Casp- 1) forms the inflammasome 
complex leading to the cleavage and release of mature forms of IL- 1β and IL- 18 (Zhao and Zhao, 
2020). The binding of cytokines IL- 1β, IL- 18, and TNF to specific receptors promotes further NF-κB 
nuclear translocation and phosphorylation of p38 MAPK. The activation of p38 MAPK leads to further 
expression of pro- inflammatory cytokines and chemokines (Feng et al., 2019; Grimes and Grimes, 
2020). IL- 6, an important player in COVID- 19, binds IL- 6R and gp130 receptors to activate JAK/STAT- 3 
pathway and then contributes to the CRS observed in COVID- 19 (Zhang et al., 2020) and possibly in 
Long COVID patients. The increased release of inflammatory cytokines IL- 1 and IL- 6 by the activated 
M1 phenotype macrophages and the disproportionate activity of Angiotensin II generate endothelial 
activation, increased permeability, and coexpression of adhesion molecules, helping in the formation 
of a prothrombotic phenotype (Figure 1; Aird, 2007; Escher et al., 2020). The common hematolog-
ical abnormalities present mostly in severe COVID- 19 patients are lymphopenia, thrombocytopenia, 
and elevated D- dimer levels (Rahman et al., 2021).

Dysautonomia in PASC
What do we know about autonomic dysfunction in PASC?
Although the direct link between COVID- 19 and dysautonomia is still theoretical, there may be a 
connection between neuronal injury of the autonomic pathway and a post- infectious immune- induced 
mechanism. This neurotrophic virus has multiple indirect routes including the autonomic nervous 
system by using axonal transport via the olfactory nerve (Li et al., 2020a), via the ACE2 in brainstem 
and systemic blood circulation (Baig et  al., 2020), and via immune injury (Wu and Yang, 2020). 
The stress induced by the virus may trigger the enhancement of the sympathetic nervous system 
promoting neuro- hormonal stimulation and activation of pro- inflammatory cytokines (Al- Kuraishy 
et al., 2021). The typical symptoms experienced by PASC patients such as fatigue, chest pain, palpi-
tations, dyspnea, post- exertional malaise, and ‘brain fog’ are also experienced by patients with ortho-
static intolerance and syncope, which suggests the involvement of the autonomic nervous system. 
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Additionally, cardiovascular autonomic dysfunction (CVAD) that appears to be common in PASC is 
similarly observed in inappropriate sinus tachycardia and POTS. Many POTS patients suffer from 
fatigue and what is often called ‘brain fog’. Tiny clots (micro- clots) in the brain could explain cognitive 
ailments arising from clots destroying small fiber nerve cells and driving dysautonomia. It should be 
emphasized that a growing body of evidence suggests that POTS may be an autoimmune disorder 
even though POTS is a rare medical condition whose etiology is yet to be established. Its clinical 
manifestations include the presence of antinuclear antibodies and elevations of ganglionic, adren-
ergic, and muscarinic acetylcholine receptor antibodies (Gunning et al., 2019). Therefore, the onset 
of tachycardia following SARS- CoV- 2, or any other viral infection can be more frequently explained 
as a physiological response of a perfectly normal autonomic nervous system. POTS is difficult to 
identify. It is misdiagnosed in up to 75% of patients and viral infection is recognized as a trigger in up 
to 41% of cases (Shaw et al., 2019). It has been recently suggested that post- COVID- 19 tachycardia 
syndrome would represent a distinct disease entity, different from classical POTS. There is also auto-
nomic neuropathy that affects the heart, which leads to the proposal that PASC might be the clinical 
expression of COVID- related CVAD (Bisaccia et al., 2021).

The most common PASC symptom, fatigue, shares some distinct features with CFS. Studies on 
CFS patients showed impaired cerebral blood flow (van Campen et al., 2020) and reduced heart rate 
variability (Escorihuela et al., 2020; Nelson et al., 2019), even though these findings could not be 
confirmed in PASC patients. Furthermore, less than 50% of patients with PASC- related fatigue met the 
diagnostic criteria for CFS. This suggests that PASC is not just a COVID- 19- related manifestation of 
CFS but a specific pathophysiological entity with a specific CVAD phenotype. But then the follow- up 
question would be: When does CVAD occur in COVID- 19 patients and how long does it last?

Cardiovascular diseases associated with COVID-19—focus on 
hypertension
Chest pain, dyspnea, and heart palpitations are some of the key symptoms that draw attention to the 
cardiovascular system (Gluckman et al., 2022). However, cardiovascular disease (CVD) also includes 
congenital heart disease, coronary artery disease, hypertension (HTN), peripheral artery disease, 
stroke, and heart failure. Regardless of the severity of COVID- 19, many patients have a complicated 
course of COVID- 19 with regard to CVD. This is especially true for viral pneumonia (remembering that 
COVID- 19 is primarily a respiratory infectious disease) that may result in severe systemic inflammation, 
acute myocardial infarction (MI), acute heart failure, cardiac arrest, venous thromboembolism (VTE), 
tachyarrhythmias, and stroke (Baldi et al., 2020; Basso et al., 2020; Gao et al., 2020; Lala et al., 
2020; Parohan et al., 2020; Shi et al., 2020; Wallentin et al., 2020; Zhou et al., 2020). In a single- 
centered observational study, up to 329 days following diagnosis with COVID- 19, approximately 75% 
reported persistent cardiac symptoms (Gluckman et al., 2022). In the absence of validated biomarkers 
for PASC, imaging evidence using cardiac magnetic resonance (CMR) was obtained for myocardial 
inflammation, pericardial enhancement, and diffuse myocardial edema. Similarly, various abnormali-
ties on CMR as well positron emission tomography have been reported in COVID- 19 patients, even 
in the absence of cardiac symptoms (Hanneman et al., 2022; Puntmann et al., 2020). There are 
indicators of CVD such as cardiomyocyte injury, quantified by cardiac troponin (cTn) concentrations, 
heart failure, quantified by N- terminal pro B- type natriuretic peptide (NT- proBNP), and hemodynamic 
cardiac stress, quantified by natriuretic peptide concentrations that were detected in COVID- 19 
patients (Flores et al., 2019; Lala et al., 2020; Mueller et al., 2021; Parohan et al., 2020; Shi et al., 
2020; Zhou et al., 2020). The potential mechanisms underlying elevations in acute cTn and therefore 
myocardial injury from non- ischemic causes in COVID- 19 patients include direct effect on myocardial 
cells via ACE2 receptor, cytokine storm, and hypoxia- induced apoptosis as well as myocarditis, Takot-
subo syndrome, and pulmonary embolism. The rise in cTn from ischemic causes in COVID- 19 patients 
include type I MI, and type II MI comprising shock, hypoxia, and tachycardia (Mueller et al., 2021).

As there is a COVID-19-induced diabetes, is there a similar COVID-19-
induced CVD like hypertension?
There are two types of HTNs. Essential HTN (aka primary hypertension) is the most common form 
that is generally idiopathic with undefined mechanisms although it correlates with family history, salt 
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retention, sedentary lifestyle, obesity, smoking, and stress (Carretero and Oparil, 2000). Secondary 
HTN, on the other hand, is directly linked to comorbid pathophysiological disorders, such as renal, 
endocrine, and neurological diseases and pregnancy (Rimoldi et al., 2014; Rossier et al., 2017; Tita 
et al., 2022). Both types of HTN are associated with an increased risk of severe COVID- 19 and higher 
mortality rate in these patients (Lippi et al., 2020). In one study, 31 days after SARS- CoV- 2 infection, 
new- onset HTN (i.e., ≥140 mm Hg systolic BP and/or ≥90 mm Hg diastolic BP) was observed in a 
small number of patients (Akpek, 2022). Considering that ACE2 plays a negative role in RAAS, a 
decrease in the ACE2 because of COVID- 19, and an increase in the Angiotensin II level, may lead to 
increase in blood pressure (Akpek, 2022). In a larger control study, 190 patients without prior HTN 
had higher Angiotensin II level with 8.42% patients recording a rise in blood pressure and a signifi-
cantly increased level of the cTnI (cardiac troponin I), procalcitonin, and angiotensin (Chen et  al., 
2021). It is important to note that the cTn concentration in a COVID- 19 patient must be seen as the 
combination of the presence of pre- existing cardiac disease and the acute myocardial injury induced 
by COVID- 19 and its complications (Lala et al., 2020; Mueller et al., 2021). These findings suggest 
that COVID- 19 increases systolic and diastolic BP and may cause new- onset HTN. Altogether, these 
findings and others regarding cardiovascular symptoms call into question our understanding of viral- 
mediated myocardial (and pericardial) involvement (Halushka and Vander Heide, 2021; Hanneman 
et  al., 2022; Pellegrini et  al., 2021; Puntmann et  al., 2020; Webster et  al., 2021; Yousif and 
Premraj, 2022). They additionally raise inquiries about our poor knowledge of the pathophysiology of 
cardiovascular manifestations and predisposing risk factors associated with Long COVID/PASC whose 
long- term cardiovascular consequences remain unknown.

ED related to COVID-19—lesson for PASC
Does SARS-CoV-2-mediated endothelial damage result in ED that 
extends to PASC? Could there be endothelial biomarkers in patients 
with PASC?
A study, which assessed the function of the peripheral endothelia via the reactive hyperemia index 
(RHI) using peripheral arterial tonometry in PASC patients and age- and sex- matched healthy controls 
(HCs), showed that there is ample evidence for impaired perfusion and ED (Fluge et  al., 2021; 
Scherbakov et al., 2020). The ED causes inflammation, an intensified immune response, and exces-
sive cytokine release all of which may lead to widespread multiorgan manifestations of the disease 
(Ostergaard, 2021). It is also noteworthy to mention that the SARS- CoV- 2 infection of endothe-
lial cells restructures the cells’ architecture and morphology leading to apoptosis that could persist 
several weeks after the acute infection. The importance of the endothelium in long- term cardiovas-
cular complications in convalescent patients was underscored by The Working Group on Atheroscle-
rosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European 
Society of Cardiology (Evans et al., 2020). In the TUN- EndCOV study, a multivariate analysis showed 
that ED is an independent risk factor of Long COVID- 19 (Charfeddine et al., 2021; Jud et al., 2021).

Are there biomarkers for endothelial dysregulation?
In a study involving ED and altered endothelial biomarkers in patients with PASC and ME/CFS, 38% of 
the PASC ME/CFS patients and 31% Long COVID patients (without MS/CFS) showed ED defined by 
a diminished RHI (<1.67), but none of the HCs exhibited this finding (Haffke et al., 2022). A positive 
correlation of RHI was found with age, blood pressure, and BMI in PASC but not ME/CFS patients. In 
a larger cohort of patients and HCs, including post- COVID re- convalescents (PCHCs), Endothelin- 1 
(ET- 1), Angiopoietin- 2 (Ang- 2), Endocan (ESM- 1), IL- 8, ACE, and ACE2 were analyzed as endothelial 
biomarkers. The ET- 1 concentration was significantly elevated in both ME/CFS and PASC patients 
compared to HCs and PCHCs. The serum Angiotensin II concentration was lower in both PCS patients 
and PCHCs compared to HCs (Haffke et al., 2022). The study authors concluded that a diminished RHI 
and altered endothelial biomarkers were evidence of ED for a subset of PASC patients suggesting that 
clinical parameters could be used in association with RHI and varying biomarker profiles to delineate 
the discrete pathological mechanisms among patient subgroups. In another study designed to under-
stand the role of the ED in COVID- 19 and PASC, plasma levels of two proteins released by activated 
endothelial cells, soluble P- Selectin (sP- Sel) (also released by activated platelets) and von Willebrand 
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factor (VWF) antigen (measures amount of the clotting factor, VWF), and D- dimer (a biomarker of 
systemic thrombosis), were measured (Osburn et al., 2022). Moreover, these endothelial biomarker 
levels were compared with the levels of pro- inflammatory cytokine and chemokines, and vascular 
inflammation biomarkers. The study reports that sP- Sel, VWF, and D- dimer were increased in individ-
uals with COVID- 19 pulmonary disease and correlated with proinflammatory cytokines and chemok-
ines, suggesting that COVID- 19 is a vascular disease which involves endothelial injury in the context of 
an inflammatory state (Osburn et al., 2022). A similar study also contends that activated coagulation 
as quantified by D- dimers is more prominent in COVID- 19 as in other pneumonias (Mueller et al., 
2021). How can this information help physicians in selecting patients for the appropriate treatment? 
Endothelialitis and VTE play a cardinal role in COVID- 19. Consequently, successive measurements of 
D- dimers may help physicians in the selection of patients for VTE imaging and the administration of 
the appropriate dosage of anticoagulation for prophylactic or therapeutic purposes.

Mechanistically, the inflammatory mediators, reactive oxygen species, matrix metalloproteases, 
the glycocalyx, fragments, and the viral proteins may contribute to endothelial glycocalyx damage in 
COVID- 19 (Zha et al., 2022). Heparin sulfate (HS) has been shown to regulate the activation of the 
bradykinin pathway, which is involved in local inflammation and vascular permeability (Buijsers et al., 
2020). Elevated plasma heparanase activity in COVID- 19 patients can lead to the activation of brady-
kinin pathway by the cleaving of HS and can subsequently trigger the inflammatory response and 
vascular leakage. Other potential mechanisms that account for coagulopathy in COVID- 19 and cause 
endothelial function as well as cardiovascular disorders include plasmin- mediated increased binding 
of SARS- CoV- 2 to ACE2 receptors, elevated levels of fibrinogen and an unnecessary fibrin polymeriza-
tion, cytokine- mediated disseminated intravascular coagulation, activation of thrombin and suppres-
sion of fibrinolysis by plasminogen activators and PAI- 1 inhibitors in ARDS, inhibition of plasmin by 
antiplasmins, and direct viral infection/endotheliitis (Mueller et al., 2021). All these demonstrations of 
endothelial dysregulation have convinced some scientists to consider COVID- 19 not just a respiratory 
disease, but a vascular one as well. The rationale is that ACE2 is the doorway for SARS- CoV- 2 to bind 
to and infect cells, and COVID- 19 is associated with several acute clotting syndromes that precipitate 
debilitating symptoms in PASC patients.

Potential mechanisms for neurocognitive impairment in PASC
SARS- CoV- 2 can infect the brain, causing neuroinflammation (Pan et al., 2020). Moreover, inflam-
mation elsewhere in the body can activate the innate immune system (Figure  1) in the brain via 
both humoral and retrograde neural signals, largely involving the vagus nerve (Poon et al., 2015; 
VanElzakker, 2013). Different study model systems such as autopsies, animals and organoids used 
to study the infective potential of the SARS- CoV- 2 virus show that SARS- CoV- 2 can reach and infect 
neurons and cells of the CNS and produce neuroinflammation (Matschke et al., 2020; Song et al., 
2020). Neuropsychological symptoms are frequent in PASC survivors of COVID- 19 who often expe-
rience lingering neurological symptoms analogous to cancer- therapy- related cognitive impairment, 
which involves white matter microglial reactivity and consequent neural dysregulation. SARS- CoV- 2 
infection has been shown to affect white- matter- selective microglial reactivity in mice and humans by 
impairing hippocampal neurogenesis, decreasing oligodendrocytes, and promoting myelin loss with 
a concomitant increase in CSF cytokines/chemokines including CCL11 (Fernández- Castañeda et al., 
2022a). Accordingly, cognitive impairment manifested even with mild COVID symptoms parallel 
the neuropathophysiology that is observed in people with cancer therapy (Fernández- Castañeda 
et al., 2022b). The question remains: How does the virus manage to get to the brain? One poten-
tial pathway to reach the CNS is via hematogenous dissemination from severely infected upper and 
lower respiratory system by way of systemic inflammation that raises the permeability of blood–brain 
barrier (BBB) and permit circulating non- BBB- crossing molecules to adversely affect brain function 
(Proal and VanElzakker, 2021). More importantly for PASC, during acute infection this porousness 
can also allow for viral neuroinvasion that may persist past the acute infection phase. Although the 
mechanism is not well known, this neuroinvasion can occur directly or indirectly through host immune 
cells infected with the virus and are actively transported into the CNS (Dando et al., 2014; Lauer 
et al., 2018). A large MRI registry study that examined changes in the brain before and a mean of 
141 days following SAR- CoV- 2 identified reductions global brain size and gray matter thickness in 
orbitofrontal cortex/parahippocampal gyrus. Importantly, the study also identified increased markers 
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of tissue damage in regions associated with the primary olfactory cortex following infection. These 
data suggest that COVID- 19 has profound impact on the brain, especially the olfactory cortex, which 
may explain changes of taste and smell and may indicate CNS infection from direct extension from the 
olfactory system (Douaud et al., 2022).

What could explain neurological symptoms in PASC patients?
Concerning pathophysiology, virus neurotropism leading to sustained neuroinflammation of central 
and peripheral nervous systems could explain neurocognitive impairment or symptoms of mental 
health disorders, as has been proposed by numerous studies detailed in a review (Castanares- 
Zapatero et al., 2022). It is also likely that central, peripheral, psychological, and physiological factors 
play a role in the development of PASC fatigue. A chronicle of Long COVID describes that congestion 
of the glymphatic system and the subsequent toxic build- up within the CNS, caused by an increased 
resistance to cerebrospinal fluid drainage through the cribriform plate because of olfactory neuron 
damage, may contribute to PASC fatigue (Wostyn, 2021). Emotional and cognitive disturbances could 
also be partially traced back to metabolic changes linked to tissue damage, repair, and immune func-
tion in multiple areas of the nervous system (Holmes et al., 2021). To support this hypothesis, use of 
animal models of COVID has proven valuable. In the golden hamster model of SARS- CoV- 2 infection, 
sustained inflammatory pathology correlated with behavioral abnormalities not found in influenza A 
virus infection (Frere et al., 2022). Exclusive features included anosmia and anxiety- like behaviors, a 
unique neural transcriptional profile, and a persistent neuroimmune response reminiscent to what has 
been observed in humans (Frere et al., 2022). In this study, differential gene expression data revealed 
significant enrichments for metabolic, synaptic signaling, neural plasticity, and immune- related path-
ways. These data provide validity for modeling and dissecting the physiopathology of neuropsychi-
atric symptoms of PASC. In addition, these results set a benchmark for comparison between PASC and 
other clinical conditions. Other neuropsychological symptoms of PASC such as ME/CFS, and ‘brain 
fog’ could be explained by direct integration of viral genome into mitochondrial DNA, impairing 
energy metabolism, and oxygen availability and utilization (Wu et al., 2021). Metabolic fitness can 
also be altered by impaired autophagy, which relates to inadequate clearance of debris by microglia 
(Awogbindin et  al., 2021). As an indirect effect, it has been proposed that impaired pulmonary 
function leads to decreased systemic oxygenation, including the CNS. Alternatively, when lingering, 
systemic inflammation may disrupt the brain–blood barrier, cause inflammatory damage, and neuro-
cognitive deficit (Stefano et al., 2022). SARS- CoV- 2 may also enter taste buds through ACE2 protein 
found in some taste receptor cells, causing taste changes, and disrupted stem cells. Further research 
is needed to understand this process (Doyle et al., 2021). Though there are several hypotheses, the 
exact mechanisms, and the attempt to identity a unifying pathophysiological cause (e.g., neuroinflam-
mation) of many of the described symptoms of PASC remain elusive (Tate et al., 2022). Progress in 
this direction is needed as the neuropsychiatric manifestations of PASC may increase the risk long- 
term of neurocognitive diseases (e.g., dementia) with common mechanistic features (Liu et al., 2022).

GI effects of COVID-19 and Long COVID
The extrapulmonary disease that SARS- CoV- 2 inflicts upon the body also extends to the GI tract 
where there is evidence that the virus may persist where the ACE2 receptor is highly expressed 
(Settanni et al., 2021). Given that the severity of COVID- 19 is typically engendered by a set of comor-
bidities such as HTN, diabetes, obesity, and/or advanced age, the GI symptoms, such as diarrhea, 
vomiting, or abdominal pain during the early phases of the disease can be debilitating (Lamers et al., 
2020). Symptoms can last for years as is the case for post- infectious irritable bowel syndrome (PI- IBS), 
which is punctuated by the persistence of abdominal discomfort, bloating and diarrhea that continue 
despite clearance of the inciting pathogen, usually bacterial origin (Dunlop et al., 2003; Kim et al., 
2006; Settanni et al., 2021). Again, the culprit in all these acute and post- acute COVID- 19 symptoms 
including the impairment of bowel physiology may be a dysregulation of ACE2- mediated functions 
due to a competitive mechanism of the virus on ACE2 receptor or from a downregulation of its anti- 
inflammatory activity. To date, there is a dearth of data on the GI sequelae of SARS- CoV- 2 infection. 
This may be due to the uncertainty over COVID- 19’s path of action on the gut physiology.
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Is it viral persistence or its aftereffects?
It is conceivable that recovery from COVID- 19 may not absolve the GI tract of functional bowel 
diseases that may precipitate due to potential pathophysiological alterations such as disruption of 
the intestinal barrier, dysbiosis, mucosal microinflammation, post- infectious states, immune dysreg-
ulation, and psychological stress (Settanni et al., 2021). The undermining of the intestinal homeo-
stasis by the virus not only may perturb the microbial composition but also increase inflammatory 
cytokines. For example, SARS- CoV- 2 infection has been shown to lead to persistent altered gut 
mucosal integrity and microbial translocation resulting in increased NF-κB signaling and general-
ized inflammation in those with PASC (Giron et al., 2022). Inflammation can be potentially more 
harmful to the gut than the virus itself. The virus initiates a cascade of immune reactions that are 
self- activating via autoantibodies with the host cytokine pathways triggering adverse microbiota 
interactions in a continuous and circuitous manner. For this reason, it is crucial to investigate how 
intestinal bacteria respond to SARS- CoV- 2 infection and the effect of their metabolic products to 
help determine novel biomarkers of the disease and its long- term impact on the GI tract to enable 
new therapeutic targets.

Potential biological underpinnings of pediatric PASC
While much of our current understanding of PASC comes from adults, one of the first PASC pheno-
types occurred in children. Shortly after the emergence of SARS- CoV- 2, rare cases of multisystem 
inflammatory syndrome in children (MIS- C) were documented (Riphagen et al., 2020). It is now 
understood that MIS- C occurs weeks after SARS- CoV- 2 infection and is characterized by persistent 
fevers, massive inflammation, and multiorgan involvement including long- term neurologic complica-
tions. The most striking clinical manifestation is profound myocardial dysfunction resulting in shock; 
however, extracardiac organ system dysfunction is also common, particularly GI (Cheung et  al., 
2020; Feldstein et al., 2020; Riphagen et al., 2020). The mechanisms which underlie MIS- C are not 
fully understood but emerging evidence points toward immune system dysfunction. Acute MIS- C 
is defined by massive elevations in inflammatory cytokines, particularly those related to myeloid 
recruitment and mucosal immunity (Consiglio et al., 2020; Gruber et al., 2020). The production of 
autoreactive antibodies is also characteristic of acute MIS- C with antibodies specific for endothe-
lial proteins detected in many patients (Consiglio et al., 2020; Gruber et al., 2020; Ramaswamy 
et al., 2021). Aberrant activation of T cells is a consistent finding as well (Vella et al., 2021), with 
a potentially pathognomonic role for biased expansions of T cell clones (Porritt et al., 2021). Acti-
vated T lymphocyte cell expansions resemble those seen following bacterial superantigen stimu-
lation with additional evidence suggesting that motifs from the SARS- CoV- 2 spike protein may be 
capable of promoting autoimmunity (Noval Rivas et al., 2022). These immune derangements along 
with elevated biomarkers suggesting mucosal barrier breakdown have been linked to detectable 
antigenic persistence in circulation (Yonker et  al., 2021), suggesting an additional role for viral 
persistence in the pathogenesis of MIS- C. Treatment for MIS- C has included steroids, intravenous 
immunoglobulin, and monoclonal antibodies targeting IL- 6 and IL- 1Ra (Feldstein et  al., 2020). 
Fortunately, following treatment for MIS- C, short to mid- range reported health outcomes have 
been excellent (Farooqi et al., 2021; Matsubara et al., 2022). Pediatric PASC outside of MIS- C 
has been more difficult to quantify, with estimates ranging from 4% to 25% of previously infected 
children experiencing PASC symptoms (Izquierdo- Pujol et al., 2022). Risk factors for development 
of pediatric PASC include severity of acute infection, younger age (<5 years), and presence of 
chronic health conditions (Rao et al., 2022). In case reports or small series, endothelial damage 
and encephalomyelitis have been identified in children with PASC (Buonsenso et al., 2021; Lindan 
et al., 2021) but underlying mechanisms remain undefined. Based on our current knowledge of 
MIS- C and the evidence that pediatric immune responses to SARS- CoV- 2 are distinct from adults 
(Pierce et al., 2020; Weisberg et al., 2021; Yoshida et al., 2022), understanding immune responses 
in pediatric PASC must be prioritized. To better characterize pediatric PASC subtypes and define 
the mechanisms giving rise to persistent symptomatology, awareness, and identification followed 
by study enrollment of relatively rare cases is critical to maximize our ability to understand and treat 
this emerging pediatric health threat.
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Unanswered questions about PASC
What are PASC factors? When can the factors be assayed in the course of disease progression? Are 
these factors interrelated or independent? What are the immune and genomic signatures of PASC? 
What is the eventual public disease burden of PASC? What does PASC mean for patients and what can 
be done about it? The unknowns about PASC are too numerous to list. We still do not know if there 
is a correlation between PASC and the duration/frequency/severity of the initial SARS- CoV- 2 infec-
tion. Also, the subsequent iterations of the virus (i.e., omicron variants) with factors like age, gender, 
demographics, and comorbidities are not clear. The longitudinal collection of biospecimens and deep 
phenotyping of PASC subjects in the RECOVER study will provide a rich set of resources to answer key 
prognostic, epidemiologic and pathophysiologic questions about PASC and will serve as a platform 
for testing interventions to prevent or treat PASC.

We urgently need comprehensive epidemiologic studies via surveys/questionnaires and by inter-
rogating the electronic health record databases and through longitudinal study enrollment that allow 
for a more complete understanding of the prevalence ad incidence of PASC within various popula-
tions. Furthermore, comprehensive examination of blood and tissues using synergistic methods such 
as proteomics, metabolomics, transcriptomics, viral nucleic acid and protein testing, and virus- specific 
and auto- reactive antibody characterization will be needed. Additionally, comprehensive immunophe-
notyping of PASC can be performed to identify cell markers and to provide further pathophysiologic 
understanding of the interplay between immune responses, inflammation, and PASC phenotypes. It 
must also be noted that the mechanisms underlying Long COVID/PASC may not be uniform across 
all individuals. Among the more prominent sociodemographic and clinical risk factors, the severity of 
acute COVID- 19 infection, female sex, advanced age, pre- existing diabetes mellitus, more than five 
early symptoms, early dyspnea, and prior psychiatric disorders have been identified (Carfì et al., 2020; 
Subramanian et al., 2022; Yong, 2021). Additional variables that need to be considered include the 
variant of SARS- CoV- 2 infection and those who develop PASC and the role of vaccination and antiviral 
therapy in acute infection (Antonelli et al., 2022; Ledford, 2022). Double- vaccinated participants with 
COVID- 19 caused by the Omicron BA.1, BA.4, and BA.5 variants were less likely to develop PASC, as 
compared to those infected by the Delta variant. It is also likely that most of the symptoms and pathol-
ogies associated with COVID- 19 persist in Long COVID perhaps because of the spike protein, which 
is also the target of the vaccination. The currently known and suspected mechanisms and molecular 
features for COVID and potentially for Long COVID/PASC pathologies are shown in Table 1.

Prevailing hypotheses for PASC
There are various hypotheses underlying Long COVID/PASC symptoms. The first points to the immune 
system going haywire after the initial virus infection, triggering a long- lasting inflammatory response 
that inflicts havoc on multiple organ systems. The second hypothesis is that this long- lasting inflamma-
tion may be due to the continued presence of virus or viral particles in organs such as the gut but may 
also be due to the reactivation of latent pathogens such as EBV, the most common cause of mononu-
cleosis. The third hypothesis states that COVID- 19 elicits a radical response analogous to an autoim-
mune disease that causes antibodies to target and destroy the body’s own tissues. The fourth leading 
hypothesis stipulates the formation of microclots, tiny blood clots that cause coagulopathy and lead 
to thrombosis. Therefore, the conclusion from this review on tissue damage is that there may be more 
than a single mechanism in motion for Long COVID (PASC) patients who experience a constellation of 
symptoms. Certain mechanisms may dominate over others in individual patients. There may be poten-
tial biomarkers or signaling pathways for different tissues or organs affected as well as therapeutic 
applications mostly in the form of inhibitors of the presumptive biomarkers of various tissues presented 
in Table  1, that could be employed for PASC sufferers until the underlying individual or collective 
mechanisms giving rise to their symptoms are clearly delineated. Furthermore, there is an urgent need 
to design experimental protocols that can distinctively identify the underlying mechanisms or pathways 
that are responsible for the clinical manifestations exhibited by Long COVID or PASC patients.
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Table 1. Proposed molecular, pathobiological, and pathophysiological mechanisms related to Long COVID symptoms.

Dysregulated 
system Mechanism

Biological/molecular 
factor* Signaling pathway Reference

Autonomic

Autoimmune dysfunction of the autonomic 
nervous system; cardiovascular autonomic 
dysfunction (CVAD); post- intensive care 
syndrome (PICS); orthostatic intolerance 
(OI); syncope; postural orthostatic 
tachycardia syndrome (POTS)- like 
dysfunction; (ME/CFS)- like dysfunction; 
antinuclear antibodies

↑Ganglionic, adrenergic, 
and muscarinic 
acetylcholine receptor 
antibodies
↑G- protein- coupled 
receptor autoantibodies

Sympathetic nervous 
system;
cytokine storms; 
activation of renin–
angiotensin system

Al- Kuraishy et al., 2021; Baig 
et al., 2020; Bisaccia et al., 2021; 
Escorihuela et al., 2020; Gunning 
et al., 2019; Li et al., 2020a; 
Nelson et al., 2019; Shaw et al., 
2019; van Campen et al., 2020; 
Wu and Yang, 2020;

Cardiovascular

Myocardial hypertrophy; focal myocardial 
fibrosis; acute myocardial infarction; cardiac 
hypertrophy; endothelial dysfunction 
and coagulation activation; neutrophil 
extracellular traps (NETs); inflammation- 
coagulation (Factor XII); direct complement 
activation (inflammation)

↑Thrombin
↓Plasmin
↓Fibrinolysis
↑ NT- proBNP
↑cTnI
↑Serum lactate 
dehydrogenase
↑Creatine kinase

Aryl hydrocarbon 
receptor (AhR) 
signaling through an 
IDO- Kyn- dependent 
pathway (hypoxia 
induction)

Baldi et al., 2020; Basso et al., 
2020; Flores et al., 2019; Gao 
et al., 2020; Hanneman et al., 
2022; Lala et al., 2020; Liu et al., 
2020b; Mueller et al., 2021; 
Parohan et al., 2020; Puntmann 
et al., 2020; Shi et al., 2020; 
Wallentin et al., 2020

Endocrine
Damage to thyroid gland; thyroiditis/
thyrotoxicosis

↓Thyroxin- 3, ↑ACE2, 
↑TMPRSS2

The Th17 and the 
AGE/RAGE signaling 
pathways

Clarke et al., 2022; Lazartigues 
et al., 2020; Wei et al., 2007; Wu 
et al., 2021

Endothelial
Endothelialitis; thromboembolism; 
endothelial glycocalyx damage

↑sP- Sel, vWF, and D- 
dimer
↑ Endothelin- 1 (ET- 1)
↓ Angiotensin II
↑Proinflammatory 
cytokines and 
chemokines
↑Plasma heparinase Bradykinin pathway

Buijsers et al., 2020; Flores 
et al., 2019; Mueller et al., 2021; 
Osburn et al., 2022; Scherbakov 
et al., 2020; Zha et al., 2022

Gastrointestinal

Impaired barrier function; gut inflammation, 
altered serotonin metabolism and gut 
microbiota dysbiosis, Ruminococcus gnavus 
positively correlated with inflammatory 
markers; Clostridia was negatively 
correlated, fungal translocation leading to 
NF-κB activation and inflammation

↑ Ruminococcus gnavus,
↑Fecal calprotectin
↑Plasma serotonin 
(5- hydroxytrytamine, 
5- HT)

Interferon gamma 
(IFN-γ) signaling

Chandrashekhar Joshi and 
Pozzilli, 2022; Giron et al., 2022; 
Schultheiss et al., 2022

Hematological

Vascular dysregulation; hypercoagulopathy; 
endothelialitis; hemostatic changes 
that leave the endothelium inflamed, 
pre- adhesive, and prothrombotic; 
thrombocytopenia, deep vein thrombosis

↑Plasminogen activator 
inhibitor factor I (PAI)
↑Tissue factor (TF)
↑von Willebrand factor 
(vWF)
↑D- dimer
↓Hb
↑GM- CSF

p38 MAPK;
Antibody- dependent 
cellular toxicity

Aird, 2007; Boisramé-Helms 
et al., 2013; Giustino et al., 
2020; Hamming et al., 2004; 
Hamming et al., 2007; Hussman, 
2020; Liu et al., 2020a; Rahman 
et al., 2021; Riphagen et al., 
2020; Zachariah et al., 2020

Immunological Dysregulated and heightened immune 
system; prolonged inflammation leading 
to multiorgan dysfunction; cytokine release 
syndrome (CRS); Mast Cell Activation 
Syndrome (MCAS); neutrophil extracellular 
traps (NETs); pattern recognition receptors 
(PRRs) including Toll- like receptor (TLR); 
retinoic acid- inducible gene- I (RIG- I)- like 
receptors; oxidative stress

↑IL- 1β, IL- 2, IL- 6 ↑IL- 8, 
IL- 10
↑IL- IL- 12, IL- 17 ↑IL- 18
↑IFN-γ, NF-κB;
↑IFN- I and IFN- III
↑TNF,
↑CXCL- 10,
↑p38 MAPK
↑JAKs and STATs
↑GM- CSF
↑TGF- β
↑ESR

JAK/STAT; Toll- like 
receptor pathways 
(TLR- 3 and TLR 7/8); 
AKT/mTOR/MAPK 
pathway; FcyRIIA;
NF-κB p65 and p38 
MAPK, 1/2 (STAT1/2) 
pathway

Blanco- Melo et al., 2020; Feng 
et al., 2019; Guo and Thomas, 
2017; Jose and Manuel, 2020; 
Li and Verma, 2002; O’Shea 
et al., 2015; Pablos et al., 2020; 
Ronco and Reis, 2020; Tarentino 
and Maley, 1975; Tay et al., 
2020; Tergaonkar et al., 2005; 
Totura et al., 2015; Wirth and 
Scheibenbogen, 2021; Ye et al., 
2020; Zhang et al., 2020; Zhao 
and Zhao, 2020

Table 1 continued on next page
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Dysregulated 
system Mechanism

Biological/molecular 
factor* Signaling pathway Reference

Neurological

Neuro- inflammation; coagulopathy; micro- 
thrombosis; aberrant immune response; 
metabolic brain disorders; stroke; Guillain–
Barré syndrome; hemodynamic and 
coagulation disorders; arrhythmia; nervous 
system damage

↑IL- 18, IL- 6, and IL- 8
↑CCL- 11
↑Neurofilament light 
(NFL)
↑Glial fibrillary acidic 
protein (GFAP)

Humoral and 
retrograde neural 
signals;
blood–brain barrier 
(BBB)

Awogbindin et al., 2021; 
Castanares- Zapatero et al., 
2022; Dando et al., 2014; 
Fernández- Castañeda et al., 
2022a; Fernández- Castañeda 
et al., 2022b; Frere et al., 2022; 
Holmes et al., 2021; Lauer et al., 
2018; Matschke et al., 2020; 
Pan et al., 2020; Poon et al., 
2015; Proal and VanElzakker, 
2021; Sahin et al., 2022; Song 
et al., 2020 ; Tate et al., 2022; 
VanElzakker, 2013; Wostyn, 
2021; Wu et al., 2020

Pancreatic

Direct insulin resistance and beta 
cell damage; indirect autoimmunity 
inflammation; stress and steroid- induced 
hyperglycemia

↑PKR, PERK, ISR via viral 
RNA and Cytokine storm, 
IRS
↑IL- 6 and TNF-α
↓REST (RE1- silencing 
transcription factor)
↑Amylase and lipase
↑HLA
↑Propionic acid
↑Isobutyric acid

Insulin signaling 
pathway, ISR Shin et al., 2022

Renal Glomerulopathy; microangiopathy
↑ACE2 receptor,
↑IFN- I and IFN- III

Renin–angiotensin–
aldosterone system 
(RAAS) disorders

Blanco- Melo et al., 2020; 
Hamming et al., 2004; Harmer 
et al., 2002; Nalbandian et al., 
2021 Tay et al., 2020; Zou et al., 
2020

Respiratory

Pulmonary fibrosis; pulmonary 
thromboembolism; pneumonia; 
pulmonary vascular damage; cytokine 
release syndrome; dysbiosis (increased 
Staphylococcus cohnii and Pasteurella 
multocida); lipid metabolism; beta- 
oxidation; amino acid metabolism; and 
carbohydrate metabolism;
hyperactivated T- lymphocytes and 
inflammatory macrophages; NETosis

↑TNF-α, IL- 1
↑IL- IL- 1β, IL- 6
↑IL- 12
↑MCP- 1
↑GM- CSF
↑CCL19
↑CCR6 + Th17
↑IL- 8 (CXCL8)

Insulin/IGF signaling 
pathway
Citrate cycle; 
respiratory electron 
transport chain;
Th17 cell 
differentiation 
pathway

Ackermann et al., 2020; 
Budhraja et al., 2022; D’Errico 
et al., 2020; George et al., 2020; 
Griffin et al., 2020; Grosse et al., 
2020; Jin et al., 2021; Jonigk 
et al., 2022; Kosuge et al., 2012; 
Medina- Enríquez et al., 2020; 
Morganstein et al., 2021; Sakr 
et al., 2020; Shin et al., 2022; 
Sidarta- Oliveira et al., 2020; 
Verdecchia et al., 2020; Xie 
et al., 2021; Yaméogo et al., 
2011; Ye et al., 2020

Multisystem 
Inflammatory 
Syndrome in Children 
(MIS- C)

Kawasaki disease; cardiac involvement 
with macrophage activation; persistent 
T- cell immune response; mucosal barrier 
breakdown ↑IL- 6 and IL- 1Ra ???

Feldstein et al., 2020; 
Sadanandam et al., 2020

*↑ and ↓ arrows indicate increased and decreased levels, respectively, of biological and/or molecular factors.
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