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Abstract Ultrasonic vocalizations (USVs) fulfill an important role in communication and naviga-
tion in many species. Because of their social and affective significance, rodent USVs are increas-
ingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably 
attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. 
If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultra-
sonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-
resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve 
millimeter precision (~3.4–4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, 
approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions 
and demonstrate that males and females vocalize in starkly different relative spatial positions, and 
that the fraction of female vocalizations has likely been overestimated previously due to imprecise 
localization. Further, we find that when two male mice interact with one female, one of the males 
takes a dominant role in the interaction both in terms of the vocalization rate and the location 
relative to the female. HyVL substantially improves the precision with which social communication 
between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated 
with existing setups, and reduces the required number of experiments and animals.

Editor's evaluation
This study introduces a novel and important hybrid strategy for recording ultrasonic vocalizations by 
combining data from several high quality microphones with data from a dense array of less sensitive 
microphones. This method enables recordings to be made from pairs and trios of freely interacting 
mice and accurate localization of their point of origin to convincingly determine the identity of the 
caller for each vocalization. This technology opens the door to new experiments incorporating anal-
ysis of vocal communication into behavioral paradigms.

Introduction
Ultrasonic vocalizations (USVs) fulfill an important role in animal ecology as means of communication 
or navigation in many rodents (Mahrt et al., 2013; Brudzynski, 2021; Zaytseva et al., 2019; Volodin 
et al., 2022; Murrant et al., 2013), bats (Schnitzler et al., 2003), frogs (Feng et al., 2006), cetaceans 
(Mourlam and Orliac, 2017), and even some primates (Bakker and Langermans, 2018; Ramsier 
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et al., 2012). In many of these species, USVs have been shown to be present innately and to have 
significance at multiple stages of life, from neonates (Kikusui et al., 2011) to adults (Mahrt et al., 
2013), often with diverse functions as distress/alarm calls (Kikusui et al., 2011; Litvin et al., 2007), 
courtship signals (Marconi et al., 2020), territorial defense signals (Rieger and Marler, 2018), private 
communication (Ramsier et al., 2012), and echolocation (Schnitzler et al., 2003). USVs have been 
extensively studied in mice, where their communicative significance has been widely demonstrated 
by their influence on conspecific behavior (Hammerschmidt et  al., 2009; Pultorak et  al., 2017; 
Chabout et al., 2015; Musolf et al., 2015; Sugimoto et al., 2011; Tschida et al., 2019; also in line 
with observational studies; Warren et al., 2020; Nicolakis et al., 2020; Rieger et al., 2021; Petric 
and Kalcounis-Rueppell, 2013). USVs can be grouped into different types that are highly context-
dependent (Chabout et al., 2015; Musolf et al., 2015; Nicolakis et al., 2020; Chen et al., 2021; 
de Chaumont et al., 2021; Castellucci et al., 2018; Pultorak et al., 2018; Burke et al., 2018; Zala 
et al., 2017a; Mun et al., 2015; von Merten et al., 2014; Scattoni et al., 2009; Warren et al., 2021; 
Dou et al., 2018; Hoier et al., 2016; Chabout et al., 2012), and USV syntax itself is predictive of USV 
sequence (Hertz et al., 2020). Taken together, the current literature suggests USVs convey affective 
and social information in different behavioral contexts. This is further supported by the modulatory 
effect that testosterone and oxytocin have on USV production (Kikusui et al., 2021b; Kikusui et al., 
2021a; Timonin et al., 2018; Pultorak et al., 2015; Guoynes and Marler, 2021; Tsuji et al., 2021; 
Tsuji et al., 2020). Importantly, the neuronal circuitry underlying USVs has recently been identified and 
is being studied extensively (Tschida et al., 2019; Chen et al., 2021; Michael et al., 2020; Gao et al., 
2019; Tasaka et al., 2018; Fröhlich et al., 2017; Shepard et al., 2016; Arriaga and Jarvis, 2013; 
Fujita et al., 2012; Wang et al., 2008).

Because of their social and affective significance and our growing mechanistic understanding, 
mouse USVs are increasingly being used as a behavioral measure in neurodevelopmental and neuro-
linguistic translational research (de Chaumont et al., 2021; von Merten et al., 2014; Fröhlich et al., 
2017; Yang et al., 2021; Binder et al., 2021; Hepbasli et al., 2021; Agarwalla et al., 2020; Tsai 
et al., 2012; Hodges et al., 2017). Their manipulation and precise measurement not only provide the 
basis for tackling many fundamental questions but also pave the way, via advanced animal models, 
for the discovery of essential, novel drug targets for many debilitating conditions such as autism-
spectrum disorder (Tsai et  al., 2012; Silverman et  al., 2010), Parkinson’s disease (Ciucci et  al., 

eLife digest Most animals – from insects to mammals – use vocal sounds to communicate with 
each other. But not all of these sounds are audible to humans. Frogs, mice and even some primates 
can produce noises that are ultrasonic, meaning their frequency is so high they cannot be detected by 
the human ear. These ‘ultrasonic vocalizations’ are used to relay a variety of signals, including distress, 
courtship and defense.

To understand the role ultrasonic vocalizations play in social interactions, it is important to work out 
which animal is responsible for emitting the sound. Current methods have a high error rate and often 
assign vocalizations to the wrong participant, especially if the animals are in close contact with each 
other. To solve this issue, Sterling et al. developed the hybrid vocalization localizer (HyVL), a system 
which detects ultrasonic sounds using two different types of microphones. The tool is then able to 
accurately locate where an ultrasonic vocalization is emitted from within a precision of millimeters.

Sterling et al. used their new system to study courtship interactions between two to three mice. 
The experiments revealed that female courtship vocalizations were substantially rarer than previously 
reported when two mice were interacting. When three mice were together (one female, two males), 
Sterling et al. found that one of the male mice typically dominated the conversation. This result was 
also reflected by the male mouse locating themselves anogenitally to the female, as males tend to 
vocalize more when in this position.

In neuroscience, researchers often measure ultrasonic vocalizations to monitor social interactions 
between rats and mice. HyVL could provide neuroscientists with a more affordable and easier to use 
platform for conducting these kinds of experiments, which are important for studying behavior and 
how the brain develops.

https://doi.org/10.7554/eLife.86126
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2009), stroke-induced aphasia (Palmateer et al., 2016), epilepsy aphasia syndromes (Erata et al., 
2021), progressive language disorders (Menuet et al., 2011), chronic pain (Palazzo et al., 2008), and 
depression/anxiety disorders (Moskal and Burgdorf, 2018), where ultrasonic vocalizations serve as 
a biomarker for animal well-being and normal development. Consequently, we expect the scientific 
importance of mouse USVs to continue to increase in the coming years, highlighting the necessity to 
advance the methods required for their study. In recent years, substantial advances have been made in 
USV detection (Coffey et al., 2019; Fonseca et al., 2021; Zala et al., 2017b; Van Segbroeck et al., 
2017; Chabout et al., 2017), classification (Coffey et al., 2019; Fonseca et al., 2021; Van Segbroeck 
et al., 2017; Ivanenko et al., 2020), and localization (Oliveira-Stahl et al., 2023; Heckman et al., 
2017; Warren et al., 2018a; Neunuebel et al., 2015).

Localization is of particular importance during social interactions, when most USVs are emitted and 
any meaningful analysis of USV properties rests on a reliable assignment of each USV to its emitter. 
This task is complex for multiple reasons: (i) most USVs are emitted at close range, (ii) social behavior 
often requires free movement of the animals, and (iii) USV production is invisible (Chabout et al., 
2012; Mahrt et al., 2016). With reliable assignment, all subsequent analyses can be conducted with 
substantial confidence concerning each USV’s emitter. Although USVs could in theory be classified 
and assigned based on their shape (Marconi et al., 2020; Liu et al., 2003; Holy and Guo, 2005; 
Barnes et al., 2017; Musolf et al., 2010), this approach will depend strongly on different behavioral 
contexts and strains. Recent advances in acoustic localization (Heckman et al., 2017; Warren et al., 
2018a; Neunuebel et  al., 2015) have improved the localization accuracy to 11–14 mm; however, 
close-up snout–snout interactions – which is when a large fraction of USVs are emitted – require an 
even higher precision.

We have developed an advanced localization system for USVs in which is a high-resolution 'acoustic 
camera' consisting of 64 ultrasound microphones with an array of four high-quality ultrasound micro-
phones. Both systems can individually localize USVs but exhibit rather complementary patterns of 
localization errors. We fuse them into a hybrid system that exploits their respective advantages in 
sensitivity, detection, and localization accuracy. We achieve a median absolute localization error of 
3.4–4.8 mm, translating to an assignment rate of ~91%. Compared to the previous state of the art 
(Oliveira-Stahl et al., 2023; Warren et al., 2018a), the accuracy represents a threefold improvement 
that halves the proportion of previously unassigned USVs. Given the physical dimensions of the mouse 
snout (ø ~10 mm), this likely approaches the physical limit of localizability for USVs. We successfully 
apply it to and analyze dyadic and triadic courtship interactions between male and female mice. The 
comparison of dyadic and triadic interactions is chosen here as courtship interactions in nature are 
naturally competitive and this comparison is therefore both scientifically relevant and can benefit 
from high-reliability assignment of USVs. We demonstrate that the fraction of female vocalizations 
has likely been overestimated in previous analyses due to a lack of precision in sound localization. 
Further, in the triadic recordings we find that in competitive male–male–female courtship, one male 
takes a dominant role, which shows in emitting most USVs and also positioning itself more closely to 
the female abdomen.

Results
We analyzed courtship interactions of mice in dyadic and triadic pairings. The mice interacted on an 
elevated platform inside an anechoic booth (see Figure 1A, for details see ‘Recording setup’). Each 
trial consisted of 8 min of free interaction while movements were tracked with a high-speed camera 
(see Figure 1B), and USVs were recorded with a hybrid acoustic system composed of four high-quality 
microphones (i.e., USM4) as well as a 64-channel microphone array (Cam64, often referred to as an 
acoustic camera; see Figure 1C for raw data samples, green and red dots mark the start and stop 
times of USVs).

Most USVs were emitted in close proximity in dyadic and triadic pairings (see Figure 1D). Reli-
ably assigning most USVs to their emitter therefore requires a highly precise acousto-optical local-
ization system. The presently developed Hybrid Vocalization Localizer (HyVL) system is the first to 
achieve sub-centimeter precision, that is, ~3.4–4.8 mm (see Figure 2 for an overview). This accu-
racy on the acoustic side is achieved by combining the complementary strengths of the USM4 and 
Cam64 data. The Cam64 data is processed using acoustic beamforming (Van Veen and Buckley, 
1988), which delivers highly precise estimates (median absolute errors [MAE] = ~4–5 mm), but is not 

https://doi.org/10.7554/eLife.86126
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sensitive enough for very-high-frequency USVs (see Figure 1—figure supplement 1). The USM4 data 
is analyzed using the previously published SLIM algorithm (Oliveira-Stahl et al., 2023), which delivers 
accurate (MAE = ~11–14 mm) and less frequency-limited estimates. The accuracy of SLIM, the previ-
ously most accurate ultrasonic localization technique (see ‘Discussion’ for a comparison), is generally 
lower than that of HyVL, but it makes essential contributions to the overall accuracy of HyVL through 
the integration of the complementary strength of the two methods/microphone arrays (see Figure 3A 
and L, shape of errors). The methods exhibit a complementary pattern of localization errors, which 
predestines them for high synergy when combined (see below).

For each USV, a choice is made between the USM4/SLIM and Cam64/Beamforming estimates 
based on a comparison of each method’s USV-specific certainty and the relative position of the mice 
to the estimates, using an extended, hybrid Mouse Probability Index (MPI; Neunuebel et al., 2015). 
HyVL is the first system of its kind that exploits a hybrid microphone array to overcome the limitations 
of each subarray. The positions of the mice are obtained via manual and automatic video tracking 
using DeepLabCut (Mathis et al., 2018), each of which achieve millimeter precision for localizing the 
snout.
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Figure 1. Mice emit ultrasonic vocalizations (USVs) in close proximity during courtship behavior. (A) Two or three mice of different sexes were allowed to 
interact freely on an elevated platform. Vocalizations were recorded with four high-quality ultrasonic microphones in a rectangular arrangement around 
the platform and a 64-channel microphone array ('Cam64') mounted above the platform. The spatial location of the pair was recorded visually with a 
high-speed camera. The platform was located in an ultrasonically sound-proof and anechoic box and illuminated uniformly using an array of LEDs. (B) 
Sample image from the camera that shows the high contrast between the mice and the interaction platform. The two-letter abbreviations indicate the 
locations of the four high-quality microphones (F = front, B = back, L = left, R = right). (C) Sample spectrograms from the four ultrasonic microphones 
and the average of all Cam64 microphones for a bout of vocalizations (start/end times marked by green/red dots). The Cam64 microphones are of lower 
quality than the USM4 microphones, evidenced by the rising noise floor for higher frequencies, affecting very-high-frequency USVs. (D) Most USVs in 
the present paradigm were emitted in close proximity to the interaction partners, with the vast majority within 10 cm snout–snout distance (i.e., ~93 and 
72% for dyadic and triadic, respectively).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of noise spectra of the two microphone arrays.

https://doi.org/10.7554/eLife.86126
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Overall, 228 recordings were collected from 14 male and 4 female mice (153 dyadic, 67 triadic, and 
8 with a single mouse). In 90 recordings, USVs were produced and recorded with Cam64 and USM4 
simultaneously (55 dyadic, 28 triadic, and 7 single). The single mouse recordings were also used in a 
previous publication (Oliveira-Stahl et al., 2023) where only the SLIM accuracy was evaluated. A total 
of 112 recordings were recorded in a balanced design (four dyadic and four triadic per male mouse 
paired with all females) and the remaining recordings conducted with good vocalizers to maximize the 
number of USVs for downstream analysis. In all trials combined, 13714 USVs were detected.
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Figure 2. Overview of the combined acoustic and visual tracking pipeline. (Top) Acoustic tracking of animal vocalizations was enabled by a hybrid 
acoustic system, which recorded the sounds in the booth using a 64-channel ultrasonic microphone array ('Cam64') and four high-quality ultrasonic 
microphones ('USM4'). Vocalizations were automatically detected using USM4 data (start/end times marked by green/red dots) and then localized on 
the platform using both the SLIM algorithm on USM4 data and delay-and-sum beamforming on the corresponding Cam64 data. The Cam64 localization 
proceeded in two steps: first coarse (10 mm resolution), then fine centered around the coarse peak at 1 mm resolution (30 × 30 mm local window). 
The local, weighted average (green circle) was then used as the ultrasonic vocalization (USV) origin localized by Cam64. For each USV, the Cam64 
localization was chosen if its SNR >5, otherwise the USM4/SLIM estimate was used (for details, see ‘Localization of ultrasonic vocalizations’). (Bottom) 
Animals were tracked visually on the basis of concurrently acquired videos. Two tracking strategies were employed: (i) manual tracking in the video 
frames corresponding to the midpoint of USVs in all recordings and (ii) automatic tracking for all frames in dyadic recordings. (i) Manual visual tracking: 
the observer was presented with a combined display of the vocalization spectrogram and the concurrent video image at the temporal midpoint of each 
USV and annotated the snout and head center (i.e., midpoint between the ears). (ii) Automatic visual tracking: started with finding the optimal locations 
of each marker based on marker estimate clouds produced by DeepLabCut (Mathis et al., 2018) (DLC) for all frames. Next, these marker positions 
were assembled into spatiotemporal threads with the same, unknown identity based on a combination of spatial and temporal analysis. Finally, the 
thread ends still loose were connected based on quadratic spatial trajectory estimates for each marker, yielding the complete track for both mice (see 
‘Automatic visual animal tracking’ and Figure 3—figure supplement 1).

https://doi.org/10.7554/eLife.86126
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Precision of USV localization
Assigning USVs to individual mice required combining high-speed video imaging with the HyVL loca-
tion estimates at the times of vocalization. We manually tracked the animal snouts at the temporal 
midpoint of each USV to obtain near-optimal position estimates (see Figure 2). We first assessed the 
relative structure of the localization errors between both methods, USM4/SLIM (Figure 3A, green) 
and Cam64/Beamforming (red, each dot is a USV). While most errors were small, and clustered close 
to the origin of the graph (evidenced by the small MAE, shown as horizontal and vertical lines, respec-
tively), the less frequent, larger errors exhibited an L-shape. This error pattern is an optimal situation 
for combining estimates from the two methods, to compensate for each other’s limitations. While 
the Cam64 data can compensate for single microphone noise through the large number of micro-
phones, the nature of its micro-electromechanical systems (MEMS) microphones deteriorates for very 
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Figure 3. Spatial accuracy of localizing ultrasonic vocalizations (USVs) during mouse social interaction improves approximately threefold over the state 
of the art (Oliveira-Stahl et al., 2023). (A) The vast majority of USVs is localized with very small errors for both methods, concentrated close to the 
axes and thus hardly visible, evidenced by the median absolute errors (MAE) for Cam64 (light red line) and SLIM (light green line). The fewer larger 
errors form an L-shape, emphasizing the synergy of a hybrid approach that compensates for the weaknesses of each method. Location estimates were 
excluded (gray) if they were >50 mm from either mouse, or the hybrid Mouse Probability Index (MPI) <0.95. (B) The hybrid localization system Hybrid 
Vocalization Localizer (HyVL) (orange) combines the virtues of SLIM and Cam64 enabling the localization of 91.1% of all USVs (light orange), achieving 
an MAE = 4.8 mm. Cam64 localization (red) alone only includes 74.4% of all USVs, but at an MAE = 4.55 mm (light red). SLIM-based localization (green) 
only includes 79.8% of all USVs, at an MAE = 14.8 mm (light green, see ‘USV assignment’ for details on the relation between accuracy and selection 
criteria). (C) USVs emitted when all animals were >100 mm apart and a single mouse condition was used to assess the ideal accuracy of HyVL. For 
the far condition, virtually all USVs (332/339, 97.9%) were assigned at an MAE = 3.79 mm, similarly to the single animal condition (MAE = 3.45 mm, 
251/255, 98.4%). (D, E) Comparison of actual with estimated snout locations along the X (horizontal; D) and Y (vertical; E) dimensions indicating strong 
agreement. Colors indicate peak-normalized occurrence rates. (F) Centered overlay of USV localizations relative to emitter snout. Precision is depicted 
as a circle with a radius equivalent to the median absolute error (green: SLIM; orange: HyVL, all USVs; light orange: HyVL, selected USVs, dark gray: 
HyVL, when mice >100 mm apart).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Schematic depiction of the progression of marker localization and identity attribution.

Figure supplement 2. Ground truth localization of band-limited noise emitted from a small speaker.

Figure supplement 3. Localization results on the basis of automatic tracking from dyadic and triadic recordings.

https://doi.org/10.7554/eLife.86126
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high frequencies (see Figure 1—figure supplement 1B). Conversely, the USM4 microphones show 
an excellent noise level across frequencies (see Figure 1—figure supplement 1A) but can produce 
erroneous estimates if there is noise in a single microphone and have an intrinsic limitation in spatial 
accuracy due to the physical size of their receptive membrane (ø ~20 mm).

We therefore designed an analytical strategy to combine the estimates of both systems to optimize 
the number of reliably assignable USVs, while evaluating the resulting spatial accuracy alongside. 
Briefly, the location estimates of both methods each come with an estimate of localization uncertainty. 
First, we assess for each method’s estimate how reliably it can be assigned to one of the mice, taking 
into account the positions of the other mice. This is quantified using the MPI (Neunuebel et al., 2015), 
which compares the probability of assignment to a particular mouse to the sum of probabilities for all 
mice, weighted by the estimate’s uncertainty. If the largest MPI exceeds 0.95, it is considered a reliable 
assignment to the corresponding mouse. If both methods allowed reliable assignments, the one with 
smaller residual distance was chosen. If only one method was reliable for a particular USV, its estimate 
was used. If neither method allowed for reliable assignment, the USV was not used for further analysis. 
This typically happens if the snouts are extremely close or the USV is very quiet. This approach outper-
formed many other combination approaches in accuracy and assignment percentage, for example, 
maximum likelihood (see ‘‘Assigning USVs’ and ‘Discussion’ for details).

Analyzing all courtship vocalizations, HyVL performed significantly better than either method alone 
(see Figure 3), allowing a total of 91.1% of USVs to be assigned at a spatial accuracy of 4.8 mm 
(MAE). This constitutes a substantial 2.9-fold improvement in accuracy over the previous state of the 
art, the SLIM algorithm (Oliveira-Stahl et al., 2023). On the full set of USVs where both microphone 
arrays were recording (N = 7982), HyVL outperformed both USM4/SLIM and Cam64/Beamforming 
significantly, both in residual error (SLIM: 14.8 mm; Cam64: 5.33 mm; HyVL: 5.08 mm; p<10–10 for 
all comparisons, Wilcoxon rank-sum test) and percentage of reliably assigned USVs (SLIM: 74.4%; 
Cam64: 79.8%; HyVL: 91.1%). Cam64/Beamforming performed even more precisely on its reliably 
assignable subset (4.55 mm), which was, however, smaller than the HyVL set. This difference empha-
sizes the complementarity of the two methods and thus the synergy through their combination. There 
was no significant difference between tracking on dyadic and triadic recordings (HyVL: 5.0 mm vs. 
5.1 mm, p=0.71, Wilcoxon rank-sum test) with correspondingly similar selection percentages (92 vs. 
90%, respectively).

The accuracies above are an average over localization performance at any distance. In particular 
during close interaction, USVs will often be reflected or obstructed, complicating localization. While 
this constitutes the realistic challenge during mouse social interactions, we also investigated the 
'ideal', unobstructed performance of HyVL by comparing the performance on USVs emitted when all 
animals were 'far' (>100 mm) apart, that is, >~20 times the average accuracy of HyVL, as well as for 
a single male mouse on the platform. For the far USVs, the reliably assignable fraction increased to 
97.9%, and the accuracy significantly improved to 3.79 mm (Figure 3C gray, p=8.6 × 10–7, Wilcoxon 
rank-sum test). For the single animal USVs, the accuracy was even better at 3.45 mm with 98.4% 
reliably assigned (Figure 3C, blue). In addition, we evaluated HyVL’s performance on sounds emitted 
from a miniature speaker placed in a regular grid of locations (see Figure 3—figure supplement 
2). In this condition, the accuracy was even higher (1.87 mm, or even ~0.5 mm when correcting for 
experimental factors, see figure caption); however, given the differences in the emitter characteristics, 
emitted sounds and lack of adsorption, this should be treated as a lower bound that will be hard to 
achieve with mice.

Next, we inspected separate localization along the X and Y axis to check for anisotropies of local-
ization (Figure 3D/E, histograms normalized to maximum). The position of the closest animal aligned 
precisely with the estimated position in both dimensions, indicated by the high density along the 
diagonal (Pearson r > 0.99 for both dimensions) and the MAE’s along the X and Y direction separately 
(X = 3.1 mm, Y = 2.8 mm). These one-dimensional accuracies might be of relevance for interactions 
where movement is restricted.

Lastly, we visualized the localization density relative to the mouse that the vocalization was assigned 
to (Figure 3F). Combining both dimensions and appropriately rotating them, the estimated position 
of the USVs is shown relative to the mouth. The density is narrowly centered on the snout of the mouse 
(circle radius = MAE: green: SLIM method; orange: HyVL; light orange: HyVL assigned USVs; gray: far 
assigned USVs).

https://doi.org/10.7554/eLife.86126
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In summary, the HyVL system provides a substantial improvement in the localization precision. In 
comparison to other methods, its precision also allows a larger fraction of vocalizations to be reliably 
assigned and retained for later analysis, which enables a near complete analysis of vocal communica-
tion between mice or other vocal animals (see ‘Discussion’ for details).

Sex distribution of vocalizations during social interaction
Courtship interactions between mice lead to high rates of vocal production, but are challenging due to 
the relative proximity, including facial contact. Previous studies using a single microphone have often 
assumed that only the male mouse vocalized (Rotschafer et al., 2012; Choi et al., 2011; Pomerantz 
and Clemens, 1981; Nunez et  al., 1978), while more recent research has concluded that female 
mice vocalize as well (Neunuebel et al., 2015; Sangiamo et al., 2020). Female vocalizations were 
typically less frequent, but constituted a substantial fraction of the vocalizations (11–18%) (Oliveira-
Stahl et al., 2023; Heckman et al., 2017; Neunuebel et al., 2015; Warren et al., 2018b). Below, we 
demonstrate that the accuracy of the localization system can be an important factor for conclusions 
about the contribution of different sexes to the vocal interaction.

Over all dyadic and triadic trials combined, females produced the minority of vocalizations. 
Naive estimation without MPI selection using SLIM estimates ~14%, while HyVL tallies it at just 7% 
(Figure 4A). Applying MPI selection, SLIM estimates only 5.5%, while HyVL arrives at significantly less, 
just 4.4% (p=0.002, paired Wilcoxon signed-rank test, Figure 4A/B), while reliably classifying 91.1% 
of all vocalizations.

Using HyVL instead of SLIM significantly reduces the fraction of female vocalizations, suggesting 
that less accurate algorithms overestimate the female fraction (only results for MPI-selected USVs 
shown, Figure 4B). Considering only vocalizations that are emitted when the snouts are >50 mm 
apart further significantly reduces the fraction to female USVs to 1.1% after MPI selection (p=5.2 × 
10–8, Wilcoxon rank-sum test). Comparing the percentage of female vocalizations between dyadic 
and triadic trials, no significant differences were found (p=0.22, Wilcoxon rank-sum test, Figure 4D).

Beyond the absolute distance between the mouths of the mice, high-accuracy localization of USVs 
allows one to position the bodies of the animals relative to one another at the times of vocalization 
by combining acoustic data with multiple concurrently tracked visual markers. This provides an occur-
rence density of other mice relative to the emitter (Figure 4E).

Female mice appear to emit vocalizations in very close snout–snout contact, with a small frac-
tion of vocalizations occurring when the male snout is around the hind-paws/ano-genital region 
(Figure 4F). Male mice emit vocalizations both in snout–snout contact, but also at greater distances, 
which dominantly correspond to a close approach of the male’s snout to the female ano-genital region 
(Figure 4G). This was verified separately with a corresponding analysis, where the recipient’s tail-onset 
was used instead (not shown).

In summary, the combination of high-precision localization and selection using the MPI indicates 
that female vocalizations may be even less frequent than previously thought. When they vocalize, 
the mice appear to almost exclusively be in close snout–snout contact. As this is incidentally also the 
condition that has the highest chance of mis-assignments, even the remaining female vocalizations 
need to be treated with caution.

Vocalization rate analysis
In dyadic trials, one female and one male mouse interacted, whereas in triadic trials either two males 
and one female or two females and one male mouse interacted. We first address in dyadic trials, 
whether there were significant differences in individual vocalization rates between the mice. For the 
balanced dataset of 14 × 4 dyadic interactions (pairing of all males with all females), we did not find 
a significant effect of individual on vocalization rates for either male and female mice (see Figure 5—
figure supplement 1, p=0.46 and p=0.16, respectively, one-way ANOVA analysis with factor indi-
vidual, for n = 4 recordings in males and n = 14 recordings in females). For triadic trials, we could not 
perform the corresponding analysis since the two male/female recordings could not be distinguished 
reliably in post hoc tracking.

In the balanced dyadic and triadic datasets, only 23/112 recordings contained vocalizations. We 
collected additional dyadic and triadic recordings for the purpose of maximizing the number of USVs, 
both for assessing HyVL performance and comparing dyadic and triadic interactions. In this enlarged 

https://doi.org/10.7554/eLife.86126
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dataset, a total of 83 recordings (55 dyadic, 28 triadic) were available, which contained USVs. This 
dataset was still balanced for female mice, but, unbalanced for male mice, that is, although the same 
mice participated in both dyadic and triadic recordings, however, not with exactly the same number of 
recordings. While the analysis on the balanced dataset above did not suggest significant differences 

Figure 4. Analysis of sex-dependent vocalizations can depend on localization accuracy. (A) Female vocalizations constitute a small fraction of the total 
set of vocalizations. The female fraction further reduces with increased precision and when selecting vocalizations based on the Mouse Probability 
Index (MPI). Vocalization fractions are separated by sex, not by individual mouse. Fractions include all dyadic and triadic recordings with ultrasonic 
vocalizations (USVs) (N = 83), same for all other panels. (B) Using the hybrid method instead of SLIM significantly reduces the fraction of female 
vocalizations, suggesting that less accurate algorithms overestimate the female fraction (only results for MPI-selected USVs shown). (C) The fraction 
of female vocalizations further reduces if only USVs are considered that are emitted while all animal snouts were >50 mm apart from each other. This 
indicates a preference of female mice to vocalize in close snout–snout contact; however, this entails that female vocalizations are more prone to 
confusion with male vocalizations due to their relative spatial occurrence. (D) There was no difference in the female fraction of USVs between dyadic 
and triadic pairings (two male and two female conditions combined here; NDyadic = 55, NTriadic = 28). (E) High-accuracy localization of USVs allows one 
to analyze the relative spatial vocalization preferences of the mice, that is, their occurrence density in relation to the relative position of other mice to 
the emitter. We quantified this by collecting the position of the nonvocalizing mice at the times of vocalization, in relation to the vocalizing mouse. 
Symbol α corresponds to the angle between the emitter’s snout and the snout of other mice. (F) Female mice appear to emit vocalizations in very close 
snout–snout contact, with a small fraction of vocalizations also occurring when the male mouse around the hind-paws/ano-genital region. (G) Male mice 
emit vocalizations both in snout–snout contact, but also at greater distances, which dominantly correspond to a close approach of the male’s snout to 
the female ano-genital region. This was verified separately with a corresponding analysis, where the recipient’s tail-onset was used instead (not shown). 
(H) Radial distance density of receiver animals, marginalized over directions, shows a significant difference, with females vocalizing mostly when males 
(blue) are in close proximity of the snout, while males vocalize when the female mouse’s snout is very close (corresponding to snout-snout contact), but 
also when the female’s snout is about 1 body length away (snout–ano-genital interaction). Plots show means and SEM confidence bounds. (I) Direction 
density of receiver animals, marginalized over distances, shows that female mice vocalize primarily when the male mouse’s snout is very close and in 
front of them. Note that the overall angle of approach of the male mouse is not from directly ahead (see Figure 4—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relative spatial vocalization preferences relative to receiver’s ano-genital region for dyadic recordings.

https://doi.org/10.7554/eLife.86126
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between individuals, we thus cannot fully exclude that the reported differences below are partially 
due to individual differences between some male mice.

In the analysis of triadic interactions, we separate competitive and alternative contexts depending 
on whether a mouse had to compete with another same sex mouse or could interact with two oppo-
site sex mice, respectively. For triadic trials we further separate the same-sex mice into dominant and 
subordinate, based on who vocalized more.

However, in competitive interactions between males, one male mouse significantly and strongly 
dominated the 'conversation,' with on average ninefold more vocalizations than the other male mouse 
(TD vs. Ts, Figure 5A and B, both comparisons: p<0.005 [Wilcoxon sum of ranks test]) after Bonfer-
roni correction. Specifically, Bonferroni correction was conducted per panel/measured variable on 
the basis of the number of hypotheses actually tested for, that is, six tests per panel, three for each 
sex: dyadic vs. triadic; triadic: dominant vs. subordinate; triadic: competitive vs. alternatives. While 
the present division into dominant and subordinate mouse based on a higher vocalization rate within 
a recording will always lead to a significant difference, the quantitative difference between them is 
the striking aspect in this comparison. Overall male vocalization rates were similar in competitive and 
alternative triadic trials. Female vocalization rates were similar across all compared conditions.
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Figure 5. In triadic interaction, one male vocalizes dominantly and males vocalize even closer to females. (A) Overall, vocalization rates were 
comparable between dyadic (D) and triadic (T) conditions. Male mice (blue) vocalized at higher rates than female mice (red). However, this was 
restricted to the dominant male mouse (TD: dominant = emitted more ultrasonic vocalizations [USVs] within same-sex) in triadic, competitive (2 m/1 f) 
conditions (see text for all p-values). Male vocalization rates were similar in competitive (TC: with same-sex competitors) and alternative (TA: no same-
sex competitor, i.e., for male vocs: 2 f/1 m) pairings. Female vocalization rates remained low and similar across all conditions. TS: submissive mouse = 
emitted fewer USVs within same sex during competitive trial; white dot: median; horizontal bar: mean (N = 83 recordings in all panels, in the groupings 
D/T vocalizations are grouped by sex, whereas in TD,S,C,A USVs are per individual, same in panels B–D). (B) While the fraction of USVs emitted by males 
was overall comparable between D and T pairings, the dominant male (TD) emitted a substantially larger fraction than their submissive counterpart 
(TS), roughly a factor of 9. In competitive pairings, male mice tended to emit an overall larger fraction of all USVs than in alternative pairings (TC vs. TA), 
but this is unsurprising as both males vocalize. In female mice, the overall fraction of USVs in D and T pairings was also similar (see details in ‘Results’ 
for potential caveats of the dominant/subordinate classification). (C) In triadic pairings, dominant male mice tended to vocalize more intensely than in 
dyadic pairings; however, this difference was not significant at the current sample size. No significant differences were found for female mice. (D) Male 
mice emitted USVs in closer proximity to the closest female mouse in triadic compared to dyadic interactions. Female mice generally emitted USVs at 
closer distances (see also Figure 4F/H), in particular for alternative vs. competitive pairings.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Vocalization rates in dyadic recordings based on a balanced set of four recordings per male mouse and condition (n = 14 male 
mice, 112 recordings).

https://doi.org/10.7554/eLife.86126
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The mean vocalization energy of dominant males in triadic pairings tends to be higher than those 
of submissive males in triadic pairings; however, this result did not reach significance in the present 
dataset (see Figure 5C). No effects of vocalization energy were found in females.

The distance to the closest animal of the opposite sex was found to be even closer during triadic 
trials (see Figure 5D), driven purely by male vocalizers (p=0.00046, after Bonferroni correction as 
above, Wilcoxon sum of ranks test): the distance to the closest animal does not change between 
conditions for vocalizing females (p=0.975, Wilcoxon sum of ranks test). Interestingly, the distance 
to the closest animal was larger for females at the time of vocalization when they had a same-sex 
competitor on the interaction platform with them than when they were the only female (Tc vs. Ta, 
p=0.0068, Wilcoxon sum of ranks test).

Lastly, we investigated whether the division into a dominant and subordinate male based on the 
vocalization rate was also reflected in the spatial behavior of the male mice relative to the female 
mouse. For this purpose, we again constructed relative spatial interactions histograms (see Figure 6, 
analogous to Figure  4), separately for USV-rate-dominant and subordinate males. The results are 
displayed as the relative location between the male snout and the female abdomen. Dominant males 
spent more time close to the female abdomen, thus engaging in ano-genital contact (Figure 6A, 
center), in comparison with subordinate males (Figure  6B). This is highlighted in the difference 
between the spatial interaction histograms (Figure 6C), where the most salient dominant peak occurs 
in the center, while the subordinate male spent more time in snout–snout contact, indicated by the 
blue arc at about one mouse body length from the center (shown in blue here). These differences were 
significant, in addition to a number of other locations in the spatial interaction histogram. Significance 
analysis was performed using 100× bootstrapping on the relative spatial positions to estimate p=0.99 
confidence bounds around the histograms of the dominant and subordinate, respectively. Significance 
at a level of p<0.01 highlights multiple relative spatial positions.

In summary, in competitive triadic interactions, one of the male mice took a strongly dominant 
role, evidenced both in the vocalization rate and the more abundant ano-genital interactions with the 
female throughout the recordings. In triadic interactions, the female mouse was generally approached 
more closely by a male mouse, in particular in the alternative condition. The latter could, however, be 
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Figure 6. Dominant male animals spend more time close to the female’s abdomen. (A) The abdomen of the female was typically close to the dominant 
male’s snout (center of plot), with a ring of approximately one mouse length also visible deriving from snout–snout interactions. The histogram was 
created based on all-frame tracking of the 14 triadic interactions with two male mice using skeleton tracking in SLEAP over a total of N = 276,358 
frames. Dominant and subordinate males were defined based on their vocalization rate per recording. Each histogram was peak normalized. (B) For 
the subordinate male, the histogram was less peaked around the proximal snout–abdomen interactions, but showed a more visible arc between 90 and 
180°, pointing to snout–snout interactions. (C) The difference between the two histograms (each density-normalized to a sum of 1) shows the focused 
snout–abdominal interactions for the dominant male, and the arc pointing to snout–snout interactions for the subordinate male, in addition to smaller 
absolute differences in other relative locations. (D) Spatial regions of significant difference between the dominant and subordinate male were found 
both in the regions highlighted in (C), as well as more distant regions. Significance was assessed by bootstrapping confidence bounds on the histograms 
of the dominant and subordinate males (based on relative locations, rebuilding the histogram, 100×). The distance to the most extreme values were 
taken as the limits for significant deviation at p<0.01, and the difference in (C) was then compared in both the positive/negative direction against these 
bounds.
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a consequence of the larger number of male animals on the platform compared to dyadic and triadic 
competitive (from the perspective of the female).

Discussion
We have developed and evaluated a novel, hybrid sound localization system (HyVL) for USVs emitted 
by mice and other rodents. USVs are innately used by rodents to communicate social and affective 
information and are increasingly being used in neuroscience as a behavioral measure in neurodevel-
opmental and neurolinguistic research. In the context of dyadic and triadic social interactions between 
mice, we demonstrate that HyVL achieves a groundbreaking increase in localization accuracy down 
to ~3.4–4.8 mm, enabling the reliable assignment of >90% of all USVs to their emitter. Further, we 
demonstrate that this can be combined with automatic tracking, enabling a near-complete and auto-
mated analysis of vocal interaction between rodents. The showcased analyses demonstrate the advan-
tages obtained through more precise localization, further discussed below. HyVL is based on an array 
of high-quality microphones in combination with a commercially available, affordable acoustic camera. 
With our freely available code, this system can be readily reproduced by other researchers and has the 
potential to revolutionize the study of natural interactions of mice.

Comparison with previous approaches for localizing vocalizations
Localization accuracy was first systematically reported by Neunuebel et  al., 2015 using a four-
microphone setup and a maximum likelihood approach (Zhang et al., 2008), who attained an MAE 
of ~38 mm that conferred an assignment rate of 14.6–18.1% (their Table 1, assigned relative to detected 
or localized). Originating from the same research group, Warren et al., 2018a employed both a four- 
and eight-microphone setup in a follow-up study, achieving an MAE of ~30 mm for four microphones 
(~52% assignment rate) and ~20 mm with eight microphones (~62% assignment rate), both using 
a jackknife approach to increase robustness of localization. Oliveira-Stahl et al., 2023 introduced 
the SLIM algorithm, reaching an MAE of ~11–14 mm (~80–85% assignment rate depending on the 
dataset) using four microphones. Presently, we advance the state of the art in multiple ways: we use 68 
microphones, combining a 64-channel 'acoustic camera' with four high-quality ultrasonic microphones. 
While the acoustic camera has relatively basic MEMS microphones, it is inexpensive and features 
a high degree of integration and correspondingly easy operation. Combining the complementary 
strengths of the two arrays is the key advantage of the present approach over previous approaches 
as it allows for a quantum leap in accuracy (3.4–4.8 mm, 91% assignment rate), while keeping the 
complexity of the system manageable. A comparable alternative might be a 16-channel array from 
high-quality microphones, which would, however, be substantially more expensive (~€40,000) as well 
as cumbersome to build and refine. A future generation of MEMS microphones might make the use 
of the high-quality microphones unnecessary and thus further simplify the system setup, allowing for 
inexpensive, small-form factor deployment (see below).

Expected impact for future research
Mice and rats are social animals (Shemesh et al., 2013; Lee and Beery, 2019), and isolated housing 
(Kappel et  al., 2017) or testing (Kondrakiewicz et  al., 2019) can affect subsequent research 
outcomes. Social isolation also has direct effects on the number and characteristics of USVs, at least 
in males (Keesom et al., 2017; Portfors, 2007). Sangiamo et al., 2020 demonstrated that distinct 
USV patterns can be linked to specific social actions and the latter that locomotion and USVs influ-
ence each other in a context-dependent way. Using HyVL, such analyses could be extended to more 
close-range behaviors, when a substantial fraction of the vocalizations are emitted (see Figure 1D). 
The development of more unrestricted behavioral paradigms, made viable by increased localization 
precision, will thus also likely prove valuable to the fields of human language impairment and animal 
behavior. As an added benefit, better USV localization will also likely increase lab animal well-being 
via (i) more social contact in specific cases where they spend much time with their conspecifics in the 
testing environment, or when the home environment is the testing environment (e.g., PhenoTyper; 
Noldus Information Technologies), and (ii) a reduced need for (non-)invasive markers.

Here, we conducted a limited set of showcase analyses on the spatial characteristics of vocaliza-
tion behavior. As expected, the system was accurate enough to assign vocalizations during many 

https://doi.org/10.7554/eLife.86126
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snout–snout interactions as well as other, slightly more distant interactions, for example, snout contact 
with the ano-genital region of the dyadic partner. We found the male mice to vocalize most while 
making snout contact with the abdomen and ano-genital region of the female wild-type. Females 
vocalized predominantly during snout–snout contact, with the male’s snout in front of the female 
mouse’s snout.

This highlights an example of how localization accuracy can shape our understanding of roles in 
social interaction between mice: a recent, pivotal study (Neunuebel et al., 2015) demonstrated that 
female mice vocalize during courtship interactions. Research from our group (Oliveira-Stahl et al., 
2023) concluded further that mice primarily vocalize in snout–snout interactions, incidentally the 
condition that makes assignment the most difficult. While the present results maintain that female 
mice vocalize, the fraction appears to be lower than previously thought. We, however, emphasize that 
this conclusion still requires further study under different social contexts, for example, interaction of 
more mice as in some of the previous studies (Warren et al., 2021; Sangiamo et al., 2020).

The compact form factor of the HyVL microphone arrays, in particular the Cam64, enables studies 
of social interaction in home cages. There, rodents are less stressed and likely to exhibit more natural 
behavior, in particular if the home cage includes enrichments. The relatively low hardware costs for 
HyVL allows deployment of multiple systems to cover larger and more natural environments. Research 
in animal communication with other species could also benefit from use of HyVL, for example, with 
different insects or other vocal animals, as there is little reason to suspect that the performance of 
HyVL would not extend to lower frequencies. Flying animals, such as bats or birds, could also be 
studied; however, the subsequent data analysis would have to be extended by one dimension.

Current limitations and future improvements of the presented system
The millimeter accuracy by HyVL enables the assignment of USVs even during close interaction, 
certainly including all snout–ano-genital interactions, and many snout–snout interactions. However, 
certain snout–snout interactions are still too close to reliably assign co-occurring USVs. While the 
MPI criterion maintains reliability even then, subsequent analysis will be partially biased due to the 
exclusion of these USVs during the closest interactions. While a further improvement of accuracy 
may be possible, close inspection of the sound density maps available via beamforming from the 
Cam64 recordings suggests that the mouse’s snout acts as a distributed source: the sound density 
is rather evenly distributed on it, without a clear internal peak. During free interaction, we noticed 
that the sound density was co-elongated with the head direction of the mouse and could thus 
be used as an additional feature to identify the vocalizer. However, this proved unreliable during 
close interaction, likely due to absorption and reflection of sounds based on the mice’s bodies. 
More advanced modeling of the local acoustics or deep learning might be able to resolve these 
issues by analyzing interactions where one mouse is known to be silent, for example, by cutting 
the laryngeal nerves.

The present strategy for combining the estimates from Cam64/Beamforming and USM4/SLIM 
was chosen as it optimized the reliably assigned percentage of USVs, while minimizing the residual 
distance. We also tested alternative approaches, for example, using direct beamforming on the 
combined data from Cam64 and USM4 (unreliable estimates due to mismatch of number of micro-
phones, not further pursued), maximum likelihood combination of estimates (MAE = 7.1 mm) (Ernst 
and Banks, 2002) and making the selection solely depend on the MPI (MAE = 5.2 mm). While each 
of these approaches has certain, theoretically attractive features, the results were worse in each case, 
likely due to particular idiosyncrasies of the MPI computation, the different microphone characteris-
tics, and the estimation of single-estimate uncertainty.

A small set of vocalizations was not assigned solely due to the overall proximity threshold of 50 mm 
(see ‘Materials and methods,’ 2.9%). We have previously shown that very quiet or very short USVs 
are, unsurprisingly, harder to detect and localize (Oliveira-Stahl et al., 2023). In addition, spectrally 
narrow and acoustically occluded USVs are likely hard to localize: USVs that are spectrally very narrow 
– that is, close to a pure tone – will have phase ambiguity, which will make it hard to assign a single 
location. USVs that are acoustically occluded – for example, an animal vocalizing away from a micro-
phone, or a mouse body in the path of the sound – will have a reduced signal-to-noise ratio (SNR) on 
one or more microphones. In our experience, the latter two affect the Mic4 data more than Cam64 
due to their different placement relative to the platform.

https://doi.org/10.7554/eLife.86126
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A very small percentage of vocalizations (<0.1%) contained multiple, differently shaped vocalization 
traces that, when reanalyzed in shortened time-frequency bins with beamforming, could be assigned 
to two different males. Such overlapping vocalizations did not form a harmonic stack. Overall, over-
laps were surprisingly rare and only occurred when our USV detection algorithm produced a longer 
interval, affecting the cumulative heatmap because beamforming is separately performed from the 
onset to the end of each vocalization. Although the identity of the assigned vocalizer could shift in 
these very rare cases depending on which time bin was reanalyzed, the system’s localization perfor-
mance remained in principle unaffected: as mentioned above, shorter time bins on nonoverlapping 
parts correctly show the origin of the vocalizations in this case, and we think that improved USV 
detection/separation based on the harmonic structure will partially address this issue. During the 
beamforming, each vocalization can then be separately localized by restricting the beamforming to 
the corresponding time and frequency range. Further, the beamforming analysis could be refined 
so that multiple salient peaks can be detected in the soundfield estimate, for example, a sequence 
of soundfield estimates would be computed on shorter segments of data and later fused again. As 
this uses less data per single estimate, it also increases the possibility of false positives, which in the 
current situation with very few overlaps in time would likely reduce the overall accuracy of the system. 
Lastly, for the present data, if a time window was analyzed such that the intensity map of the sound 
field contains multiple hotspots of an approximately equal magnitude, the USV would likely remain 
unassigned because the within-soundfield uncertainty would be higher than for a single peak, and this 
would reduce the MPI. However, given the rarity of these cases in our dataset, we do not think that 
their exclusion would change the results appreciably.

Lastly, for the purpose of online feedback during experiments and to reduce data warehousing, it 
would be advantageous to perform the localization of USVs in real time. This would be enabled by 
streaming the data to a GPU, performing localization immediately and keeping only a single channel, 
beamformed estimate of each USV. Ideally, the same device could run visual tracking simultaneously, 
which would remove all temporal limitations on the recordings in terms of data size and enable contin-
uous audiovisual tracking.

Conclusion and outlook
HyVL delivers breakthrough accuracy and assignment rates, likely approaching the physical limits of 
assignment. The low system costs (<€10k) in relation to its performance make HyVL an excellent 
choice for labs studying rodent social interaction. Many recent questions regarding the sequencing 
of vocalizations during social interactions become addressable with HyVL without intrusive interven-
tions. Its use can both refine the precision and reliability of the analysis, while reducing the number 
of animals required to complete the research due to a larger fraction of assigned USVs per animal.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Transfected construct (Mus musculus) Foxp2flox/flox;Pcp2Cre Bred locally at animal facility

All experimental procedures were approved by the animal welfare body of the Radboud University 
under the protocol DEC-2017-0041-002 and conducted according to the Guidelines of the National 
Institutes of Health.

Animals
In our experiment, four female C57Bl/6J-WT, six male C57Bl/6J-WT, and eight male C57Bl/6J-Foxp2flox/

flox;Pcp2Cre mice (bred locally at the animal facility) were studied. For subsequent analyses, WT and KO 
mice were combined (see beginning of ‘Results’ for reasoning). The mice were 8 weeks old at the start 
of the experiments. After 1 wk of acclimation in the animal facility, the experiments were started. Mice 
of the same sex were housed socially (2–5 mice per cage) on a 12 hr light/dark cycle with ad libitum 
access to food and water in individually ventilated, conventional EU type II mouse cages at 20°C with 
paper strip bedding and a plastic shelter for basic enrichment. Upon completion of the experiments, 
the animals were anesthetized using isoflurane and sacrificed using CO2.

https://doi.org/10.7554/eLife.86126
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The current experiment was performed as an add-on to an existing set of experiments, whose 
focus included a region-specific knockout of Foxp2 in the cerebellar Purkinje cells of the male mice, 
denoted as Foxp2flox/flox;Pcp2Cre. Neither previous work nor our own work has detected any differences 
in USV production between WT and KO animals (Urbanus et al., 2020), so – given the mostly method-
ological focus of the present work – we considered it acceptable to pool them in the current analysis, 
reducing the number of animals needed, thus treating all males as WT C57Bl/6J, the genotype of the 
female mice.

Recording setup
The behavioral setup consisted of an elevated interaction platform in the middle of an anechoic booth 
together with four circumjacent ultrasonic microphones as well as an overhanging 64-channel micro-
phone array and high-speed video camera (see Figure 1A).

The booth had internal dimensions of 70 × 130 × 120 cm (L × W × H). The walls and floor were 
covered with acoustic foam on the inside (thickness: 5 cm, black surface Basotect Plan50, BASF). The 
acoustic foam shields against external noises above ~1 kHz with a sound absorption coefficient >0.95 
(N.B., defined as the ratio between absorbed and incident sound intensity), which corresponds 
to >26 dB of shielding apart from the shielding provided by the booth itself. In addition, the foam 
strongly attenuates internal reflections of high-frequency sounds like USVs. Illumination was provided 
via three dimmable LED strips mounted to the ceiling, providing light from multiple angles to mini-
mize shadows.

The support structure for the interaction platform and all recording devices was a common frame 
constructed from slotted aluminum (30 × 30 mm) mounted to the floor of the anechoic booth, guar-
anteeing precise relative positioning throughout the entire experiment. The interaction platform itself 
was a 40 × 30  cm rectangle of laminated, white acoustic foam (thickness 5  cm; Basotect Plan50) 
chosen to maximize the visual contrast with the mice and simplify the cleaning of excreta. The inter-
action platform had no walls to avoid acoustic reflections and was located centrally in the booth. Its 
surface was elevated 25 cm above the floor (i.e., 20 cm above the foam on the booth floor), which was 
generally sufficient in preventing animals from leaving the platform. If a mouse left the platform, data 
was excluded from further analysis (<5% of frames).

Sounds inside the booth were recorded with two sets of microphones: (i) four high-quality micro-
phones (USM4) and (ii) a 64-channel microphone array (Cam64), both recording at a sampling rate of 
250 kHz at 16 bits. (i) The four high-quality microphones (CM16/CMPA48AAF-5V, AviSoft, Berlin) were 
placed in a rectangle that contained the platform (see Figure 1A) at a height exceeding the platform 
by 12.1 cm to minimize the amount of sound blocked by the mice during interaction. The position of a 
microphone was defined as the center of the recording membrane. Considering the directional recep-
tivity of the microphones (~25 dB attenuation at 45°), the microphones were placed a short distance 
away from the corners of the platform to maximize sound capture (5 cm in the long direction and 6 cm 
in the short direction of the platform). The rotation of each microphone was chosen to be such that 
it aimed at the platform center. The microphones produce a flat (±5 dB) frequency response within 
7–150 kHz that was low-pass filtered at 120 kHz to prevent aliasing (using the analog, 16th-order filter, 
which is part of the microphone amplifier). Recorded data was digitized using a data acquisition card 
(PCIe-6351, National Instruments). (ii) In addition, a 64-channel microphone array (Cam64 custom 
ultrasonic version, Sorama B.V.) was mounted above the platform with a relative height of 46.5 cm 
measured to the bottom of the Cam64 and a relative lateral shift of 6.52 cm to the right of the plat-
form midpoint. The Cam64 utilizes 64 MEMS microphones (Knowles, Digital Zero-Height SiSonic, 
SPH0641LU4H-1) for acoustic data collection that are positioned in a Fermat’s spiral over a circle with 
an ~16 cm diameter. Raw microphone data was streamed to an m.2 SSD for later analysis. Synchroni-
zation between the samples acquired by the Cam64 and the ultrasonic microphones was performed 
by presenting two brief acoustic clicks (realized by stepping a digital output from 0 to 5 V) close to 
one of the microphones on the Cam64 at the start and end of each trial using a headphone driver (IE 
800, Sennheiser). The recorded pulses were automatically retrieved and used to temporally align the 
recording sources.

A high-speed camera (PointGrey Flea3 FL3-U3-13Y3M-C, Monochrome, USB3.0) was mounted 
above the platform with a relative height of 46.5 cm measured to the bottom of the front end of the 
lens (6 mm, Thorlabs, part number: MVL6WA) and a relative lateral shift of 4.48 cm to the left of the 

https://doi.org/10.7554/eLife.86126
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platform midpoint. Video was recorded with a field of view of 52.2 × 41.7 cm at ~55.6 fps (18 ms inter-
frame interval) and digitized at 640 × 512 pixels (producing an effective resolution of ~0.815 mm/
pixel). The shutter time was set to 10 ms to guarantee good exposure while keeping the illumination 
rather dim. The frame triggers from the camera were recorded on an analog channel in the PCIe-6531 
card for subsequent temporal alignment with the acoustic data.

Experimental procedures
The experiment had three conditions: dyadic (with two mice), triadic (with three mice), and monadic 
(single male mouse, one type of ground truth data). For each of the male animals (n = 14), we 
conducted one trial with each female (n = 4) in dyadic and triadic conditions, that is, 112 trials in 
total, in pseudo-random order. The third animal in triadic conditions was chosen pseudo-randomly. 
Afterwards, to maximize the number of USVs for evaluation of the localization system, another 108 
trials were run with the best male vocalizers in both dyadic and triadic conditions, leading to a total 
of 220 trials. In 85/220 trials, USVs were emitted by the mice (57 dyadic, 28 triadic), prompting the 
experimenter to initiate a Cam64 recording (see below). Two dyadic trials were excluded from further 
analysis due to repeated but required experimenter interference during the recordings leaving 55 
dyadic trials. The USVs from the remaining 83 trials formed the basis for the evaluation of the tracking 
accuracy of HyVL, while we used the 112 balanced-design dyadic and triadic recordings (with and 
without USVs) in the analysis of differences in dyadic/triadic interactions (Figure 6). Lastly, eight trials 
were recorded with just a single male mouse on the platform.

Each trial consisted of 8 min of free interaction between at least one female and at least one 
male mouse on the platform. Females were always placed on the platform first, and males were 
added shortly thereafter. In the monadic case, fresh female urine was placed on the platform 
instead of a female mouse to prompt the male mouse to vocalize. The high-speed camera and 
four high-quality microphones started recording after all mice had been placed on the platform 
and continued for 8 min. Data points where one mouse had left the platform or the hand of the 
experimenter were visible 10 s before or after (e.g., to pick up a mouse) were discarded (<5% of 
frames). Due to the rate of data generation of the Cam64 recordings (32 MB/s), their duration and 
timing were optimized manually. The experimenter had access to the live spectrogram from the 
USM4 microphones, and upon the start of USVs, triggered a new Cam64 recording (of fixed 2 min 
duration). If additional USVs occurred after that point, the experimenter could trigger additional 
recordings.

Data analysis
The analysis of the raw data involved multiple stages (see Figure 2): from the audio data, the presence 
and origin of USVs were estimated automatically. From the video data, mice were carefully tracked 
by hand at the temporal midpoint of each USV as near-optimal estimates for their acoustically local-
ized origin. To estimate what proportion of our precision would be lost when using a faster and more 
scalable visual tracking method, we also tracked the mice automatically during dyadic trials. The esti-
mated locations of the mice and USVs were then used to attribute the USVs to their emitter. All these 
steps are described in detail below.

Audio preprocessing
Prior to further analysis, acoustic recordings were filtered at different frequencies. USM4 data was 
band-pass filtered between 30 and 110 kHz before further analysis using an inverse impulse response 
filter or order 20 in MATLAB (function: designfilt, type: bandpassiir). Cam64 data was band-pass 
filtered with a frequency range adapted to the frequency content of each USV. Specifically, first the 
frequency range of the USV was estimated as the 10th–90th percentile of the set of most intense 
frequencies at each time point. Next, this range was broadened by 5 kHz at both ends, and then 
limited at the top end to 95 kHz. If this range exceeded 50 kHz, the lower end was set to 45 kHz. This 
ensured that beamforming was conducted over the relevant frequencies for each USV and avoided 
the high-frequency regions where the Cam64 microphones are dominated by noise (see Figure 1C, 
Figure 1—figure supplement 1).

https://doi.org/10.7554/eLife.86126
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Video preprocessing
The high-speed camera lens failed to produce perfect rectilinear mapping and was placed off-center 
with respect to the interaction platform, thereby producing a nonlinear radial-tangential visual distor-
tion. We corrected for the radial distortion with
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Detection of ultrasonic vocalizations
USVs were detected automatically using a set of custom algorithms described elsewhere (Ivanenko 
et  al., 2020). Detection was only performed on the USM4 data as their sensitivity and frequency 
range were generally better than for the Cam64 (see Figure 1C, Figure 1—figure supplement 1). A 
vocalization only had to be detected on one of the four high-quality microphones to be included into 
the set. In total, we collected 13,406 USVs, out of which 8424 occurred when the Cam64 recordings 
were active.

Automatic visual animal tracking
To assess whether we could reliably assign USVs to their emitter in a fast and scalable way, we auto-
matically tracked multiple body parts of interacting mice in all frames — most importantly the snout 
and head center — for all dyadic trials (using DeepLabCut [Brudzynski, 2021]; see Figure 2) and a 
subset of triadic trials (using SLEAP [Pereira et al., 2022]; see Figure 6). With this approach, tracking 
is not temporally restricted to the midpoint of USV production, but can be performed for every frame 
of the entire recording. This data can be used to establish spatial densities of interaction against 
which, for example, the spatial density of vocalizations can be compared (Oliveira-Stahl et al., 2023).

For the dyadic recordings, mice were tracked offline using a combination of DeepLabCut (DLC) 
(Mathis et  al., 2018) and extensive pos-processing to maintain animal identity over the entire 
recording. While the tracking results from DLC were generally quite accurate, we refrained from 
using them directly because of inaccuracies and identity switches that occurred on many hundreds of 
occasions in every recording. Instead we adopted a strategy where DLC generated an overcomplete 
set of candidate locations followed by custom synthesis and tracing of these alternatives in space 
and time (see Figure 3—figure supplement 1). In short, improved marker locations were generated 
from marker estimate clouds produced by DLC. Next, these marker positions were assembled into 
short spatiotemporal threads with the same, unknown identity based on a combination of spatial 
and temporal analysis. Finally, the thread ends were connected based on quadratic spatial trajec-
tory estimates for each marker, yielding the complete track for both mice. This strategy resulted in 

https://doi.org/10.7554/eLife.86126
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reliable, high-quality tracking for all recordings, 
with a greatly reduced number of manual correc-
tions needed overall (~10 per trial on average). 
All resulting tracks were visually verified (for a 
representative example, see Video 1).

For tracking the triadic interactions with two 
males, we used the SLEAP (Pereira et al., 2022) 
tracking system (version 1.3.0). To obtain the 
frame-by-frame pose estimations, we utilized 
the SLEAP graphical user interface to train a 
bottom-up U-net model, which is used to iden-
tify the body parts first and then attribute them 
to separate instances. Initially, we trained the 
model on the manually annotated frames from 
the dyadic tracking process. Subsequently, we 
annotated  ~200 additional frames, all in triadic 
conditions in which the model exhibited poor 
performance. The extended dataset was then 
used to retrain the model. To establish the basis 
for triadic tracking, we employed SLEAP’s tracker 
to group the predicted instances across frames. 

The tracker compared instances across the full six-node skeleton and aimed to maximize the overall 
similarity across the three track assignments using the Hungarian algorithm. To identify candidate 
instances for comparison, it employed optical flow based on the previous five frames and selected 
instances based on the 0.95 quantile of similarity scores. We also applied SLEAP’s post-tracking data 
cleaning techniques to connect any breaks in single tracks. Subsequently, we examined all 14 record-
ings frame by frame to rectify any identity switches and eliminate inaccurate predictions. For instance, 
we addressed cases where two instances were detected on a single mouse or when one instance 
appeared to cover two mice. To further refine the results, we interpolated outlying instances based 
on velocity jumps.

We compared the accuracy of localization on the basis of manual tracking with that of automatic 
tracking (N = 5046 USVs, see Figure 3—figure supplement 3). Directly comparing the snout posi-
tions between the methods shows a median difference of 3.76 mm. The resulting error for localizing 
USVs was still superior to other systems, but significantly increased by ~0.9 mm (MAE = 5.71 mm) 
relative to manual tracking. Both manual and automatic tracking appear to have particular patterns 
of residual errors, indicated by the fact that the error between the tracking methods is much larger 
than their difference in USV localization error. The percentage of reliably assignable USVs interestingly 
increased to 93.6% (HyVL) compared to 92% with manual tracking for the dyadic recordings only. We 
optimized the mouth location on the snout-to-head-center line, finding an optimal distance of 15% of 
the snout to head center distance to the front of the animal. This indicated that the automatic tracking 
tended to place the snout tracking point a bit further into the snout than manual tracking, which might 
also explain the increase in assignment, due to a slight – but erroneous – increase in the separation 
between the snouts. While these results suggest that manual tracking is still advantageous, it high-
lights that completely automatic analysis of dyadic and possibly n-adic social interaction experiments 
is feasible at slightly reduced accuracy.

Manual visual animal tracking
To test the maximum precision of HyVL, we manually tracked the spatial locations of all mice during 
all USVs from the video data to assess the precision of the automatic visual and acoustic tracking. 
During manual tracking, the observer was presented with a combined display of the vocalization 
spectrogram and the concurrent video image at the temporal midpoint of each USV (MultiViewer, 
custom-written, MATLAB-based visualization tool). The display included a zoom function for optimal 
accuracy as tracking was click-based. Users could also freely scroll in time to ensure consistent animal 
identities. Only the snout and head center (i.e., midpoint between the ears) needed to be annotated 

Video 1. Example of Hybrid Vocalization Localizer 
(HyVL) tracking and sound localization. Marker color 
represents animal sex (light blue: male; light red: 
female). Marker shape represents body part (circle: 
body center; cross: snout or tail; downward triangle: 
left ear; upward triangle: head center; diamond: right 
ear). Cam64 ultrasonic vocalization (USV) localizations 
(yellow) are overlaid on the beamforming densities 
(red) that are often very narrow and therefore hard to 
see underneath the localization marker (yellow dot). 
SLIM USV localizations are shown as well (orange '+'), 
typically further away from the snout in comparison to 
Cam64-based localization markers.

https://elifesciences.org/articles/86126/figures#video1
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because these points define a vector representing the head location and direction, which was all that 
was required in subsequent behavioral analyses.

Localization of ultrasonic vocalizations
USVs were spatially localized using a hybrid approach that integrates SLIM (Oliveira-Stahl et al., 2023) 
(based on four high-quality microphones) and beamforming (based on the 64-channel microphone 
array), drawing on the complementary strengths of the two microphone arrays (see Figure 1—figure 
supplement 1). For example, the Cam64 array provided excellent localization for USVs with energy 
below ~90 kHz due to the increasing noise floor of the MEMS microphones with sound frequency. 
Conversely, the four high-quality ultrasonic microphones (USM4) have a rather flat noise level as a 
function of frequency. On the other hand, USM4 will occasionally have glitches in one of the micro-
phones, which can be compensated for in Cam64-based estimates through the number of micro-
phones. As a consequence, the errors of the two methods show an L-shape (see Figure 3A), which 
highlights the synergy of a hybrid approach.

Acoustic localization using the Cam64 recordings was performed on the basis of delay-and-sum 
beamforming (Van Veen and Buckley, 1988). In beamforming, signals from all microphones are 
combined to estimate a spatial density that correlates with the probability of a given location being 
the origin of the sound. Specifically, we computed beamforming estimates for a surface situated 1 cm 
above and co-centered with the interaction platform, extending to 5 cm beyond all edges of the plat-
form (i.e., 50 × 40 cm in total) at a final resolution of 1 mm in both dimensions. We refer to this density 
of sound origin as ‍DSO

(
x, y

)
‍ where ‍x‍ and ‍y‍ denote spatial coordinates. To prevent noises unrelated 

to a specific USV from contaminating the location estimate, we limited beamforming to a particular 
frequency range estimated from the simultaneous data of the USM4 array that enveloped the USV. 
Spatial density was defined as
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of the microphone array. Beamforming was performed in the computational cloud backend provided 
by the Cam64 manufacturer, the so-called Sorama Portal (https://www.sorama.eu/sorama-portal).

The final beamforming estimate was calculated sequentially in two steps: first, a coarse estimate 
with 1  cm resolution was generated over the entire beamforming surface. Second, a fine-grained 
estimate with 1 mm resolution was generated over a 30 × 30 mm window centered on the peak 
location of the coarse estimate (see Figure 2 for an example). This two-step approach was chosen 
to optimize performance, as an estimate with 1 mm resolution over the entire beamforming surface 
would be computationally expensive while failing to produce a better result. For USVs of sufficient 
quality (i.e., containing frequency content below ~90 kHz while being sufficiently intense and long), 
both the coarse and fine estimates of ‍DSO

(
x, y

)
‍ contained a peak whose height was typically very large 

compared to the surrounding values at distances greater than a few centimeters. The peak location 
of the fine-grained estimate was used as the final estimate of the USV’s origin. To assess the quality of 
this location estimate, we computed a SNR per USV as follows:
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‍ is assumed to be calculated for the USV ‍v‍. The inverse, ‍1/SNRCam64‍ was used as a 

proxy for the uncertainty of localization for a given USV.
Localization from the USM4 recordings was performed using the SLIM method (Oliveira-Stahl 

et al., 2023). Briefly, SLIM analytically estimates submanifolds (in 2D: surfaces) of a sound’s spatial 
origin for each pair of microphones and combines these into a single estimate by intersecting the 
manifolds (in 2D: lines). The intersection has an associated uncertainty that scales with the uncertainty 
of the localization estimate for a given USV, specifically the uncertainty was defined as the standard 
deviation of all locations that were >90% times the maximum of the intersection density of all origin 
curves.

https://doi.org/10.7554/eLife.86126
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Lastly, for each USV where both Cam64 and SLIM location estimates ‍ẊCam64‍ and ‍ẊSLIM‍ were avail-
able, a single estimate ‍ẊHyVL‍ was computed based on the two estimates, spatial uncertainties and 
their spatial relation to the mice at the current time (see below).

USV assignment
The final hybrid location estimate and assignment to a mouse was performed while taking into 
account the probability of making a false assignment as proposed before (Neunuebel et al., 2015), 
through the calculation of the mouse probability index ‍MPI ‍. While the ‍MPI ‍ was previously only used 
to exclude uncertain assignments (e.g., if two mice are nearly equidistant to the estimated sound 
location), we also adapted it here to select and combine the location estimates. The ‍MPIk‍ for each 
mouse k was computed as,

	﻿‍
MPIk = Pk∑n
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Here, ‍Pk‍ is the probability that the USV in question originated from mouse ‍k‍ computed as

‍
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 , where ‍ẊMethod‍ is an estimate of the acoustic origin, ‍Xmouth,k‍ 

the position of the mouth of mouse ‍k‍, and ‍σ
2
Method‍ the uncertainty of the estimate, with ‍Method‍ and 

‍σ
2
Method‍ specific to the Method used. ‍Xmouth,k‍ was assumed to lie on a line connecting the snout and 

head-center. For manually tracked recordings, the optimal location on this line was close to the snout 
(~2% toward the head, where % is relative to the snout-to-head-center tracked distance), while in the 
automatic tracking it was ahead of the snout tracking point (~15% away from the head). ‍σ

2
Method‍ was 

computed for each USV as the method’s intrinsic per-USV uncertainty estimate. As these uncertainty 
estimates only correlate with the absolute uncertainty (i.e., in millimeters), we scaled them such that 
their average across all USVs matched the residual error of each method in the Far-condition (all 
animals >100 mm apart, see Figure 3C and Oliveira-Stahl et al., 2023). In this way, the ‍MPIk‍ for indi-
vidual USVs took into account the uncertainty of each method: if the uncertainty of one method was 
higher, probabilities across mice would become more similar and the ‍MPIk‍ would reduce.

For a given USV, we computed the ‍MPIk‍ for all mice for both methods. The mouse with the largest 

‍MPIk‍ per method, which coincides with the mouse at the smallest distance to the estimate, was 
denoted as ‍MPICam64‍ and ‍MPISLIM‍ , respectively. If only one of the two exceeded 0.95, this method’s 
estimate was selected. If both exceeded 0.95, then the estimate with the smaller distance to the 
mouse with the highest ‍MPIk‍ was chosen. This combination ensured that only reliable assignments 
were performed, while minimizing the residual error. Similar to Neunuebel et  al., 2015, we also 
excluded estimates that were too far away from any mouse (50 mm). This distance threshold mainly 
serves to compensate for a deficiency of the ‍MPI ‍: if all mice are far from the estimate, all ‍Pk‍ are 
extremely small; however, the ‍MPIk‍ will often exceed 0.95. The distance threshold corresponds to 
setting the individual ‍Pk = 0‍ in the ‍MPIk‍ , thus excluding candidate mice that are highly unlikely to be 
the source of the USV. USVs that had no ‍MPIk‍ > 0.95 for either method were excluded from further 
analysis. The fraction of included USVs is referred to as selected in the plots. Maximizing this fraction 
is essential to perform a complete analysis of vocal communication.

We compared the above-described combination strategy to a large number of alternative strate-
gies, including maximum likelihood combination of estimators (Ernst and Banks, 2002), or selecting 
directly based on the largest ‍MPIk‍ or largest ‍Pk‍ . While all these approaches led to broadly similar 
results, the described approach achieved the most robust and reliable results (see ‘Discussion’ for 
additional details).

Audiovisual alignment
For both microphone sets, precise measurements of their location in relation to the camera’s location 
were used to position acoustic estimates in the coordinate system of the images provided by the 
camera. In the final analysis, we noticed for each microphone set small, systematic (0.5–2 mm) shifts 
in both X and Y. We interpreted these as very small measurement errors in the relative positions of 
the camera or microphone arrays and corrected these post hoc in the setup definition, followed by 
rerunning all subsequent analysis steps. This reduced all systematic shifts to near 0.

https://doi.org/10.7554/eLife.86126
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Spatial vocalization analysis
To gain insight into the spatial positioning of the interacting mice, we represented the relative 
animal positions in a polar reference frame centered on the snout of the emitter. In this format, 
the radial distance corresponded to the snout–snout distance and the radial angle described the 
relative angle between the gaze direction of the emitter and the snout position of the recipient 
(i.e., with the line from the head center to the snout of the emitter pointing towards 0°; see also 
Figure 4E).

The position density of the recipient mouse was collected in cumulative fashion, with the polar 
coordinate system translated appropriately for each USV based on its temporal midpoint. We assumed 
that the mice had no preference for relative vocalizations to either side of their snout, so all relative 
spatial positions were agglomerated in the right hemispace for further analysis. All data points were 
then binned using a polar, raw-count histogram with bins of 10° and 1 cm.

Statistical analysis
To avoid distributional assumptions, all statistical tests were nonparametric, that is, Wilcoxon rank-sum 
test for two-group comparisons and Kruskal–Wallis for single-factor ANOVA. Correlations were 
computed as Spearman’s rank-based correlation coefficients. Error bars represent standard errors of 
the mean (SEM) unless stated otherwise. All statistical analyses were performed in MATLAB v.2018b 
(The MathWorks, Natick) using functions from the Statistics Toolbox.
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