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Abstract Elucidating the intricate neural mechanisms underlying brain functions requires inte-
grative brain dynamics modeling. To facilitate this process, it is crucial to develop a general-purpose 
programming framework that allows users to freely define neural models across multiple scales, 
efficiently simulate, train, and analyze model dynamics, and conveniently incorporate new modeling 
approaches. In response to this need, we present BrainPy. BrainPy leverages the advanced just-in-
time (JIT) compilation capabilities of JAX and XLA to provide a powerful infrastructure tailored for 
brain dynamics programming. It offers an integrated platform for building, simulating, training, and 
analyzing brain dynamics models. Models defined in BrainPy can be JIT compiled into binary instruc-
tions for various devices, including Central Processing Unit, Graphics Processing Unit, and Tensor 
Processing Unit, which ensures high-running performance comparable to native C or CUDA. Addi-
tionally, BrainPy features an extensible architecture that allows for easy expansion of new infrastruc-
ture, utilities, and machine-learning approaches. This flexibility enables researchers to incorporate 
cutting-edge techniques and adapt the framework to their specific needs.

Editor's evaluation
The paper introduces a new, important framework for neural modelling that promises to offer 
efficient simulation and analysis tools for a wide range of biologically-realistic neural networks. It 
provides convincing support for the ease of use, flexibility, and performance of the framework, 
and features a solid comparison to existing solutions in terms of accuracy. The work is of potential 
interest to a wide range of computational neuroscientists and researchers working on biologically 
inspired machine learning applications.

Introduction
Brain dynamics modeling, which uses computational models to simulate and elucidate brain functions, 
is receiving increasing attention from researchers across different disciplines. Recently, gigantic proj-
ects in brain science have been initiated worldwide, including the BRAIN Initiative (Jorgenson et al., 
2015), Human Brain Project (Amunts et al., 2016), and China Brain Project (Poo et al., 2016), which 
are continuously producing new data about the structures and activity patterns of neural systems. 
Computational modeling is a fundamental and indispensable tool for interpreting this vast amount of 
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data. However, to date, we still lack a general-purpose programming framework for brain dynamics 
modeling. By general purpose, we mean that such a programming framework can implement most 
brain dynamics models, integrate diverse modeling demands (e.g., simulation, training, and anal-
ysis), and accommodate new modeling approaches constantly emerging in the field while maintaining 
high-running performance. General-purpose programming frameworks are exemplified by Tensor-
Flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) in the field of Deep Learning, which 
provides convenient interfaces for researchers to define various AI models flexibly and efficiently. 
These frameworks have become essential infrastructure in AI research, and play an indispensable role 
in this round of the AI revolution (Dean, 2022). Brain dynamics modeling also needs such a general-
purpose programming framework urgently (D’Angelo and Jirsa, 2022).

To develop a general-purpose programming framework for brain dynamics modeling, we face 
several challenges.

•	 The first challenge comes from the complexity of the brain. The brain is organized modularly, 
hierarchically, and across multi-scales (Meunier et  al., 2010), implying that the framework 
must support model construction at different levels (e.g., channel, neuron, network) and model 
composition across multiple scales (e.g., neurons to networks, networks to circuits). Current 
brain simulators typically focus on only one or two scales, for example, spiking networks 
(Gewaltig and Diesmann, 2007; Davison et al., 2008; Beyeler et al., 2015; Stimberg et al., 
2019) or firing rate models (Sanz Leon et al., 2013; Cakan et al., 2021). Recently, NetPyNE 
(Dura-Bernal et al., 2019) and BMTK (Dai et al., 2020a) have adopted descriptive languages 
to expand the modeling scales from channels to neurons and networks, but their modeling 
interfaces are still limited to predefined scales.

•	 The second challenge is the integration of different modeling needs (Ramezanian-Panahi 
et al., 2022; D’Angelo and Jirsa, 2022). To elucidate brain functions comprehensively with 
computational models, we need to not only simulate neural activities, but also analyze the 
underlying mechanisms, and sometimes, we need to train models from data or tasks, implying 
that a general-purpose programming framework needs to be a platform to integrate multiple 
modeling demands. Current brain simulators mainly focus on simulation (Brette et al., 2007; 
Tikidji-Hamburyan et al., 2017; Blundell et al., 2018), and largely ignore training and analysis.

•	 The third challenge is achieving high-running performance while maintaining programming 
convenience (Tikidji-Hamburyan et al., 2017; Blundell et al., 2018), which is particularly true 
for brain dynamics modeling, as its unique characteristics make it difficult to run efficiently 
within a convenient Python interface. The current popular approach for solving this challenge 
is code generation based on descriptive languages (Goodman, 2010; Blundell et al., 2018). 
However, this approach has intrinsic limitations regarding transparency, flexibility, and extensi-
bility (Tikidji-Hamburyan et al., 2017; Blundell et al., 2018) (Appendix 1).

•	 The fourth challenge comes from the rapid development of the field. Brain dynamics modeling 
is relatively new and developing rapidly. New concepts, models, and mathematical approaches 
are constantly emerging, implying that a general-purpose programming framework needs to be 
extensible to take up new advances in the field conveniently.

In this paper, we propose BrainPy (‘Brain Dynamics Programming in Python’, Figure 1) as a solu-
tion to address all the above challenges. BrainPy provides infrastructure tailored for brain dynamics 
programming, including mathematical operators, differential equation solvers, universal model-
building formats, and object-oriented JIT compilation. Such infrastructure provides the flexibility for 
users to define brain dynamics models freely and lays the foundation for BrainPy to build an inte-
grative framework for brain dynamics modeling. First, BrainPy introduces a brainpy.Dynamical-
System interface to unify diverse brain dynamics models. Models at any level of resolution can be 
defined as DynamicalSystem classes, which further can be hierarchically composed to create higher-
level models. Second, BrainPy builds an integrated platform for studying brain dynamics models, 
where the same BrainPy model can be used for simulation, training (e.g., offline learning, online 
learning, or backpropagation training), and analysis (e.g., low-dimensional bifurcation analysis or high-
dimensional slow point analysis). Third, through JIT compilation and dedicated operators, BrainPy 
achieves impressive performance for its code execution. The same models can be deployed into 
different devices (such as Central Processing Unit [CPU], Graphics Processing Unit [GPU], and Tensor 
Processing Unit [TPU]) without additional code modification. Fourth, BrainPy is highly extensible. New 
extensions can be easily implemented as plug-in modules. Even the low-level primitive operators in 
the kernel system can be extended in the user-level Python interface. BrainPy is implemented in a 
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Figure 1. BrainPy is an integrative framework targeting general-purpose brain dynamics programming. (A) Infrastructure: BrainPy provides infrastructure 
tailored for brain dynamics programming, including NumPy-like operators for computations based on dense matrices, sparse and event-based 
operators for event-driven computations, numerical integrators for solving diverse differential equations, the modular and composable programming 
interface for universal model building, and a toolbox useful for brain dynamics modeling. (B) Function: BrainPy provides an integrated platform for 
studying brain dynamics, including model building, simulation, training, and analysis. Models defined in BrainPy can be used for simulation, training, 
and analysis jointly. (C) Compilation: Based on JAX (Frostig et al., 2018) and XLA (Sabne, 2020), BrainPy provides just-in-time (JIT) compilation for 
Python class objects. All models defined in BrainPy can be JIT compiled into machine codes to achieve high-running performance. (D) Device: The same 
BrainPy model can run on different devices including Central Processing Unit (CPU), Graphics Processing Unit (GPU), or Tensor Processing Unit (TPU), 
without additional code modification.

https://doi.org/10.7554/eLife.86365
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robust continuous integration pipeline and is equipped with an automatic documentation building 
environment (Appendix 3). It is open sourced at https://github.com/brainpy/BrainPy. Rich tutorials 
and extensive examples are available at https://brainpy.readthedocs.io and https://brainpy-examples.​
readthedocs.io, respectively.

Method and results
Infrastructure tailored for brain dynamics programming
To support its goal of becoming a general-purpose programming framework, BrainPy provides the 
infrastructure essential for brain dynamics modeling (Figure 1A). This infrastructure is a collection of 
interconnected utilities designed to provide foundational services that enable users to easily, flexibly, 
and efficiently perform various types of modeling for brain dynamics. Specifically, BrainPy implements 
(1) mathematical operators for conventional computation based on dense matrices and event-driven 
computation based on sparse connections; (2) numerical integrators for various differential equations, 
the backbone of dynamical neural models; (3) a universal model-building interface for constructing 
multi-scale brain dynamics models and the associated JIT compilation for the efficient running of 
these models; and (4) a toolbox specialized for brain dynamics modeling.

First, BrainPy delivers rich mathematical operators as essential elements to describe diverse brain 
dynamics models (Appendix 4). On the one hand, brain dynamics modeling involves conventional 
computation based on dense matrices. In Python scientific computing ecosystem, dense matrix oper-
ators have been standardized and popularized by NumPy (Harris et al., 2020), TensorFlow (Abadi 
et al., 2016), and PyTorch (Paszke et al., 2019). To reduce the cost of learning a new set of computing 
languages, dense matrix operators in BrainPy (including multi-dimensional arrays, mathematical oper-
ations, linear algebra routines, Fourier transforms, and random number generations) follow the syntax 
of those in NumPy, TensorFlow, and PyTorch so that most Python users can directly program in BrainPy 
with their familiar operator syntax. On the other hand, brain dynamics modeling has specific compu-
tation properties, such as sparse connections and event-driven computations, which are difficult to 
efficiently implement with conventional operators. To accommodate these needs, BrainPy provides 
dozens of dedicated operators tailored for brain dynamics modeling, including event-driven opera-
tors, sparse operators, and JIT connectivity operators. Compared to traditional dense matrix opera-
tors, these operators can reduce the running time of typical brain dynamics models by several orders 
of magnitude (see Efficient performance of BrainPy).

Second, BrainPy offers a repertoire of numerical solvers for solving differential equations (Appendix 
5). Differential equations are involved in most brain dynamics models. For ease of use, BrainPy’s numer-
ical integration of differential equations is designed as a Python decorator. Users define differential 
equations as Python functions, whose numerical integration is accomplished by calling integrator 
functions, for example, ​brainpy.​odeint() for ordinary differential equations (ODEs), ​brainpy.​
sdeint() for stochastic differential equations (SDEs), and ​brainpy.​fdeint() for fractional differ-
ential equations (FDEs). These integrator functions are designed to be general, and most numerical 
solvers for ODEs and SDEs are provided, such as explicit Runge–Kutta methods, adaptive Runge–
Kutta methods, and Exponential methods. For SDEs, BrainPy supports different stochastic integrals 
(Itô or Stratonovich) and different types of Wiener processes (scalar or multi-dimensional). As delays 
are ubiquitous in brain dynamics, BrainPy also supports the numerical integration of delayed ODEs, 
SDEs, and FDEs with various delay forms.

Third, BrainPy supports modular and composable programming and the associated object-oriented 
transformations (Appendix 6). To capture the fundamental characteristics of brain dynamics, which 
are modular, multi-scaled, and hierarchical (Meunier et  al., 2010), BrainPy follows the philosophy 
that ‘any dynamical model is just a Python class, and high-level models can be recursively composed 
by low-level ones’ (details will be illustrated in Flexible model building in BrainPy). However, such 
a modular and composable interface is not directly compatible with JIT compilers such as JAX and 
Numba, because they are designed to work with pure functions (Appendix 2). By providing object-
oriented transformations, including the JIT compilation for class objects and the automatic differenti-
ation for class variables, models defined with the above modular and composable interface can also 
benefit from the powerful transformations in advanced JIT compilers.

https://doi.org/10.7554/eLife.86365
https://github.com/brainpy/BrainPy
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Fourth, BrainPy offers a toolbox specialized for brain dynamics modeling. A typical modeling 
experiment involves multiple stages or processes, such as creating synaptic connectivity, initializing 
connection weights, presenting stimulus inputs, and analyzing simulated results. For the convenience 
of running these operations repeatedly, BrainPy presets a set of utility functions, including synaptic 
connection, weight initialization, input construction, and data analysis. However, this presetting does 
not prevent users from defining their utility functions in the toolbox.

Flexible model building in BrainPy
Brain dynamics models have the key characteristics of being modular, multi-scaled, and hierar-
chical, and BrainPy designs a modular, composable, and flexible programming paradigm to match 
these features. The paradigm is realized by the DynamicalSystem interface, which has the following 
appealing features.

DynamicalSystem supports the definition of brain dynamics models at any organization level. 
Given a dynamical system, regardless of its complexity, users can implement it as a Dynamical-
System class. As an example, Figure 2A demonstrates how to define a potassium channel model 
with DynamicalSystem, in which the initialization function defines parameters and states, and the 
update function specifies how the states evolve. In this process, BrainPy toolbox can help users quickly 
initialize model variables, synaptic connections, weights, and delays, and BrainPy operators and inte-
grators can support users to define model updating logic freely. In a similar fashion, other dynamical 
models, such as discontinuous neuron models (e.g., leaky integrate-and-fire model; Abbott, 1999), 
continuous neuron models (e.g., FitzHugh–Nagumo model; Fitzhugh, 1961), population models (e.g., 
Wilson–Cowan model; Wilson and Cowan, 1972), and network models (e.g., continuous attractor 
neural network; Wu et al., 2008), can be implemented by subclassing DynamicalSystem as standalone 
modules.

However, for complex dynamical models, such as Hodgkin–Huxley (HH)-typed neuron models 
or large-scale cortical networks, their model definitions can be achieved through the composition 
of subcomponents. All models defined with DynamicalSystem can be used as modules to form 
more complicated high-level models. As an example, Figure  2B demonstrates how an HH-typed 
neuron model is created by combining multiple ion channel models. Such composable program-
ming is the core of DynamicalSystem, and applies to almost all BrainPy models. For example, a 
synapse model consists of four components: synaptic dynamics (e.g., alpha, exponential, or dual 
exponential dynamics), synaptic communication (e.g., dense, sparse, or convolutional connections), 
synaptic output (e.g., conductance-, current-, or magnesium blocking-based), and synaptic plasticity 
(e.g., short- or long-term plasticity). Composing different realizations of these components enables 
to create diverse kinds of synaptic models. Similarly, various network models can be implemented by 
combining different neuron groups and their synaptic projections.

Remarkably, DynamicalSystem supports hierarchical composable programming, such that a 
model composed of lower-level components can hierarchically serve as a new component to form 
higher-level models. This property is highly useful for the construction of multi-scale brain models. 
Figure 2 demonstrates an example of recursively composing a model from channels (Figure 2A) to 
neurons (Figure 2B) to networks (Figure 2C) and to systems (Figure 2D, see Appendix 9 for details 
of the full model). It is worth pointing out that this hierarchical composition property is not shared 
by other brain simulators, and BrainPy allows for flexible control of composition depth according to 
users’ needs. Moreover, for user convenience, BrainPy provides dozens of commonly used models, 
including channels, neurons, synapses, populations, and networks, as building blocks to simplify the 
building of large-scale models.

Integrated modeling in BrainPy
BrainPy offers an integrated platform to comprehensively perform simulation, training, and analysis of 
brain dynamics models.

Model simulation
BrainPy designs the interface brainpy.DSRunner to simulate the dynamics of brain models. DSRunner 
can be used to simulate models at any level, including but not limited to channel (Figure 3A), neuron 
(Figure 3B), network (Figure 3C), and system (Figure 3D) levels.

https://doi.org/10.7554/eLife.86365
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Brain dynamics models often require intensive parameter searches to fit the experimental data, 
which is a computationally demanding task. BrainPy facilitates this process by supporting multiple 
parallel simulation methods. Firstly, the brainpy.running module offers convenient routines for 
concurrent executions based on the python multiprocessing mechanism. This method is flexible, but 

Figure 2. BrainPy supports modular and composable programming for building hierarchical brain dynamics models. (A) An ion channel model is 
defined as a subclass of brainpy.dynz.IonChannel. The __init__() function specifies the parameters and states, while the update() function 
defines the updating rule for the states. (B) An Hodgkin–Huxley (HH)-typed neuron model is defined by combining multiple ion channel models as a 
subclass of brainpy.dyn.CondNeuGroup. (C) An E/I balanced network model is defined by combining two neuron populations and their connections 
as a subclass of brainpy.DynSysGroup. (D) A ventral visual system model is defined by combining several networks, including V1, V2, V4, TEo, and 
TEpd, as a subclass of brainpy.DynSysGroup. For detailed mathematical information about the complete model, please refer to Appendix 9.

https://doi.org/10.7554/eLife.86365
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may introduce additional time overhead due to the model recompilation and reinitialization in each 
process. Secondly, most BrainPy models inherently support the automatic vectorization of ​jax.​vmap 
and automatic parallelization of ​jax.​pmap. These methods can avoid the recompilation and reinitial-
ization of models in the same batch, and automatically parallelize the model execution on the given 
machines. Figure 3E illustrates the simplicity of this batch simulation approach. By using a single line 
of functional calls, BrainPy models can run simultaneously with different parameter settings.

Model training
The use of machine-learning methods to train neural models is becoming a new trend for studying 
brain functions (Masse et al., 2019; Finkelstein et al., 2021; Laje and Buonomano, 2013; Sussillo 
et al., 2015; Saxe et al., 2021). BrainPy provides the brainpy.DSTrainer interface to support this 
utility. Different subclasses of DSTrainer provide different training algorithms, which can be used to 
train different types of models. For instance, the trainer brainpy.BPTT implements the algorithm 
of backpropagation through time, which is helpful for training spiking neural networks (Figure 4A) 
and recurrent neural networks (Figure 4B). Similarly, brainpy.OfflineTrainer implements offline 
learning algorithms such as ridge regression (Lukoševičius, 2012), brainpy.OnlineTrainer 
implements online learning algorithms such as FORCE learning (Sussillo and Abbott, 2009), which 
are useful for training reservoir computing models (Figure 4C). In a typical training task, one may try 
different algorithms that can be used to train a model. The unified syntax for defining and training 
models in BrainPy enables users to train the same model using multiple algorithms (see Appendix 
10). Figure 4D–F demonstrates that a reservoir network model can be trained with three different 
algorithms (online, offline, and backpropagation) to accomplish a classical task of chaotic time series 
prediction (Jaeger, 2007).

Since the training algorithms for brain dynamics models have not been standardized in the field, 
BrainPy provides interfaces to support the flexible customization of training algorithms. Specifically, 
OfflineTrainer and OnlineTrainer provide general interfaces for offline and online learning algo-
rithms, respectively, and users can easily select the appropriate method by specifying the fit_method 
parameter in OfflineTrainer or OnlineTrainer. Furthermore, the BPTT interface is designed 
to capture the latest advances in backpropagation algorithms. For instance, it supports eligibility 

Figure 3. Model simulation in BrainPy. The interface DSRunner supports the simulation of brain dynamics models at various levels. (A) The simulation of 
the potassium channel in Figure 2A. (B) The simulation of the HH neuron model in Figure 2B. (C) The simulation of the E/I balanced network, COBAHH 
(Brette et al., 2007) in Figure 2C. (D) The simulation of the ventral visual system model (the code please see Figure 2D, and the model please see 
Appendix 9). (E) Using jax.vmap to run a batch of spiking decision-making models (Wang, 2002) with inputs of different coherence levels. The left panel 
shows the code used for batch simulations of different inputs, and the right panel illustrates the firing rates under different inputs.

https://doi.org/10.7554/eLife.86365
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propagation algorithm (Bellec et al., 2020) and surrogate gradient learning (Neftci et al., 2019) for 
training spiking neural networks.

Model analysis
Analyzing model dynamics is as essential as model simulation and training because it helps unveil the 
underlying mechanism of model behaviors. Given a dynamical system, BrainPy provides the interface 
brainpy.DSAnalyzer for automatic dynamic analysis, and different classes of DSAnalyzer imple-
ment different analytical methods.

First, BrainPy supports phase plane and bifurcation analyses for low-dimensional dynamical 
systems. The phase plane is a classical and powerful technique for the analysis of dynamical systems 
and has been widely used in brain dynamics studies, including neuron models (e.g., Izhikevich model; 
Izhikevich, 2003) and population rate models (e.g., Wilson–Cowan model; Wilson and Cowan, 
1972). Figure 5A shows an example where many features of phase plane analysis, including nullcline, 
vector field, fixed points, and their stability, for a complex rate-based decision-making model (Wong 
and Wang, 2006) are automatically evaluated by several lines of BrainPy code. Bifurcation analysis is 
another utility of BrainPy, which allows users to easily investigate the changing behaviors of a dynam-
ical system when parameters are continuously varying. Figure 5B demonstrates the stability changes 
of the classical FitzHugh–Nagumo model (Fitzhugh, 1961) with one parameter varying can be easily 
inspected by the bifurcation analysis interface provided in BrainPy. Similarly, bifurcation analysis of 
codimension-2 (with two parameters changing simultaneously; Figure 5C) can be performed with the 

Figure 4. Model training in BrainPy. BrainPy supports the training of brain dynamics models from data or tasks. (A) Training a spiking neural network 
(Bellec et al., 2020) on an evidence accumulation task (Morcos and Harvey, 2016) using the backpropagation algorithm with brainpy.BPTT. (B) 
Training an artificial recurrent neural network model (Song et al., 2016) on a perceptual decision-making task (Britten et al., 1992) with brainpy.
BPTT. (C) Training a reservoir computing model (Gauthier et al., 2021) to infer the Lorenz dynamics with the ridge regression algorithm implemented 
in brainpy.OfflineTrainer. ‍x, y‍, and ‍z‍ are variables in the Lorenz system. (D–F) The classical echo state machine (Jaeger, 2007) has been trained 
using multiple algorithms to predict the chaotic Lorenz dynamics. The algorithms utilized include ridge regression (D), FORCE learning (E), and 
backpropagation algorithms (F) implemented in BrainPy. The mean squared errors between the predicted and actual Lorenz dynamics were 0.001057 
for ridge regression, 0.171304 for FORCE learning, and 1.276112 for backpropagation. Please refer to Appendix 10 for the training details.

https://doi.org/10.7554/eLife.86365
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same interface. BrainPy also supports bifurcation analysis for three-dimensional fast–slow systems, for 
example, a bursting neuron model (Rinzel, 1985). This set of low-dimensional analyzers is performed 
numerically so that they are not restricted to equations with smooth functions, but are equally appli-
cable to ones with strong and complex nonlinearity.

Second, BrainPy supports slow point computation and linearization analysis for high-dimensional 
dynamical systems. With powerful numerical optimization methods, one can find fixed or slow 
points of a high-dimensional nonlinear system (Sussillo and Barak, 2013). By integrating numer-
ical methods such as gradient descent and nonlinear optimization algorithms, BrainPy provides the 
interface brainpy.analysis.SlowPointFinder as a fundamental tool for high-dimensional 
analysis. Figure 5D demonstrates that the SlowPointFinder can effectively find a line of stable 
and unstable attractors in a CANN network (Wu et al., 2008). Furthermore, the linearized dynamics 
around the found fixed points can be easily inspected and visualized with SlowPointFinder inter-
face (Figure 5E).

Efficient performance of BrainPy
Simulating dynamical models efficiently in Python is notoriously challenging (Blundell et al., 2018). 
To resolve this problem, BrainPy leverages the JIT compilation of JAX/XLA and exploits dedicated 
primitive operators to accelerate the model running.

JIT compilation
In contrast to deep neural networks (DNNs), which mainly consist of computation-intensive opera-
tions (such as convolution and matrix multiplication), brain dynamics models are usually dominated by 
memory-intensive operations. Taking the classical leaky integrate-and-fire (LIF) neuron model (Abbott, 
1999) as an example, its computation mainly relies on operators such as addition, multiplication, and 
division. As shown in Figure 6A, we measure the running times of an LIF model and a matrix multi-
plication with the same number of floating-point operations (FLOPs) on both CPU and GPU devices. 
The results indicate that the LIF model is significantly slower than the matrix multiplication on both 
devices, despite having the same theoretical complexity. This reveals the existence of large overheads 
when executing brain dynamics models in Python. Moreover, these overheads become dominant 

Figure 5. Model analysis in BrainPy. BrainPy supports automatic dynamics analysis for low- and high-dimensional systems. (A) Phase plane analysis of 
a rate-based decision-making model (Wong and Wang, 2006). (B) Bifurcation analysis of codimension 1 of the FitzHugh–Nagumo model (Fitzhugh, 
1961), in which the bifurcation parameter is the external input Iext. (C) Bifurcation analysis of codimension 2 of the FitzHugh–Nagumo model 
(Fitzhugh, 1961), in which two bifurcation parameters Iext and a are continuously varying. (D) Finding stable and unstable fixed points of a high-
dimensional CANN model (Wu et al., 2008). (E) Linearization analysis of the high-dimensional CANN model (Wu et al., 2008) around one stable and 
one unstable fixed point.

https://doi.org/10.7554/eLife.86365
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when simulating large-scale brain networks, as they grow rapidly with the number of operators in the 
model.

To overcome this limitation, we employ the JIT compilation technique to dramatically reduce these 
overhead costs in BrainPy. The JIT compilation transforms the dynamic Python code into the static 
machine code during runtime, which can significantly reduce the time cost of Python interpretation. 
Specifically, we utilize JAX, which implements JIT compilation based on XLA (Appendix 2). The XLA 
JIT engine employs specialized optimizations for memory-intensive operators, for example, operator 
fusion, which alleviates memory access overhead by minimizing the requirement for intermediate 
data storage and redundant data transfers during the sequential execution of multiple unmerged 
operations. This renders the JIT compilation with XLA highly suitable for handling brain dynamics 
models. Figure 6A demonstrates that with the JIT compilation, the LIF model achieves a running 
speed comparable to that of the matrix multiplication operation Dot on the CPU and outperforms or 
matches it on the GPU (see Figure 6A, Appendix 11—figure 6A, and Appendix 11—figure 6B). To 
further illustrate the benefits of the JIT compilation, we apply it to a realistic brain simulation model, 
namely, the E/I balanced network model COBA (Vogels and Abbott, 2005). The results show that the 
JIT compilation boosts the running speed by 10 times on both the CPU and GPU compared to the 
case without JIT compilation (for CPU acceleration, see Figure 6B and Appendix 11—figure 6C; for 
GPU acceleration, see Figure 6C and Appendix 11—figure 6D).

Dedicated operators
Another key feature that distinguishes brain dynamics models from DNNs is that they usually have 
sparse connections and perform event-driven computations. For example, neurons in a network are 
typically connected with each other with a probability less than 0.2 (Potjans and Diesmann, 2014), 
and the state of a postsynaptic neuron is updated only when a presynaptic spike event occurs. These 
unique features greatly impair the efficiency of brain model simulation using conventional operators, 
even with the help of JIT compilation. To illustrate this, Figure 7A demonstrates that when imple-
menting a COBA network model with dense matrix-based operators, the majority of simulation time 

Figure 6. BrainPy accelerates the running speed of brain dynamics models through just-in-time (JIT) compilation. (A) Performance comparison between 
an LIF neuron model (Abbott, 1999) and a matrix–vector multiplication ‍Wv‍ (‍W ∈ Rm×m

‍ and ‍v ∈ Rm
‍). By adjusting the number of LIF neurons in a 

network and the dimension ‍m‍ in the matrix–vector multiplication, we compare two models under the same floating-point operations (FLOPs). The top 
panel: On the Central Processing Unit (CPU) device, the LIF model without JIT compilation (the ‘LIF’ line) shows much slower performance than the 
matrix–vector multiplication (the ‘Dot’ line). After compiling the whole LIF network into the CPU device through JIT compilation (the ‘LIF with JIT’ 
line), two models show comparable running speeds (please refer to Appendix 11—figure 6A for the time ratio). The bottom panel: On the Graphics 
Processing Unit (GPU) device, the LIF model without JIT shows several times slower than the matrix–vector multiplication under the same FLOPs. After 
applying the JIT compilation, the jitted LIF model shows comparable performance to the matrix–vector multiplication (please refer to Appendix 11—
figure 6B for the time ratio). (B, C) Performance comparison of a classical E/I balanced network COBA (Vogels and Abbott, 2005) with and without 
JIT compilation (the ‘With JIT’ line vs. the ‘Without JIT’ line). (B) JIT compilation provides a speedup of over ten times for the COBA network on 
the CPU device (please refer to Appendix 11—figure 6C for the acceleration ratio). (C) Similarly, after compiling the whole COBA network model into 
GPUs, the model achieves significant acceleration, several times faster than before (please refer to Appendix 11—figure 6D for the acceleration ratio). 
For experimental details, please see Appendix 11.

https://doi.org/10.7554/eLife.86365
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is consumed by synaptic computations on both CPU and GPU devices, and this issue becomes more 
pronounced as the network size increases (see ‘CPU, Dense’ and ‘GPU, Dense’ lines in Figure 7A).

In order to address this challenge, BrainPy introduces specialized primitive operators designed to 
accelerate event-based computations within sparsely connected networks. These specialized opera-
tors encompass transformations among variables associated with presynaptic neurons, postsynaptic 
neurons, and synapses, as well as sparse computation operators, event-driven computation operators, 
and JIT connectivity operators (refer to Appendix 4 for more details). By employing these specialized 
operators, BrainPy significantly reduces the time required for synaptic computations. As depicted 
in Figure 7B, the specialized event-based operators result in a remarkable speedup of the classical 
COBA network model by orders of magnitude (see Appendix 11—figure 7A). Similar speed improve-
ments are observed when utilizing GPU computations, as shown in Figure 7C and Appendix 11—
figure 7B. Furthermore, an examination of the time proportion for synaptic computations indicates 
that the utilization of specialized operators ensures a consistent time ratio for synaptic computation, 
even as the network size increases (see ‘CPU, Event’ and ‘GPU, Event’ lines in Figure 7A).

Benchmarking
To conduct a formal assessment of the running efficiency of BrainPy, we conducted a comparative 
analysis against several widely used brain simulators, namely NEURON (Hines and Carnevale, 1997), 
NEST (Gewaltig and Diesmann, 2007), Brian2 (Stimberg et al., 2019), Brian2CUDA (Alevi et al., 
2022), GeNN (Yavuz et  al., 2016), and Brian2GeNN (Stimberg et  al., 2020). Our benchmarking 
focused on measuring the simulation speeds of these frameworks for models with sparse and dense 
connectivity patterns. The tests were performed using three common computing platforms: CPU, 
GPU, and TPU. This comprehensive assessment provides insights into BrainPy’s efficiency relative to 
other mainstream simulators across different hardware configurations and network scales.

To evaluate the performance of brain simulators on sparsely connected networks, we utilized 
two established E/I balanced network models with LIF and HH neuron types: the COBA (Vogels 
and Abbott, 2005) and COBAHH (Brette et al., 2007) networks (experimental details please see 
Appendix 11). COBA consists of excitatory and inhibitory LIF neurons with sparse random connectivity. 

Figure 7. BrainPy accelerates the running speed of brain dynamics models through dedicated operators. (A) Without dedicated event-driven operators, 
the majority of the time is spent on synaptic computations when simulating a COBA network model (Vogels and Abbott, 2005). The ratio significantly 
increases with the network size on both Central Processing Unit (CPU) and Graphics Processing Unit (GPU) devices (please refer to the lines labeled as 
‘CPU, Dense’ and ‘GPU, Dense’ which correspond to the models utilizing the dense operator-based synaptic computation and running on the CPU 
and GPU devices, respectively). With the event-based primitive operators, the proportion of time spent on synaptic computation remains constant 
regardless of network size (please refer to the lines labeled as ‘CPU, Event’ and ‘GPU, Event’ which represent the models performing event-driven 
computations on the CPU and GPU devices, respectively). (B) On the CPU device, the COBA network model with event-based operators (see the ‘With 
dedicated OP’ line) is accelerated by up to three orders of magnitude compared to that without dedicated operators (see the ‘Without dedicated 
OP’ line). Please refer to Appendix 11—figure 7A for the acceleration ratio. (C) The COBA network model exhibited two orders of magnitude 
acceleration when implemented with event-based primitive operators on a GPU device. This performance improvement was more pronounced for 
larger network sizes on both CPU and GPU platforms. Please refer to Appendix 11—figure 7B for the acceleration ratio. For experimental details, 
please see Appendix 11.

https://doi.org/10.7554/eLife.86365
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COBAHH uses the same network architecture but replaces the LIF neurons with biophysically detailed 
HH neuron models. On the CPU platform, consistent with previous benchmark experiments (Stim-
berg et al., 2019), we find that NEURON and NEST simulators exhibit suboptimal performance when 
running on a single node (see Figure 8A and Figure 8B). In contrast, BrainPy and Brian2 demonstrate 
comparable performance, showcasing a remarkable speed advantage of one to two orders of magni-
tude over NEURON and NEST. As both Brian2 and BrainPy support single-precision floating-point 
computation (x32), we conducted an analysis of their performances in the context of x32 computa-
tion. In order to ensure accurate simulation results with x32 computation, we examined the simulation 
outcomes across various simulators and platforms (refer to Appendix 11). Our evaluation demonstrated 
that BrainPy outperforms Brian2 in terms of speedup for numerical integration using x32 arithmetic on 
CPU platforms. On the GPU platform, GeNN demonstrates optimal linear scaling of execution time on 
both COBA and COBAHH network models as the network size increases (Figure 8D and Figure 8E). 
In contrast, BrainPy and Brian2CUDA exhibit a slight overhead and maintain a constant running time 
when dealing with small network sizes. However, when it comes to network scaling, BrainPy and Brian-
2CUDA outperform GeNN. Particularly as the network size grows, GeNN exhibits significantly slower 
performance. Additionally, the utilization of single-precision floating point in GeNN, Brian2CUDA, 
and BrainPy further enhances their GPU performance (excluding the COBA model in Brian2CUDA). 
Once again, we observed that BrainPy’s x32 mode achieves a more pronounced performance gain. 
Particularly, in the COBAHH model, BrainPy’s x32 computation demonstrates a substantial speedup 
compared to other brain simulators. BrainPy also enables model deployment on TPUs. However, since 
TPUs currently lack native support for sparse computations and toolchains for operator customization, 
we could not leverage event-driven sparse operators to simulate the sparsely connected COBA and 
COBAHH networks. Instead, we used dense matrix multiplication with masking to approximate the 

Figure 8. Speed comparison of NEURON, Nest, Brian2, and BrainPy under different computing devices. Comparing speeds of different brain simulation 
platforms using the benchmark model COBA (Vogels and Abbott, 2005) on both the Central Processing Unit (CPU) (A) and Graphics Processing Unit 
(GPU) (D) devices. NEURON is truncated at 16,000 neurons due to its very slow runtime. Comparing speeds of different platforms using the benchmark 
model COBAHH (Brette et al., 2007) on both the CPU (B) and GPU (E) devices. Speed comparison of a spiking decision-making network (Wang, 2002) 
on CPU (C), GPU, and Tensor Processing Unit (TPU) (F) devices. Please refer to Appendix 11 for experimental details, and Appendix 11—figure 8 for 
more data.

https://doi.org/10.7554/eLife.86365
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sparse connectivity. Unfortunately, this led to significantly slower performance for the two sparsely 
connected models compared to the results obtained on GPUs (please refer to Appendix 11—figure 
8). Moreover, the use of masked matrices resulted in a quadratic increase in memory usage. Conse-
quently, the benchmarking experiments of COBA and COBAHH networks on TPU were limited to a 
scale of ‍4e4‍ neurons.

To evaluate the performance of brain simulators on densely connected networks, we utilized the 
decision-making network proposed by Wang, 2002. Assessing computational efficiency for dense 
connectivity is important for simulating models that feature dense recurrent connections (Motta et al., 
2019) and facilitating the integration with DNNs which commonly employ dense connectivity between 
layers (Tavanaei et al., 2019). Due to the considerably slower speeds observed and the absence of 
a publicly available implementation of a decision-making network model using NEURON and NEST, 
we have excluded them from this benchmark test. Additionally, we did not include a comparison 
with GeNN because Brian2GeNN does not support the translation of the advanced Brian2 feature 
employed in this model. Our evaluation showcases that Brian2, Brian2CUDA, and BrainPy exhibit 
comparable performance on networks of small sizes. However, BrainPy demonstrated substantially 
better scalability on larger network sizes (see Figure 8C and Figure 8F). For these types of simu-
lation workloads with dense connectivity, TPUs significantly outperformed CPUs and GPUs. Since 
TPUs primarily utilize low-precision floating point (especially floating point with 16 bits) and are less 
optimized for double precision, we only tested the model with single-precision operations. Our evalu-
ations clearly showcase the excellent scalability of the network as the size increases (refer to the GPU 
and TPU comparison in Figure 8F).

Extensible architecture of BrainPy
Brain science, as well as brain dynamics modeling, is progressing rapidly. Along with the gigantic proj-
ects on brain research worldwide, new data and knowledge about brain structures and functions are 
constantly emerging, which impose new demands on brain dynamics modeling frequently, including, 
for instance, the simulation and analysis of large-size neural circuits, and the training of neural models 
based on recorded neural data. To be a general-purpose brain dynamics programming framework, the 
architecture of the framework must be extensible to conveniently take up new advances in the field. 
Current brain simulators based on descriptive languages have difficulty achieving this goal, since the 
extension of a new component through the descriptive interface needs to be done in both high- and 
low-level programming languages (Appendix 1). Through the elaborate architecture design, BrainPy 
enables easy extension with new infrastructure, new utility functions, and new machine-learning 
methods, all performed in our convenient Python interface.

First, for infrastructure (Figure  1A), BrainPy provides a convenient way of customizing a new 
tool by defining a new subclass. For example, a new Runge–Kutta integrator can be created by 
inheriting from ​brainpy.​ode.​ExplicitRKIntegrator and specifying the Butcher tableau; a new 
connector can be implemented by deriving from ​brainpy.​conn.​TwoEndConnector and over-
riding initialization function and connection building function (see Appendix 7 for details). Since 
models and modeling methods have not yet been standardized in the field, the abstraction and 
summarization of primitive operators for brain dynamics modeling are largely lacking. Although 
BrainPy has provided dozens of dedicated operators, it would be too soon to establish a complete 
operator library for brain dynamics modeling. To simplify the process of operator customization, 
BrainPy provides the ​brainpy.​math.​CustomOpByNumba interface that allows users to write and 
register an operator directly with Python syntax. Specifically, to customize a primitive operator, users 
need to subclass CustomOpByNumba and implement two Python functions: the abstract evaluation 
function eval_shape() and concrete computation function con_compute() (see Appendix 8 for 
more information). Notably, this approach differs from the operator customization in most DNN 
frameworks, in which low-level operators must be implemented through C++ code. We confirmed 
that operators customized through the BrainPy interface have comparable and even better perfor-
mance than those written in C++ (please refer to Figure 9 for the results and Appendix 8 for the 
source code for comparison).

Second, for functional modules (Figure 1B), BrainPy enables an extension of a new module with 
BrainPy infrastructure, as the latter can be arbitrarily fused, chained, or combined to create new 
functions. For example, an analysis toolkit can be customized with BrainPy operators. Moreover, all 
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customizations in BrainPy can benefit from the acceleration of JIT compilation, and users’ attention 
only needs to focus on the functionalities they require.

Third, for interactions with AI, BrainPy supports the easy extension of new machine-learning 
methods. Machine-learning approaches are becoming important tools for brain dynamics modeling 
(Saxe et  al., 2021). Existing brain simulators have difficulty incorporating the latest advances in 
machine-learning research (Appendix 1). Built on top of JAX, BrainPy has the inherent advantage of 
being linked to the latest developments in machine learning. We noticed that JAX has a rich ecosystem 
of machine learning, including DNNs, graph neural networks, reinforcement learning, and probabi-
listic programming. To integrate this rich ecosystem as part of the users’ program, BrainPy is designed 
to be compatible with other JAX libraries. First, the object-oriented transformations in BrainPy can be 
applied to pure functions, thus enabling most JAX libraries with a functional programming style to be 
directly used as a part of the BrainPy program. Second, users can transform models in other libraries 
as BrainPy objects. For example, using ​brainpy.​dnn.​FromFlax, users can treat any artificial neural 
network model in Flax (Heek, 2020) as a BrainPy module. Alternatively, users can convert a BrainPy 
model into a format that is compatible with other JAX libraries. For instance, ​brainpy.​dnn.​ToFlax 
supports interpreting a dynamical system in BrainPy as a Flax recurrent cell, so that brain models in 
BrainPy can also be used in a machine-learning context.

Discussion
The field of brain dynamics modeling has long been constrained by a lack of general-purpose 
programming frameworks that can support users to freely define brain dynamics models across 
multiple scales, comprehensively perform simulation, optimization, and analysis of the built models, 

Figure 9. The speed comparison of event-based operators customized by C++ XLA custom call and our Python-level registration interface. ‘C++ 
Operator’ presents the simulation time of a COBA network using the event-based operator coded by C++, and ‘Python Operator’ shows the simulation 
speed of the network that is implemented through our operator registered by the Python interface.

https://doi.org/10.7554/eLife.86365
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and conveniently prototype new modeling methods. To address this challenge, we have developed 
BrainPy, a general-purpose programming framework for brain dynamics modeling. With a combined 
focus on usability, performance, functionality, and extensibility, BrainPy offers a number of appealing 
properties, including:

•	 Pythonic programming. In contrast to other brain simulators (Gewaltig and Diesmann, 2007; 
Davison et al., 2008; Beyeler et al., 2015; Stimberg et al., 2019; Hines and Carnevale, 1997; 
Dura-Bernal et al., 2019; Dai et al., 2020a; Goodman, 2010; Blundell et al., 2018; Tikidji-
Hamburyan et al., 2017), BrainPy enables Pythonic programming. It allows users to implement 
and control their models directly using native Python syntax, implicating high transparency to 
users. This transparency is crucial for research, as standard Python debugging tools can be inte-
grated into the implementation process of novel models, and is also appealing for education.

•	 Integrative platform. BrainPy allows unprecedentedly integrated studying of brain dynamics 
models. Its multi-scale model-building interface facilitates the construction of data-driven 
models based on the structural, functional, or cellular data (Potjans and Diesmann, 2014), 
while its diverse model training supports enable to training brain dynamics models based on 
cognitive tasks that can be used to evaluate or optimize models of different brain functions 
(Saxe et al., 2021). BrainPy provides the first step toward an integrative framework supporting 
comprehensive brain modeling across different organization levels and problem dimensions 
(D’Angelo and Jirsa, 2022).

•	 Intrinsic flexibility. Inspired by the success of general-purpose programming in Deep Learning 
(Abadi et al., 2016; Paszke et al., 2019), BrainPy provides not only functional libraries but also 
infrastructure. This is essential for users to create models and modeling approaches beyond the 
predefined assumptions of existing libraries.

•	 Efficient performance. One of the key strengths of BrainPy lies in its ability to compile models 
defined in the framework into binary instructions for various devices, including CPU, GPU, and 
TPU. This compilation process ensures high-running performance comparable to native C or 
CUDA, enabling researchers to efficiently execute their models.

•	 Extensible architecture. BrainPy features an extensible architecture. New primitive operators, 
utilities, functional modules, machine-learning approaches, etc., can be easily customized 
through our Python interface.

Limitations
While BrainPy’s native Python-based object-oriented programming paradigm confers numerous 
advantages compared to existing brain simulators, this novel programming approach also imposes 
certain limitations that must be acknowledged.

Most existing brain simulators employ a domain-specific language to define brain dynamics 
models. For example, Brian2 (Stimberg et al., 2019) designs an equation-oriented specification that 
can describe a wide variety of neural models; NeuroML (Cannon et al., 2014) employs an XML-based 
specification that facilitates the sharing and reuse of neuronal models; NetPyNE (Dura-Bernal et al., 
2019) utilizes a high-level JSON-compatible format composed of Python lists and dictionaries to 
support multi-scale neuronal modeling; BMTK (Dai et al., 2020a) similarly employs a JSON-based 
language built on the SONATA file format (Dai et al., 2020b) to deliver consistent multi-resolution 
experiences via integration with established tools like NEURON and NEST. This declarative program-
ming approach benefits from a clear separation between the mathematical model description and its 
computational realization. It frees users from low-level implementation details, and enables intuitive 
specification of complex models in a concise and semantically clear manner. In contrast, the object-
oriented programming used in BrainPy exposes the implementation details to users, and adds some 
complexity to the code. For example, users should be aware of the differences between dense and 
sparse connectivity schemes, online or offline training schemes, nonbatch or batch computing modes, 
etc.

The current objectives of BrainPy center on enabling an integrative platform for simulating, 
training, and analyzing large-scale brain network models while retaining biologically relevant details. 
Incorporating excessive biological details would be extremely computationally expensive and difficult 
for such integration. Consequently, detailed spatial modeling with complex compartmental dynamics, 
as facilitated by tools like NEURON (Hines and Carnevale, 1997) and Arbor (Akar et al., 2019), 
exceeds BrainPy’s present scope. Moreover, in order to solve the governing partial differential equa-
tions, implicit numerical methods (e.g., Crank–Nicolson, implicit Euler) are often essential for stable 
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multi-compartment model simulation. As BrainPy does not currently support fully implicit solvers, it 
is ill suited to the needs and preferences of modelers focused on multi-compartment dynamics in its 
current form. Our emphasis remains on balancing biological fidelity and computational tractability for 
large-scale network modeling and training.

Based on the GSPMD mechanism of the XLA compiler (Xu et al., 2021), the current version of 
BrainPy supports various parallelism paradigms, such as data parallelism and model parallelism. 
Data parallelism involves dividing the training data across multiple devices, where each device inde-
pendently computes and updates the model parameters using its assigned data subset. On the other 
hand, model parallelism entails partitioning the model across multiple devices, with each device 
responsible for computing a specific portion of the model computations. These parallelism paradigms 
are particularly applicable to brain dynamics models with dense connections or structured sparsity. 
However, the GSPMD parallelism mechanism is not straightforwardly applicable to sparse spiking 
neural networks, and requires non-trivial changes to support sparse computations. Therefore, another 
limitation of the current BrainPy framework is that it does not support the general parallelization of 
sparse spiking neural network models on multiple computing devices. State-of-the-art brain simula-
tors now offer powerful parallelization capabilities for simulating large-scale SNNs. For instance, NEST 
(Gewaltig and Diesmann, 2007) and NEURON (Hines and Carnevale, 1997) simulators provide 
convenient and efficient commands through the MPI interface to define, connect, and execute large-
scale networks. However, the array-based data structure in BrainPy requires a different approach to 
parallelize spiking neural networks.

Future works
Although BrainPy offers substantial capabilities for brain dynamics modeling, fulfilling all demands in 
this domain will require large efforts for further ecosystem development.

First, supporting the efficient implementation of multi-compartment neuron models is needed to 
enable biologically detailed modeling at the subcellular level (Poirazi and Papoutsi, 2020). Multi-
compartment neurons incorporate complex dendritic morphologies and spatially distributed ion 
channels that more precisely capture neural information processing. A substantial number of studies 
have demonstrated that dendritic mechanisms convey significant advantages to simplified network 
models of varying levels of abstraction (Bono and Clopath, 2017; Legenstein and Maass, 2011; Wu 
et al., 2018). Efficiently implementing such models in BrainPy could significantly advance detailed 
biophysical modeling and bridge the machine-learning-oriented SNN models.

Second, developing parallel primitive operators and memory-efficient algorithms will be critical 
for ultra-large-scale brain simulations approaching biological realism (>billions of neurons). Massive 
parallelization across multiple computing devices is currently the main approach to achieve such scale. 
For instance, the NEST simulator uses optimized data structures and algorithms (Kunkel et al., 2011; 
Kunkel et al., 2014; Jordan et al., 2018) to enable large-scale simulation on supercomputers and 
clusters. Moving forward, a priority for BrainPy will be parallelizing its array-based data structures 
to simulate gigantic brain models across multiple nodes. Moreover, rather than solving large-scale 
networks exactly, BrainPy aims to find approximating algorithms that overcome the ‍O(n2)‍ complexity, 
permitting very large-scale modeling on much less computing devices.

Third, integrating BrainPy models with modern accelerators and neuromorphic computing systems 
(Schuman et al., 2017) could offer a more efficient and scalable approach for simulating large-scale 
brain dynamics models on cutting-edge hardware accelerators. On the one hand, the implementation 
of sparse and event-driven operators is necessary for TPUs. While TPUs have demonstrated promising 
performance and efficiency for machine-learning workloads, our experiments indicate that they are 
less efficient than GPUs when simulating sparse biological brain network models (see Appendix 11—
figure 8). This inefficiency is primarily due to the lack of dedicated operators for sparse and event-
driven brain computations in current TPUs. In the future, we plan to explore the development of TPU 
kernels to enable scalable and efficient brain dynamics programming on TPU hardware accelerators. 
On the other hand, neuromorphic systems incorporate custom analog circuits that mimic neurobiolog-
ical architectures and dynamics, resulting in significantly higher power efficiency compared to conven-
tional digital hardware. By mapping BrainPy models onto neuromorphic platforms, simulations can be 
accelerated, and large-scale models can be executed efficiently. However, the development of trans-
lation tools and mapping optimizations is necessary to fully harness the potential of these systems.

https://doi.org/10.7554/eLife.86365
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By addressing these limitations and enhancing BrainPy’s capabilities in these areas, we can further 
advance its goal of serving as a comprehensive programming framework for modeling brain dynamics. 
This will enable users to delve into the dynamics of brain or brain-inspired models that combine 
biological insights with machine learning. The BrainPy team encourages collaboration with the 
research community to expand this modeling ecosystem and facilitate a deeper understanding of 
brain dynamics.
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are publicly available at the website of https://brainpy-examples.readthedocs.io/. The source codes 
of these examples are available at https://github.com/brainpy/examples/ (Wang, 2023). All the codes 
to reproduce the results in the paper can be found at the following GitHub repository: https://github.​
com/brainpy/brainpy-elife-reproducibility/ (copy archived at Wang, 2024).
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Appendix 1

Review of the existing programming paradigm
In general, the existing tools for brain dynamics programming can be roughly divided into two 
categories: low-level programming and descriptive language.

The representatives of the first category include NEURON (Hines and Carnevale, 1997), NEST 
(Gewaltig and Diesmann, 2007), CARLsim (Beyeler et al., 2015; Chou et al., 2018), NeuronGPU 
(Golosio et al., 2021), Arbor (Akar et al., 2019), and others. These simulators offer a library of 
standard models written in C/C++ (particularly for NEST), CUDA (for CARLsim, NeuronGPU, and 
Arbor), or domain-specific languages (for NEURON and Arbor) to ensure efficient execution, 
along with a user-friendly Python interface for ease of use. Users can create neural networks in 
Python by utilizing the neuron and synapse models provided in the library. However, when a new 
model is required, users must learn to program using the low-level language. This significantly 
increases the learning cost and restricts the flexibility in defining new models (Tikidji-Hamburyan 
et al., 2017).

The second category tools include Brian (Goodman and Brette, 2008), Brian2 (Stimberg et al., 
2014; Stimberg et al., 2019), ANNarchy (Vitay et al., 2015), GeNN (Yavuz et al., 2016), BMTK 
(Dai et  al., 2020a), NetPyNE (Dura-Bernal et  al., 2019), NeuroML (Gleeson et  al., 2010), and 
NMODL (Krzhizhanovskaya et  al., 2020), which employ a code generation approach based on 
descriptive languages. Descriptive simulators allow users to create new models based on convenient 
descriptions (such as text, Goodman and Brette, 2008; Stimberg et al., 2014; Stimberg et al., 
2019; Vitay et al., 2015; JSON, Dai et al., 2020a; Dura-Bernal et al., 2019; XML files, Gleeson 
et  al., 2010; or customized languages, Krzhizhanovskaya et  al., 2020) and then translate the 
descriptions into low-level codes to speed up model running. In such a way, descriptive simulators 
enable model customization based on high-level descriptive languages and ensure efficient running 
by generating low-level codes.

Currently, descriptive language has become a standard approach for brain simulation (Blundell 
et al., 2018). Simulators employing this first approach also start to provide their descriptive language 
interface for code generation. For instance, the NEST simulator provided its domain-specific language 
NESTML (Plotnikov et al., 2016) to describe stereotypical neuron and synapse models. Similarly, the 
NEURON simulator recently released its modern descriptive interface NetPyNE (Dura-Bernal et al., 
2019), which employs the standard JSON format to allow users to describe neural circuit models 
by composing the existing available NEURON building block models. However, users still need to 
code based on its low-level programming interface to customize new models for channels, neurons, 
or synapses.

Descriptive languages have been highly successful for brain simulation (Blundell et  al., 
2018). A major benefit of these declarative approaches is the clear separation between model 
specification and implementation. This frees users from low-level programming details, enabling 
them to intuitively specify complex models in a concise, semantically clear way. The declarative 
nature of descriptive languages allows modelers to focus on computational neuroscience instead 
of implementation specifics. This has enabled rapid prototyping and sharing of models in the 
field. Overall, descriptive simulation languages have greatly improved modeler productivity thanks 
to their high-level, implementation-agnostic nature. However, they have intrinsic limitations on 
transparency, extensibility, and flexibility. One prominent feature of these descriptive languages is 
that they completely separate the model definition from the simulation, and therefore are not directly 
executable (Blundell et al., 2018). This kind of programming paradigm will cause great restrictions 
on usability and flexibility because it disables model debugging, error correction, and direct logic 
controlling. Moreover, descriptive languages are usually designed for specific kinds of models or one 
particular modeling approach. They are written in more than two programming languages: one is 
based on a low-level language (e.g., C++, CUDA) to implement its core functionality, and the other 
is based on a high-level language (e.g., Python, Matlab) for ease of use. Once they are not tailored 
to users’ needs, extensions to accommodate new components must be made in both high- and 
low-level languages, which is hard or nearly impossible for normal users. What is more, descriptive 
languages greatly reduce the expressive power of a general-purpose programming language and 
make it hard to describe all aspects of a simulation experiment, including clipping variables out 
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of bounds, input–output relations, model debugging, code optimization, dynamics analysis, and 
others.

In summary, significant challenges to transparency, flexibility, efficiency, and extensibility are still 
present in the existing programming paradigm for brain simulation. We can draw the conclusion that 
current software solutions cannot lead us to a general-purpose programming framework that allows 
us to freely define brain dynamics models in various application domains.

https://doi.org/10.7554/eLife.86365
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Appendix 2

JIT compilation and JIT compilers
A notorious challenge in scientific computing is the trade-off between usability and efficiency. The 
former seeks the fast prototyping of thoughts and ideas, whereas the latter pursues efficient code 
execution. For a long time in the past, it was difficult to strike a balance between the two. For 
example, statically typed compiled programming languages such as C or C++ are incredibly efficient 
in code execution, but their productivity is relatively low due to their complex and heavy syntax. 
In contrast, dynamically typed interpreted programming languages like Python and R are easy to 
learn and use, but they have slow running speeds. Nowadays, with the increasing complexity of 
models, the demand for both usability and efficiency has increased dramatically. Fortunately, recent 
advancements in just-in-time (JIT) compilation technology (Lattner and Adve, 2004; Lattner et al., 
2020) have provided viable answers to this two-language problem. In particular, a new generation 
of computational engines based on JIT compilation (Aycock, 2003) has begun to have an impact on 
a variety of scientific computing disciplines.

The JIT compilation can be seen as the combination of the statically typed compilation and 
dynamically typed interpretation. It benefits from both the convenience of dynamic high-level 
languages like Python and the efficiency of static low-level languages such as C++. At the start of a 
program execution, a JIT compiler acts like an interpreter. It runs your code step by step, and can 
output the intermediate results at the run-time for debugging. However, if some hot code snippets 
that are executed frequently, for example, certain functions or loop bodies, are detected or manually 
labeled, they will be submitted to the JIT compiler for compilation and storage. In this sense, it acts 
like a statically typed compiler. Once the compiled code snippets are entered again, the program 
will directly execute the compiler-generated low-level code without time-consuming interpreting 
again. Hot code snippets can be automatically detected by the JIT compiler, or be manually labeled 
by users.

JIT compilation is a mature and well-established technology. It has been adopted in modern 
programming languages like JAVA, Julia, and Python. JAVA language provides JIT compilation in its 
JAVA virtual machine (JVM) to accelerate the execution of JAVA code (Grcevski et al., 2004). Java 
source code is first compiled into the platform-independent Java bytecode (.class file). Then, JVM 
loads the bytecode, interprets it, and executes it. To increase the running speed, JVM detects code 
that is frequently called through the hotspot detection and submits its bytecode to the JIT compiler 
to compile them into machine code. For the code with lower frequency, executing it through the 
JVM interpretation can save the time of the JIT compilation; while for the hot code frequently called, 
JIT compilation can significantly improve the running speed after the code is compiled. However, 
compared with Python, JAVA has poor ecosystem support for numerical computing. Its JIT is not 
specialized in numerical computing, but in general domains.

Julia (Bezanson et  al., 2017), another dynamic high-level programming language, is recently 
proposed for high-performance scientific computing. Julia features intuitive, productive, and 
general-purpose syntax inspired by the success of Python, Matlab, and C++. Moreover, it achieves 
attractive performance through the JIT compilation based on the LLVM compiler infrastructure 
(Lattner and Adve, 2004). In a remarkably short time, Julia has provided excellent routines for 
mathematical functions, machine-learning algorithms, data processing tools, visualization utilities, 
and others. However, Julia is still young. Costs, such as lack of familiarity, rough edges, correctness 
bugs, and continual language changes, are still imposed on normal users.

Python is a well-known and popular interactive dynamic programming language. It has a long history 
in numerical computing (Dubois et al., 1996; Harris et al., 2020). The ecosystem of scientific computing, 
including array programming (Harris et al., 2020), scientific algorithms (Virtanen et al., 2020), machine 
learning (Pedregosa et al., 2011), deep learning (Abadi et al., 2016; Paszke et al., 2019; Frostig 
et al., 2018), image processing (van der Walt et al., 2014), data analysis and statistics (McKinney, 
2011), network analysis (Hagberg and Swart, 2008), visualization (Hunter, 2007), and many others, has 
been well established in Python. Before Julia, the JIT compilation was introduced into Python by PyPy 
in 2007. Later, other attempts, including Pyston, Pyjion, Psyco, JitPy, HOPE, etc., are proposed. With a 
long history of JIT development, Python nowadays has provided mature platforms of JIT compilation 
focusing on numerical computing. These numerical JIT platforms include Numba (Lam et al., 2015), 
JAX (Frostig et al., 2018), and XLA (Sabne, 2020). Each of them has its own characteristics.

https://doi.org/10.7554/eLife.86365
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JAX (Frostig et al., 2018) is a flourishing machine-learning library developed by Google. It aims to 
provide high-level numerical functions to help users fast prototype machine learning ideas. Moreover, 
these numerical functions can benefit from powerful functional transformations, like automatic 
differentiation grad, JIT compilation jit, automatic vectorization vmap, and parallelization pmap. 
JAX makes heavy use of XLA (Sabne, 2020) (see the following text) for code optimization. Specifically, 
for ease of use, high-level numerical functions in JAX are NumPy like. JAX provides many numerical 
functions in NumPy, including basic mathematical operators, linear algebra functions, and Fourier 
transform routines. However, some fundamental designs are significantly different from NumPy, for 
instance, the well-established syntax for in-place updating and random samplings. This is the reason 
why we provide another set of numerical functions consistent with NumPy. In addition to its NumPy-
like API, JAX provides a wonderful set of composable functional transformations. Among them, 
automatic differentiation in JAX supports both forward and backward modes for arbitrary numerical 
functions. It can take derivatives of a function with a large subset of Python syntax, including loops, 
conditions, recursions, and closures. Moreover, JAX utilizes XLA to JIT compile your Python code 
on modern devices, like Central Processing Units (CPUs), Graphics Processing Units (GPUs), and 
Tensor Processing Units (TPUs). It can significantly accelerate the execution speed of your code and 
allows you to get maximal performance without having to leave Python. JAX also provides automatic 
vectorization or batching. It supports transforming loops to vector operations via a single functional 
call vmap. What’s more, JAX delivers pmap to express single-instruction multiple-data programs. 
Applying pmap to a function will JIT compile and execute the code in parallel on XLA devices, 
like multiple GPUs or TPU cores. Similar to vmap, pmap transformation maps a function over array 
axes. But what is different is that the former vectorizes functions by compiling the mapped axis as 
primitive operations, whereas the latter replicates the function and runs each replica on its own XLA 
device in parallel. Automatic differentiation and compilation in JAX can be composed arbitrarily to 
enable rapid experimentation of novel algorithms.

XLA (Sabne, 2020) is a domain-specific linear algebra compiler developed by Google that aims 
to improve the execution speed, memory usage, portability, and mobile footprint reduction of 
machine-learning algorithms. XLA compiler provides support for JIT compilation based on LLVM 
(Lattner and Adve, 2004). The front-end program (e.g., JAX) which wants to take advantage of 
the JIT compilation of XLA should first define the computation graph as ‘High-Level Optimizer IR’ 
(HLO IR). Then, XLA takes this graph defined in HLO IR and compiles it into machine instructions for 
different backend architectures. Currently, XLA supports JIT compilation on backend devices of x86-
64 CPUs, NVIDIA GPUs, and Google TPUs. XLA is designed for easy portability on new hardware. 
It provides an abstract interface that a new hardware device can implement to create a backend to 
run existing computation graphs. Instead of implementing every existing operator for new hardware, 
XLA provides a simple and scalable mechanism that can retarget different backends. This advantage 
may be valuable for neuromorphic computing (Schuman et al., 2017), because new neuromorphic 
hardware can be interfaced as a new backend of XLA computation.

Numba (Lam et al., 2015) is a JIT compiler for numerical functions in Python. Similar to JAX, 
Numba supports the JIT compilation of a subset of Python and NumPy code based on the LLVM 
compiler. However, different from JAX which accelerates the computation flow composed of high-
level operators, Numba pays more attention to the acceleration of loop-based functions. Numba 
achieves excellent optimizations on Python functions with a lot of loops. It allows users to write 
fine-grained code with native Python control flows and meanwhile obtains the running speed 
approaching C. This is a huge advantage compared to JAX because JAX does not support the 
automatic vectorization of a for-loop function.

https://doi.org/10.7554/eLife.86365
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Appendix 3
Continuous integration and documentation generation
To ensure any code changes do not introduce unintended bugs or side effects, we standardized 
the development process and enabled the automatic continuous integration (CI) of BrainPy with 
GitHub Actions. Moreover, to update the tutorial and documentation with the latest code changes, 
we automated the documentation building of BrainPy with Read the Docs. Appendix 3—figure 1 
illustrates the whole workflow of BrainPy development. First, any code change should be proposed 
through GitHub Pull Request. Once a Pull Request is opened, CI pipelines are triggered to test 
BrainPy codes on Windows, Linux, and macOS platforms (Appendix 3—figure 1 (1)). After all test 
suites are passed, the code reviewer should manually inspect the significance and correctness 
of the proposed code changes again. If all things are fine, the reviewer can merge the code into 
the master branch (Appendix 3—figure 1 (2)). After merging, a new set of test cases is triggered 
automatically to test that the latest BrainPy codebase does not have bugs (Appendix 3—figure 1 
(3)). Besides, the merging operation also triggers the automatic documentation generation through 
the documentation hosting platform Read the Docs (Appendix 3—figure 1 (4)), in which the latest 
documentation, including the code annotation, user manual, and tutorials, are automatically built 
with Sphinx and hosted online at https://brainpy.readthedocs.io/.

（ ）

Appendix 3—figure 1. The pipeline of automatic continuous integration and documentation building in BrainPy.

https://doi.org/10.7554/eLife.86365
https://brainpy.readthedocs.io/
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Appendix 4
Mathematical operators for brain dynamics modeling
Brain dynamics modeling involves conventional computation based on dense matrices and event-
driven computation based on sparse connections. BrainPy provides operators for these two 
kinds of computations. For the list of the number of currently implemented operators please see 
Appendix 4—table 1.

Appendix 4—table 1. Number of mathematical operators implemented in BrainPy.
This list will continue to expand since BrainPy will continue to add more operators for brain 
dynamics modeling. The list of implemented operators is online available at https://brainpy.​
readthedocs.io/en/latest/apis/math.html.

Number

Dense operators with NumPy syntax 472

Dense operators with TensorFlow syntax 25

Dense operators with PyTorch syntax 10

Sparse and event-driven operators 20

Dense matrix operators
JAX (Frostig et al., 2018) has provided most numerical functions in NumPy (Harris et al., 2020). 
However, there are several significant differences between JAX and NumPy. First, the array structure 
in JAX does not support in-place updating. Second, numerical functions that need in-place updating 
are missing in JAX. Third, random sampling functions are significantly different from NumPy.

The dense matrix operators in BrainPy are based on JAX’s implementations but are designed to 
be seamlessly consistent with NumPy. First, we provide ​brainpy.​math.​Array which is consistent 
with NumPy’s ndarray structure, and a series of mathematical operations for ​brainpy.​math.​Array 
which is similar to those for ndarray. Second, mathematical operators for ​brainpy.​math.​Array, 
such as indexing, slicing, sorting, rounding, arithmetic operations, linear algebraic functions, and 
Fourier transform routines, are all supported. Many of these operators (nearly 85%) are directly 
implemented through the NumPy-like functions in JAX, while BrainPy provides dozens of APIs 
missing or inconsistent in JAX. Third, to unify random number generators, BrainPy implements 
most of the random sampling functions in NumPy, including its univariate distributions, multivariate 
distributions, standard distributions, and utility functions.

Moreover, BrainPy is working on dense operators provided in PyTorch (Paszke et  al., 2019) 
and TensorFlow (Abadi et al., 2016) libraries. In the future, BrainPy will continue to cover dense 
array operators in TensorFlow and PyTorch, since these implementation syntaxes have been widely 
accepted in the community.

Dedicated operators
Brain dynamics models differ from deep neural network (DNN) models in the way they perform 
computation. Brain dynamics models typically have sparse connections (less than 20% of neurons 
are connected to each other) and perform event-driven computations (synaptic currents are only 
transmitted when a presynaptic neuron spikes). These unique features make brain dynamics models 
less efficient when conventional dense array operators are used. To tackle this efficiency issue, 
traditional brain simulators heavily rely on event-driven synaptic operations. Previous works have 
explored event-driven synaptic operations on both CPU platforms (see Vitay et al., 2015; Plesser 
et al., 2007; Stimberg et al., 2019) and GPU platforms (see Fidjeland et al., 2009; Brette and 
Goodman, 2011; Yavuz et al., 2016; Alevi et al., 2022).

Despite the effectiveness of these simulators, one limitation is the lack of abstraction of event-
driven synaptic operations as primitive low-level operators. In other words, these operations are not 
treated as fundamental building blocks that can be easily manipulated and optimized. This absence 
of abstraction hampers the development of more efficient algorithms and restricts the flexibility and 
extensibility of the simulators. Therefore, it is crucial to bridge this gap and provide a higher level of 
abstraction for event-driven synaptic operations, which we refer to as ‘event-driven operators’. Note 
here in BrainPy, event-driven operators are employed within a clock-driven simulation schema, where 

https://doi.org/10.7554/eLife.86365
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the simulation advances in a synchronized manner, updating all neurons and synapses at each time 
step. These event-driven operators process information based on the detection of spatial spiking 
events. They execute computations when the presynaptic neuron fires spikes at each time step. This 
contrasts with an event-driven simulation approach (Ros et al., 2006), where neuronal or synaptic 
state updates are triggered by temporal spiking events, rather than updating all elements at each 
time step. Therefore, the key distinction between our event-driven operators and an event-driven 
simulation scheme lies in their scope and application: event-driven operators serve as fundamental 
building blocks that define how individual components of an SNN respond to spatial events at the 
current time step, while an event-driven simulation scheme serves as a methodology for simulating 
the collective behavior of the entire network based on the occurrence of temporal spikes.

Moreover, by abstracting these operations into primitive low-level operators, BrainPy offers 
automatic differentiation support compatible with ​jax.​grad. It also enables vectorization and 
parallelization support compatible with ​jax.​vmap and ​jax.​pmap. This compatibility further 
enhances the applicability of event-driven operators across a wider range of contexts.

Specifically, BrainPy provides these sparse and event-driven operators in the following modules: (1) 
The ​brainpy.​math.​sparse module. This module provides a set of sparse operators that can store 
synaptic connectivity compactly and compute synaptic currents efficiently. (2) The ​brainpy.​math.​
event module. This module implements event-driven operators that only perform computations 
when spikes arrive. This can lead to significant improvements in efficiency, as the state of the system 
does not need to be constantly updated when no spikes arrive.

In addition, efficient modeling of brain dynamics encounters scalability issues. The computational 
resources and device memory requirements for brain dynamics models increase quadratically with 
the number of neurons, as the synaptic connectivity grows almost quadratically in relation to the 
number of neurons. This characteristic severely restricts the size of the network that can be simulated 
on a single device using traditional array programming solutions.

One established approach to address this challenge is the utilization of JIT connectivity (Lytton 
et al., 2008; Azevedo Carvalho et al., 2020; Knight and Nowotny, 2021). This method involves 
regenerating the synaptic connectivity during computation by controlling the same random seed. 
Specifically, the ​brainpy.​math.​jitconn module provides JIT connectivity as primitive operators, 
specifically designed for cases where synaptic connections follow a fixed connectivity rule and do not 
require modifications after initialization. These operators eliminate the memory overhead required 
for connectivity storage, as synaptic connectivity can be generated JIT during the execution of the 
operators. Notably, when compared to conventional operators, they enable the execution of large-
scale networks that are two to three orders of magnitude larger on a single device.

Moreover, BrainPy also provides operators that are involved in transformations among presynaptic 
neuronal data, synaptic data, and postsynaptic neuronal data in the ​brainpy.​math module. 
Specifically, this module provides operators for mapping presynaptic neuronal data to its connected 
synaptic dimension (pre-to-syn), arithmetic operators including summation, product, max, min, 
mean, and softmax for transforming synaptic data to postsynaptic neuronal dimension (syn-to-post), 
and arithmetic operators such as summation, product, max, min, and mean for directly computing 
postsynaptic data from presynaptic events (pre-to-post).

https://doi.org/10.7554/eLife.86365
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Appendix 5

Numerical solvers for differential equations
To meet the large demand for solving differential equations in brain dynamics modeling, BrainPy 
implements numerical solvers for ODEs, SDEs, fractional differential equations (FDEs), and delay 
differential equations (DDEs). In general, numerical integration in BrainPy defines the system 
evolution of ‍x(t) → x(t + dt)‍, where ‍x‍ is the state, ‍t‍ is the current time, and ‍dt‍ is the integration step.

ODE numerical solvers
In BrainPy, the integration of an ODE system ‍dx/dt = f(x, t)‍ is performed as

1 ​integral=​brainpy.​odeint(​f=<function>,  
2                              method=<str>,  
3                              dt=<float>)

where method denotes the numerical method used to integrate the ODE function, and dt 
controls the initial or default numerical integration step. A variety of numerical integration methods 
for ODEs, including Runge–Kutta, adaptive Runge–Kutta, and Exponential methods, are supported 
in BrainPy (see Appendix 5—table 1).

Appendix 5—table 1. Numerical solvers provided in BrainPy for ordinary differential equations.

Solver type Solver name Keyword

Runge–Kutta method

Euler euler

Midpoint midpoint

Heun’s second-order method heun2

Ralston’s second-order method ralston2

Second-order Runge–Kutta method rk2

Third-order Runge–Kutta method rk3

Four-order Runge–Kutta method rk4

Heun’s third-order method heun3

Ralston’s third-order method ralston3

Third-order strong stability preserving Runge–Kutta method ssprk3

Ralston’s fourth-order method ralston4

Fourth-order Runge–Kutta method with 3/8-rule rk4_38rule

Adaptive Runge–Kutta method

Runge–Kutta–Fehlberg 4 (5) rkf45

Runge–Kutta–Fehlberg 1 (2) rkf12

Dormand–Prince method rkdp

Cash–Karp method ck

Bogacki–Shampine method bs

Heun–Euler method heun_euler

Exponential method Exponential Euler method exp_euler

SDE numerical solvers
For a general SDE system with multi-dimensional driving Wiener processes,

	﻿‍
dx = f(x, t, p1)dt +

m∑
α=1

gα(x, t, p2)dWα,
‍�

https://doi.org/10.7554/eLife.86365
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BrainPy supports its numerical integration with

1 integral = ​brainpy.​sd​eint(​f=<function > ,  
2                                 g=<function > ,  
3                                 method =<str > ,  
4                                 dt =<float > ,  
5                                 wiener_type=<’scalar’ or ’vector’>,  
6                                 intg_type=<’Ito’ or ’Stratonovich’>)

where method specifies the numerical solver, dt the default integral step, wiener_type the 
type of Wiener process (SCALAR_WIENER for scalar noise or VECTOR_WIENER for multi-dimensional 
driving Wiener processes), and integral_type the integral type (ITO_SDE for the Itô integral or 
STRA_SDE for the Stratonovich stochastic integral). See Appendix 5—table 2 for the full list of SDE 
solvers currently implemented in BrainPy.

Appendix 5—table 2. Numerical solvers provided in BrainPy for stochastic differential equations.
‘Y’ denotes support. ‘N’ denotes not support.

Integral type Solver name Keyword Scalar Wiener Vector Wiener

Itô integral

Strong SRK scheme: SRI1W1 srk1w1_scalar Y N

Strong SRK scheme: SRI2W1 srk2w1_scalar Y N

Strong SRK scheme: KlPl KlPl_scalar Y N

Euler method euler Y Y

Milstein method milstein Y Y

Derivative-free Milstein method milstein2 Y Y

Exponential Euler exp_euler Y Y

Stratonovich integral

Euler method euler Y Y

Heun method heun Y Y

Milstein method milstein Y Y

Derivative-free Milstein method milstein2 Y Y

FDE numerical solvers
The numerical integration of FDEs is very similar to that of ODEs, except that the initial value, memory 
length, and fractional order should be provided. Given the fractional-order differential equation

	﻿‍
dαx
dtα = F(x, t),‍�

where the fractional order ‍0 < α ≤ 1‍. BrainPy supports its numerical integration with the following 
format of

1 ​brainpy.​fdeint(​f=<function> ,  
2                  alpha=<float> ,  
3                  num_memory=<int> ,  
4                  inits=<dict> ,  
5                  method=<str> )

BrainPy supports two types of FDE, that is, the Caputo derivative and Grünwald–Letnikov 
derivative. Caputo derivatives are widely used in neuroscience modeling (Kaslik and Sivasundaram, 
2012). However, the numerical integration of Caputo derivatives has a high memory consumption, 
because it requires integration over all past activities. This implies that FDEs with the Caputo 
derivative definition cannot be used to simulate realistic neural systems. However, the numerical 
method for Grünwald–Letnikov FDEs, ​brainpy.​fde.​GLShortMemory, is highly efficient because 
it does not require an infinite memory length for numerical solutions. With the increasing length of 

https://doi.org/10.7554/eLife.86365
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short memory, the accuracy of the numerical approximation will increase. Therefore, ​brainpy.​fde.​
GLShortMemory can be applied to real-world neural modeling. See Appendix 5—table 3 for the 
full list of FDE solvers currently implemented in BrainPy.

Appendix 5—table 3. Numerical solvers provided in BrainPy for fractional differential equations.

Derivative type Solver name Keyword

Caputo derivative

L1 schema l1

Euler method euler

Grünwald–Letnikov derivative Short Memory Principle short-memory

DDE numerical solvers
Delays occur in any type of differential equation. In realistic neural modeling, delays are often 
inevitable. BrainPy supports equations with variables of constant delays, like

	﻿‍ y′(t) = f(t, y(t), y(t − τ1), y(t − τ2), . . . , y(t − τk)),‍�

where the time lags ‍τj‍ are the positive constants. It also supports systems with state-dependent 
delays, for example,

	﻿‍ y′(t) = f(t, y(t), y(t − f1(y(t))), . . . , y(t − fk(y(t)))),‍�

where ‍fk‍ is the function that computes the delay length by the system state ‍y(t)‍. For neutral-typed 
equations in which delays appear in derivative terms,

	﻿‍ y′(t) = f(t, y(t), y′(t − τ1), y′(t − τ2), . . . , y′(t − τk))‍�

BrainPy also supports its numerical integration.
BrainPy, in particular, implements interfaces to define these various delay variables. ​brainpy.​

math.​TimeDelay and ​brainpy.​math.​LengthDelay are provided to support state-dependent 
variables. Both ​brainpy.​math.​TimeDelay and ​brainpy.​math.​LengthDelay are used to 
delay neuronal signals in BrainPy, for example, Boolean spikes, real-valued synaptic conductance, or 
membrane potentials.

The TimeDelay is the class representing a connection delay measured in time units. For 
example, one might specify a ‍T ‍ ms delay. The TimeDelay class stores history values at times 

‍[T0 − T, T0 − T + ∆t, · · · , T0 − 2∆t, T0 −∆t, T0]‍, where ‍T0‍ is the current time and ‍∆t‍ is the time step. 
Users can retrieve the history values for any ‍t‍ in the interval ‍[T0 − T, T0]‍. For a ‍t‍ that exactly matches 
one of the stored time points, TimeDelay directly returns the stored history values; otherwise, 
TimeDelay uses linear interpolation to estimate values between the nearest stored data points, or 
rounding to return the value from the nearest data point in time.

The LengthDelay class represents a connection delay based on the number or length of running 
iterations. For instance, one can specify a delay of ‍L‍ iterations. It stores historical values at previous 
time steps, such as ‍[L, L − 1, · · · , 1, 0]‍. Unlike TimeDelay, users can only retrieve the historical values 
at specific discrete time steps that have been stored.

Despite the distinct usage characteristics of TimeDelay and LengthDelay, both of them 
employ a circular array for their delay updates. This implementation involves utilizing an array of 
fixed length along with a cursor that indicates the current updating position within the array (see 
Appendix 5—figure 1).

https://doi.org/10.7554/eLife.86365
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Next position to update

Appendix 5—figure 1. The dynamic array to store the delay buffer.

The classes ​brainpy.​math.​NeuTimeDelay and ​brainpy.​math.​NeuLenDelay are identical 
to ​brainpy.​math.​TimeDelay and ​brainpy.​math.​LengthDelay, respectively. However, they 
are specifically designed to model neutral delay variables.

With these delay supports, the differential equations with delayed variables are intrinsically 
supported in each integral function.

For delayed ODEs, users can use

1 ​brainpy.​odeint(​f=<function> ,  
2                  method=<str> ,  
3                  dt=<float> ,  
4                  state_delays=<dict> ,  
5                  neutral_delays=<dict>)

Similarly, the numerical integration of delayed SDEs should utilize

1 ​brainpy.​sdeint(​f=<function> ,  
2                  g=<function> ,  
3                  method=<str> ,  
4                  dt=<float> ,  
5                  state_delays=<dict>)

For delayed FDEs, one can use

1 ​brainpy.​fdeint(​f=<function> ,  
2                  method=<str> ,  
3                  dt=<float> ,  
4                  num_memory=<int> ,  
5                  inits=<dict>,  
6                  state_delays=<dict>)

Note that we currently do not support neutral delays for delayed SDEs and FDEs. However, users 
can easily customize their supports for equations with neutral delays.

https://doi.org/10.7554/eLife.86365
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Appendix 6
Object-oriented JIT compilation and automatic differentiation
Under minimal constraints and assumptions, BrainPy enables the JIT compilation for class objects. 
These assumptions include the following:

•	 The class for JIT must be a subclass of brainpy.BrainPyObject.
•	 Dynamically changed variables in the class must be labeled as ​brainpy.​math.​Variable. Other-

wise, they will be compiled as constants and cannot be updated during the program execution.
To take advantage of the JIT compilation, we can directly apply ​brainpy.​math.​jit() onto the instantiated 
class objects, or functions of a class object.

​brainpy.​math.​grad() takes a function/object (‍f : Rn → R‍, which returns a scalar value) as the 
input and returns a new function (‍∂f(x) → Rn

‍) which computes the gradient of the original function/
object.

1 ​grad_​f=​brainpy.​math.​grad(​f, grad_vars=<variables to take gradients>)

​brainpy.​math.​vector_​grad() takes vector-valued gradients for a function/object 
(‍f : Rn → Rm

‍). It returns a new function (‍∂f(x) : Rm → Rn
‍) which evaluates the vector-Jacobian 

products.

1 ​grad_​f=​brainpy.​math.​vector_​grad(​f, grad_vars<variables to take 
gradients>)

Another way to take gradients of a vector-output value is using ​brainpy.​math.​jacobian(). It aims to 
automatically compute the Jacobian matrices ‍∂f(x) ∈ Rm×n

‍ by the given function/object ‍f : Rn → Rm
‍ 

at the given point of ‍x ∈ Rn‍.

1 ​grad_​f=​brainpy.​math.​jacobian(​f, grad_vars<variables to take gradients>)

https://doi.org/10.7554/eLife.86365
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Appendix 7
Extension of BrainPy infrastructure
BrainPy features extensible architecture. New extensions can be easily made by using BrainPy 
infrastructure. Even new tools at the infrastructure level can be customized by using BrainPy 
operators.

At the toolbox level, BrainPy provides a mechanism in which the extension of a new tool can be 
made by adding a new subclass. For instance, a new synaptic connection method can be extended 
by subclassing brainpy.connect.TwoEndConnector:

1 class ​NewConnector(​bp.​conn.​TwoEndConnector):  
2   def __init__(self):  
3    # initializing connector  
4  
5   def build_csr(self):  
6    # build the CSR data structure  
7  
8   def build_coo(self):  
9    # build the COO data structure

As another example, customizing a new weight initialization method can be added by inheriting 
from brainpy.initialize.Initializer base class:

1 class ​NewInitializer(​bp.​init.​Initializer):  
2   def __init__(self):  
3    # initializing connector  
4  
5   def __call__(self, shape, dtype =None):  
6    # building weights

At the model building level, BrainPy enables to flexibly customize the user’s own dynamical 
systems by simply subclassing brainpy.DynamicalSystem base class.

At the numerical integrator level, BrainPy provides an easy way to write new integrator methods. 
For example, adding a new Runge–Kutta integrator can be done by subclassing ​brainpy.​ode.​
ExplicitRKIntegrator and providing the corresponding Butcher tableau:

1 class ​NewExplicitRK(​bp.​ode.​ExplicitRKIntegrator):  
2   A = [] # The A matrix in the Butcher tableau.  
3   B = [] # The B vector in the Butcher tableau.  
4   C = [] # The C vector in the Butcher tableau.

In a similar way, a customized adaptive Runge–Kutta integrator can be extended by subclassing ​
brainpy.​ode.​AdaptiveRKIntegrator with the specification of the corresponding Butcher 
tableau:

1 class ​NewAdaptiveRK(​bp.​ode.​ExplicitRKIntegrator):  
2   A = [] # The A matrix in the Butcher tableau.  
3   B1 = [] # The B1 vector in the Butcher tableau.  
4   B2 = [] # The B2 vector in the Butcher tableau.  
5   C = [] # The C vector in the Butcher tableau.

At the operator level, BrainPy is trying to provide a way to write fine-granularity low-level 
operators in the same Python interface by adopting the same JIT compilation technology (please 
refer to Appendix 8).

https://doi.org/10.7554/eLife.86365
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Appendix 8

Extension of low-level operators in BrainPy
By bridging Numba (Lam et al., 2015), JAX (Frostig et al., 2018), and XLA (Sabne, 2020), BrainPy 
enables the customization of primitive operators through the native Python syntax. Exposing a 
custom operator to JAX requires registering an XLA ‘custom call’, and providing its C callback for 
Python. Based on the following two properties of Numba, we are aware of the possibility of using 
Numba as a convenient method for writing low-level kernels that support JAX’s JIT compilation. 
First, unlike JAX, which only supports the JIT compilation of high-level functions, Numba is a JIT 
compiler that allows users to write a function with low-level fine-grained operations, for instance, 
looping over an array, or conditional branching over array values. This implies that ​numba.​jit() 
can be used as a means to write low-level kernel functions. The second property of Numba is that 
it provides a mechanism to create a compiled function that is callable from the foreign C code, 
such as XLA. Specifically, ​numba.​cfunc() can be used to create a C callback for Numba’s JIT 
function to interface with XLA. Therefore, by integrating Numba with JAX and XLA, BrainPy provides 
an interface where users write primitive operators directly with Python syntax. Note that Numba 
supports various native Python features and a large subset of NumPy functions. Therefore, there is a 
large flexibility in coding low-level primitives with Numba.

Below, we illustrate how to write a primitive operator in BrainPy. Particularly, to customize a 
primitive operator we need to provide two functions. The first is an abstract evaluation function that 
tells JAX what shapes and types of outputs are produced according to the input shapes and types:

1 def abstract_eval(*ins):  
2   return outs

in which ins specifies the information of input shapes and types, outs denotes the array 
information of shapes and types of outputs. The other function is the concrete computation function, 
in which the output data is calculated according to the input data:

1 def concrete_comp(outs, ins):  
2   # calculate outputs according to inputs

where outs and ins are output and input data owned by XLA, respectively. Note this function 
should not return anything. All computations must be made in place. Finally, by using

1 # "name" is the operator name  
2 # "concrete_comp" is the concrete computation function  
3 # "abstract_eval" is the abstract evaluation function  
4 op =​brainpy.​math.​CustomOpByNumba(​abstract_​eval, concrete_comp, name)

we register a primitive operator op. This operator op can be used anywhere the user wants. 
The Numba-based approach for operator customization demonstrates comparable performance to 
the native C++-based XLA operator registration. To illustrate this, we conducted a performance 
comparison of the COBA network model (Vogels and Abbott, 2005) using both an event-driven 
operator implementation based on Numba and C++.

This event-driven operator implements the matrix–vector multiplication ‍y = v · M‍ for synaptic 
computation, where ‍v‍ is the presynaptic spikes, ‍M‍ the synaptic connection matrix, and ‍y‍ the 
postsynaptic current. Specifically, it performs matrix–vector multiplication in a sparse and efficient 
way by exploiting the event property of the input vector ‍v‍. Particularly, we performs event-driven 
matrix–vector multiplication only for the non-zero elements of the vector, which are called events. This 
can reduce the number of operations and memory accesses, and improve the running performance 
of matrix–vector multiplication.

Based on our Python-level registration syntax, this operator can be implemented as:

1 from ​jax.​core import ShapedArray  
2 import ​brainpy.​math as bm  

https://doi.org/10.7554/eLife.86365
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3  
4 # the abstract evaluation function  
5 def abs_eval(events, indices, indptr, *, weight, post_num):  
6    return [ShapedArray((post_num,), bm.float32), ]  
7  
8 # the concrete function implementing the event-driven computation  
9 def con_compute(outs, ins):  
10   post_val, =outs  
11   ​post_​val.​fill(​0)  
12   events, indices, indptr, weight, _=ins  
13   weight=weight[()]  
14   for i in ​range(​events.​size):  
15     if events[i]:  
16       for j in range(indptr[i], indptr[i+1]):  
17         index =indices[j]  
18         post_val[index]+=weight  
19  
20 # operator registration  
21 event_sum =bm.CustomOpByNumba(eval_shape =abs_eval, cpu_func =con_
compute)

Listing 1: The event-driven operator implemented with our Python syntax for the computation of 

‍y = v · M‍.
This operator can also be implemented with the pure C++ syntax:

1 #include <cstdint>  
2 #include <cstring>  
3 #include <cmath>  
4  
5 template <typename F, typename I> 
6 void cpu_csr_event_sum_homo(void *out, const void **in) {  
7    const std::uint32_t pre_size = *reinterpret_cast<const std::uint32_t 
*>(in[0]);  
8    const std::uint32_t post_size = *reinterpret_cast<const std::uint32_t 
*>(in(1));  
9    const bool *events=reinterpret_cast<const bool *>(in(2));  
10   const I *indices=reinterpret_cast <const I *>(in(3));  
11   const I *indptr=reinterpret_cast <const I *>(in(4));  
12   const F weight=reinterpret_cast<const F *>(in(5))[0];  
13   F *result=reinterpret_cast<F *>(out);  
14  
15   // algorithm  
16   memset(&result[0], 0, sizeof(F) * post_size);  
17   for (std::uint32_t i=0; i<pre_size; ++i) {  
18     if (events[i]){  
19       for (I j=indptr[i]; j<indptr[i+1]; ++j) {  
20         result[indices[j]]+=weight;  
21       }  
22     }  
23   }  
24 }

Listing 2: The event-driven operator utilizes C++ for the computation of ‍y = v · M‍. Here, we 
present the main code snippet that implements the event-driven matrix–vector multiplication. Please 
note that we have omitted the code for Python binding, compilation, registration, and other related 

https://doi.org/10.7554/eLife.86365
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aspects. For detailed instructions and a comprehensive tutorial on XLA operator customization, we 
encourage users to refer to the appropriate resource.

The speed comparison between the two approaches has been depicted in Figure 9. Although 
the approach shows promising results on CPU hardware, it is not directly compatible with other 
computing platforms like GPUs. This restricts the applicability and scalability of the proposed 
method, as GPUs are increasingly used to accelerate brain dynamics models. To overcome this 
limitation, currently, we are working on alternative approach that can be used in both CPU and 
GPU devices, allowing for broader utilization of available hardware resources and unlocking new 
possibilities for customizing any complex brain dynamics operators.

https://doi.org/10.7554/eLife.86365
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Appendix 9
Multi-scale spiking neural network for the visual system modeling
We build a spiking network model examined in Figure 2 and Figure 3 for modeling the visual system 
(V1, V2, V4, TEO, and TEpd). Simulations are performed using a network of Hodgkin–Huxley neurons, 
with the local circuit and long-range connectivity structure derived from Markov et al., 2014. Each 
of the five areas consists of 2000 neurons, with 1600 excitatory and 400 inhibitory neurons.

For each neuron, the membrane potential dynamics is modified from Traub and Miles, 1991 and 
is described by the following equations:

	﻿‍
Cm

dV
dt

= −gL
(
V − EL

)
− ḡNam3h

(
V − ENa

)
− ḡKdn4 (V − EK

)
+ G(t)

‍�
(1)

where ‍V ‍ is the membrane potential, ‍G(t)‍ stands for synaptic interactions, ‍Cm‍ is the membrane 
capacitance per unit area, ‍EK = −90 mV‍ and ‍ENa = 50 mV‍ are the potassium and sodium 
reversal potentials, respectively, ‍El = −60 mV‍ is the leak reversal potential, ‍̄gK = 30 mS/cm2

‍ and 

‍̄gNa = 100 mS/cm2
‍ are the potassium and sodium conductance per unit area, respectively, and 

‍̄gl = 0.05 mS/cm2
‍ is the leak conductance per unit area.

Each neuron is composed of two active ion channels, including the potassium and sodium channels. 
Because the potassium and sodium channels are voltage sensitive, according to the biological 
experiments, ‍m‍, ‍n‍, and ‍h‍ are used to simulate the activation of the channels.

	﻿‍
dm
dt

= αm(V)(1 − m) − βm(V)m
‍�

(2)

	﻿‍
dh
dt

= αh(V)(1 − h) − βh(V)h
‍�

(3)

	﻿‍
dn
dt

= αn(V)(1 − n) − βn(V)n
‍�

(4)

Specifically, ‍n‍ measures the activation of potassium channels, and ‍m‍ and ‍h‍ measures the activation 
and inactivation of sodium channels, respectively. ‍αx‍ and ‍βx‍ are rate constants for the ion channel ‍x‍ 
and depend exclusively on the membrane potential. The voltage-dependent expressions of the rate 
constants were modified from the model described by Traub and Miles, 1991:

	﻿‍ αm = 0.32 ∗
(
13 − V + VT

)
/
[
exp

((
13 − V + VT

)
/4
)
− 1

]
‍� (5)

	﻿‍ βm = 0.28 ∗
(
V − VT − 40

)
/
[
exp

((
V − VT − 40

)
/5
)
− 1

]
‍� (6)

	﻿‍ αh = 0.128 ∗ exp
((

17 − V + VT
)

/18
)
‍� (7)

	﻿‍ βh = 4/
[
1 + exp

((
40 − V + VT

)
/5
)]

‍� (8)

	﻿‍ αn = 0.032 ∗
(
15 − V + VT

)
/
[
exp

((
15 − V + VT

)
/5
)
− 1

]
‍� (9)

	﻿‍ βn = 0.5 ∗ exp
((

10 − V + VT
)

/40
)

,‍� (10)

where ‍VT ‍ = −63 mV adjusts the threshold.
For the synapse, we use conductance-based synaptic interactions. Particularly, ‍G(t)‍ is given by:

	﻿‍
G(t) = −

∑
j

gji(t)
(
Vi − Ej

)
,
‍� (11)

where ‍Vi‍ is the membrane potential of neuron ‍i‍. The synaptic conductance from neuron ‍j‍ to neuron 
‍i‍ is represented by ‍gji(t)‍, while ‍Ej‍ signifies the reversal potential of that synapse. For excitatory 
synapses, ‍Ej‍ was set to 0 mV, whereas for inhibitory synapses, it was −80 mV. The dynamics of the 
synaptic conductance is given by:

https://doi.org/10.7554/eLife.86365
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	﻿‍

dgji
dt

= −
gji

τdecay
+ gmax

∑
k

δ(t − tkj ),
‍�

(12)

where ‍t
k
j ‍ is the spiking time of the presynaptic spike. Whenever a spike occurred in neuron ‍j‍, the 

synaptic conductance ‍gji‍ experienced an immediate increase by a fixed amount ‍gmax‍. Subsequently, 
the conductance ‍gji‍ decayed exponentially with a time constant of ‍τdecay = 5‍ ms for excitation and 

‍τdecay = 10‍ ms for inhibition.
The connection density is set according to the experimental connectivity data (Markov et al., 

2014). The inter-areal connectivity is measured as a weight index (see Appendix 9—table 1), called 
the extrinsic fraction of labeled neurons (Markov et al., 2014). The intra-area connectivity is set 
according to the setting in a standard E/I balanced network (Brette et al., 2007).

Appendix 9—table 1. The weighted connectivity matrix among five brain areas: V1, V2, V4, TEO, 
and TEpd (Markov et al., 2014).

V1 V2 V4 TEO TEpd

V1 0.0 0.7322 0.1277 0.2703 0.003631

V2 0.7636 0.0 0.1513 0.003274 0.001053

V4 0.0131 0.3908 0.0 0.2378 0.07488

TEO 0.0 0.02462 0.2559 0.0 0.2313

TEpd 0.0 0.000175 0.0274 0.1376 0.0

Moreover, we introduce distance-dependent inter-areal synaptic delays by assuming a conduction 
velocity of 3.5 m/s (Swadlow, 1990) and using a distance matrix based on experimentally measured 
wiring distances across areas (Markov et al., 2014).

Appendix 9—table 2. The delay matrix (ms) among five brain areas: V1, V2, V4, TEO, and TEpd 
(Markov et al., 2014).

V1 V2 V4 TEO TEpd

V1 0. 2.6570 4.2285 4.2571 7.2857

V2 2.6570 0. 2.6857 3.4857 5.6571

V4 4.2285 2.6857 0. 2.8 4.7143

TEO 4.2571 3.4857 2.8 0. 3.0571

TEpd 7.2857 5.6571 4.7143 3.0571 0.

https://doi.org/10.7554/eLife.86365
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Appendix 10
Training reservoir computing model with multiple algorithms
Reservoir computing is a type of recurrent neural network that is often used for processing temporal 
data. Unlike traditional recurrent neural networks, reservoir computing fixes the weights of the 
recurrent layer (known as the ‘reservoir’) and only trains the weights of the output layer. This makes 
training much more efficient.

A reservoir computing model can be trained using various algorithms, such as online learning, 
offline learning, and backpropagation learning, to optimize its performance. Online learning refers 
to the process of updating the model in real time as new data becomes available. This algorithm 
allows the model to adapt and adjust its predictions continuously. Offline learning, on the other 
hand, involves training the model using a fixed dataset, where the entire dataset is used to update 
the model’s parameters. This method is particularly useful when a large amount of data is available 
upfront. Lastly, backpropagation learning utilizes a technique called backpropagation to train the 
model by computing the gradients of the model’s parameters and adjusting them accordingly.

The unified building and training interface of BrainPy enables the training of the same reservoir 
model with multiple training algorithms. By employing BrainPy, we can compare the performance of 
different training algorithms and determine which approach yields the best results for the reservoir 
computing model.

The following lists the details of such training.

Reservoir model
The dynamics of the reservoir model used here are given by:

	﻿‍ x(t) = (1 − α) · x(t − 1) + α · f(Win u(t) + Wrec x(t − 1)),‍� (13)

	﻿‍ y(t) = Wout x(t)‍� (14)

where ‍x(t)‍ is the reservoir state, ‍y(t)‍ the readout value, ‍Win‍ and ‍Wrec‍ are input and recurrent 
connection matrices, respectively, ‍Wout‍ the readout weight matrix which can be trained by either 
offline learning or online learning algorithms, ‍α ∈ (0, 1]‍ the leaky rate, ‍u(t)‍ the input at time step ‍t‍, 
and ‍f ‍ the nonlinear activation function.
In BrainPy, the reservoir model can be easily instantiated as the following code:

1 reservoir =​brainpy.​dyn.​Reservoir(​input_​shape, output_shape, leaky_rate)

Inferring Lorenz strange attractor
The reservoir model is utilized for inference tasks in this work. To generate training and testing data, 
we numerically integrate a simplified model of a weather system originally developed by Lorenz, 
1963. This model comprises three coupled nonlinear differential equations:

	﻿‍ ẋ = 10(y − x),‍� (15)

	﻿‍ ẏ = x(28 − z) − y,‍� (16)

	﻿‍ ż = xy − 8z/3.‍� (17)

The state ‍X(t) = [x(t), y(t), z(t)]T
‍ represents a vector of Rayleigh–Bénard convection observables. The 

system exhibits deterministic chaos, displaying sensitivity to initial conditions and forming a strange 
attractor in the phase space trajectory (Figure 4D).
In this task, we train a reservoir model to predict the ‍T ‍-step-ahead value of all Lorenz variables, 
‍x‍, ‍y‍, and ‍z‍. During training, we provide the model with all three variables. During testing, we only 
provide the model with ‍x‍, ‍y‍, and ‍z‍ at ‍T ‍-step-ahead, and it must infer ‍x, y‍, and ‍z‍ after ‍T ‍ steps. Here, 
we choose ‍T = 5‍.
In this task, the input size was set to 3, the recurrent layer of the reservoir model contained 100 units, 
and the output size was 3, as used in Figure 4D-F.

https://doi.org/10.7554/eLife.86365
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Training with ridge regression
The training objective of reservoir models is to find the optimal ‍Wout‍ that minimizes the square error 
between ‍y(t)‍ and ‍y

target(t)‍. The common way to learn the linear output weight ‍Wout‍ is using the ridge 
regression algorithm. The ridge regression, also known as regression with Tikhonov regularization, 
is given by:

	﻿‍
Wout = Ytarget XT

(
XXT + βI

)−1

‍�
(18)

where ‍β‍ is a regularization coefficient, ‍I ‍ is the identity matrix, and ‍X ‍ is the concatenated hidden 
states of all samples.
In BrainPy, the reservoir model trained with ridge regression can be implemented as:

1 model =ESN(num_in, num_rec, num_out)  
2 trainer =bp.RidgeTrainer(model)  
3 ​trainer.​fit([X, Y])  
4 outputs =trainer.predict(X)

Training with FORCE learning
Ridge regression is an offline learning method, meaning that it needs all of the data to be present 
before it can learn the model parameters. This can be a problem when training reservoir models with 
a lot of data, because the memory requirements can be too high for some devices. FORCE learning 
(Sussillo and Abbott, 2009), on the other hand, is an online learning algorithm. This means that it 
can learn the model parameters one sample of data at a time. This makes it a much more efficient 
way to train reservoir models with large datasets. Therefore, FORCE learning is a good choice for 
training reservoir models when the amount of data is large or the memory resources are limited.

The FORCE learning is done using the recursive least squares (RLS) algorithm. It is a supervised 
error-driven learning rule, that is the weight changes depending on the error made by each neuron: 
the difference between the output of a neuron ‍yi(t)‍ and a desired value ‍y

target
i (t)‍.

	﻿‍ ei(t) = yi(t) − ytarget
i (t)‍� (19)

Contrary to the delta learning rule which modifies weights proportionally to the error and to the 
direct input to a synapse (‍∆wij = −η · ei · xj‍), the RLS learning uses a running estimate of the inverse 
correlation matrix of the inputs to each neuron:

	﻿‍
∆Wij

out = −ei
∑

k
Pi

jk · xk
‍�

(20)

Each neuron ‍i‍ therefore stores a square matrix ‍Pi‍, whose size depends on the number of weights 
arriving at the neuron. Readout neurons receive synapses from all ‍N ‍ recurrent neurons, so the ‍P‍ 
matrix is ‍N ∗ N ‍.
The inverse correlation matrix ‍P‍ is updated at each time step with the following rule:

	﻿‍
∆Pi

jk = −
∑

m
∑

n Pi
jm · xm · xn · Pi

nk

1 +
∑

m
∑

n xm · Pi
mn · xn ‍�

(21)

Each matrix ‍Pi‍ is initialized to the diagonal matrix and scaled by a factor ‍1/δ‍, where ‍δ‍ is 1 in the 
current implementation and can be used to modify implicitly the learning rate (Sussillo and Abbott, 
2009).
In BrainPy, the reservoir model trained with FORCE learning can be implemented as:

1 model =ESN(num_in, num_rec, num_out)  
2 trainer =bp.ForceTrainer(model, alpha =0.1)  
3 ​trainer.​fit([X, Y])  
4 ​trainer.​fit([X, Y])  
5 outputs =trainer.predict(X)

https://doi.org/10.7554/eLife.86365
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Training with backpropagation algorithm
The readout layer in the reservoir model is just a single-layer Perceptron. To train its weights, we can 
use the backpropagation algorithm. Backpropagation is a method used in artificial neural networks 
to calculate a gradient that is needed in the calculation of the weights to be used in the network. The 
loss function used here is the mean square error between the reservoir output and the target output:

	﻿‍
E = 1

2
∑

j
(yj − ytarget

j )2

‍�
(22)

The updated weight between neuron ‍i‍ and ‍j‍ is calculated by:

	﻿‍
∆Wij

out = ∂E
∂yi

∂yi
∂xj

.
‍�

(23)

In BrainPy, the reservoir model trained with backpropagation algorithms can be implemented as:

1 reservoir = ​bp.​dyn.​Reservoir(​num_​in, num_rec)  
2 readout = ​bp.​dnn.​Dense(​num_​rec, num_out, mode =bm.training_mode)  
3 trainer = bp.BPFF(target =readout,  
4                     loss_fun =​bp.​losses.​mean_​squared_​error,  
5                     optimizer =​bp.​optim.​Adam(​1e-​3))  
6 # batch_data: the data generated by "reservoir"  
7 ​trainer.​fit(​batch_​data, num_epoch =100)

Evaluation metrics
The performance of a reservoir computing model is usually measured with the mean squared error, 
that is, the average squared difference between the predicted and actual values:

	﻿‍
E
(

y, ytarget
)

= 1
Ny

Ny∑
i=1

T∑
n=1

(
yi(n) − ytarget

i (n)
)2

,
‍�

(24)

where ‍Ny‍ is the number of training samples and ‍T ‍ is the number of time steps.

https://doi.org/10.7554/eLife.86365
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Appendix 11
Experimental details for benchmark comparisons
In this section, we provide a comprehensive overview of the experimental benchmark details 
used in Figure 6, Figure 7, and Figure 8. The purpose is to present a complete picture of the 
experimental setup and methodology employed in our study. The details encompass the following 
aspects: hardware specifications, software versions, algorithm hyperparameters, and performance 
measurements.

By providing these experimental benchmark details, we aim to ensure transparency and 
reproducibility, allowing readers and researchers to understand and replicate our experiments 
accurately.

Hardware specifications
We conducted a series of experiments on various computing devices, namely the CPU, GPU, and TPU, 
in order to validate and compare the simulation speeds of several widely utilized brain simulators. 
The brain simulators under investigation included Brian2 (Stimberg et al., 2019), NEURON (Hines 
and Carnevale, 1997), NEST (Gewaltig and Diesmann, 2007), GeNN (Yavuz et al., 2016), and 
Brian2CUDA (Alevi et al., 2022).

Particularly, the computing devices we used here are:
•	 CPU: The CPU used was the Intel Xeon W-2255 processor. This is a 10-core, 20-thread CPU 

based on Intel’s Cascade Lake microarchitecture. It has a base clock frequency of 3.7 GHz 
and a max turbo boost up to 4.5 GHz. The Xeon W-2255 utilizes the LGA2066 socket and 
supports up to 512 GB of ECC-registered DDR4-2933 RAM across 6 channels. It has 24.75 MB 
of L3 cache. As a server-grade CPU with a high core count, the Xeon W-2255 is well suited for 
heavily parallelized simulations.

•	 GPU: The GPU used was an NVIDIA RTX A6000. This is a high-end Ampere architecture GPU 
aimed at professional visualization, AI, and compute workloads. The RTX A6000 has 10,752 
CUDA cores, 336 tensor cores, and 84 RT cores. It comes equipped with 48 GB of GDDR6 
memory clocked at 16 Gbps, providing up to 1 TB/s of memory bandwidth. The RTX A6000 
has a maximum power consumption of 300 W and requires auxiliary power connectors. It uses 
a PCIe 4.0x16 interface. With its large number of CUDA cores and abundant memory, the RTX 
A6000 is well suited for massively parallel simulations and neural network training.

•	 TPU: The TPU simulations leveraged the Kaggle free TPU v3-8 cloud instance. This provides 
access to one of Google’s TPU v3 chips via their cloud platform. Specifically, the v3-8 instance 
gives 8 TPU v3 cores, each providing 128 GB/s of bandwidth to high-performance HBM memory. 
The TPU v3 is optimized for both training and inferencing of DNNs, providing up to 420 TFLOPS 
of mixed precision computing. By utilizing Google’s cloud TPUs, researchers can run models with 
minimal coding changes while leveraging Google’s optimized deep learning frameworks.

Software versions
We carried out benchmark experiments using Python 3.10.12 running on Ubuntu 20.04.6 LTS. For any 
experiments utilizing a GPU, we used version 11.6 of the NVIDIA CUDA Toolkit to take advantage 
of the parallel processing capabilities of the GPU hardware. Other dependent software versions are: 
NumPy 1.24.3, Numba 0.57.1, jax 0.4.16, and jaxlib 0.4.16.

The comparison brain simulators for benchmarking are:
•	 NEURON at version 8.2.0
•	 NEST at version 3.6
•	 Brian2 at version 2.5.4
•	 GeNN at version 4.8.1
•	 Brian2GeNN at version of 1.7.0: Brian2GeNN is a bridge between Brian2 and GeNN that 

allows Brian2 users to run their simulations on GPUs using GeNN.
•	 Brian2CUDA at version of 1.0a3: Brian2CUDA is a native CUDA implementation of Brian2 that 

allows Brian2 users to run their simulations on GPUs without the need for a bridge.

https://doi.org/10.7554/eLife.86365
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Performance measurements
By testing against these simulators on benchmark tasks, we aimed to thoroughly evaluate the 
performance in terms of simulation speed and accuracy across different model sizes and paradigms.

When evaluating simulation speed, we focused solely on measuring the execution time of the 
simulation itself, excluding any time spent on compilation, initialization, or other preparatory steps. 
This allowed us to make a direct comparison of the raw simulation performance between our 
simulator and others. We simulated networks of varying sizes. This range of model scales allowed 
us to determine how well our simulator performs as network size and complexity increase. The final 
experimental results can be obtained in Figure 6, Figure 7, and Figure 8.

Accuracy evaluations
To evaluate the accuracy, we configured all simulators to use identical model parameters for a fair 
comparison.

First, we verified that all simulators generated consistent average firing rates for a given network 
model (see Appendix 11—figure 1 and Appendix 11—figure 2).

Appendix 11—figure 1. The average firing rate per neuron of the COBA network model (Vogels and Abbott, 
2005) was measured across various simulators running on both GPU and TPU devices. However, it should be 
noted that the BrainPy TPU x32 simulation was limited to 40,000 neurons due to memory constraints, resulting in a 
truncated network size.

https://doi.org/10.7554/eLife.86365
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Appendix 11—figure 2. The average firing rate per neuron of the COBAHH network model (Brette et al., 2007) 
was measured across various simulators running on both GPU and TPU devices. However, it should be noted that 
the BrainPy TPU x32 simulation was limited to 40,000 neurons due to memory constraints, resulting in a truncated 
network size.

Second, we qualitatively compared the overall network activity patterns produced by each 
simulator to ensure they exhibited the same dynamics. While exact spike-to-spike reproducibility 
was not guaranteed between different simulator implementations, we confirmed that our simulator 
produced activity consistent with the reference simulators for both firing rates and network-level 
dynamics (see Appendix 11—figure 3 and Appendix 11—figure 4).

https://doi.org/10.7554/eLife.86365
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Appendix 11—figure 3. Rater diagrams of COBA network model with 4000 neurons (Vogels and Abbott, 2005) 
across different simulators on CPU, GPU, and TPU devices. Here, we only present the simulation results for the 
initial 100 ms of the experiment.

https://doi.org/10.7554/eLife.86365
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Appendix 11—figure 4. Rater diagrams of COBAHH network model with 4000 neurons (Brette et al., 2007) 
across different simulators on CPU, GPU, and TPU devices. Here, we only present the simulation results for the 
initial 100 ms of the experiment.

Third, we recognize that the precision of numerical computation plays a crucial role in accurately 
simulating biologically detailed neural networks, such as the COBAHH network model used in our 
benchmarks. To assess the numerical integration accuracy of each neuron in the COBAHH network 
model, we conducted a 5-s simulation and examined the presence of NaN membrane potentials 
at the end of the simulation. The occurrence of NaN membrane potentials indicates that the 
corresponding neurons are no longer active and signifies a loss of simulation accuracy. This analysis 
was performed on the GPU backend of Brian2GeNN, Brian2CUDA, and BrainPy. The results of this 
analysis can be found in Appendix 11—figure 5. We specifically focused on the analysis results of 
single-precision floating-point simulations, as we did not encounter any NaN results when simulating 
with double precision. Our observations reveal that the single-precision computation with XLA in 
BrainPy exhibits a higher proportion of NaN results compared to Brian2CUDA and GeNN. Notably, 
GeNN demonstrated very few occurrences of NaN membrane potentials after simulation, which may 
be attributed to the special handling of NaN within the GeNN computation.

https://doi.org/10.7554/eLife.86365
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Appendix 11—figure 5. Number of neurons with NaN membrane potential after performing a 5-s long simulation 
of the COBAHH network model using the single-precision floating point.

To address the issue of a larger number of NaN membrane potentials leading to reduced 
neuronal spiking and communication spikes, we took steps to resolve this problem in BrainPy. Our 
aim was to ensure a fair comparison when benchmarking the simulation speed against other brain 
simulators. Specifically, the occurrence of NaN membrane potentials was attributed to the use of 
the ‍x/(exp(x) − 1)‍ operation during the integration of the Hodgkin–Huxley neuron model with low-
precision floating-point calculations. In order to mitigate the catastrophic loss of precision when ‍x‍ is 
close to zero, we replaced this operation with the relative error exponential function, represented by 

‍1/exprel(x)‍. This modification ensures that the numerical calculations do not result in NaN values even 
during significantly long simulations. As a result of this fix, we did not encounter any instances of 
NaN membrane potentials, even after conducting extensive and prolonged simulations. We believe 
that these revised operations contribute to a more equitable benchmarking process, eliminating any 
potential bias caused by the presence of NaN values. The speed benchmarking can be obtained in 
Figure 8.

Experimental settings
In the below, we describe the experimental setting details used in Figure 6, Figure 7, and Figure 8.

Figure 6
In the experiments depicted in Figure 6A, we exercise precise control over the equivalent theoretical 
FLOPs (floating-point operations) performed by the LIF (Leaky Integrate-and-Fire) neurons and the 
matrix–vector multiplication ‍Mv‍ (‍W ∈ Rm×m‍ and ‍v ∈ Rm‍). In each trial, subsequent to determining 
the size ‍m‍, we modify the number of neurons in the LIF simulation, ensuring that they collectively 
execute the same theoretical FLOPs. To simplify the computation of the total FLOPS, we adopt the 
Euler method with a single time step to solve the differential equations within the LIF neuron model.

On the other hand, for the COBA network (Vogels and Abbott, 2005) experiments showcased 
in Figure 6B and Figure 6C, the dynamical equations were resolved using the Exponential Euler 
method with a step size of 0.1ms. The synaptic computation was performed through dense 
matrix multiplication. Given the presynaptic spikes represented by the vector ‍v‍, the postsynaptic 
conductance (‍gpost‍) is computed using the equation ‍gpost = gmax ∗ v · M ‍, where ‍gmax‍ denotes the 
maximum synaptic conductance, and ‍M ‍ represents the connection matrix. We assess the simulation 
time of the network using the aforementioned dense operation under two conditions: with JIT 
compilation and without JIT compilation.

.

https://doi.org/10.7554/eLife.86365
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Figure 7
The COBA network model (Vogels and Abbott, 2005) is simulated using the Exponential Euler 
numerical integration method to approximate solutions to the differential equations governing 
network dynamics. A fixed simulation time step of 0.1 ms is utilized for numerical simulations.

Accurately isolating the computational time spent on simulating synaptic connections in the 
COBA network is challenging, as the synapses are computed in an event-driven manner based on 
spiking activity. Since the number of spikes generated in the network varies across simulations, this 
causes variability in synapse simulation time measurements. To separately quantify time spent on 
neuron versus synapse computations, we first profile the neuron simulation time in isolation. This is 
measured by simulating only the neuronal dynamics without any synaptic connections for a 500-ms 
duration. Next, we profile the end-to-end run time of the full COBA network simulation including 
both neurons and dynamic synapses for the same 500-ms duration. Finally, the computational time 
attributed specifically to simulating synapses can be directly estimated by subtracting the isolated 
neuron simulation time from the full network simulation time. This approach separates and quantifies 
the contributions of simulating neuronal and synaptic computations to the overall run time of COBA 
network simulations.

For the model without dedicated OP, we employ dense matrix multiplication to perform the 
synaptic computation, same as the operation used in Figure 6. On the other hand, For the model 
with dedicated OP, we utilize our event-driven operator called ​brainpy.​math.​event.​csrmv 
for handling the synaptic computation. This specialized operator is designed specifically to efficiently 
handle such computations in an event-driven manner.

All simulations were performed using a single thread, excluding the acceleration effect of multi-
threading concurrence.

Figure 8
Same as Figure 7, the COBA network model (Vogels and Abbott, 2005), the COBAHH network 
model (Brette et al., 2007), and the decision-making network model (Wang, 2002) are simulated 
using the Exponential Euler numerical integration method with a fixed simulation time step of 0.1ms.

The simulations were conducted across a diverse range of computing devices (including CPUs, 
GPUs, and TPUs), encompassing various hardware configurations, and were executed using networks 
of different sizes. To ensure statistical robustness, each trial was repeated 10 times, thereby totaling 
10 simulations for each experimental setup. These simulations were carried out for a duration of 5 s. 
Finally, to provide a representative measure, we reported the average time taken across these 10 
simulations.

On the CPU device, we simulate the model using a single thread across different simulators. On 
Brian2, we open 12 threads for parallel simulation. However, we did not report the simulation speed 
results of Brian2 runs on the COBA network model, since single-threaded Brian2 runs were faster 
than using multi-threaded compartments in this case.

https://doi.org/10.7554/eLife.86365
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Other supplements

Appendix 11—figure 6. The acceleration ratio of JIT compilation on LIF neuron models (Abbott, 1999) and 
COBA network models (Vogels and Abbott, 2005). (A) The acceleration ratio of just-in-time (JIT) compilation 
on the LIF neuron model is shown in the plot. The plotted values represent the simulation time ratios of the 
LIF neuron without JIT and with JIT. The top panel illustrates the acceleration on the CPU device, while the 
bottom panel demonstrates the acceleration on the GPU device. The acceleration ratios on both devices are 
approximately five times faster. (B) The simulation time ratio of the dense operator compared to the LIF neuron 
model with JIT compilation is shown. The top panel displays the time ratio on the CPU device, and the bottom 
panel demonstrates the time ratio on the GPU device. The simulation time ratios on both devices are nearly 
one, indicating that the jitted LIF neuron, with the same number of floating-point operations (FLOPs) as the ‘Dot’ 
operation, can run equivalently fast. (C) The acceleration ratio of the COBA network model (Vogels and Abbott, 
2005) with JIT compilation compared to the model without JIT compilation on the CPU device is shown. The 
plot demonstrates a tenfold increase in speed after JIT compilation on the CPU device. (D) Similar to (C), the 
experiments were conducted on the GPU. Please refer to Figure 6 for the original data.

We evaluate the speedup of event-driven operators over traditional dense matrix operators on 
both CPU and GPU devices. Evaluation results are listed in Appendix  11—figure 7. Both CPU 
and GPU devices demonstrate a significant speed advantage of several orders of magnitude when 
utilizing event-driven operators, in comparison to dense ones. Notably, as the number of neurons 
increases, event-driven operators showcase an even greater speedup on both platforms.

https://doi.org/10.7554/eLife.86365
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Appendix 11—figure 7. The acceleration ratio of dedicated operators of COBA network model (Vogels and 
Abbott, 2005) on both CPU (A) and GPU (B) devices. Please refer to Figure 7 for the original data.

We also conducted COBA and COBAHH experiments on TPU devices. The experimental results 
are shown in Appendix 11—figure 8. Although TPUs can perform double precision operations, they 
are not as efficient at it as they are at lower precisions such as float16 or bfloat16. Therefore, we here 
only tested models with single-precision operations.

Appendix 11—figure 8. The simulation speeds of BrainPy on kaggle TPU v3-8 device. (A) The simulation time of 
the COBA (Vogels and Abbott, 2005) network model across different network sizes. (B) The simulation time of 
the COBAHH (Brette et al., 2007) network model across different network sizes.

https://doi.org/10.7554/eLife.86365
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