Abstract

The transition metal iron plays a crucial role in living cells. However, high levels of iron are potentially toxic through the production of reactive oxygen species (ROS), serving as a deterrent to the commensal fungus Candida albicans for colonization in the iron-rich gastrointestinal (GI) tract. We observe that the mutant lacking an iron-responsive transcription factor Hap43 is hyper-fit for colonization in murine gut. We demonstrate that high iron specifically triggers multiple post-translational modifications (PTMs) and proteasomal degradation of Hap43, a vital process guaranteeing the precision of intestinal ROS detoxification. Reduced levels of Hap43 de-repress the expression of antioxidant genes and therefore alleviate the deleterious ROS derived from iron metabolism. Our data reveal that Hap43 functions as a negative regulator for oxidative stress-adaptation of C. albicans to gut colonization and thereby provide a new insight into understanding the interplay between iron homeostasis and fungal commensalism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Yuanyuan Wang

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yinhe Mao

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoqing Chen

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinhuang Huang

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhongyi Jiang

    Department of General Surgery, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Kaiyan Yang

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lixing Tian

    State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tong Jiang

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yun Zou

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaoyuan Ma

    State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chaoyue Xu

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zili Zhou

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Xianwei Wu

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Lei Pan

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Huaping Liang

    State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
    For correspondence
    13638356728@163.com
    Competing interests
    The authors declare that no competing interests exist.
  16. Lin Zhong

    Department of General Surgery, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    zhonglin1@medmail.com.cn
    Competing interests
    The authors declare that no competing interests exist.
  17. Changbin Chen

    The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
    For correspondence
    cbchen@ips.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7961-3488

Funding

The MOST Key R&D Program of China (2022YFC2303200)

  • Changbin Chen

The National Natural Science Foundation (31600119)

  • Xinhuang Huang

The Natural Science Foundation of Shanghai (20ZR1463800)

  • Xinhuang Huang

The Natural Science Foundation of Shanghai (15ZR1444400)

  • Xinhuang Huang

The MOST Key R&D Program of China (2022YFC2304700)

  • Lin Zhong

The National Natural Science Foundation (32170195)

  • Changbin Chen

The Shanghai Municipal Science and Technology Major Project (2019SHZDZX02)

  • Changbin Chen

The Open Project of the State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (SKLKF201803)

  • Changbin Chen

The Special Program of PLA (19SWAQ18)

  • Huaping Liang

National Postdoctoral Fellowship (No.312780)

  • Yuanyuan Wang

Shanghai Post-doctoral Excellence Program (No.2022647)

  • Yuanyuan Wang

The National Natural Science Foundation (32070146)

  • Xinhuang Huang

The funders had role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Ethics

Animal experimentation: All animal experiments were carried out in strict accordance with the regulations in the Guide for the Care and Use of Laboratory Animals issued by the Ministry of Science and Technology of the People's Republic of China. All efforts were made to minimize suffering. The protocol was approved by IACUC at the Institut Pasteur of Shanghai, Chinese Academy of Sciences (Permit Number: A160291).

Version history

  1. Received: January 10, 2023
  2. Preprint posted: January 30, 2023 (view preprint)
  3. Accepted: May 24, 2023
  4. Accepted Manuscript published: May 25, 2023 (version 1)
  5. Version of Record published: June 8, 2023 (version 2)

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 398
    views
  • 74
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuanyuan Wang
  2. Yinhe Mao
  3. Xiaoqing Chen
  4. Xinhuang Huang
  5. Zhongyi Jiang
  6. Kaiyan Yang
  7. Lixing Tian
  8. Tong Jiang
  9. Yun Zou
  10. Xiaoyuan Ma
  11. Chaoyue Xu
  12. Zili Zhou
  13. Xianwei Wu
  14. Lei Pan
  15. Huaping Liang
  16. Lin Zhong
  17. Changbin Chen
(2023)
Homeostatic control of an iron repressor in a GI tract resident
eLife 12:e86075.
https://doi.org/10.7554/eLife.86075

Share this article

https://doi.org/10.7554/eLife.86075

Further reading

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.