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Abstract Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which 
is presumed to underlie its rapid antidepressant effects. Moreover, ketamine’s therapeutic actions 
are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive 
NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsyn-
aptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ 
activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippo-
campus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly 
reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphor-
ylation. This phosphorylation ultimately leads to the expression of Ca2+- Permeable, GluA2- lacking, 
and GluA1- containing AMPARs (CP- AMPARs). The ketamine- induced expression of CP- AMPARs 
enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. 
Moreover, when a sub- anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 
levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. 
These changes are likely mediated by ketamine- induced reduction of calcineurin activity in the 
hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of 
ketamine rapidly reduces anxiety- like and depression- like behaviors in both male and female mice. 
However, when in vivo treatment of a CP- AMPAR antagonist abolishes the ketamine’s effects on 
animals’ behaviors. We thus discover that ketamine at the low dose promotes the expression of 
CP- AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce 
rapid antidepressant actions.

Editor's evaluation
This paper addresses an important clinical concern which is how the antidepressant ketamine exerts 
its effects acts rapidly. The authors suggest the reason is that ketamine increases glutamatergic 
transmission in the hippocampus. The strengths are the data are very good, and the limitations are 
discussed well.

Introduction
Major depressive disorder (MDD), also referred to as clinical depression, is a severe mood disorder 
with a large global prevalence (Diseases and Injuries, 2020). When depression co- occurs with chronic 

RESEARCH ARTICLE

*For correspondence: 
seonil.kim@colostate.edu
†These authors contributed 
equally to this work

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 20

Preprinted: 05 December 2022
Received: 07 January 2023
Accepted: 23 June 2023
Published: 26 June 2023

Reviewing Editor: Helen 
E Scharfman, Nathan Kline 
Institute and New York University 
Langone Medical Center, United 
States

   Copyright Zaytseva, 
Bouckova, Wiles et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.86022
mailto:seonil.kim@colostate.edu
https://doi.org/10.1101/2022.12.05.519102
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Neuroscience

Zaytseva, Bouckova, Wiles et al. eLife 2023;12:e86022. DOI: https://doi.org/10.7554/eLife.86022  2 of 28

medical illnesses, untreated depression is linked to a lower quality of life, a higher risk of suicide, and 
impaired physical well- being (Moussavi et al., 2007; Daly et al., 2010; Rihmer and Gonda, 2012). As 
such, it is understandable why MDD represents a serious public health concern. Many antidepressant 
drugs have been used by targeting the monoamine systems to increase the amount of serotonin or 
norepinephrine in the brain (Berton and Nestler, 2006). However, it can take weeks or months for 
traditional antidepressants to fully manifest their therapeutic advantages (Katz et al., 2004). More-
over, less than 50% of all patients with depression have full remission with optimum treatment, thus 
there is still a great need for rapid medicinal relief to treat MDD (Berton and Nestler, 2006).

Over the past 50 years, the use of ketamine for anesthesia has become widespread in both human 
and veterinary medicine (Kohtala, 2021). Ketamine has also shown efficacy as a rapid- acting antide-
pressant only at low doses, particularly among those with treatment- resistant depression, while with 
increasing doses it evokes psychotomimetic actions and eventually produces anesthesia (Abdallah 
et al., 2016; Miller et al., 2016). Ketamine produces antidepressant effects within 1 hr after admin-
istration in humans (Berman et  al., 2000; Zarate et  al., 2006; Liebrenz et  al., 2009). Notably, 
ketamine’s half- life in the body is ~2 hours (Autry et al., 2011), but the ketamine’s antidepressant 
effects last up to 1 week (Berman et al., 2000; Zarate et al., 2006; Price et al., 2009), strongly 
suggesting the involvement of neural plasticity (Duman, 2018). In fact, it is widely accepted that 
ketamine regulates a chain of molecular events connected with the facilitation of neural plasticity, 
including structural and functional plasticity, in the hippocampus and cortex, ultimately leading to 
the amelioration of depressive symptoms (Kavalali and Monteggia, 2020; Kawatake- Kuno et al., 
2021; Kohtala, 2021; Grieco et al., 2022). Nonetheless, when, where, and how ketamine enhances 
the plasticity is still unclear (Wu et al., 2021). Therefore, our study aims to understand the mechanism 
underlying ketamine’s rapid (less than an hour) antidepressant effects, which ultimately contributes to 
neural plasticity for long- term antidepressant benefits.

The main mechanism by which ketamine produces its therapeutic benefits on mood recovery is the 
promotion of neural plasticity in the hippocampus (Miller et al., 2016; Ionescu et al., 2018; Alek-
sandrova et al., 2020; Kavalali and Monteggia, 2020; Grieco et al., 2022). In fact, a recent study 
using the systematic and unbiased mapping approach that provides a comprehensive coverage of all 
brain regions discovers that ketamine selectively targets the hippocampus (Davoudian et al., 2023). 
However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that inhibits excitatory 
synaptic transmission (Anis et al., 1983). By inhibiting glutamatergic NMDARs, ketamine promotes 
synaptic inhibition rather than excitation (Harrison and Simmonds, 1985). Moreover, NMDARs are 
major Ca2+ channels in excitatory synapses (Zarei and Dani, 1994). This suggests that ketamine deac-
tivates NMDAR- dependent Ca2+ signaling pathway. However, an important aspect of ketamine’s ther-
apeutic efficacy is mediated by enhancing neuronal Ca2+ signaling (Ali et  al., 2020; Lisek et  al., 
2020). Taken together, the main mechanisms believed to underlie ketamine’s antidepressant effects 
converge on enhancing glutamatergic activity and neuronal Ca2+- dependent signaling in the hippo-
campus (Miller et al., 2016; Aleksandrova et al., 2020; Kavalali and Monteggia, 2020; Kawatake- 
Kuno et al., 2021). Due to this, it becomes a puzzling question as to how ketamine rapidly enhances 
glutamatergic activity and Ca2+ signaling while blocking NMDARs in the hippocampus.

One prominent hypothesis to explain these paradoxical effects of ketamine is that it directly inhibits 
NMDARs on excitatory neurons, which induces a cell- autonomous form of homeostatic synaptic plas-
ticity to increase excitatory synaptic activity onto these neurons (Miller et al., 2016; Kavalali and 
Monteggia, 2020). This synaptic homeostasis is a negative- feedback response employed to compen-
sate for functional disturbances in neurons and expressed via the regulation of glutamatergic AMPA 
receptor (AMPAR) trafficking and synaptic expression (Lee, 2012; Diering and Huganir, 2018). Post-
mortem studies have reported reductions in the mRNA expression levels of AMPAR subunit GluA1 
and GluA3, but not GluA2, in the hippocampus of patients with depression (Duric et  al., 2013), 
suggesting that subtype- specific AMPAR decrease in the hippocampus is implicated in depression. 
Moreover, accumulating evidence suggests that the antidepressant effects of ketamine can be medi-
ated by alterations in AMPAR functions (Moghaddam et al., 1997; Maeng et al., 2008; Nosyreva 
et al., 2013; Koike and Chaki, 2014; El Iskandrani et al., 2015; Zanos et al., 2016; Chowdhury 
et al., 2017). Interestingly, following ketamine treatment in animals, many studies find elevated levels 
of GluA1, particularly in the hippocampus, whereas the results of other subunits' expression are less 
consistent (Li et al., 2010; Nosyreva et al., 2013; Koike and Chaki, 2014; Yang et al., 2016; Zanos 
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et al., 2016; Georgiou et al., 2022). This suggests that subtype specific activation of AMPARs is 
crucial for ketamine’s antidepressant actions. However, it is unknown how ketamine selectively affects 
AMPAR subtype- specific functions in the hippocampus.

There are two distinct types of AMPARs formed through combination of their subunits: Ca2+- 
impermeable GluA2- containing AMPARs and Ca2+- Permeable, GluA2- lacking, and GluA1- containing 
AMPARs (CP- AMPARs) (Isaac et al., 2007; Liu and Zukin, 2007). Activity- dependent AMPAR traf-
ficking has long been known to be regulated by the phosphorylation of the GluA1 subunit (Diering and 
Huganir, 2018). Phosphorylation of serine 845 (S845) in GluA1 promotes GluA1- containing AMPAR 
surface expression, whereas dephosphorylation of S845 is involved in receptor internalization (Diering 
and Huganir, 2018; Sathler et al., 2021). We have previously shown that a decrease in neuronal 
Ca2+ activity reduces the activity of Ca2+- dependent phosphatase calcineurin, increasing GluA1 S845 
phosphorylation to induce synaptic expression of CP- AMPARs, a part of homeostatic synaptic plas-
ticity (Kim et al., 2014). It is thus possible that ketamine can reduce postsynaptic Ca2+ and calcineurin 
activity via NMDAR antagonism, which increases GluA1 S845 phosphorylation to induce CP- AMPAR 
expression and enhances glutamatergic synaptic transmission. Indeed, a prior study demonstrated 
that ketamine induces CP- AMPAR expression in spiny projection neurons in the nucleus accumbens, 
although the study did not examine whether this change resulted in antidepressant behaviors 
(Skiteva et al., 2021). However, it is uncertain whether GluA2- containing or GluA2- lacking AMPARs 
are inserted or removed from hippocampal synapses following ketamine administration. Here, using 
cultured mouse hippocampal neurons, we reveal that ketamine at the low dose induces CP- AMPAR 
expression via reduction of neuronal Ca2+ and calcineurin activity. Moreover, a low dose of ketamine 
in mice significantly reduces calcineurin activity and increases synaptic GluA1 levels, but not GluA2, in 
the hippocampus. Most importantly, ketamine at the low dose induces antidepression- like behaviors 
in mice within 1 hr after treatment, which is completely abolished by specifically blocking CP- AMPARs. 
Therefore, we discover a new molecular mechanism of ketamine’s rapid antidepressant actions in 
which ketamine at the low doses promotes the expression of CP- AMPARs via reduction of calcineurin 
activity within one hour after treatment, which in turn enhances synaptic strength to induce antide-
pressant effects.

Results
Ketamine treatment selectively increases GluA1-containing AMPAR 
surface expression by decreasing calcineurin activity in cultured mouse 
hippocampal neurons
A large body of studies has found increased levels of GluA1 in the hippocampus after ketamine treat-
ment in rodents; however, the results for other subunits' expression are less reliable (Li et al., 2010; 
Nosyreva et al., 2013; Koike and Chaki, 2014; Yang et al., 2016; Zanos et al., 2016; Georgiou 
et al., 2022). This led us to examined whether ketamine treatment changed surface expression of 
AMPAR subunits in cultured mouse hippocampal neurons. We treated 14 days in vitro (DIV) cultured 
mouse hippocampal neurons with 1 μM ketamine, the estimated concentration in the human brain 
after intravenous infusion of the therapeutic dose (Hartvig et  al., 1995), for 1 hr and measured 
surface expression of AMPAR subunit GluA1 and GluA2 using biotinylation and immunoblots as shown 
previously (Kim et al., 2014; Kim et al., 2015b; Kim et al., 2015a; Sztukowski et al., 2018; Sun 
et al., 2019; Roberts et al., 2021). We found that ketamine treatment selectively increased surface 
expression of GluA1 when compared to the control (CTRL) (CTRL, 1.000 and ketamine, 1.598±0.543, 
p=0.0039), but not GluA2 (CTRL, 1.000 and ketamine, 1.121±0.464, p=0.6498; Figure 1a). As GluA1 
phosphorylation at serine 831 (pGluA1- S831) and serine 845 (pGluA1- S845) are known to regulate 
GluA1- containing AMPAR surface trafficking (Diering and Huganir, 2018), we examined pGluA1- S831 
and pGluA1- S845 levels one hour after 1 μM ketamine treatment in 14 DIV cultured hippocampal 
neurons as shown previously (Sathler et al., 2021). We found significantly higher pGluA1- S831 (CTRL, 
1.000 and ketamine, 1.967±0.488, p=0.0149) and pGluA1- S845 levels (CTRL, 1.000 and ketamine, 
2.399±1.024, p=0.0051) in ketamine- treated neurons than in the control (CTRL) (Figure  1b). This 
shows that ketamine treatment in cultured hippocampal neurons selectively increases GluA1 surface 
expression by increasing pGluA1- S831 and pGluA1- S845, which is consistent with the previous 
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findings showing crucial role of GluA1 phosphorylation in rapid antidepressant responses of ketamine 
(Zhang et al., 2016; Zhang et al., 2017; Asim et al., 2022).

We have previously shown that a decrease in Ca2+- dependent phosphatase calcineurin activity 
significantly increases pGluA1- S845 and GluA1 surface expression (Kim et al., 2014). Previous studies 
have shown that 1 μM ketamine treatment can reduce ~50% of NMDA- induced currents (Hare et al., 

Figure 1. Ketamine treatment selectively increases GluA1- containing AMPAR surface expression by decreasing calcineurin activity in cultured mouse 
hippocampal neurons. (a) Representative immunoblots of input (I) and surface (S) levels in control (CTRL) and ketamine- treated neurons. Summary 
bar graphs of normalized surface GluA1 and GluA2 levels in each condition (n=11 immunoblots from 4 independent cultures, **p<0.01, the Kruskal- 
Wallis test with the Dunn’s test). (b) Representative immunoblots of pGluA1 levels in control (CTRL) and ketamine- treated neurons. Summary graphs 
of normalized GluA1 phosphorylation levels in each condition (n=6 immunoblots from three independent cultures, *p<0.05 and **p<0.01, the Kruskal- 
Wallis test with the Dunn’s test). (c) Representative traces of GCaMP7s signals in excitatory cells and summary data of normalized total Ca2+ activity in 
each condition (n=number of neurons from two independent cultures, CTRL = 46, 1 μM Ketamine = 49, 10 μM Ketamine = 27, and 20 μM Ketamine = 
26, *p<0.05 and ****p<0.0001, One- way ANOVA with the Tukey test). (d) Representative images of a CFP channel, a FRET channel, and a pseudocolored 
emission ratio (Y/C) in each condition [blue (L), low emission ratio; red (H), high emission ratio]. Scale bar is 10 µm. A summary graph showing average 
of emission ratio (Y/C) in each condition (n= number of cells, CTRL = 47, ketamine = 44, and FK506=20 from two independent cultures; *p<0.05 and 
****p<0.0001; One- way ANOVA with the Tukey test). A scale bar indicates 10 μm. The position of molecular mass markers (kDa) is shown on the right of 
the blots. Mean ± SD.

The online version of this article includes the following source data for figure 1:

Source data 1. A compressed file containing images of (1) figures with the uncropped blots with the relevant bands labeled, (2) the original files of the 
full raw unedited blots, and (3) excel tables with the numerical data used to generate the Figure 1a and b.
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2019), whereas 10 μM is sufficient to block ~80% of NMDA- induced currents (Halliwell et al., 1989). 
Therefore, ketamine treatment can reduce neuronal Ca2+ activity in the dosage- dependent manner, 
which in turn decreases calcineurin activity to elevate GluA1 phosphorylation and GluA1 surface 
expression. We thus examined whether ketamine treatment affected Ca2+ activity in 14 DIV cultured 
hippocampal excitatory neurons using the previously described method with modification (Kim et al., 
2014; Kim et al., 2015b; Kim et al., 2015a; Sztukowski et al., 2018; Sun et al., 2019; Roberts 
et al., 2021). For Ca2+ imaging, a genetically encoded Ca2+ indicator, GCaMP7s (Dana et al., 2019), 
was used to measure spontaneous somatic Ca2+ activity in cultured hippocampal excitatory neurons in 
the presence of 1, 10, or 20 μM ketamine. We measured spontaneous Ca2+ activity right after ketamine 
was treated, As consistent with the previous findings (Halliwell et al., 1989; Hare et al., 2019), we 
found a significant reduction in Ca2+ activity in ketamine- treated neurons compared to control cells 
(CTRL) in the dosage- dependent manner (CTRL, 1.000±0.432 F/Fmin, 1 μM ketamine, 0.820±0.363 F/
Fmin, p=0.036, 10  μM ketamine, 0.069±0.099  F/Fmin, p<0.0001, and 20  μM ketamine, 0.000  F/Fmin, 
p<0.0001) (Figure 1c). This demonstrates that ketamine treatment significantly reduces neuronal Ca2+ 
activity in cultured hippocampal excitatory cells in the dosage- dependent manner.

To measure intracellular calcineurin activity directly, we used a Fluorescence Resonance Energy 
Transfer (FRET)- based calcineurin activity sensor as shown previously (Kim et al., 2014; Mehta and 
Zhang, 2014; Kim et al., 2015b; Kim et al., 2015a; Sun et al., 2019). We generated Sindbis virus 
to express the calcineurin activity sensor in cells (Osten et al., 2000). CFP, YFP, and FRET images 
in the soma of 14 DIV cultured hippocampal neurons were acquired 36 hr after infection, and the 
emission ratio was calculated as shown previously (Kim et al., 2014; Kim et al., 2015b; Kim et al., 
2015a; Sun et al., 2019). We found that calcineurin activity was significantly decreased after one- 
hour 1 μM ketamine treatment compared to the control (CTRL) (CTRL, 1.000±0.106 and ketamine, 
0.942±0.051, p=0.0170) (Figure  1d). Following one hour treatment of 5  μM FK506, a calcineurin 
inhibitor (Liu et al., 1991), calcineurin activity was markedly reduced compared to the control (CTRL; 
FK506, 0.806±0.150, p<0.0001) (Figure 1d) as shown previously (Kim et al., 2014). Taken together, 
ketamine- mediated NMDAR antagonism reduces neuronal Ca2+ and calcineurin activity, which leads 
to a selective increase in GluA1 phosphorylation and GluA1- contraining AMPAR surface expression in 
cultured hippocampal neurons.

Ketamine treatment induces CP-AMPAR expression to enhance 
glutamatergic activity and glutamate receptor plasticity in cultured 
mouse hippocampal neurons
We next examined how ketamine affected glutamatergic activity in cultured hippocampal excitatory 
neurons. Given that neuronal Ca2+ is the secondary messenger responsible for transmitting depolar-
ization status and synaptic activity (Gleichmann and Mattson, 2011), we carried out somatic Ca2+ 
imaging with glutamate uncaging in cultured mouse hippocampal excitatory neurons to measure 
glutamatergic activity. We treated 14 DIV hippocampal cultures with 1  μM ketamine for 1 hr and 
measured glutamate- induced Ca2+ signals. Glutamatergic activity was significantly higher in ketamine- 
treated neurons than control cells (CTRL) (CTRL, 1.000±0.278 F/F0 and ketamine, 1.289±0.334 F/F0, 
p=0.0022; Figure 2a). Because CP- AMPARs have larger single channel conductance (Diering and 
Huganir, 2018), we examined whether an increase in glutamatergic activity following ketamine treat-
ment was mediated by CP- AMPARs. To do so, we treated hippocampal neurons with 1 μM ketamine for 
1 hr and carried out Ca2+ imaging with glutamate uncaging in the presence of 20 μM 1- naphthyl acetyl 
spermine (NASPM), a CP- AMPAR blocker. NASPM treatment was sufficient to abolish a ketamine- 
induced increase in glutamatergic activity (Ketamine +NASPM, 0.961±0.464 F/F0, p=0.0006), while it 
had no effect on control cells (CTRL) (CTRL +NASPM, 0.965±0.350 F/F0, p=0.9603) (Figure 2a). This 
shows that ketamine treatment induces CP- AMPAR expression and increases glutamatergic activity in 
cultured hippocampal excitatory neurons.

Ketamine’s antidepressant effects are shown to be mediated by enhancing neural plasticity (Grieco 
et al., 2022). Specifically, ketamine enhances long- term potentiation (LTP) in the hippocampus, which 
contributes to antidepressant actions (Yang et al., 2018a; Aleksandrova et al., 2020). Moreover, 
CP- AMPARs can initiate LTP in the hippocampus particularly when NMDARs are blocked (Jia et al., 
1996). We thus treated 14 DIV cultured hippocampal neurons with a glycine- based buffer, well- 
established to induce a form of chemically induced glutamate receptor- dependent LTP (cLTP) as shown 
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previously (Roberts et al., 2021; Sathler et al., 2021) to examine whether ketamine enhanced gluta-
mate receptor plasticity via the expression of CP- AMPARs. Following cLTP induction, pGluA1- S831 
(CTRL, 1.000 and cLTP, 3.879±1.764, p=0.0027) and pGluA1- S845 levels (CTRL, 1.000 and cLTP, 
4.658±2.090, p=0.0018) were significantly elevated in control neurons (CTRL), an indication of cLTP 
expression (Figure 2b–c). We next treated neurons with 1 μM ketamine for one hour, then induced 
cLTP, and measured GluA1 phosphorylation. When compared to neurons without ketamine treat-
ment, pGluA1- S831 (Ketamine +cLTP, 8.978±4.861, p=0.0276) and pGluA1- S845 levels (Ketamine 
+cLTP, 11.73±6.717, p=0.0311) were significantly higher in ketamine- treated neurons, an indication 

Figure 2. Ketamine treatment induces CP- AMPAR expression to enhance glutamatergic activity and glutamate receptor plasticity in cultured mouse 
hippocampal neurons. (a) Average traces of virally expressed GCaMP7s signals, and summary data of normalized peak amplitude in each condition 
(n=number of neurons, CTRL = 33, NASPM = 32, Ketamine = 37, and Ketamine +NASPM = 24 from two independent cultures; **p<0.01 and 
***p<0.001; Two- way ANOVA with the Tukey test). An arrow indicates photostimulation. Representative immunoblots and quantitative analysis of (b) 
pGluA1- S831 and (c) pGluA1- S845 levels in each condition (n=10 immunoblots from five independent cultures, **p<0.01, ***p<0.001, and ****p<0.0001, 
the Kruskal- Wallis test with the Dunn’s test). The position of molecular mass markers (kDa) is shown on the right of the blots. Mean ± SD.

The online version of this article includes the following source data for figure 2:

Source data 1. A compressed file containing images of (1) figures with the uncropped blots with the relevant bands labeled, (2) the original files of the 
full raw unedited blots, and (3) excel tables with the numerical data used to generate the Figure 2b and c.

https://doi.org/10.7554/eLife.86022
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of enhanced cLTP expression (Figure 2b–c). Importantly, a ketamine- induced increase in GluA1 phos-
phorylation was completely abolished when CP- AMPARs were blocked by treating neurons with 
20 μM NASPM during cLTP (pGluA1- S831; Ketamine +cLTP + NASPM, 4.592±3.343, p=0.0299, and 
pGluA1- S845; Ketamine +cLTP + NASPM, 4.890±3.301, p=0.0279; Figure 2b–c). Notably, blocking 
CP- AMPARs had no effect on cLTP expression in the absence of ketamine treatment (pGluA1- S831; 
cLTP +NASPM, 3.684±2.503, p=0.7002, and pGluA1- S845; cLTP +NASPM, 3.724±2.275, p=0.4980; 
Figure 2b–c). Taken together, we demonstrate that ketamine enhances glutamate receptor plasticity 
via the expression of CP- AMPARs in cultured hippocampal cells.

Synaptic GluA1 levels are selectively increased in the hippocampus 
following ketamine treatment
Given that ketamine selectively increases GluA1 phosphorylation and GluA1- contraining AMPAR 
surface expression in cultured hippocampal neurons (Figure 1a–b), we examined whether ketamine 
treatment upregulates synaptic GluA1 and GluA2 levels in the mouse hippocampus. A low dose of 
ketamine (10 mg/kg), a condition that is shown to change hippocampal AMPAR expression in mice 
(Zanos et al., 2016), was intraperitoneally injected to 3- month- old male and female CD- 1 mice, and 
saline was injected as a control. The postsynaptic density (PSD) fractions of the hippocampus were 
collected one hour after ketamine or saline injection, and synaptic GluA1, GluA2, pGluA1- S831, and 
pGluA1- S845 levels were measured by immunoblots as shown previously (Kim et al., 2015b; Kim 
et al., 2015a; Farooq et al., 2017; Kim et al., 2018). In male mice, we found GluA1 (CTRL, 1.000 
and ketamine, 2.057±0.763, p=0.0005), pGluA1- S831 (CTRL, 1.000 and ketamine, 1.624±0.489, 
p=0.0158), and pGluA1- S845 levels (CTRL, 1.000 and ketamine, 1.480±0.243, p=0.0339), but not 
GluA2 levels (CTRL, 1.000 and ketamine, 1.088±0.383, p>0.9999), were significantly higher in the 
ketamine- treated hippocampal PSD fractions than the control (CTRL; Figure  3a). This shows that 
ketamine at the low dose significantly elevates synaptic GluA1 levels, which are likely mediated by 
increasing GluA1 phosphorylation in the male hippocampus, consistent with our findings in cultured 
hippocampal cells.

In contrast to male mice, 10 mg/kg ketamine injection in female mice significantly increased GluA1 
(CTRL, 1.000 and ketamine, 1.224±0.324, p=0.0303), GluA2 (CTRL, 1.000 and ketamine, 1.393±0.304, 
p=0.0002), pGluA1- S831 (CTRL, 1.000 and ketamine, 1.296±0.319, p=0.0022), and pGluA1- S845 
levels (CTRL, 1.000 and ketamine, 1.394±0.435, p=0.0014) in the PSD fractions (Figure  3b). This 
shows that ketamine at the low dose significantly increases both GluA1 and GluA2 levels in female 
hippocampal synapses. Interestingly, studies reveal that female rodents consistently respond to a 
lower dose of ketamine than male animals on depression- like behavioral tests, including forced swim 

Figure 3. Synaptic GluA1 levels are selectively increased in the hippocampus following ketamine treatment. Representative immunoblots of AMPAR 
levels in the hippocampus of control (CTRL) and ketamine- treated (a) male (10 mg/Kg ketamine), (b) female (10 mg/kg ketamine), and (c) female (5 mg/
Kg ketamine) mice. Summary graphs of normalized GluA1, GluA2, and GluA1 phosphorylation levels in each condition (n=number of immunoblots 
from 4 male and 3 female mice in each condition; Male (10 mg/Kg ketamine), CTRL = 8, GluA1=8, GluA2=8, pS831=7, and pS845=7, Females (10 mg/
kg ketamine), CTRL = 14, GluA1=14, GluA2=14, pS831=12, and pS845=12, and Female (5 mg/Kg ketamine), CTRL = 10, GluA1=10, GluA2=10, pS831=6, 
and pS845=6, *p<0.05, **p<0.01, and ***p<0.001; the Kruskal- Wallis test with the Dunn’s test). The position of molecular mass markers (kDa) is shown on 
the right of the blots. Mean ± SD.

The online version of this article includes the following source data for figure 3:

Source data 1. A compressed file containing images of (1) figures with the uncropped blots with the relevant bands labeled, (2) the original files of the 
full raw unedited blots, and (3) excel tables with the numerical data used to generate the Figure 3a, b and c.
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test and novelty suppressed feeding test (Carrier and Kabbaj, 2013; Franceschelli et  al., 2015; 
Zanos et al., 2016; Dossat et al., 2018). We thus used a lower dose of ketamine (5 mg/kg) in female 
mice and examined synaptic GluA1 and GluA2 expression in the hippocampus to address if this sex 
difference in ketamine’s effects on synaptic AMPAR expression in the hippocampus is dependent 
on ketamine concentration. The hippocampal PSD fractions were isolated one hour after 5 mg/kg 
ketamine or saline injection, and synaptic AMPAR levels were measured as shown above. Like male 
mice, synaptic GluA1 (CTRL, 1.000 and ketamine, 1.420±0.361, p=0.0053), pGluA1- S831 (CTRL, 
1.000 and ketamine, 2.151±1.337, p=0.0014), and pGluA1- S845 levels (CTRL, 1.000 and ketamine, 
2.330±1.177, p=0.0031) were significantly increased in the ketamine- treated female hippocampal 
synapses than the control, while GluA2 levels were not affected by ketamine (CTRL, 1.000 and 
ketamine, 0.952±0.260, p>0.9999) (Figure  3c). This demonstrates that a lower dose of ketamine 
(5 mg/kg) is sufficient to increase synaptic GluA1 levels by increasing GluA1 phosphorylation in the 
female hippocampus.

Ketamine treatment significantly reduces anxiety-like behavior in mice, 
which requires CP-AMPARs
We next examined whether ketamine treatment affects anxiety- like behavior in mice using the open 
field test as shown previously (Shou et al., 2019). Ten mg/kg ketamine was intraperitoneally injected 
to 3- month- old male and female CD- 1 mice, and saline was administered to a control. One hour after 
the injection, we measured total distance traveled (locomotor activity) and total time spent outside 
and inside (anxiety- like behavior) in the open field chamber. It has been shown that ketamine treat-
ment in rodents induces hyperlocomotion and reduces anxiety- like behavior (Hetzler and Wautlet, 
1985; Irifune et al., 1991; Razoux et al., 2007; Chatterjee et al., 2011; de Araújo et al., 2011; 
Akillioglu et  al., 2012). Consistent with these findings, ketamine injection significantly increased 
total distance travelled compared to controls (CTRL) in male mice, an indication of hyperlocomo-
tion (CTRL, 35.244±15.704 m and ketamine, 47.964±0.361 m, p=0.0382; Figure 4a). Furthermore, 
ketamine- treated male mice spent less time outside (CTRL, 1104.007±54.881 seconds and ketamine, 
1048.647±50.779  seconds, p=0.0094) but more time inside (CTRL, 95.993±54.881  seconds and 
ketamine, 151.353±50.779, p=0.0094) than control mice, indicating decreased anxiety- like behavior 
(Figure  4a). To determine whether CP- AMPARs were required for these behavioral changes, we 
intraperitoneally administered 10 mg/kg IEM- 1460, the concentration that is sufficient to show drug 
effects in animals (Szczurowska and Mareš, 2015; Adotevi et al., 2020), to ketamine- treated and 
saline- injected mice and performed the open field test one hour after drug injection. We found 
that blocking CP- AMPARs was sufficient to abolish the ketamine’s effects in the open field test 
(Total distance travelled; Ketamine  +IEM- 1460, 33.069±10.000  m, p=0.0129, Time spent outside; 
Ketamine +IEM- 1460, 1128.464±27.927 seconds, p=0.0001, and Time spent inside; Ketamine +IEM- 
1460, 71.536±27.927  seconds, p=0.0001) (Figure  4a). Conversely, IEM- 1460 treatment had no 
effect on animals’ behavior in the absence of ketamine (Total distance travelled; CTRL +IEM- 1460, 
30.782±13.867  m, p=0.8087, Time spent outside; CTRL  +IEM- 1460, 1134.809±44.172  seconds, 
p=0.3410, and Time spent inside; CTRL +IEM- 1460, 65.191±44.172 seconds, p=0.3410) (Figure 4a). 
This shows that 10 mg/kg ketamine treatment significantly reduces male animals’ anxiety- like behavior 
in the open field test, which is mediated by CP- AMPARs.

In female mice, unlike male animals, 10  mg/kg ketamine had no effect on locomotor activity 
(CTRL, 42.287±10.576 m and ketamine, 40.848±11.091 m, p=0.9804) (Figure 4b). However, like male 
mice, 10 mg/kg ketamine significantly reduced time spent outside (CTRL, 1103.561±24.289 seconds 
and ketamine, 1062.840±54.145  seconds, p=0.0330) but increased time spent inside (CTRL, 
96.439±24.289 seconds and ketamine, 137.160±54.145, p=0.0330), an indication of reduced anxiety- 
like behavior (Figure 4b). To examine the role of CP- AMPARs in these behavioral changes, we intra-
peritoneally administered 10 mg/kg IEM- 1460 and performed the open field test one hour after drug 
injection as described above. IEM- 1460 injection had no effect on locomotor activity (Total distance 
travelled; CTRL +IEM- 1460, 37.971±13.870 m, p=0.7456 and Ketamine +IEM- 1460, 37.576±11.093 m, 
p=0.8239) (Figure 4b). However, in vivo CP- AMPAR inhibition was sufficient to reverse ketamine- induced 
behavioral changes (Time spent outside; Ketamine +IEM- 1460, 1116.100±44.791 seconds, p=0.0033, 
and Time spent inside; Ketamine +IEM- 1460, 83.900±44.791 seconds, p=0.0033) (Figure 4b). Like 
male mice, IEM- 1460 treatment had no effect on behaviors in the open field test in the absence of 
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ketamine (Total distance travelled; CTRL +IEM- 1460, 37.971±13.870 m, p=0.7456, Time spent outside; 
CTRL +IEM- 1460, 1119.917±50.469  seconds, p=0.7602, and Time spent inside; CTRL +IEM- 1460, 
80.083±50.469 seconds, p=0.7602) (Figure 4b). Given that a lower dose of ketamine (5 mg/kg) selec-
tively increases synaptic GluA1 levels, but not GluA2, in the female hippocampus (Figure 3c), we intra-
peritoneally injected 5 mg/kg ketamine to 3- month- old female CD- 1 mice and carried out the open 

Figure 4. Ketamine treatment significantly reduces anxiety- like behavior in mice, which requires CP- AMPARs. The results of the open- field test 
measuring total distance travelled and time spent outside and inside in (a) male (10 mg/Kg ketamine), (b) females (10 mg/kg ketamine), and (c) 
females (5 mg/Kg ketamine) mice in each condition (n=number of mice, Male (10 mg/Kg ketamine); saline = 15, IEM 1460=11, Ketamine = 15, and 
Ketamine +IEM 1460=14, Female (10 mg/kg ketamine); saline = 18, IEM 1460=12, Ketamine = 20, and Ketamine +IEM 1460=17, and Female (5 mg/kg 
ketamine); saline = 20, IEM 1460=11, Ketamine = 8, and Ketamine +IEM 1460=10, *p<0.05, **p<0.01, and ***p<0.001, Two- way ANOVA with the Tukey 
test). Mean ± SD.

The online version of this article includes the following source data for figure 4:

Source data 1. A source data containing excel tables with the numerical data used to generate the Figure 4a, b and c.
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field test as stated above. 5 mg/kg ketamine treatment in female mice was unable to increase loco-
motor activity (CTRL, 42.648±10.103 m and ketamine, 44.736±8.647 m, p=0.9751), but CP- AMPAR 
inhibition significantly reduced locomotion only in ketamine- treated female mice (CTRL +IEM- 1460, 
40.098±12.326 m, p=0.9408, and ketamine +IEM- 1460, 25.605±16.439 m, p=0.0080) (Figure 4c). 
This indicates that a lower dose of ketamine induces the expression of CP- AMPARs, contributing to 
locomotor activity in female mice. In addition, like 10 mg/kg ketamine treatment in male and female 
mice, 5 mg/kg ketamine injection in female animals significantly reduced anxiety- like behavior (Time 
spent outside; CTRL, 1096.190±32.931 seconds and Ketamine, 1011.288±66.949 seconds, p=0.0029, 
and Time spent inside; CTRL, 103.810±32.931  seconds and Ketamine, 188.713±66.949  seconds, 
p=0.0029), which was mediated by CP- AMPARs (Time spent outside; CTRL  +IEM- 1460, 
1114.636±49.333  seconds, p=0.8026, and Ketamine  +IEM- 1460, 1121.520±79.288  seconds, 
p=0.0005, and Time spent inside; CTRL  +IEM- 1460, 85.364±49.333  seconds, p=0.8026, and 
Ketamine +IEM- 1460, 78.480±79.288 seconds, p=0.0005) (Figure 4c). This indicates that 10 mg/kg 
and 5 mg/kg ketamine treatment in female mice significantly decrease anxiety- like behavior in the 
open- field test, which is dependent on CP- AMPARs.

Ketamine treatment significantly reduces depression-like behavior in 
mice, which requires CP-AMPARs
We next used a tail suspension test as shown previously (Kim et  al., 2018) to address whether 
ketamine- induced antidepressant actions were dependent on CP- AMPARs. Ten mg/kg ketamine was 
intraperitoneally injected to male and female 3- month- old CD- 1 mice, and saline was administered to 
a control. As immobility in the tail suspension test is correlated with the depression- like state of the 
animals (Kim et al., 2018), we measured immobility and found that ketamine injection in male mice 
significantly decreased immobility relative to the control (CTRL) (CTRL, 198.183±32.632 seconds and 
ketamine, 153.569±54.145  seconds, p=0.0164), an indication of reduced depression- like behavior 
(Figure 5a). IEM- 1460 treatment was sufficient to reverse ketamine- induced antidepressant effects on 
the tail suspension test (Ketamine +IEM- 1460, 195.100±47.681 seconds, p=0.0285), while it had no 
effect on immobility in control animals (CTRL) (CTRL +IEM- 1460, 206.578±31.598 seconds, p=0.9504) 
(Figure 5a). This demonstrates that 10 mg/kg ketamine treatment in male mice significantly reduces 
depression- like behavior, which is mediated by CP- AMPARs.

Figure 5. Ketamine treatment significantly reduces depression- like behavior in mice, which requires CP- AMPARs. The results of the tail suspension test 
measuring total immobility in (a) male (10 mg/Kg ketamine), (b) female (10 mg/kg ketamine), and (c) female (5 mg/Kg ketamine) mice in each condition 
(n=number of mice, Male (10 mg/Kg ketamine); saline = 12, IEM 1460=9, Ketamine = 13, and Ketamine +IEM 1460=12, Female (10 mg/kg ketamine); 
saline = 10, IEM 1460=8, Ketamine = 12, and Ketamine +IEM 1460=12, and Female (5 mg/Kg ketamine); saline = 10, IEM 1460=8, Ketamine = 11, and 
Ketamine +IEM 1460=10, *p<0.05 and **p<0.01, Two- way ANOVA with the Tukey test). Mean ± SD.

The online version of this article includes the following source data for figure 5:

Source data 1. A source data containing excel tables with the numerical data used to generate the Figure 5a, b and c.
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Unlike male animals, 10 mg/kg ketamine injection to female mice showed no antidepressant effects 
on our tail suspension test (CTRL, 170.550±48.708 seconds and ketamine, 192.433±50.495 seconds, 
p=0.7826) (Figure 5b). Moreover, IEM- 1460 treatment was unable to affect depression- like behavior 
in female mice (CTRL  +IEM- 1460, 178.775±55.421  seconds, p=0.9885, and ketamine  +IEM- 1460, 
183.517±61.042  seconds, p=0.9776) (Figure  5b). We thus treat 3- month- old female CD- 1 mice 
with 5 mg/kg ketamine as described above and performed the tail suspension test. A lower dose 
of ketamine in female mice significantly decreased immobility in the tail suspension test (CTRL, 
212.760±37.207 seconds and ketamine, 130.273±52.945 seconds, p=0.0026) (Figure 5c). Most impor-
tantly, CP- AMPAR antagonist treatment prevented ketamine’s antidepressant effect (Ketamine +IEM- 
1460, 203.170±64.843  seconds, p=0.0087), while not influencing immobility in control animals 
(CTRL +IEM- 1460, 214.050±28.469  seconds, p>0.9999) (Figure 5c). This shows that a lower dose 
of ketamine (5 mg/kg) is sufficient to induce antidepressant effects in female mice, which requires 
CP- AMPARs, like male animals.

Ketamine treatment significantly reduces calcineurin activity in the 
hippocampus
Ketamine injection selectively increased synaptic GluA1 expression and its phosphorylation in the 
male and female hippocampus (Figure  3). We also revealed that CP- AMPARs were required for 
ketamine- induced antidepressant actions in male and female mice (Figures 4 and 5). Given our in 
vitro experiments showed that a ketamine- induced decrease in calcineurin activity played crucial roles 
in GluA1- containing AMPAR surface expression (Figure 1c–d), we virally expressed the FRET- based 
calcineurin activity sensor in the hippocampus to determine whether ketamine reduced calcineurin 
activity. To express the calcineurin activity sensor, Sindbis virus was stereotaxically injected into the 
hippocampal CA1 area of 3- month- old male and female CD- 1 mice. Ketamine was intraperitoneally 
injected to animals 36 hr after the infection to ensure viral calcineurin activity sensor expression, and 
saline was administered as the control (CTRL). CFP, YFP, and FRET images were acquired in the soma 
of CA1 pyramidal neurons, and the emission ratio was calculated as shown in Figure 1d. We found 
that calcineurin activity in the male hippocampus was significantly decreased one- hour after 10 mg/
kg ketamine treatment compared to the saline- treated hippocampus (CTRL) (CTRL, 1.000±0.382 and 

Figure 6. Ketamine treatment significantly reduces calcineurin activity in the hippocampus. Representative images of a CFP channel, a FRET channel, 
and a pseudocolored emission ratio (Y/C) in the (a) male and (b) female hippocampus in each condition [blue (L), low emission ratio; red (H), high 
emission ratio]. Scale bar is 10 µm. A summary graph showing average of emission ratio (FRET/CFP) in each condition n=number of cells [number of 
animals], Male; saline = 74 (Ali et al., 2020) and ketamine = 55 (Akillioglu et al., 2012), Female; saline = 61 (Ali et al., 2020) and ketamine = 130 
(Akillioglu and Karadepe, 2021), *p<0.05 and **p<0.01, unpaired two- tailed student t- test. A scale bar indicates 25 μm. Mean ± SD.

The online version of this article includes the following source data for figure 6:

Source data 1. A source data containing excel tables with the numerical data used to generate the Figure 6a and b.
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ketamine, 0.846±0.313, p=0.0164) (Figure 6a). We also injected 5 mg/kg ketamine to female mice 
and measured calcineurin activity in hippocampal CA1 neurons. Like the male hippocampus, 1- hr 
after 5 mg/kg ketamine treatment significantly reduced calcineurin activity in the female hippocampus 
(CTRL, 1.000±0.419 and ketamine, 0.812±0.338, p=0.0011) (Figure 6b). Therefore, ketamine treat-
ment significantly reduces calcineurin activity in the hippocampus, which likely leads to an increase 
in GluA1 phosphorylation and the expression of CP- AMPARs. These glutamatergic changes in the 
hippocampus contribute to ketamine- induced antidepressant actions in animals.

Discussion
Although an elevation of glutamatergic activity and neuronal Ca2+- dependent signaling in the brain is 
thought to induce ketamine’s antidepressant effects (Miller et al., 2016; Aleksandrova et al., 2020; 
Kavalali and Monteggia, 2020; Kawatake- Kuno et al., 2021), it is unclear how ketamine enhances 
these activities due to its nature of NMDAR antagonism. It has been suggested that ketamine’s anti-
depressant effects are initiated by directly targeting NMDARs on excitatory neurons through a cell 
intrinsic mechanism (Miller et  al., 2016). Ketamine can disrupt NMDAR basal activation on excit-
atory neurons. When synaptic excitation is reduced, a mechanism of homeostatic synaptic plasticity 
is activated, which causes an increase in excitatory synaptic responses in these neurons as a form 
of compensation (Miller et al., 2016). We and others have previously found that neuronal activity 
deprivation- induced homeostatic synaptic up- scaling can elevate glutamatergic synaptic activity and 
Ca2+- dependent signaling via the expression of CP- AMPARs (Thiagarajan et al., 2005; Kim et al., 
2014; Sun et  al., 2022). CP- AMPARs could thus be an ideal candidate to counteract ketamine- 
induced NMDAR inhibition in neural plasticity and neuronal Ca2+ signaling. In fact, studies in preclin-
ical animal models have further demonstrated the necessity of AMPARs for the effects of ketamine, 
however their precise function is yet unknown (Miller et al., 2016). Moreover, multiple studies have 
shown that ketamine produces antidepressant effects within one hour after administration in humans 
(Berman et al., 2000; Zarate et al., 2006; Liebrenz et al., 2009) and rodents (Maeng et al., 2008; 
Zanos et al., 2016; Fukumoto et al., 2017). Therefore, the one- hour timeline is sufficient to show 
the antidepressant outcome. Additionally, a large volume of electrophysiological studies has demon-
strated that ketamine affects synaptic activity within one hour (Nosyreva et al., 2013; Zanos et al., 
2016; Zhang et al., 2016; Widman and McMahon, 2018; Gerhard et al., 2020). Here, our new find-
ings demonstrate how ketamine rapidly (less than an hour) induces CP- AMPAR expression to adjust 
synaptic activity in the control of antidepressant behaviors.

Although a large group of AMPAR auxiliary subunits can provide heterogeneity of AMPAR traf-
ficking (Greger et al., 2017), activity- dependent receptor trafficking has long been known to be regu-
lated by the phosphorylation of GluA1 mainly in a two- step process (Diering and Huganir, 2018; Pick 
and Ziff, 2018). First, GluA1 S845 phosphorylation is mediated by cAMP- dependent protein kinase A 
(PKA) or cGMP- dependent protein kinase II (cGKII) (Roche et al., 1996; Derkach et al., 2007; Serulle 
et  al., 2007). Importantly, GluA1 S845 phosphorylation promotes GluA1 surface expression and 
mediates LTP (Banke et al., 2000; Ehlers, 2000; Lee et al., 2000; Esteban et al., 2003; Lee et al., 
2003; Oh et al., 2006; Man et al., 2007; Diering et al., 2014; Kim et al., 2014; Kim et al., 2015b; 
Diering and Huganir, 2018). In contrast, calcineurin- mediated dephosphorylation of GluA1 S845 is 
involved in receptor internalization (Banke et  al., 2000; Ehlers, 2000; Lee et  al., 2000; Esteban 
et al., 2003; Lee et al., 2003; Oh et al., 2006; Man et al., 2007; Diering et al., 2014; Kim et al., 
2014; Kim et al., 2015b; Diering and Huganir, 2018). Second, when GluA1 is additionally phosphor-
ylated at S831 by Ca2+/calmodulin- dependent protein kinase II (CaMKII) or protein kinase C (PKC), 
and GluA1- containing AMPARs are targeted to the PSD, contributing to the enhanced synaptic trans-
mission following LTP induction (Barria et al., 1997; Derkach et al., 1999; Banke et al., 2000; Lee 
et al., 2000; Kristensen et al., 2011; Pick and Ziff, 2018). Therefore, cooperative phosphorylation 
on GluA1 plays important roles in AMPAR trafficking and function in excitatory synapses (Figure 7a). 
Our new data suggest that ketamine- induced NMDAR antagonism significantly decreases neuronal 
Ca2+ activity and subsequently calcineurin activity, leading to an increase in GluA1- containing, GluA2- 
lacking CP- AMPAR expression in the hippocampus via the elevation of GluA1 phosphorylation within 
one hour after ketamine treatment. Previous studies also demonstrate data consistent with our find-
ings that GluA1 phosphorylation is crucial for ketamine- induced antidepressant effects in animals 
(Zhang et al., 2016; Zhang et al., 2017; Asim et al., 2022). These changes in glutamatergic synapses 
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enhances glutamate receptor plasticity in hippocampal neurons, which contributes to antidepres-
sant effects in animals (Figure 7b). Taken together, we discover the molecular mechanisms of the 
ketamine- induced CP- AMPAR expression, which provides a better insight into the mechanisms that 
contributes to changes in neural plasticity and behaviors following ketamine treatment.

Although we and others show that GluA1 levels are selectively increased in the hippocampus 
within one hour after ketamine treatment in mice (Li et al., 2010; Nosyreva et al., 2013; Koike and 
Chaki, 2014; Yang et al., 2016; Zanos et al., 2016; Georgiou et al., 2022), other groups have also 
demonstrated an increase in both GluA1 and GluA2 levels following ketamine treatment (Nosyreva 
et al., 2013; Zanos et al., 2016). Interestingly, GluA1 and GluA2 levels were measured longer than 
1 hr after ketamine treatment in these studies. It has been suggested that the insertion of CP- AM-
PARs in hippocampal synapses is only transient (less than one hour) following LTP induction (Park 
et al., 2018). Then, they are replaced by Ca2+- Impermeable, GluA2- containing AMPARs (CI- AMPARs) 
because CP- AMPARs likely induce neurotoxicity via sustained synaptic Ca2+ entry (Noh et al., 2005; 
Dias et al., 2013; Park et al., 2018). The discrepancy between our findings and those of others may 
therefore be due to the differences within ketamine treatment incubation time. In addition, other 
studies show no change in GluA1 and GluA2 levels after ketamine treatment (Yao et al., 2018; Wojtas 
et  al., 2022). Notably, these studies examine ketamine effects in the frontal cortex or the meso-
limbic circuit. Therefore, it is possible that ketamine may differentially affect glutamatergic synapses 
in different brain regions.

One significant discovery of our study is that, in contrast to male animals, female mice express 
CP- AMPARs after receiving a lower dose of ketamine, which promotes the antidepressant effects, an 
indication of enhanced ketamine antidepressant responses in female animals. Consistently, several 
studies using both male and female animals show an increased sensitivity to ketamine in females 

Figure 7. A schematic model of ketamine’s antidepressant effects. (a) Under the basal conditions, stimulation of excitatory synapses results in Ca2+ 
influx through glutamatergic NMDA receptors (NMDARs), which initiates intracellular pathways for neural plasticity. NMDAR- mediated Ca2+ can activate 
calcineurin (CaN), a Ca2+- dependent phosphatase that dephosphorylates the AMPA receptor (AMPAR) subunit GluA1, leading to AMPAR endocytosis. 
Several kinases, including PKA, cGKII, PKC, and CaMKII, on the other hand, can phosphorylate GluA1 to promote AMPAR surface expression. As a 
result, AMPAR trafficking and synaptic activity are controlled by the balance of kinases and phosphatases. (b) Because ketamine is a noncompetitive 
NMDAR antagonist, a therapeutic dose is enough to block NMDAR- mediated Ca2+ influx in excitatory synapses. This can lower CaN activation and 
promote GluA1 phosphorylation, resulting in increased synaptic expression of GluA2- lacking, GluA1- containing Ca2+- permeable AMPARs (CP- AMPARs). 
When ketamine is administered, CP- AMPAR- mediated Ca2+ influx may replace NMDA- dependent Ca2+ signaling. This increases neural plasticity, which 
leads to antidepressant benefits from ketamine.
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(Carrier and Kabbaj, 2013; Franceschelli et al., 2015; Zanos et al., 2016; Dossat et al., 2018). One 
possible explanation of enhanced ketamine antidepressant responses in female rodents is different 
pharmacokinetics of ketamine in plasma and brain of the animals (Saland and Kabbaj, 2018). When 
compared to male rats, in female animals, higher concentrations of ketamine and norketamine, a 
ketamine’s metabolite, are found in the medial prefrontal cortex and hippocampus over the 3 hr time 
course following treatment (Saland and Kabbaj, 2018). The study further demonstrates that longer 
half- lives and slower clearance rates in female rats contribute to greater effects of ketamine and its 
metabolites after treatment (Saland and Kabbaj, 2018). In addition, sex differences in the antide-
pressant activity of ketamine have shown to be mediated by sex hormones (Carrier and Kabbaj, 
2013). Indeed, previous studies have been able to demonstrate a crucial role for ovarian hormones in 
the increased female behavioral sensitivity to low- dose ketamine (Carrier and Kabbaj, 2013; Saland 
et al., 2016). However, proestrus and diestrus female rats show no significant different pharmaco-
kinetic profiles of ketamine, suggesting that sexual hormones have a stronger effect on ketamine 
downstream signaling pathways than the pharmacokinetic systems when it comes to causing sex- 
dependent behavioral sensitivity to ketamine (Saland and Kabbaj, 2018). Interestingly, ketamine and 
its two active metabolites, (2 R,6R)- hydroxynorketamine (HNK) and (2 S,6S)- HNK, can directly bind to 
estrogen receptor alpha (ERα) to increase GluA1 and GluA2 levels, an indication of AMPAR activation, 
which plays a key role in ketamine’s antidepressant effects (Ho et al., 2018). Moreover, estradiol, 
the most potent and prevalent estrogen, is known to upregulate AMPAR functions by an increase in 
surface GluA2 levels (Wei et al., 2014; Avila et al., 2017). This is consistent with our findings in which 
both GluA1 and GluA2 expression is significantly increased in the female hippocampus when 10 mg/
kg ketamine is injected (Figure 3b). Given that IEM- 1460 treatment reverses anxiolytic behavior in 
female mice treated with 10 mg/kg ketamine (Figure 4b), this dose of ketamine induces the expres-
sion of both CP- AMPARs and CI- AMPARs in females. Additionally, these receptors likely contribute to 
the sex difference in ketamine- induced locomotor alteration between males and females, which is not 
surprising because multiple studies have already discussed the sex differences in the hyperlocomotion 
caused by ketamine in rodents (Thelen et al., 2016; McDougall et al., 2019; Crawford et al., 2020). 
Finally, more women than men are diagnosed with depression (Holden, 2005; Kessler et al., 2005; 
Steiner et al., 2005), which has been explained by the sex differences in the brain’s structure and 
function as well as by the presence of sexually dimorphic hormones (Kessler et al., 2003; Cosgrove 
et al., 2008). However, the potential mechanisms underlying sex differences in response to ketamine 
have been particularly understudied at this time. Therefore, further discussion of the sex differences 
in the antidepressant activity of ketamine is needed.

A common etiological element in the production of major depression in humans is exposure to 
significant and frequently chronic psychological stress or trauma (Hosang et al., 2014; Bonde et al., 
2016). However, the results from studies in a variety of mice strains generally show that ketamine has 
similar antidepressant effects in naive animals rather than having opposing effects in the presence or 
absence of chronic stress (Weston et al., 2021), consistent with our current findings. Nonetheless, 
there are mixed reports on ketamine’s effects in naïve controls (Ma et al., 2013; Franceschelli et al., 
2015; Dong et al., 2017; Browne et al., 2018; Zhang et al., 2018). Moreover, a recent clinical study 
reveals that a single infusion of ketamine shows therapeutic effects in patients with treatment- resistant 
depression, while it induces depressive symptoms in healthy individuals (Nugent et al., 2019). This 
indicates the importance of stressed states in determining the brain response to ketamine. Therefore, 
valid animal models of ketamine- induced antidepressant treatment will benefit by exhibiting stress- 
dependent behavioral responses.

In- depth investigations into the precise mechanisms underlying ketamine’s effects have signifi-
cantly advanced our understanding of depression and sparked the development of new ideas in 
molecular and cellular neuropharmacology. However, many basic and clinical questions regarding 
ketamine’s antidepressant effects remain unanswered (Kohtala, 2021). The main mechanism by which 
ketamine produce its therapeutic benefits on mood recovery is the enhancement of neural plasticity 
in the hippocampus (Miller et al., 2016; Aleksandrova et al., 2020; Kavalali and Monteggia, 2020; 
Grieco et al., 2022). However, ketamine is a noncompetitive NMDAR antagonist that inhibits excit-
atory synaptic transmission (Anis et al., 1983). Research suggests multiple potential mechanisms to 
explain these paradoxical effects. In addition to the mechanism we have presented here, ketamine 
acts via direct inhibition of NMDARs localized on inhibitory interneurons, leading to disinhibition of 
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excitatory neurons and a resultant rapid increase in glutamatergic synaptic activity to activate Ca2+ 
signaling pathway in the prefrontal cortex (Ali et al., 2020; Deyama and Duman, 2020; Gerhard 
et  al., 2020). This stimulates the brain- derived neurotrophic factor (BDNF) signaling pathway, 
which subsequently increases the translation and synthesis of synaptic proteins to enhance AMPAR- 
mediated synaptic plasticity (Deyama and Duman, 2020). However, it is not completely understood 
how ketamine selectively inhibits NMDARs on inhibitory cells, given that the receptors are expressed 
in other cell types, including excitatory neurons. Another potential explanation is a NMDAR inhibition- 
independent mechanism that is mediated by the ketamine metabolites lacking NMDAR inhibition 
properties (Carrier and Kabbaj, 2013; Franceschelli et al., 2015; Zanos et al., 2016). In fact, the 
results of many human treatment trials indicate that other NMDAR antagonists lack the antidepres-
sant properties of ketamine (Newport et al., 2015), supports this hypothesis. However, the United 
States Food and Drug Administration (FDA) recently approved one NMDAR antagonist for MDD. The 
current study offers a new neurobiological basis for ketamine’s actions that depend on the NMDAR 
inhibition- dependent elevation of GluA1- containing AMPAR trafficking, which is likely independent 
from the previous described mechanisms including the BDNF- induced protein synthesis- dependent 
(Deyama and Duman, 2020) or the NMDAR inhibition- independent pathway (Carrier and Kabbaj, 
2013; Franceschelli et al., 2015; Zanos et al., 2016). Nonetheless, there are still many important 
questions surrounding the molecular mechanisms of ketamine’s actions. Therefore, future research will 
be needed to increase our comprehension of the pharmacological and neurobiological mechanisms of 
ketamine in the treatment of psychiatric diseases by addressing these questions.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain background 
(musculus males and females) CD1(ICR)

Charles River 
Laboratories Stock No: 022

Transfected construct (The 
Escherichia coli bacteriophage 
P1) pENN.AAV.CamKII 0.4.Cre.SV40 Addgene

Addgene plasmid 
# 105558- AAV1; 
RRID:Addgene_105558

Transfected construct (R. 
norvegicus (rat), G. gallus 
(chicken); A. victoria (jellyfish)) pGP- AAV- CAG- FLEX- jGCaMP7s- WPRE Addgene

Addgene plasmid 
# 104495- AAV1; 
RRID:Addgene_104495

Transfected construct (H. sapiens 
(human), Synthetic) pSinRep5- pcDNA3- CaNAR This paper Mehta and Zhang, 2014

Sindbis construct to infect 
and express calcineurin 
activity biosensor

Antibody
Anti- GluR1- NT (NT) antibody, clone 
RH95 (Mouse monoclonal) Millipore Cat. # MAB2263 WB (1:2000)

Antibody
Anti- GluA2 antibody [EPR18115] 
(Rabbit monoclonal) Abcam Cat. # ab206293 WB (1:2000)

Antibody
Anti- phospho- GluR1 (Ser831) antibody, 
clone N453 (Rabbit polyclonal) Millipore Cat. # 04–823 WB (1:1000)

Antibody
Anti- GluR1 Antibody, phosphoSer 845 
(Rabbit polyclonal) Millipore Cat. # AB5849 WB (1:1000)

Antibody
Anti- Actin antibody [ACTN05 (C4)] 
(Mouse monoclonal) Abcam Cat. # ab3280 WB (1:2000)

Commercial kit Sindbis Expression System Invitrogen Cat. #: K750- 01

Commercial kit Enhanced Chemiluminescence (ECL)
Thermo Fisher 
Scientific Cat. #: PI34580

Chemical compound, drug PDS Kit, Papain Vial
Worthington 
Biochemical Corp. Cat. #: LK003176 ≥100 units per vial

Chemical compound, media
Neurobasal Medium without phenol 
red

Thermo Fisher 
Scientific Cat. #: 12348017

https://doi.org/10.7554/eLife.86022
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Chemical compound, 
supplement B27

Thermo Fisher 
Scientific Cat. #: 17504044

Chemical compound, drug Glutamax
Thermo Fisher 
Scientific Cat. #: 35050061

Chemical compound, antibiotics Penicillin/Streptomycin
Thermo Fisher 
Scientific Cat. #: 15070063

Chemical compound, drug Ketamine hydrochloride VetOne Cat. #: 510189

Chemical compound, drug Urethane Sigma Cat. #: U2500 1.2 g/kg

Chemical compound, drug FK506 Tocris Bioscience Cat. #: 3631 5 μM

Chemical compound, drug Tetrodotoxin (TTX) Abcam Cat. #: ab120055 2 μM

Chemical compound, drug
4- methoxy- 7- nitroindolinyl (MNI)- caged 
L- glutamate Tocris Bioscience Cat. #: 1490 1 mM

Chemical compound, drug
1- Naphthyl acetyl spermine 
trihydrochloride (NASPM) Tocris Bioscience Cat. #: 2766 20 μM

Chemical compound, drug IEM- 1460 Tocris Bioscience Cat. #: 1636 10 mg/kg

Chemical compound, biotin Sulfo- NHS- SS- biotin
Thermo Fisher 
Scientific Cat. #: PI21331

Chemical compound, beads Streptavidin- coated beads
Thermo Fisher 
Scientific Cat. #: PI53150

Chemical compound, drug Strychnine hydrochloride Tocris Bioscience Cat. #: 2785 1 μM

Chemical compound, drug (-)- Bicuculline methochloride Tocris Bioscience Cat. #: 0131 20 μM

Software ANY- maze tracking program Stoelting Co.
https://www.any-maze. 
com

Software Prism 9 GraphPad
https://www.graphpad. 
com/features

Software CellSens Olympus

https://www.olympus- 
lifescience.com/en/ 
software/cellsens/

 Continued

Animals
CD- 1 mice were obtained from Charles River (022) and bred in the animal facility at Colorado State 
University (CSU). Animals were housed under 12:12 hr light/dark cycle. Three- month- old male and 
female CD- 1 mice were used in the current study. CSU’s Institutional Animal Care and Use Committee 
(IACUC) reviewed and approved the animal care and protocol (3408).

Primary hippocampal neuronal culture
Postnatal day 0 (P0) male and female CD- 1 pups were used to produce mouse hippocampal neuron 
cultures as shown previously (Sztukowski et al., 2018; Sathler et al., 2021; Sathler et al., 2022). 
Hippocampi were isolated from P0 CD- 1 mouse brain tissues and digested with 10  U/mL papain 
(Worthington Biochemical Corp., LK003176). Mouse hippocampal neurons were plated on following 
poly lysine- coated dishes for each experiment - glass bottom dishes (500,000 cells) for Ca2+ imaging 
and FRET analysis, and 6 cm dishes (2,000,000 cells) for biochemical experiments. Neurons were grown 
in Neurobasal Medium without phenol red (Thermo Fisher Scientific, 12348017) with B27 supplement 
(Thermo Fisher Scientific, 17504044), 0.5 mM Glutamax (Thermo Fisher Scientific, 35050061), and 1% 
penicillin/streptomycin (Thermo Fisher Scientific, 15070063). The previous study evaluates matura-
tion, aging, and death of mouse cortical cultured neurons for 60 DIV, which demonstrates that synap-
togenesis is prominent during the first 15 days and then synaptic markers remain stable through 60 
DIV (Lesuisse and Martin, 2002). In particular, the levels of glutamate receptors, including AMPARs 
and NMDARs, increase to a maximum by 10–15 DIV and then remain unchanged through 60 DIV. This 
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indicates that 14 DIV neurons that we used here are mature cells, and their maturity is likely compa-
rable to that of older neurons. In fact, 14 DIV neurons have been used in many groups. Additionally, 
our cultures are shown to contain excitatory and inhibitory cells (Sun et al., 2019; Roberts et al., 
2021) as well as glia (Kaech and Banker, 2006).

Reagents
Ketamine hydrochloride (VetOne, 510189) was used in both in vitro and in vivo experiments. For 
neuronal cultures, we used 1, 10, or 20 μM ketamine. For mice, 5 mg/kg or 10 mg/kg ketamine was 
intraperitoneally injected to 3- month- old male and female CD- 1 mice. We have an approval from 
IACUC to use ketamine and have the United States Drug Enforcement Administration license to use 
ketamine for research purpose (DEA# RK0573863). A total of 1.2 g/kg urethane (Sigma, U2500) was 
used for anesthetizing mice for stereotaxic surgery. Five μM FK506 (Tocris Bioscience, 3631), a condi-
tion that significantly reduces neuronal calcineurin activity to increase GluA1 phosphorylation, which 
induces the expression of CP- AMPARs to elevate AMPAR- mediated synaptic activity (Kim et al., 2014), 
was used to inhibit calcineurin activity in cultured hippocampal excitatory neurons. Two μM tetrodo-
toxin (TTX) (Abcam, ab120055) was used to block spontaneous Ca2+ activity in cultured hippocampal 
excitatory neurons. One mM 4- methoxy- 7- nitroindolinyl (MNI)- caged L- glutamate (Tocris Bioscience, 
1490) was added to the culture media for glutamate uncaging. A total of 20 μM 1- Naphthyl acetyl 
spermine trihydrochloride (NASPM, Tocris Bioscience, 2766), a condition that significantly reduces 
CP- AMPAR- mediated synaptic and Ca2+ activity (Kim et al., 2014; Kim et al., 2015b), was used to 
block CP- AMPARs in cultured hippocampal excitatory neurons. 10 mg/kg IEM- 1460 (Tocris Biosci-
ence, 1636) was intraperitoneally injected to 3- month- old male and female CD- 1 mice to inhibit in 
vivo CP- AMPAR activity because it is blood- brain barrier (BBB)- permeable (Wiltgen et  al., 2010; 
Szczurowska and Mareš, 2015; Adotevi et al., 2020).

Surface biotinylation
Surface biotinylation was performed according to the previous studies (Kim et al., 2014; Kim et al., 
2015b; Kim et al., 2015a; Sztukowski et al., 2018; Sun et al., 2019; Roberts et al., 2021). Cells 
were washed with ice- cold PBS containing 1 mM CaCl2 and 0.5 mM MgCl2 and incubated with 1 mg/
ml Sulfo- NHS- SS- biotin (Thermo Fisher Scientific, PI21331) for 15 min on ice. Following biotin incu-
bation, neurons were washed with 20 mM glycine to remove the excess of biotin, and cells were 
lysed in 300 μl RIPA buffer for one hour. 10% of total protein was separated as input samples, and 
protein lysates were incubated overnight with streptavidin- coated beads (Thermo Fisher Scientific, 
PI53150) at 4  °C under constant rocking. The beads containing surface biotinylated proteins were 
separated by centrifugation. Biotinylated proteins were eluted from streptavidin beads with SDS 
loading buffer. Surface protein fractions and their corresponding total protein samples were analyzed 
by immunoblots.

Chemical LTP (cLTP)
cLTP protocol was followed as previously described (Diering et  al., 2014; Roberts et  al., 2021; 
Sathler et al., 2021). Fourteen DIV hippocampal cultured neurons were washed three times in Mg2+ 
free buffer 150 mM NaCl, 2 mM CaCl2, 5 mM KCl, 10 mM HEPES, 30 mM glucose, 1 μM strychnine 
hydrochloride (Tocris Bioscience, 2785), and 20 μM (-)- Bicuculline methochloride (Tocris Bioscience, 
0131) and incubated in glycine buffer (Mg2+- free buffer with 0.2 mM glycine) at 37 °C for 5 min. Then, 
Mg2+ buffer (Mg2+- free buffer with 2 mM MgCl2) was added to block NMDARs and cells were incu-
bated at 37 °C for 30 min before being processed for immunoblots. To inhibit CP- AMPARs, we added 
20 μM NASPM in glycine and Mg2+ buffer.

Immunoblots
Immunoblots were performed as described previously (Kim et al., 2005; Kim et al., 2014; Kim et al., 
2015c; Kim et al., 2015b; Kim et al., 2015a; Farooq et al., 2017; Kim et al., 2016; Kim et al., 2018; 
Shou et al., 2019; Sztukowski et al., 2018; Sun et al., 2019; Roberts et al., 2021; Sathler et al., 
2021; Tran et al., 2021; Sathler et al., 2022). The protein concentration in total cell lysates was deter-
mined by a BCA protein assay kit (Thermo Fisher Scientific, PI23227). Equal amounts of protein samples 
were loaded on 10% glycine- SDS- PAGE gel. The gels were transferred to nitrocellulose membranes. 
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The membranes were blocked (5% powdered milk) for 1 hr at room temperature, followed by over-
night incubation with the primary antibodies at 4 C. The primary antibodies consisted of anti- GluA1 
(Millipore, 1:2000, MAB2263), anti- GluA2 (Abcam, 1:2000, ab206293), anti- phosphorylated GluA1- 
S831 (Millipore, 1:1000, 04823MI), anti- phosphorylated GluA1- S845 (Millipore, 1:1000, AB5849MI), 
and anti- actin (Abcam, 1:2000, ab3280) antibodies. Membranes were subsequently incubated by 
secondary antibodies for 1 hr at room temperature and developed with Enhanced Chemilumines-
cence (ECL) (Thermo Fisher Scientific, PI34580). Protein bands were quantified using ImageJ (https:// 
imagej.nih.gov/ij/).

GCaMP Ca2+ imaging
We measured spontaneous Ca2+ activity in cultured hippocampal excitatory neurons because It has 
been shown that networks of neurons in culture can produce spontaneous synchronized activity 
(Cohen et al., 2008). In fact, network activity emerges at 3–7 DIV independent of either ongoing 
excitatory or inhibitory synaptic activity and matures over the following several weeks in cultures 
(Cohen et  al., 2008). Therefore, the somatic Ca2+ signals we observed are from the spontaneous 
network activity in cultured cells. To do this, we infected 4 DIV neurons with adeno- associated virus 
(AAV) expressing CamK2a- Cre (Addgene #105558- AAV1) - pENN.AAV.CamKII 0.4.Cre.SV40 was a 
gift from James M. Wilson (Addgene plasmid #105558; http://n2t.net/addgene: 105558; RRID:Ad-
dgene_105558) - and Cre- dependent GCaMP7s (Addgene# 104495- AAV1) - pGP- AAV- CAG- FLEX- 
jGCaMP7s- WPRE was a gift from Douglas Kim & GENIE Project (Addgene plasmid #104495; http:// 
n2t.net/addgene: 104495; RRID:Addgene_104495) - (Dana et al., 2019) because when AAVs of the 
same serotype are co- infected, many neurons are transduced by both viruses (Kim et al., 2013). We 
then measured Ca2+ activity in the soma of 14 DIV cultured hippocampal excitatory neurons with a 
modification of the previously described method (Kim et al., 2014; Kim et al., 2015b; Kim et al., 
2015a; Sztukowski et al., 2018; Sun et al., 2019; Roberts et al., 2021). Glass- bottom dishes were 
mounted on a temperature- controlled stage on an Olympus IX73 microscope and maintained at 37 C 
and 5% CO2 using a Tokai- Hit heating stage and digital temperature and humidity controller. For 
GCaMP7s, the images were captured right after 1, 10, or 20 μM ketamine was added to the media 
with a 10ms exposure time and a total of 100 images were obtained with a one- second interval. 
Fmin was determined as the minimum fluorescence value during the imaging. Total Ca2+ activity was 
obtained by 100 values of F/Fmin = (Ft – Fmin) / Fmin in each image, and values of F/Fmin <0.1 were 
rejected due to potential photobleaching. The average total Ca2+ activity in the control group was 
used to normalize total Ca2+ activity in each cell. The control group’s average total Ca2+ activity was 
compared to the experimental groups' average as described previously (Kim et al., 2014; Kim et al., 
2015b; Kim et al., 2015a; Sztukowski et al., 2018; Sun et al., 2019; Roberts et al., 2021).

GCaMP Ca2+ imaging with glutamate uncaging
We carried out Ca2+ imaging with glutamate uncaging as shown previously (Wild et  al., 2019) in 
cultured hippocampal neurons one hour after 1  μM ketamine treatment. In addition, we added 
20  μM NASPM right before Ca2+ imaging to inhibit CP- AMPARs. For glutamate uncaging, 1  mM 
4- methoxy- 7- nitroindolinyl (MNI)- caged L- glutamate was added to the culture media, and epi- 
illumination photolysis (390 nm, 0.12 mW/mm2, 1ms) was used. Two2 μM TTX was added to prevent 
action potential- dependent network activity. A baseline average of 20 frames (50ms exposure) (F0) 
were captured prior to glutamate uncaging, and 50 more frames (50ms exposure) were obtained after 
single photostimulation. The fractional change in fluorescence intensity relative to baseline (F/F0) was 
calculated. The average peak amplitude in the control group was used to normalize the peak ampli-
tude in each cell. The control group’s average peak amplitude was compared to the experimental 
groups' average.

Sindbis virus infection in cultured neurons
Sindbis virus expressing the calcineurin activity sensor was produced as described previously (Osten 
et  al., 2000). Calcineurin activity sensor cDNA (CaNAR) (a gift from Jin Zhang at Johns Hopkins 
University) was subcloned into pSinRep5 vector. BHK cells were electroporated with RNA of pSinRep5–
CaNAR according to Sindbis Expression System manual (Invitrogen, K750- 01). The pseudovirion- 
containing medium was collected 24  hr after electroporation, and the titer for the construct was 
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tested empirically in neuronal cultures. To express the calcineurin activity sensor in cultured neurons, 
14 DIV neurons were infected with a titer resulting in infection of 20% of neurons (typically 1 μl of 
α-MEM virus stock diluted in 600 μl conditioned neurobasal- B27 medium per glass- bottom dish). It 
has been shown previously that no apparent adverse effects on morphology of the infected neurons 
was observed for up to 3 days post- infection (Osten et  al., 2000). Cells were treated with 1 μM 
ketamine and/or 20 μM NASPM or 5 μM FK506 for one hour 24 hr after infection and fixed to analyze 
calcineurin activity.

Sindbis virus infection in the mouse hippocampus
We virally expressed the calcineurin activity sensor using bilateral stereotaxic injection in the mouse 
hippocampus. Animals (3- month- old male and female CD- 1 mice) were anaesthetized with 1.2 g/kg 
urethane. Anesthetic depth was confirmed with pedal response (foot retraction, response to non- 
damaging pressure of footpads using tweezers), ear twitch responses, and respiratory rates. Animal 
temperature was maintained with heating pads or warming gel packs. Once it was confirmed that 
the mice were properly anesthetized, the surgical field of the head of mice was aseptically prepared 
(shaved and prepped with betadine and alcohol). Animals were then placed in a stereotaxic frame 
(Stoelting). A small incision of the scalp was made with a sterile #10 surgical blade. With the aid of 
stereotaxic mounting equipment, a small hole was drilled in the bone using a high- speed drill and 
a dental bone drill bit, which has been sterilized. When the dura was exposed, a small pin hole was 
made, and a sterile syringe to inject Sindbis virus expressing the calcineurin activity sensor (1 μl) was 
lowered to the hippocampal CA1 area (Bregma coordinates: AP: − 1.95 mm, ML:±1.12 mm, DV: − 
1.20 mm). During surgery, anesthetic depth was monitored every 5 min using pedal responses and 
respiration rates. After surgery, animals were allowed to recover from the anesthesia before being 
returned to their cages, and their health was closely monitored. Mice received analgesic doses of 
buprenorphine every 12 hr for 1 day after surgery. Buprenorphine was delivered by subcutaneous 
injection (0.1 mg/kg). Mice were monitored for any of the following signs of prolonged discomfort 
and pain: aggressiveness, hunched posture, failure to groom, awkward gait, vocalization, greater or 
less tissue coloration, eye discoloration, abnormal activity (usually less), hesitancy to move (especially 
in response to startle), water consumption, or food intake. Because neurons in the brains are prefer-
entially infected with Sindbis virus at 36 hr after infection (Furuta et al., 2001), 10 mg/kg ketamine 
and/or 10 mg/kg IEM- 1460 was intraperitoneally injected to animals 36 hr after the infection to ensure 
viral calcineurin activity sensor expression, and saline was administered to controls. Brain tissues were 
isolated one hour after treatment, fixed, and sectioned at 40 μm by using a vibratome. Hippocampal 
sections in each mouse were used imaged for hippocampal calcineurin activity.

FRET analysis
Calcineurin activity was determined by the FRET emission ratio as described previously (Kim et al., 
2014). CFP, YFP, and FRET images were acquired in the soma, and the following formula was used 
to calculate the emission ratio: (FRET channel emission intensity – FRET channel emission intensity of 
background) / (CFP channel emission intensity – CFP channel emission intensity of background) as 
described previously (Kim et al., 2014; Kim et al., 2015a; Sun et al., 2019). The higher emission ratio 
indicates the higher calcineurin activity.

Behavioral tests
Both the open field test and tail suspension test have long been used to determine animals’ anxiety- 
and depression- like behaviors, respectively, in rodents (Seibenhener and Wooten, 2015; Ueno et al., 
2022). Specifically, the open field test has been widely used to measure the ketamine effects on 
anxiety- like behavior in rodents (Guarraci et al., 2018; Pitsikas et al., 2019; Shin et al., 2019; Akil-
lioglu and Karadepe, 2021; Yang et al., 2022; Acevedo et al., 2023). We thus measured locomotor 
activity and anxiety- like behavior using the open field test as carried out previously (Shou et  al., 
2019). The test mouse was first placed in the center of the open field chamber (40 W x 40 L x 40 
H cm) for 5 min. Animals were then allowed to explore the chamber for 20 min. A 20x20 cm center 
square was defined as the inside zone. The tail suspension test has also been used to examine the 
ketamine effects on depression- like behavior in animals (Fukumoto et al., 2017; Yang et al., 2018b; 
Ouyang et al., 2021; Rawat et al., 2022; Viktorov et al., 2022). Studies suggest that the forced 
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swim test and the tail suspension test are based on the same principle: measurement of the dura-
tion of immobility when rodents are exposed to an inescapable situation (Castagné et al., 2011). 
Importantly, it has been suggested that the tail suspension test is more sensitive to antidepressant 
agents than the forced swim test because the animals remain immobile longer in the tail suspension 
test than the forced swim test (Cryan et al., 2005). We thus used the tail suspension test to examine 
depression- like behavior as described previously (Kim et al., 2018). The test mouse was suspended 
by its tails from a rod suspended 20 cm above the tabletop surface with adhesive tape placed 1 cm 
from the tip of the tail. Animals were immobile when they exhibited no body movement and hung 
passively for >3 seconds. The time during which mice remained immobile was quantified over a period 
of 6 min. Mice that successfully climbed their tails to escape were excluded from the analysis. The 
behavior was recorded by a video camera. Data were analyzed using the ANY- maze tracking program 
to acquire total traveled distance (locomotor activity) and time spent outside and inside (anxiety- like 
behavior) for the open- field test and immobility (depression- like behavior) for the tail suspension test. 
All behavior tests were blindly scored by more than two investigators. Additionally, because ketamine 
produces antidepressant effects within 1 hr after administration in humans (Berman et  al., 2000; 
Zarate et al., 2006; Liebrenz et al., 2009), our study aims to understand the mechanism underlying 
ketamine’s rapid (less than an hour) antidepressant effects. Given that sucrose preference test and the 
novelty suppressed feeding test need multiple days, it would not be suitable to achieve our goals.

Statistical analysis
The Franklin A. Graybill Statistical Laboratory at CSU has been consulted for statistical analysis in 
the current study, including sample size determination, randomization, experiment conception and 
design, data analysis, and interpretation. We used the GraphPad Prism 9 software to determine statis-
tical significance (set at p<0.05). Grouped results of single comparisons were tested for normality 
with the Shapiro- Wilk normality or Kolmogorov- Smirnov test and analyzed using an unpaired two- 
tailed Student’s t- test when data are normally distributed. Differences between multiple groups were 
assessed by N- way analysis of variance (ANOVA) with the Tukey test or nonparametric Kruskal- Wallis 
test with the Dunn’s test. The graphs were presented as mean ±Standard Deviation (SD).
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