
Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 1 of 52

BrainPy, a flexible, integrative, efficient,
and extensible framework for general-
purpose brain dynamics programming
Chaoming Wang1,2, Tianqiu Zhang1, Xiaoyu Chen1, Sichao He3, Shangyang Li1,
Si Wu1,2*

1School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain
Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology,
Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior
and Mental Health, Peking University, Beijing, China; 2Guangdong Institute of
Intelligence Science and Technology, Guangdong, China; 3Beijing Jiaotong University,
Beijing, China

Abstract Elucidating the intricate neural mechanisms underlying brain functions requires inte-
grative brain dynamics modeling. To facilitate this process, it is crucial to develop a general-purpose
programming framework that allows users to freely define neural models across multiple scales,
efficiently simulate, train, and analyze model dynamics, and conveniently incorporate new modeling
approaches. In response to this need, we present BrainPy. BrainPy leverages the advanced just-in-
time (JIT) compilation capabilities of JAX and XLA to provide a powerful infrastructure tailored for
brain dynamics programming. It offers an integrated platform for building, simulating, training, and
analyzing brain dynamics models. Models defined in BrainPy can be JIT compiled into binary instruc-
tions for various devices, including Central Processing Unit, Graphics Processing Unit, and Tensor
Processing Unit, which ensures high-running performance comparable to native C or CUDA. Addi-
tionally, BrainPy features an extensible architecture that allows for easy expansion of new infrastruc-
ture, utilities, and machine-learning approaches. This flexibility enables researchers to incorporate
cutting-edge techniques and adapt the framework to their specific needs.

Editor's evaluation
The paper introduces a new, important framework for neural modelling that promises to offer
efficient simulation and analysis tools for a wide range of biologically-realistic neural networks. It
provides convincing support for the ease of use, flexibility, and performance of the framework,
and features a solid comparison to existing solutions in terms of accuracy. The work is of potential
interest to a wide range of computational neuroscientists and researchers working on biologically
inspired machine learning applications.

Introduction
Brain dynamics modeling, which uses computational models to simulate and elucidate brain functions,
is receiving increasing attention from researchers across different disciplines. Recently, gigantic proj-
ects in brain science have been initiated worldwide, including the BRAIN Initiative (Jorgenson et al.,
2015), Human Brain Project (Amunts et al., 2016), and China Brain Project (Poo et al., 2016), which
are continuously producing new data about the structures and activity patterns of neural systems.
Computational modeling is a fundamental and indispensable tool for interpreting this vast amount of

TOOLS AND RESOURCES

*For correspondence:
siwu@pku.edu.cn

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 17

Preprinted: 28 October 2022
Received: 21 January 2023
Accepted: 20 December 2023
Published: 22 December 2023

Reviewing Editor: Marcel
Stimberg, Institut de la Vision,
France

‍ ‍ Copyright Wang et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.86365
mailto:siwu@pku.edu.cn
https://doi.org/10.1101/2022.10.28.514024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 2 of 52

data. However, to date, we still lack a general-purpose programming framework for brain dynamics
modeling. By general purpose, we mean that such a programming framework can implement most
brain dynamics models, integrate diverse modeling demands (e.g., simulation, training, and anal-
ysis), and accommodate new modeling approaches constantly emerging in the field while maintaining
high-running performance. General-purpose programming frameworks are exemplified by Tensor-
Flow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) in the field of Deep Learning, which
provides convenient interfaces for researchers to define various AI models flexibly and efficiently.
These frameworks have become essential infrastructure in AI research, and play an indispensable role
in this round of the AI revolution (Dean, 2022). Brain dynamics modeling also needs such a general-
purpose programming framework urgently (D’Angelo and Jirsa, 2022).

To develop a general-purpose programming framework for brain dynamics modeling, we face
several challenges.

•	 The first challenge comes from the complexity of the brain. The brain is organized modularly,
hierarchically, and across multi-scales (Meunier et al., 2010), implying that the framework
must support model construction at different levels (e.g., channel, neuron, network) and model
composition across multiple scales (e.g., neurons to networks, networks to circuits). Current
brain simulators typically focus on only one or two scales, for example, spiking networks
(Gewaltig and Diesmann, 2007; Davison et al., 2008; Beyeler et al., 2015; Stimberg et al.,
2019) or firing rate models (Sanz Leon et al., 2013; Cakan et al., 2021). Recently, NetPyNE
(Dura-Bernal et al., 2019) and BMTK (Dai et al., 2020a) have adopted descriptive languages
to expand the modeling scales from channels to neurons and networks, but their modeling
interfaces are still limited to predefined scales.

•	 The second challenge is the integration of different modeling needs (Ramezanian-Panahi
et al., 2022; D’Angelo and Jirsa, 2022). To elucidate brain functions comprehensively with
computational models, we need to not only simulate neural activities, but also analyze the
underlying mechanisms, and sometimes, we need to train models from data or tasks, implying
that a general-purpose programming framework needs to be a platform to integrate multiple
modeling demands. Current brain simulators mainly focus on simulation (Brette et al., 2007;
Tikidji-Hamburyan et al., 2017; Blundell et al., 2018), and largely ignore training and analysis.

•	 The third challenge is achieving high-running performance while maintaining programming
convenience (Tikidji-Hamburyan et al., 2017; Blundell et al., 2018), which is particularly true
for brain dynamics modeling, as its unique characteristics make it difficult to run efficiently
within a convenient Python interface. The current popular approach for solving this challenge
is code generation based on descriptive languages (Goodman, 2010; Blundell et al., 2018).
However, this approach has intrinsic limitations regarding transparency, flexibility, and extensi-
bility (Tikidji-Hamburyan et al., 2017; Blundell et al., 2018) (Appendix 1).

•	 The fourth challenge comes from the rapid development of the field. Brain dynamics modeling
is relatively new and developing rapidly. New concepts, models, and mathematical approaches
are constantly emerging, implying that a general-purpose programming framework needs to be
extensible to take up new advances in the field conveniently.

In this paper, we propose BrainPy (‘Brain Dynamics Programming in Python’, Figure 1) as a solu-
tion to address all the above challenges. BrainPy provides infrastructure tailored for brain dynamics
programming, including mathematical operators, differential equation solvers, universal model-
building formats, and object-oriented JIT compilation. Such infrastructure provides the flexibility for
users to define brain dynamics models freely and lays the foundation for BrainPy to build an inte-
grative framework for brain dynamics modeling. First, BrainPy introduces a brainpy.Dynamical-
System interface to unify diverse brain dynamics models. Models at any level of resolution can be
defined as DynamicalSystem classes, which further can be hierarchically composed to create higher-
level models. Second, BrainPy builds an integrated platform for studying brain dynamics models,
where the same BrainPy model can be used for simulation, training (e.g., offline learning, online
learning, or backpropagation training), and analysis (e.g., low-dimensional bifurcation analysis or high-
dimensional slow point analysis). Third, through JIT compilation and dedicated operators, BrainPy
achieves impressive performance for its code execution. The same models can be deployed into
different devices (such as Central Processing Unit [CPU], Graphics Processing Unit [GPU], and Tensor
Processing Unit [TPU]) without additional code modification. Fourth, BrainPy is highly extensible. New
extensions can be easily implemented as plug-in modules. Even the low-level primitive operators in
the kernel system can be extended in the user-level Python interface. BrainPy is implemented in a

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 3 of 52

Figure 1. BrainPy is an integrative framework targeting general-purpose brain dynamics programming. (A) Infrastructure: BrainPy provides infrastructure
tailored for brain dynamics programming, including NumPy-like operators for computations based on dense matrices, sparse and event-based
operators for event-driven computations, numerical integrators for solving diverse differential equations, the modular and composable programming
interface for universal model building, and a toolbox useful for brain dynamics modeling. (B) Function: BrainPy provides an integrated platform for
studying brain dynamics, including model building, simulation, training, and analysis. Models defined in BrainPy can be used for simulation, training,
and analysis jointly. (C) Compilation: Based on JAX (Frostig et al., 2018) and XLA (Sabne, 2020), BrainPy provides just-in-time (JIT) compilation for
Python class objects. All models defined in BrainPy can be JIT compiled into machine codes to achieve high-running performance. (D) Device: The same
BrainPy model can run on different devices including Central Processing Unit (CPU), Graphics Processing Unit (GPU), or Tensor Processing Unit (TPU),
without additional code modification.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 4 of 52

robust continuous integration pipeline and is equipped with an automatic documentation building
environment (Appendix 3). It is open sourced at https://github.com/brainpy/BrainPy. Rich tutorials
and extensive examples are available at https://brainpy.readthedocs.io and https://brainpy-examples.​
readthedocs.io, respectively.

Method and results
Infrastructure tailored for brain dynamics programming
To support its goal of becoming a general-purpose programming framework, BrainPy provides the
infrastructure essential for brain dynamics modeling (Figure 1A). This infrastructure is a collection of
interconnected utilities designed to provide foundational services that enable users to easily, flexibly,
and efficiently perform various types of modeling for brain dynamics. Specifically, BrainPy implements
(1) mathematical operators for conventional computation based on dense matrices and event-driven
computation based on sparse connections; (2) numerical integrators for various differential equations,
the backbone of dynamical neural models; (3) a universal model-building interface for constructing
multi-scale brain dynamics models and the associated JIT compilation for the efficient running of
these models; and (4) a toolbox specialized for brain dynamics modeling.

First, BrainPy delivers rich mathematical operators as essential elements to describe diverse brain
dynamics models (Appendix 4). On the one hand, brain dynamics modeling involves conventional
computation based on dense matrices. In Python scientific computing ecosystem, dense matrix oper-
ators have been standardized and popularized by NumPy (Harris et al., 2020), TensorFlow (Abadi
et al., 2016), and PyTorch (Paszke et al., 2019). To reduce the cost of learning a new set of computing
languages, dense matrix operators in BrainPy (including multi-dimensional arrays, mathematical oper-
ations, linear algebra routines, Fourier transforms, and random number generations) follow the syntax
of those in NumPy, TensorFlow, and PyTorch so that most Python users can directly program in BrainPy
with their familiar operator syntax. On the other hand, brain dynamics modeling has specific compu-
tation properties, such as sparse connections and event-driven computations, which are difficult to
efficiently implement with conventional operators. To accommodate these needs, BrainPy provides
dozens of dedicated operators tailored for brain dynamics modeling, including event-driven opera-
tors, sparse operators, and JIT connectivity operators. Compared to traditional dense matrix opera-
tors, these operators can reduce the running time of typical brain dynamics models by several orders
of magnitude (see Efficient performance of BrainPy).

Second, BrainPy offers a repertoire of numerical solvers for solving differential equations (Appendix
5). Differential equations are involved in most brain dynamics models. For ease of use, BrainPy’s numer-
ical integration of differential equations is designed as a Python decorator. Users define differential
equations as Python functions, whose numerical integration is accomplished by calling integrator
functions, for example, ​brainpy.​odeint() for ordinary differential equations (ODEs), ​brainpy.​
sdeint() for stochastic differential equations (SDEs), and ​brainpy.​fdeint() for fractional differ-
ential equations (FDEs). These integrator functions are designed to be general, and most numerical
solvers for ODEs and SDEs are provided, such as explicit Runge–Kutta methods, adaptive Runge–
Kutta methods, and Exponential methods. For SDEs, BrainPy supports different stochastic integrals
(Itô or Stratonovich) and different types of Wiener processes (scalar or multi-dimensional). As delays
are ubiquitous in brain dynamics, BrainPy also supports the numerical integration of delayed ODEs,
SDEs, and FDEs with various delay forms.

Third, BrainPy supports modular and composable programming and the associated object-oriented
transformations (Appendix 6). To capture the fundamental characteristics of brain dynamics, which
are modular, multi-scaled, and hierarchical (Meunier et al., 2010), BrainPy follows the philosophy
that ‘any dynamical model is just a Python class, and high-level models can be recursively composed
by low-level ones’ (details will be illustrated in Flexible model building in BrainPy). However, such
a modular and composable interface is not directly compatible with JIT compilers such as JAX and
Numba, because they are designed to work with pure functions (Appendix 2). By providing object-
oriented transformations, including the JIT compilation for class objects and the automatic differenti-
ation for class variables, models defined with the above modular and composable interface can also
benefit from the powerful transformations in advanced JIT compilers.

https://doi.org/10.7554/eLife.86365
https://github.com/brainpy/BrainPy
https://brainpy.readthedocs.io
https://brainpy-examples.readthedocs.io
https://brainpy-examples.readthedocs.io

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 5 of 52

Fourth, BrainPy offers a toolbox specialized for brain dynamics modeling. A typical modeling
experiment involves multiple stages or processes, such as creating synaptic connectivity, initializing
connection weights, presenting stimulus inputs, and analyzing simulated results. For the convenience
of running these operations repeatedly, BrainPy presets a set of utility functions, including synaptic
connection, weight initialization, input construction, and data analysis. However, this presetting does
not prevent users from defining their utility functions in the toolbox.

Flexible model building in BrainPy
Brain dynamics models have the key characteristics of being modular, multi-scaled, and hierar-
chical, and BrainPy designs a modular, composable, and flexible programming paradigm to match
these features. The paradigm is realized by the DynamicalSystem interface, which has the following
appealing features.

DynamicalSystem supports the definition of brain dynamics models at any organization level.
Given a dynamical system, regardless of its complexity, users can implement it as a Dynamical-
System class. As an example, Figure 2A demonstrates how to define a potassium channel model
with DynamicalSystem, in which the initialization function defines parameters and states, and the
update function specifies how the states evolve. In this process, BrainPy toolbox can help users quickly
initialize model variables, synaptic connections, weights, and delays, and BrainPy operators and inte-
grators can support users to define model updating logic freely. In a similar fashion, other dynamical
models, such as discontinuous neuron models (e.g., leaky integrate-and-fire model; Abbott, 1999),
continuous neuron models (e.g., FitzHugh–Nagumo model; Fitzhugh, 1961), population models (e.g.,
Wilson–Cowan model; Wilson and Cowan, 1972), and network models (e.g., continuous attractor
neural network; Wu et al., 2008), can be implemented by subclassing DynamicalSystem as standalone
modules.

However, for complex dynamical models, such as Hodgkin–Huxley (HH)-typed neuron models
or large-scale cortical networks, their model definitions can be achieved through the composition
of subcomponents. All models defined with DynamicalSystem can be used as modules to form
more complicated high-level models. As an example, Figure 2B demonstrates how an HH-typed
neuron model is created by combining multiple ion channel models. Such composable program-
ming is the core of DynamicalSystem, and applies to almost all BrainPy models. For example, a
synapse model consists of four components: synaptic dynamics (e.g., alpha, exponential, or dual
exponential dynamics), synaptic communication (e.g., dense, sparse, or convolutional connections),
synaptic output (e.g., conductance-, current-, or magnesium blocking-based), and synaptic plasticity
(e.g., short- or long-term plasticity). Composing different realizations of these components enables
to create diverse kinds of synaptic models. Similarly, various network models can be implemented by
combining different neuron groups and their synaptic projections.

Remarkably, DynamicalSystem supports hierarchical composable programming, such that a
model composed of lower-level components can hierarchically serve as a new component to form
higher-level models. This property is highly useful for the construction of multi-scale brain models.
Figure 2 demonstrates an example of recursively composing a model from channels (Figure 2A) to
neurons (Figure 2B) to networks (Figure 2C) and to systems (Figure 2D, see Appendix 9 for details
of the full model). It is worth pointing out that this hierarchical composition property is not shared
by other brain simulators, and BrainPy allows for flexible control of composition depth according to
users’ needs. Moreover, for user convenience, BrainPy provides dozens of commonly used models,
including channels, neurons, synapses, populations, and networks, as building blocks to simplify the
building of large-scale models.

Integrated modeling in BrainPy
BrainPy offers an integrated platform to comprehensively perform simulation, training, and analysis of
brain dynamics models.

Model simulation
BrainPy designs the interface brainpy.DSRunner to simulate the dynamics of brain models. DSRunner
can be used to simulate models at any level, including but not limited to channel (Figure 3A), neuron
(Figure 3B), network (Figure 3C), and system (Figure 3D) levels.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 6 of 52

Brain dynamics models often require intensive parameter searches to fit the experimental data,
which is a computationally demanding task. BrainPy facilitates this process by supporting multiple
parallel simulation methods. Firstly, the brainpy.running module offers convenient routines for
concurrent executions based on the python multiprocessing mechanism. This method is flexible, but

Figure 2. BrainPy supports modular and composable programming for building hierarchical brain dynamics models. (A) An ion channel model is
defined as a subclass of brainpy.dynz.IonChannel. The __init__() function specifies the parameters and states, while the update() function
defines the updating rule for the states. (B) An Hodgkin–Huxley (HH)-typed neuron model is defined by combining multiple ion channel models as a
subclass of brainpy.dyn.CondNeuGroup. (C) An E/I balanced network model is defined by combining two neuron populations and their connections
as a subclass of brainpy.DynSysGroup. (D) A ventral visual system model is defined by combining several networks, including V1, V2, V4, TEo, and
TEpd, as a subclass of brainpy.DynSysGroup. For detailed mathematical information about the complete model, please refer to Appendix 9.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 7 of 52

may introduce additional time overhead due to the model recompilation and reinitialization in each
process. Secondly, most BrainPy models inherently support the automatic vectorization of ​jax.​vmap
and automatic parallelization of ​jax.​pmap. These methods can avoid the recompilation and reinitial-
ization of models in the same batch, and automatically parallelize the model execution on the given
machines. Figure 3E illustrates the simplicity of this batch simulation approach. By using a single line
of functional calls, BrainPy models can run simultaneously with different parameter settings.

Model training
The use of machine-learning methods to train neural models is becoming a new trend for studying
brain functions (Masse et al., 2019; Finkelstein et al., 2021; Laje and Buonomano, 2013; Sussillo
et al., 2015; Saxe et al., 2021). BrainPy provides the brainpy.DSTrainer interface to support this
utility. Different subclasses of DSTrainer provide different training algorithms, which can be used to
train different types of models. For instance, the trainer brainpy.BPTT implements the algorithm
of backpropagation through time, which is helpful for training spiking neural networks (Figure 4A)
and recurrent neural networks (Figure 4B). Similarly, brainpy.OfflineTrainer implements offline
learning algorithms such as ridge regression (Lukoševičius, 2012), brainpy.OnlineTrainer
implements online learning algorithms such as FORCE learning (Sussillo and Abbott, 2009), which
are useful for training reservoir computing models (Figure 4C). In a typical training task, one may try
different algorithms that can be used to train a model. The unified syntax for defining and training
models in BrainPy enables users to train the same model using multiple algorithms (see Appendix
10). Figure 4D–F demonstrates that a reservoir network model can be trained with three different
algorithms (online, offline, and backpropagation) to accomplish a classical task of chaotic time series
prediction (Jaeger, 2007).

Since the training algorithms for brain dynamics models have not been standardized in the field,
BrainPy provides interfaces to support the flexible customization of training algorithms. Specifically,
OfflineTrainer and OnlineTrainer provide general interfaces for offline and online learning algo-
rithms, respectively, and users can easily select the appropriate method by specifying the fit_method
parameter in OfflineTrainer or OnlineTrainer. Furthermore, the BPTT interface is designed
to capture the latest advances in backpropagation algorithms. For instance, it supports eligibility

Figure 3. Model simulation in BrainPy. The interface DSRunner supports the simulation of brain dynamics models at various levels. (A) The simulation of
the potassium channel in Figure 2A. (B) The simulation of the HH neuron model in Figure 2B. (C) The simulation of the E/I balanced network, COBAHH
(Brette et al., 2007) in Figure 2C. (D) The simulation of the ventral visual system model (the code please see Figure 2D, and the model please see
Appendix 9). (E) Using jax.vmap to run a batch of spiking decision-making models (Wang, 2002) with inputs of different coherence levels. The left panel
shows the code used for batch simulations of different inputs, and the right panel illustrates the firing rates under different inputs.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 8 of 52

propagation algorithm (Bellec et al., 2020) and surrogate gradient learning (Neftci et al., 2019) for
training spiking neural networks.

Model analysis
Analyzing model dynamics is as essential as model simulation and training because it helps unveil the
underlying mechanism of model behaviors. Given a dynamical system, BrainPy provides the interface
brainpy.DSAnalyzer for automatic dynamic analysis, and different classes of DSAnalyzer imple-
ment different analytical methods.

First, BrainPy supports phase plane and bifurcation analyses for low-dimensional dynamical
systems. The phase plane is a classical and powerful technique for the analysis of dynamical systems
and has been widely used in brain dynamics studies, including neuron models (e.g., Izhikevich model;
Izhikevich, 2003) and population rate models (e.g., Wilson–Cowan model; Wilson and Cowan,
1972). Figure 5A shows an example where many features of phase plane analysis, including nullcline,
vector field, fixed points, and their stability, for a complex rate-based decision-making model (Wong
and Wang, 2006) are automatically evaluated by several lines of BrainPy code. Bifurcation analysis is
another utility of BrainPy, which allows users to easily investigate the changing behaviors of a dynam-
ical system when parameters are continuously varying. Figure 5B demonstrates the stability changes
of the classical FitzHugh–Nagumo model (Fitzhugh, 1961) with one parameter varying can be easily
inspected by the bifurcation analysis interface provided in BrainPy. Similarly, bifurcation analysis of
codimension-2 (with two parameters changing simultaneously; Figure 5C) can be performed with the

Figure 4. Model training in BrainPy. BrainPy supports the training of brain dynamics models from data or tasks. (A) Training a spiking neural network
(Bellec et al., 2020) on an evidence accumulation task (Morcos and Harvey, 2016) using the backpropagation algorithm with brainpy.BPTT. (B)
Training an artificial recurrent neural network model (Song et al., 2016) on a perceptual decision-making task (Britten et al., 1992) with brainpy.
BPTT. (C) Training a reservoir computing model (Gauthier et al., 2021) to infer the Lorenz dynamics with the ridge regression algorithm implemented
in brainpy.OfflineTrainer. ‍x, y‍, and ‍z‍ are variables in the Lorenz system. (D–F) The classical echo state machine (Jaeger, 2007) has been trained
using multiple algorithms to predict the chaotic Lorenz dynamics. The algorithms utilized include ridge regression (D), FORCE learning (E), and
backpropagation algorithms (F) implemented in BrainPy. The mean squared errors between the predicted and actual Lorenz dynamics were 0.001057
for ridge regression, 0.171304 for FORCE learning, and 1.276112 for backpropagation. Please refer to Appendix 10 for the training details.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 9 of 52

same interface. BrainPy also supports bifurcation analysis for three-dimensional fast–slow systems, for
example, a bursting neuron model (Rinzel, 1985). This set of low-dimensional analyzers is performed
numerically so that they are not restricted to equations with smooth functions, but are equally appli-
cable to ones with strong and complex nonlinearity.

Second, BrainPy supports slow point computation and linearization analysis for high-dimensional
dynamical systems. With powerful numerical optimization methods, one can find fixed or slow
points of a high-dimensional nonlinear system (Sussillo and Barak, 2013). By integrating numer-
ical methods such as gradient descent and nonlinear optimization algorithms, BrainPy provides the
interface brainpy.analysis.SlowPointFinder as a fundamental tool for high-dimensional
analysis. Figure 5D demonstrates that the SlowPointFinder can effectively find a line of stable
and unstable attractors in a CANN network (Wu et al., 2008). Furthermore, the linearized dynamics
around the found fixed points can be easily inspected and visualized with SlowPointFinder inter-
face (Figure 5E).

Efficient performance of BrainPy
Simulating dynamical models efficiently in Python is notoriously challenging (Blundell et al., 2018).
To resolve this problem, BrainPy leverages the JIT compilation of JAX/XLA and exploits dedicated
primitive operators to accelerate the model running.

JIT compilation
In contrast to deep neural networks (DNNs), which mainly consist of computation-intensive opera-
tions (such as convolution and matrix multiplication), brain dynamics models are usually dominated by
memory-intensive operations. Taking the classical leaky integrate-and-fire (LIF) neuron model (Abbott,
1999) as an example, its computation mainly relies on operators such as addition, multiplication, and
division. As shown in Figure 6A, we measure the running times of an LIF model and a matrix multi-
plication with the same number of floating-point operations (FLOPs) on both CPU and GPU devices.
The results indicate that the LIF model is significantly slower than the matrix multiplication on both
devices, despite having the same theoretical complexity. This reveals the existence of large overheads
when executing brain dynamics models in Python. Moreover, these overheads become dominant

Figure 5. Model analysis in BrainPy. BrainPy supports automatic dynamics analysis for low- and high-dimensional systems. (A) Phase plane analysis of
a rate-based decision-making model (Wong and Wang, 2006). (B) Bifurcation analysis of codimension 1 of the FitzHugh–Nagumo model (Fitzhugh,
1961), in which the bifurcation parameter is the external input Iext. (C) Bifurcation analysis of codimension 2 of the FitzHugh–Nagumo model
(Fitzhugh, 1961), in which two bifurcation parameters Iext and a are continuously varying. (D) Finding stable and unstable fixed points of a high-
dimensional CANN model (Wu et al., 2008). (E) Linearization analysis of the high-dimensional CANN model (Wu et al., 2008) around one stable and
one unstable fixed point.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 10 of 52

when simulating large-scale brain networks, as they grow rapidly with the number of operators in the
model.

To overcome this limitation, we employ the JIT compilation technique to dramatically reduce these
overhead costs in BrainPy. The JIT compilation transforms the dynamic Python code into the static
machine code during runtime, which can significantly reduce the time cost of Python interpretation.
Specifically, we utilize JAX, which implements JIT compilation based on XLA (Appendix 2). The XLA
JIT engine employs specialized optimizations for memory-intensive operators, for example, operator
fusion, which alleviates memory access overhead by minimizing the requirement for intermediate
data storage and redundant data transfers during the sequential execution of multiple unmerged
operations. This renders the JIT compilation with XLA highly suitable for handling brain dynamics
models. Figure 6A demonstrates that with the JIT compilation, the LIF model achieves a running
speed comparable to that of the matrix multiplication operation Dot on the CPU and outperforms or
matches it on the GPU (see Figure 6A, Appendix 11—figure 6A, and Appendix 11—figure 6B). To
further illustrate the benefits of the JIT compilation, we apply it to a realistic brain simulation model,
namely, the E/I balanced network model COBA (Vogels and Abbott, 2005). The results show that the
JIT compilation boosts the running speed by 10 times on both the CPU and GPU compared to the
case without JIT compilation (for CPU acceleration, see Figure 6B and Appendix 11—figure 6C; for
GPU acceleration, see Figure 6C and Appendix 11—figure 6D).

Dedicated operators
Another key feature that distinguishes brain dynamics models from DNNs is that they usually have
sparse connections and perform event-driven computations. For example, neurons in a network are
typically connected with each other with a probability less than 0.2 (Potjans and Diesmann, 2014),
and the state of a postsynaptic neuron is updated only when a presynaptic spike event occurs. These
unique features greatly impair the efficiency of brain model simulation using conventional operators,
even with the help of JIT compilation. To illustrate this, Figure 7A demonstrates that when imple-
menting a COBA network model with dense matrix-based operators, the majority of simulation time

Figure 6. BrainPy accelerates the running speed of brain dynamics models through just-in-time (JIT) compilation. (A) Performance comparison between
an LIF neuron model (Abbott, 1999) and a matrix–vector multiplication ‍Wv‍ (‍W ∈ Rm×m

‍ and ‍v ∈ Rm
‍). By adjusting the number of LIF neurons in a

network and the dimension ‍m‍ in the matrix–vector multiplication, we compare two models under the same floating-point operations (FLOPs). The top
panel: On the Central Processing Unit (CPU) device, the LIF model without JIT compilation (the ‘LIF’ line) shows much slower performance than the
matrix–vector multiplication (the ‘Dot’ line). After compiling the whole LIF network into the CPU device through JIT compilation (the ‘LIF with JIT’
line), two models show comparable running speeds (please refer to Appendix 11—figure 6A for the time ratio). The bottom panel: On the Graphics
Processing Unit (GPU) device, the LIF model without JIT shows several times slower than the matrix–vector multiplication under the same FLOPs. After
applying the JIT compilation, the jitted LIF model shows comparable performance to the matrix–vector multiplication (please refer to Appendix 11—
figure 6B for the time ratio). (B, C) Performance comparison of a classical E/I balanced network COBA (Vogels and Abbott, 2005) with and without
JIT compilation (the ‘With JIT’ line vs. the ‘Without JIT’ line). (B) JIT compilation provides a speedup of over ten times for the COBA network on
the CPU device (please refer to Appendix 11—figure 6C for the acceleration ratio). (C) Similarly, after compiling the whole COBA network model into
GPUs, the model achieves significant acceleration, several times faster than before (please refer to Appendix 11—figure 6D for the acceleration ratio).
For experimental details, please see Appendix 11.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 11 of 52

is consumed by synaptic computations on both CPU and GPU devices, and this issue becomes more
pronounced as the network size increases (see ‘CPU, Dense’ and ‘GPU, Dense’ lines in Figure 7A).

In order to address this challenge, BrainPy introduces specialized primitive operators designed to
accelerate event-based computations within sparsely connected networks. These specialized opera-
tors encompass transformations among variables associated with presynaptic neurons, postsynaptic
neurons, and synapses, as well as sparse computation operators, event-driven computation operators,
and JIT connectivity operators (refer to Appendix 4 for more details). By employing these specialized
operators, BrainPy significantly reduces the time required for synaptic computations. As depicted
in Figure 7B, the specialized event-based operators result in a remarkable speedup of the classical
COBA network model by orders of magnitude (see Appendix 11—figure 7A). Similar speed improve-
ments are observed when utilizing GPU computations, as shown in Figure 7C and Appendix 11—
figure 7B. Furthermore, an examination of the time proportion for synaptic computations indicates
that the utilization of specialized operators ensures a consistent time ratio for synaptic computation,
even as the network size increases (see ‘CPU, Event’ and ‘GPU, Event’ lines in Figure 7A).

Benchmarking
To conduct a formal assessment of the running efficiency of BrainPy, we conducted a comparative
analysis against several widely used brain simulators, namely NEURON (Hines and Carnevale, 1997),
NEST (Gewaltig and Diesmann, 2007), Brian2 (Stimberg et al., 2019), Brian2CUDA (Alevi et al.,
2022), GeNN (Yavuz et al., 2016), and Brian2GeNN (Stimberg et al., 2020). Our benchmarking
focused on measuring the simulation speeds of these frameworks for models with sparse and dense
connectivity patterns. The tests were performed using three common computing platforms: CPU,
GPU, and TPU. This comprehensive assessment provides insights into BrainPy’s efficiency relative to
other mainstream simulators across different hardware configurations and network scales.

To evaluate the performance of brain simulators on sparsely connected networks, we utilized
two established E/I balanced network models with LIF and HH neuron types: the COBA (Vogels
and Abbott, 2005) and COBAHH (Brette et al., 2007) networks (experimental details please see
Appendix 11). COBA consists of excitatory and inhibitory LIF neurons with sparse random connectivity.

Figure 7. BrainPy accelerates the running speed of brain dynamics models through dedicated operators. (A) Without dedicated event-driven operators,
the majority of the time is spent on synaptic computations when simulating a COBA network model (Vogels and Abbott, 2005). The ratio significantly
increases with the network size on both Central Processing Unit (CPU) and Graphics Processing Unit (GPU) devices (please refer to the lines labeled as
‘CPU, Dense’ and ‘GPU, Dense’ which correspond to the models utilizing the dense operator-based synaptic computation and running on the CPU
and GPU devices, respectively). With the event-based primitive operators, the proportion of time spent on synaptic computation remains constant
regardless of network size (please refer to the lines labeled as ‘CPU, Event’ and ‘GPU, Event’ which represent the models performing event-driven
computations on the CPU and GPU devices, respectively). (B) On the CPU device, the COBA network model with event-based operators (see the ‘With
dedicated OP’ line) is accelerated by up to three orders of magnitude compared to that without dedicated operators (see the ‘Without dedicated
OP’ line). Please refer to Appendix 11—figure 7A for the acceleration ratio. (C) The COBA network model exhibited two orders of magnitude
acceleration when implemented with event-based primitive operators on a GPU device. This performance improvement was more pronounced for
larger network sizes on both CPU and GPU platforms. Please refer to Appendix 11—figure 7B for the acceleration ratio. For experimental details,
please see Appendix 11.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 12 of 52

COBAHH uses the same network architecture but replaces the LIF neurons with biophysically detailed
HH neuron models. On the CPU platform, consistent with previous benchmark experiments (Stim-
berg et al., 2019), we find that NEURON and NEST simulators exhibit suboptimal performance when
running on a single node (see Figure 8A and Figure 8B). In contrast, BrainPy and Brian2 demonstrate
comparable performance, showcasing a remarkable speed advantage of one to two orders of magni-
tude over NEURON and NEST. As both Brian2 and BrainPy support single-precision floating-point
computation (x32), we conducted an analysis of their performances in the context of x32 computa-
tion. In order to ensure accurate simulation results with x32 computation, we examined the simulation
outcomes across various simulators and platforms (refer to Appendix 11). Our evaluation demonstrated
that BrainPy outperforms Brian2 in terms of speedup for numerical integration using x32 arithmetic on
CPU platforms. On the GPU platform, GeNN demonstrates optimal linear scaling of execution time on
both COBA and COBAHH network models as the network size increases (Figure 8D and Figure 8E).
In contrast, BrainPy and Brian2CUDA exhibit a slight overhead and maintain a constant running time
when dealing with small network sizes. However, when it comes to network scaling, BrainPy and Brian-
2CUDA outperform GeNN. Particularly as the network size grows, GeNN exhibits significantly slower
performance. Additionally, the utilization of single-precision floating point in GeNN, Brian2CUDA,
and BrainPy further enhances their GPU performance (excluding the COBA model in Brian2CUDA).
Once again, we observed that BrainPy’s x32 mode achieves a more pronounced performance gain.
Particularly, in the COBAHH model, BrainPy’s x32 computation demonstrates a substantial speedup
compared to other brain simulators. BrainPy also enables model deployment on TPUs. However, since
TPUs currently lack native support for sparse computations and toolchains for operator customization,
we could not leverage event-driven sparse operators to simulate the sparsely connected COBA and
COBAHH networks. Instead, we used dense matrix multiplication with masking to approximate the

Figure 8. Speed comparison of NEURON, Nest, Brian2, and BrainPy under different computing devices. Comparing speeds of different brain simulation
platforms using the benchmark model COBA (Vogels and Abbott, 2005) on both the Central Processing Unit (CPU) (A) and Graphics Processing Unit
(GPU) (D) devices. NEURON is truncated at 16,000 neurons due to its very slow runtime. Comparing speeds of different platforms using the benchmark
model COBAHH (Brette et al., 2007) on both the CPU (B) and GPU (E) devices. Speed comparison of a spiking decision-making network (Wang, 2002)
on CPU (C), GPU, and Tensor Processing Unit (TPU) (F) devices. Please refer to Appendix 11 for experimental details, and Appendix 11—figure 8 for
more data.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 13 of 52

sparse connectivity. Unfortunately, this led to significantly slower performance for the two sparsely
connected models compared to the results obtained on GPUs (please refer to Appendix 11—figure
8). Moreover, the use of masked matrices resulted in a quadratic increase in memory usage. Conse-
quently, the benchmarking experiments of COBA and COBAHH networks on TPU were limited to a
scale of ‍4e4‍ neurons.

To evaluate the performance of brain simulators on densely connected networks, we utilized the
decision-making network proposed by Wang, 2002. Assessing computational efficiency for dense
connectivity is important for simulating models that feature dense recurrent connections (Motta et al.,
2019) and facilitating the integration with DNNs which commonly employ dense connectivity between
layers (Tavanaei et al., 2019). Due to the considerably slower speeds observed and the absence of
a publicly available implementation of a decision-making network model using NEURON and NEST,
we have excluded them from this benchmark test. Additionally, we did not include a comparison
with GeNN because Brian2GeNN does not support the translation of the advanced Brian2 feature
employed in this model. Our evaluation showcases that Brian2, Brian2CUDA, and BrainPy exhibit
comparable performance on networks of small sizes. However, BrainPy demonstrated substantially
better scalability on larger network sizes (see Figure 8C and Figure 8F). For these types of simu-
lation workloads with dense connectivity, TPUs significantly outperformed CPUs and GPUs. Since
TPUs primarily utilize low-precision floating point (especially floating point with 16 bits) and are less
optimized for double precision, we only tested the model with single-precision operations. Our evalu-
ations clearly showcase the excellent scalability of the network as the size increases (refer to the GPU
and TPU comparison in Figure 8F).

Extensible architecture of BrainPy
Brain science, as well as brain dynamics modeling, is progressing rapidly. Along with the gigantic proj-
ects on brain research worldwide, new data and knowledge about brain structures and functions are
constantly emerging, which impose new demands on brain dynamics modeling frequently, including,
for instance, the simulation and analysis of large-size neural circuits, and the training of neural models
based on recorded neural data. To be a general-purpose brain dynamics programming framework, the
architecture of the framework must be extensible to conveniently take up new advances in the field.
Current brain simulators based on descriptive languages have difficulty achieving this goal, since the
extension of a new component through the descriptive interface needs to be done in both high- and
low-level programming languages (Appendix 1). Through the elaborate architecture design, BrainPy
enables easy extension with new infrastructure, new utility functions, and new machine-learning
methods, all performed in our convenient Python interface.

First, for infrastructure (Figure 1A), BrainPy provides a convenient way of customizing a new
tool by defining a new subclass. For example, a new Runge–Kutta integrator can be created by
inheriting from ​brainpy.​ode.​ExplicitRKIntegrator and specifying the Butcher tableau; a new
connector can be implemented by deriving from ​brainpy.​conn.​TwoEndConnector and over-
riding initialization function and connection building function (see Appendix 7 for details). Since
models and modeling methods have not yet been standardized in the field, the abstraction and
summarization of primitive operators for brain dynamics modeling are largely lacking. Although
BrainPy has provided dozens of dedicated operators, it would be too soon to establish a complete
operator library for brain dynamics modeling. To simplify the process of operator customization,
BrainPy provides the ​brainpy.​math.​CustomOpByNumba interface that allows users to write and
register an operator directly with Python syntax. Specifically, to customize a primitive operator, users
need to subclass CustomOpByNumba and implement two Python functions: the abstract evaluation
function eval_shape() and concrete computation function con_compute() (see Appendix 8 for
more information). Notably, this approach differs from the operator customization in most DNN
frameworks, in which low-level operators must be implemented through C++ code. We confirmed
that operators customized through the BrainPy interface have comparable and even better perfor-
mance than those written in C++ (please refer to Figure 9 for the results and Appendix 8 for the
source code for comparison).

Second, for functional modules (Figure 1B), BrainPy enables an extension of a new module with
BrainPy infrastructure, as the latter can be arbitrarily fused, chained, or combined to create new
functions. For example, an analysis toolkit can be customized with BrainPy operators. Moreover, all

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 14 of 52

customizations in BrainPy can benefit from the acceleration of JIT compilation, and users’ attention
only needs to focus on the functionalities they require.

Third, for interactions with AI, BrainPy supports the easy extension of new machine-learning
methods. Machine-learning approaches are becoming important tools for brain dynamics modeling
(Saxe et al., 2021). Existing brain simulators have difficulty incorporating the latest advances in
machine-learning research (Appendix 1). Built on top of JAX, BrainPy has the inherent advantage of
being linked to the latest developments in machine learning. We noticed that JAX has a rich ecosystem
of machine learning, including DNNs, graph neural networks, reinforcement learning, and probabi-
listic programming. To integrate this rich ecosystem as part of the users’ program, BrainPy is designed
to be compatible with other JAX libraries. First, the object-oriented transformations in BrainPy can be
applied to pure functions, thus enabling most JAX libraries with a functional programming style to be
directly used as a part of the BrainPy program. Second, users can transform models in other libraries
as BrainPy objects. For example, using ​brainpy.​dnn.​FromFlax, users can treat any artificial neural
network model in Flax (Heek, 2020) as a BrainPy module. Alternatively, users can convert a BrainPy
model into a format that is compatible with other JAX libraries. For instance, ​brainpy.​dnn.​ToFlax
supports interpreting a dynamical system in BrainPy as a Flax recurrent cell, so that brain models in
BrainPy can also be used in a machine-learning context.

Discussion
The field of brain dynamics modeling has long been constrained by a lack of general-purpose
programming frameworks that can support users to freely define brain dynamics models across
multiple scales, comprehensively perform simulation, optimization, and analysis of the built models,

Figure 9. The speed comparison of event-based operators customized by C++ XLA custom call and our Python-level registration interface. ‘C++
Operator’ presents the simulation time of a COBA network using the event-based operator coded by C++, and ‘Python Operator’ shows the simulation
speed of the network that is implemented through our operator registered by the Python interface.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 15 of 52

and conveniently prototype new modeling methods. To address this challenge, we have developed
BrainPy, a general-purpose programming framework for brain dynamics modeling. With a combined
focus on usability, performance, functionality, and extensibility, BrainPy offers a number of appealing
properties, including:

•	 Pythonic programming. In contrast to other brain simulators (Gewaltig and Diesmann, 2007;
Davison et al., 2008; Beyeler et al., 2015; Stimberg et al., 2019; Hines and Carnevale, 1997;
Dura-Bernal et al., 2019; Dai et al., 2020a; Goodman, 2010; Blundell et al., 2018; Tikidji-
Hamburyan et al., 2017), BrainPy enables Pythonic programming. It allows users to implement
and control their models directly using native Python syntax, implicating high transparency to
users. This transparency is crucial for research, as standard Python debugging tools can be inte-
grated into the implementation process of novel models, and is also appealing for education.

•	 Integrative platform. BrainPy allows unprecedentedly integrated studying of brain dynamics
models. Its multi-scale model-building interface facilitates the construction of data-driven
models based on the structural, functional, or cellular data (Potjans and Diesmann, 2014),
while its diverse model training supports enable to training brain dynamics models based on
cognitive tasks that can be used to evaluate or optimize models of different brain functions
(Saxe et al., 2021). BrainPy provides the first step toward an integrative framework supporting
comprehensive brain modeling across different organization levels and problem dimensions
(D’Angelo and Jirsa, 2022).

•	 Intrinsic flexibility. Inspired by the success of general-purpose programming in Deep Learning
(Abadi et al., 2016; Paszke et al., 2019), BrainPy provides not only functional libraries but also
infrastructure. This is essential for users to create models and modeling approaches beyond the
predefined assumptions of existing libraries.

•	 Efficient performance. One of the key strengths of BrainPy lies in its ability to compile models
defined in the framework into binary instructions for various devices, including CPU, GPU, and
TPU. This compilation process ensures high-running performance comparable to native C or
CUDA, enabling researchers to efficiently execute their models.

•	 Extensible architecture. BrainPy features an extensible architecture. New primitive operators,
utilities, functional modules, machine-learning approaches, etc., can be easily customized
through our Python interface.

Limitations
While BrainPy’s native Python-based object-oriented programming paradigm confers numerous
advantages compared to existing brain simulators, this novel programming approach also imposes
certain limitations that must be acknowledged.

Most existing brain simulators employ a domain-specific language to define brain dynamics
models. For example, Brian2 (Stimberg et al., 2019) designs an equation-oriented specification that
can describe a wide variety of neural models; NeuroML (Cannon et al., 2014) employs an XML-based
specification that facilitates the sharing and reuse of neuronal models; NetPyNE (Dura-Bernal et al.,
2019) utilizes a high-level JSON-compatible format composed of Python lists and dictionaries to
support multi-scale neuronal modeling; BMTK (Dai et al., 2020a) similarly employs a JSON-based
language built on the SONATA file format (Dai et al., 2020b) to deliver consistent multi-resolution
experiences via integration with established tools like NEURON and NEST. This declarative program-
ming approach benefits from a clear separation between the mathematical model description and its
computational realization. It frees users from low-level implementation details, and enables intuitive
specification of complex models in a concise and semantically clear manner. In contrast, the object-
oriented programming used in BrainPy exposes the implementation details to users, and adds some
complexity to the code. For example, users should be aware of the differences between dense and
sparse connectivity schemes, online or offline training schemes, nonbatch or batch computing modes,
etc.

The current objectives of BrainPy center on enabling an integrative platform for simulating,
training, and analyzing large-scale brain network models while retaining biologically relevant details.
Incorporating excessive biological details would be extremely computationally expensive and difficult
for such integration. Consequently, detailed spatial modeling with complex compartmental dynamics,
as facilitated by tools like NEURON (Hines and Carnevale, 1997) and Arbor (Akar et al., 2019),
exceeds BrainPy’s present scope. Moreover, in order to solve the governing partial differential equa-
tions, implicit numerical methods (e.g., Crank–Nicolson, implicit Euler) are often essential for stable

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 16 of 52

multi-compartment model simulation. As BrainPy does not currently support fully implicit solvers, it
is ill suited to the needs and preferences of modelers focused on multi-compartment dynamics in its
current form. Our emphasis remains on balancing biological fidelity and computational tractability for
large-scale network modeling and training.

Based on the GSPMD mechanism of the XLA compiler (Xu et al., 2021), the current version of
BrainPy supports various parallelism paradigms, such as data parallelism and model parallelism.
Data parallelism involves dividing the training data across multiple devices, where each device inde-
pendently computes and updates the model parameters using its assigned data subset. On the other
hand, model parallelism entails partitioning the model across multiple devices, with each device
responsible for computing a specific portion of the model computations. These parallelism paradigms
are particularly applicable to brain dynamics models with dense connections or structured sparsity.
However, the GSPMD parallelism mechanism is not straightforwardly applicable to sparse spiking
neural networks, and requires non-trivial changes to support sparse computations. Therefore, another
limitation of the current BrainPy framework is that it does not support the general parallelization of
sparse spiking neural network models on multiple computing devices. State-of-the-art brain simula-
tors now offer powerful parallelization capabilities for simulating large-scale SNNs. For instance, NEST
(Gewaltig and Diesmann, 2007) and NEURON (Hines and Carnevale, 1997) simulators provide
convenient and efficient commands through the MPI interface to define, connect, and execute large-
scale networks. However, the array-based data structure in BrainPy requires a different approach to
parallelize spiking neural networks.

Future works
Although BrainPy offers substantial capabilities for brain dynamics modeling, fulfilling all demands in
this domain will require large efforts for further ecosystem development.

First, supporting the efficient implementation of multi-compartment neuron models is needed to
enable biologically detailed modeling at the subcellular level (Poirazi and Papoutsi, 2020). Multi-
compartment neurons incorporate complex dendritic morphologies and spatially distributed ion
channels that more precisely capture neural information processing. A substantial number of studies
have demonstrated that dendritic mechanisms convey significant advantages to simplified network
models of varying levels of abstraction (Bono and Clopath, 2017; Legenstein and Maass, 2011; Wu
et al., 2018). Efficiently implementing such models in BrainPy could significantly advance detailed
biophysical modeling and bridge the machine-learning-oriented SNN models.

Second, developing parallel primitive operators and memory-efficient algorithms will be critical
for ultra-large-scale brain simulations approaching biological realism (>billions of neurons). Massive
parallelization across multiple computing devices is currently the main approach to achieve such scale.
For instance, the NEST simulator uses optimized data structures and algorithms (Kunkel et al., 2011;
Kunkel et al., 2014; Jordan et al., 2018) to enable large-scale simulation on supercomputers and
clusters. Moving forward, a priority for BrainPy will be parallelizing its array-based data structures
to simulate gigantic brain models across multiple nodes. Moreover, rather than solving large-scale
networks exactly, BrainPy aims to find approximating algorithms that overcome the ‍O(n2)‍ complexity,
permitting very large-scale modeling on much less computing devices.

Third, integrating BrainPy models with modern accelerators and neuromorphic computing systems
(Schuman et al., 2017) could offer a more efficient and scalable approach for simulating large-scale
brain dynamics models on cutting-edge hardware accelerators. On the one hand, the implementation
of sparse and event-driven operators is necessary for TPUs. While TPUs have demonstrated promising
performance and efficiency for machine-learning workloads, our experiments indicate that they are
less efficient than GPUs when simulating sparse biological brain network models (see Appendix 11—
figure 8). This inefficiency is primarily due to the lack of dedicated operators for sparse and event-
driven brain computations in current TPUs. In the future, we plan to explore the development of TPU
kernels to enable scalable and efficient brain dynamics programming on TPU hardware accelerators.
On the other hand, neuromorphic systems incorporate custom analog circuits that mimic neurobiolog-
ical architectures and dynamics, resulting in significantly higher power efficiency compared to conven-
tional digital hardware. By mapping BrainPy models onto neuromorphic platforms, simulations can be
accelerated, and large-scale models can be executed efficiently. However, the development of trans-
lation tools and mapping optimizations is necessary to fully harness the potential of these systems.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 17 of 52

By addressing these limitations and enhancing BrainPy’s capabilities in these areas, we can further
advance its goal of serving as a comprehensive programming framework for modeling brain dynamics.
This will enable users to delve into the dynamics of brain or brain-inspired models that combine
biological insights with machine learning. The BrainPy team encourages collaboration with the
research community to expand this modeling ecosystem and facilitate a deeper understanding of
brain dynamics.

Acknowledgements
This work was supported by Science and Technology Innovation 2030-Brain Science and Brain-inspired
Intelligence Project (No. 2021ZD0200204) and Beijing Academy of Artificial Intelligence. We would
like to express our sincere gratitude to Marcel Stimberg for his valuable insights and assistance with
benchmarking brain simulators, which greatly contributed to this paper. We would like to acknowl-
edge Xiaohan Lin, Yifeng Gong, Hongyaoxing Gu, Linfei Lu, Xiaolong Zou, Zhiyu Zhao, Yingqian Jiang,
Xinyu Liu, and all other members of the Wu laboratory for their helpful discussions. We thank all
GitHub users who contributed codes to BrainPy.

Additional information

Funding

Funder Grant reference number Author

Ministry of Science &
Technology, People
Republic of China

2021ZD0200204 Si Wu

Peking-Tsinghua Center for
Life Sciences

Si Wu

The funders had no role in study design, data collection, and interpretation, or the
decision to submit the work for publication.

Author contributions
Chaoming Wang, Conceptualization, Resources, Software, Formal analysis, Validation, Investigation,
Visualization, Methodology, Writing - original draft, Writing - review and editing; Tianqiu Zhang,
Xiaoyu Chen, Software, Visualization, Methodology; Sichao He, Software; Shangyang Li, Validation; Si
Wu, Conceptualization, Resources, Supervision, Funding acquisition, Writing - original draft, Writing
- review and editing

Author ORCIDs
Chaoming Wang ‍ ‍ http://orcid.org/0000-0002-7986-3890
Si Wu ‍ ‍ http://orcid.org/0000-0001-9650-6935

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.86365.sa1
Author response https://doi.org/10.7554/eLife.86365.sa2

Additional files
Supplementary files
•  MDAR checklist

Data availability
BrainPy is distributed via the pypi package index (https://pypi.org/project/brainpy/) and is publicly
released on GitHub (https://github.com/brainpy/BrainPy/; Wang et al., 2024) under the license of
GNU General Public License v3.0. Its documentation is hosted on the free documentation hosting
platform Read the Docs (https://brainpy.readthedocs.io/). Rich examples and illustrations of BrainPy

https://doi.org/10.7554/eLife.86365
http://orcid.org/0000-0002-7986-3890
http://orcid.org/0000-0001-9650-6935
https://doi.org/10.7554/eLife.86365.sa1
https://doi.org/10.7554/eLife.86365.sa2
https://pypi.org/project/brainpy/
https://github.com/brainpy/BrainPy/
https://brainpy.readthedocs.io/

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 18 of 52

are publicly available at the website of https://brainpy-examples.readthedocs.io/. The source codes
of these examples are available at https://github.com/brainpy/examples/ (Wang, 2023). All the codes
to reproduce the results in the paper can be found at the following GitHub repository: https://github.​
com/brainpy/brainpy-elife-reproducibility/ (copy archived at Wang, 2024).

References
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M. 2016.

TensorFlow: A System for Large-Scale Machine Learning. In: 12th USENIX symposium on operating systems
design and implementation (OSDI. 265–283.

Abbott LF. 1999. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin
50:303–304. DOI: https://doi.org/10.1016/s0361-9230(99)00161-6, PMID: 10643408

Akar NA, Cumming B, Karakasis V, Kusters A, Klijn W, Peyser A, Yates S. 2019. Arbor — A Morphologically-
Detailed Neural Network Simulation Library for Contemporary High-Performance Computing Architectures.
2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP).
Pavia, Italy, 274–282. DOI: https://doi.org/10.1109/EMPDP.2019.8671560

Alevi D, Stimberg M, Sprekeler H, Obermayer K, Augustin M. 2022. Brian2CUDA: Flexible and efficient
simulation of spiking neural network models on GPUs. Frontiers in Neuroinformatics 16:883700. DOI: https://​
doi.org/10.3389/fninf.2022.883700, PMID: 36387586

Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T. 2016. The human brain project: creating a european
research infrastructure to decode the human brain. Neuron 92:574–581. DOI: https://doi.org/10.1016/j.neuron.​
2016.10.046, PMID: 27809997

Aycock J. 2003. A brief history of just-in-time. ACM Computing Surveys 35:97–113. DOI: https://doi.org/10.​
1145/857076.857077

Azevedo Carvalho N, Contassot-Vivier S, Buhry L, Martinez D. 2020. Simulation of large scale neural models
with event-driven connectivity generation. Frontiers in Neuroinformatics 14:522000. DOI: https://doi.org/10.​
3389/fninf.2020.522000, PMID: 33154719

Bellec G, Scherr F, Subramoney A, Hajek E, Salaj D, Legenstein R, Maass W. 2020. A solution to the learning
dilemma for recurrent networks of spiking neurons. Nature Communications 11:3625. DOI: https://doi.org/10.​
1038/s41467-020-17236-y, PMID: 32681001

Beyeler M, Carlson KD, Dutt N, Krichmar JL. 2015. CARLsim 3: A user-friendly and highly optimized library for
the creation of neurobiologically detailed spiking neural networks. 2015 International Joint Conference on
Neural Networks (IJCNN. 1–8. DOI: https://doi.org/10.1109/IJCNN.2015.7280424

Bezanson J, Edelman A, Karpinski S, Shah VB. 2017. Julia: A fresh approach to numerical computing. SIAM
Review 59:65–98. DOI: https://doi.org/10.1137/141000671

Blundell I, Brette R, Cleland TA, Close TG, Coca D, Davison AP, Diaz-Pier S, Fernandez Musoles C, Gleeson P,
Goodman DFM, Hines M, Hopkins MW, Kumbhar P, Lester DR, Marin B, Morrison A, Müller E, Nowotny T,
Peyser A, Plotnikov D, et al. 2018. Code generation in computational neuroscience: a review of tools and
techniques. Frontiers in Neuroinformatics 12:68. DOI: https://doi.org/10.3389/fninf.2018.00068

Bono J, Clopath C. 2017. Modeling somatic and dendritic spike mediated plasticity at the single neuron and
network level. Nature Communications 8:706. DOI: https://doi.org/10.1038/s41467-017-00740-z, PMID:
28951585

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH,
Harris FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T,
Muller E, Davison AP, et al. 2007. Simulation of networks of spiking neurons: a review of tools and strategies.
Journal of Computational Neuroscience 23:349–398. DOI: https://doi.org/10.1007/s10827-007-0038-6, PMID:
17629781

Brette R, Goodman DFM. 2011. Vectorized algorithms for spiking neural network simulation. Neural
Computation 23:1503–1535. DOI: https://doi.org/10.1162/NECO_a_00123, PMID: 21395437

Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a comparison of
neuronal and psychophysical performance. The Journal of Neuroscience 12:4745–4765. DOI: https://doi.org/​
10.1523/JNEUROSCI.12-12-04745.1992, PMID: 1464765

Cakan C, Jajcay N, Obermayer K. 2021. Neurolib: A simulation framework for whole-brain neural mass modeling.
[bioRxiv]. DOI: https://doi.org/10.1101/2021.02.18.431886

Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA. 2014. LEMS: a language for
expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.
Frontiers in Neuroinformatics 8:79. DOI: https://doi.org/10.3389/fninf.2014.00079, PMID: 25309419

Chou TS, Kashyap HJ, Xing J, Listopad S, Rounds EL, Beyeler M, Dutt N, Krichmar JL. 2018. CARLsim 4: An open
source library for large scale, biologically detailed spiking neural network simulation using heterogeneous
clusters. 2018 International Joint Conference on Neural Networks. 1–8. DOI: https://doi.org/10.1109/IJCNN.​
2018.8489326

Dai K, Gratiy SL, Billeh YN, Xu R, Cai B, Cain N, Rimehaug AE, Stasik AJ, Einevoll GT, Mihalas S, Koch C,
Arkhipov A. 2020a. Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain
circuits. PLOS Computational Biology 16:e1008386. DOI: https://doi.org/10.1371/journal.pcbi.1008386, PMID:
33253147

https://doi.org/10.7554/eLife.86365
https://brainpy-examples.readthedocs.io/
https://github.com/brainpy/examples/
https://github.com/brainpy/brainpy-elife-reproducibility/
https://github.com/brainpy/brainpy-elife-reproducibility/
https://doi.org/10.1016/s0361-9230(99)00161-6
http://www.ncbi.nlm.nih.gov/pubmed/10643408
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.3389/fninf.2022.883700
https://doi.org/10.3389/fninf.2022.883700
http://www.ncbi.nlm.nih.gov/pubmed/36387586
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1016/j.neuron.2016.10.046
http://www.ncbi.nlm.nih.gov/pubmed/27809997
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
https://doi.org/10.3389/fninf.2020.522000
https://doi.org/10.3389/fninf.2020.522000
http://www.ncbi.nlm.nih.gov/pubmed/33154719
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
http://www.ncbi.nlm.nih.gov/pubmed/32681001
https://doi.org/10.1109/IJCNN.2015.7280424
https://doi.org/10.1137/141000671
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1038/s41467-017-00740-z
http://www.ncbi.nlm.nih.gov/pubmed/28951585
https://doi.org/10.1007/s10827-007-0038-6
http://www.ncbi.nlm.nih.gov/pubmed/17629781
https://doi.org/10.1162/NECO_a_00123
http://www.ncbi.nlm.nih.gov/pubmed/21395437
https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992
http://www.ncbi.nlm.nih.gov/pubmed/1464765
https://doi.org/10.1101/2021.02.18.431886
https://doi.org/10.3389/fninf.2014.00079
http://www.ncbi.nlm.nih.gov/pubmed/25309419
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1371/journal.pcbi.1008386
http://www.ncbi.nlm.nih.gov/pubmed/33253147

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 19 of 52

Dai K, Hernando J, Billeh YN, Gratiy SL, Planas J, Davison AP, Dura-Bernal S, Gleeson P, Devresse A, Dichter BK,
Gevaert M, King JG, Van Geit WAH, Povolotsky AV, Muller E, Courcol J-D, Arkhipov A. 2020b. The SONATA
data format for efficient description of large-scale network models. PLOS Computational Biology 16:e1007696.
DOI: https://doi.org/10.1371/journal.pcbi.1007696, PMID: 32092054

D’Angelo E, Jirsa V. 2022. The quest for multiscale brain modeling. Trends in Neurosciences 45:777–790. DOI:
https://doi.org/10.1016/j.tins.2022.06.007, PMID: 35906100

Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P. 2008. PyNN: A
common interface for neuronal network simulators. Frontiers in Neuroinformatics 2:11. DOI: https://doi.org/10.​
3389/neuro.11.011.2008, PMID: 19194529

Dean J. 2022. A golden decade of deep learning: computing systems & applications. Daedalus 151:58–74. DOI:
https://doi.org/10.1162/daed_a_01900

Dubois PF, Hinsen K, Hugunin J. 1996. Numerical python. Computers in Physics 10:262. DOI: https://doi.org/10.​
1063/1.4822400

Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL,
Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. 2019. NetPyNE, a tool for
data-driven multiscale modeling of brain circuits. eLife 8:e44494. DOI: https://doi.org/10.7554/eLife.44494,
PMID: 31025934

Fidjeland AK, Roesch EB, Shanahan MP, Luk W. 2009. 20th IEEE international conference on application-specific
systems. Architectures and processors (ASAP). 137–144. DOI: https://doi.org/10.1109/ASAP.2009.24

Finkelstein A, Fontolan L, Economo MN, Li N, Romani S, Svoboda K. 2021. Attractor dynamics gate cortical
information flow during decision-making. Nature Neuroscience 24:843–850. DOI: https://doi.org/10.1038/​
s41593-021-00840-6

Fitzhugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical
Journal 1:445–466. DOI: https://doi.org/10.1016/s0006-3495(61)86902-6, PMID: 19431309

Frostig R, Johnson MJ, Leary C. 2018. Compiling machine learning programs via high-level tracing. Systems for
Machine Learning 23–24.

Gauthier DJ, Bollt E, Griffith A, Barbosa WAS. 2021. Next generation reservoir computing. Nature
Communications 12:5564. DOI: https://doi.org/10.1038/s41467-021-25801-2, PMID: 34548491

Gewaltig MO, Diesmann M. 2007. NEST (NEural Simulation Tool). Scholarpedia 2:1430. DOI: https://doi.org/10.​
4249/scholarpedia.1430

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US,
Barnes SR, Dimitrova YD, Silver RA. 2010. NeuroML: a language for describing data driven models of neurons
and networks with a high degree of biological detail. PLOS Computational Biology 6:e1000815. DOI: https://​
doi.org/10.1371/journal.pcbi.1000815, PMID: 20585541

Golosio B, Tiddia G, De Luca C, Pastorelli E, Simula F, Paolucci PS. 2021. Fast simulations of highly-connected
spiking cortical models using GPUs. Frontiers in Computational Neuroscience 15:627620. DOI: https://doi.org/​
10.3389/fncom.2021.627620

Goodman DF, Brette R. 2008. Brian: a simulator for spiking neural networks in python. Frontiers in
Neuroinformatics 2:5. DOI: https://doi.org/10.3389/neuro.11.005.2008, PMID: 19115011

Goodman DFM. 2010. Code generation: a strategy for neural network simulators. Neuroinformatics 8:183–196.
DOI: https://doi.org/10.1007/s12021-010-9082-x

Grcevski N, Kielstra A, Stoodley K, Stoodley MG, Sundaresan V. 2004. Java Just-in-Time Compiler and Virtual
Machine Improvements for Server and Middleware Applications. Virtual Machine Research and Technology
Symposium. 151–162.

Hagberg A, Swart P. 2008. Exploring network structure, dynamics, and function using NetworkX. Los Alamos
National Lab, Los Alamos, .

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P,
Gérard-Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.​
1038/s41586-020-2649-2, PMID: 32939066

Heek J. 2020. Google/flex. Github. http://github.com/google/flax
Hines ML, Carnevale NT. 1997. The NEURON simulation environment. Neural Computation 9:1179–1209. DOI:

https://doi.org/10.1162/neco.1997.9.6.1179, PMID: 9248061
Hunter JD. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9:90–95. DOI:

https://doi.org/10.1109/MCSE.2007.55
Izhikevich EM. 2003. Simple model of spiking neurons. IEEE Transactions on Neural Networks 14:1569–1572.

DOI: https://doi.org/10.1109/TNN.2003.820440, PMID: 18244602
Jaeger H. 2007. Echo state network. Scholarpedia 2:2330. DOI: https://doi.org/10.4249/scholarpedia.2330
Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. 2018. Corrigendum:

extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Frontiers in
Neuroinformatics 12:34. DOI: https://doi.org/10.3389/fninf.2018.00034, PMID: 30008668

Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K, Donoghue JP, Hudson KL,
Ling GSF, MacLeish PR, Marder E, Normann RA, Sanes JR, Schnitzer MJ, Sejnowski TJ, Tank DW, Tsien RY,
Ugurbil K, Wingfield JC. 2015. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.
Philosophical Transactions of the Royal Society B 370:20140164. DOI: https://doi.org/10.1098/rstb.2014.0164

Kaslik E, Sivasundaram S. 2012. Nonlinear dynamics and chaos in fractional-order neural networks. Neural
Networks 32:245–256. DOI: https://doi.org/10.1016/j.neunet.2012.02.030, PMID: 22386788

https://doi.org/10.7554/eLife.86365
https://doi.org/10.1371/journal.pcbi.1007696
http://www.ncbi.nlm.nih.gov/pubmed/32092054
https://doi.org/10.1016/j.tins.2022.06.007
http://www.ncbi.nlm.nih.gov/pubmed/35906100
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
http://www.ncbi.nlm.nih.gov/pubmed/19194529
https://doi.org/10.1162/daed_a_01900
https://doi.org/10.1063/1.4822400
https://doi.org/10.1063/1.4822400
https://doi.org/10.7554/eLife.44494
http://www.ncbi.nlm.nih.gov/pubmed/31025934
https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1038/s41593-021-00840-6
https://doi.org/10.1038/s41593-021-00840-6
https://doi.org/10.1016/s0006-3495(61)86902-6
http://www.ncbi.nlm.nih.gov/pubmed/19431309
https://doi.org/10.1038/s41467-021-25801-2
http://www.ncbi.nlm.nih.gov/pubmed/34548491
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1371/journal.pcbi.1000815
http://www.ncbi.nlm.nih.gov/pubmed/20585541
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/neuro.11.005.2008
http://www.ncbi.nlm.nih.gov/pubmed/19115011
https://doi.org/10.1007/s12021-010-9082-x
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://github.com/google/flax
https://doi.org/10.1162/neco.1997.9.6.1179
http://www.ncbi.nlm.nih.gov/pubmed/9248061
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/TNN.2003.820440
http://www.ncbi.nlm.nih.gov/pubmed/18244602
https://doi.org/10.4249/scholarpedia.2330
https://doi.org/10.3389/fninf.2018.00034
http://www.ncbi.nlm.nih.gov/pubmed/30008668
https://doi.org/10.1098/rstb.2014.0164
https://doi.org/10.1016/j.neunet.2012.02.030
http://www.ncbi.nlm.nih.gov/pubmed/22386788

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 20 of 52

Knight JC, Nowotny T. 2021 Larger GPU-accelerated brain simulations with procedural connectivity. Nature
Computational Science 1:136–142. DOI: https://doi.org/10.1038/s43588-020-00022-7

Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J. 2020.
Computational science – ICCS 2020. An Optimizing Multi-Platform Source-to-Source Compiler Framework for
the NEURON MODeling Language Cham: International Conference on Computational Science Springer. p.
45–58. DOI: https://doi.org/10.1007/978-3-030-50371-0

Kunkel S, Potjans TC, Eppler JM, Plesser HE, Morrison A, Diesmann M. 2011. Meeting the memory challenges of
brain-scale network simulation. Frontiers in Neuroinformatics 5:35. DOI: https://doi.org/10.3389/fninf.2011.​
00035, PMID: 22291636

Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M,
Helias M. 2014. Spiking network simulation code for petascale computers. Frontiers in Neuroinformatics 8:78.
DOI: https://doi.org/10.3389/fninf.2014.00078, PMID: 25346682

Laje R, Buonomano DV. 2013. Robust timing and motor patterns by taming chaos in recurrent neural networks.
Nature Neuroscience 16:925–933. DOI: https://doi.org/10.1038/nn.3405, PMID: 23708144

Lam SK, Pitrou A, Seibert S. 2015. Numba: A llvm-based python jit compiler. Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC. 1–6. DOI: https://doi.org/10.1145/2833157.2833162

Lattner C, Adve V. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
International Symposium on Code Generation and Optimization, 2004. CGO 2004. 75–86. DOI: https://doi.​
org/10.1109/CGO.2004.1281665

Lattner C, Amini M, Bondhugula U, Cohen A, Davis A, Pienaar J, Riddle R, Shpeisman T, Vasilache N, Zinenko O.
2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law. [arXiv]. https://​arxiv.​org/​abs/​2002.​11054

Legenstein R, Maass W. 2011. Branch-specific plasticity enables self-organization of nonlinear computation in
single neurons. The Journal of Neuroscience 31:10787–10802. DOI: https://doi.org/10.1523/JNEUROSCI.​
5684-10.2011, PMID: 21795531

Lorenz EN. 1963. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences 20:130–141. DOI:
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Lukoševičius M. 2012. A practical guide to applying echo state networks. Neural Networks: Tricks of the Trade
Springer. p. 659–686. DOI: https://doi.org/10.1007/978-3-642-35289-8

Lytton WW, Omurtag A, Neymotin SA, Hines ML. 2008. Just-in-time connectivity for large spiking networks.
Neural Computation 20:2745–2756. DOI: https://doi.org/10.1162/neco.2008.10-07-622, PMID: 18533821

Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A,
Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P,
Dehay C, Toroczkai Z, Knoblauch K, et al. 2014. A weighted and directed interareal connectivity matrix for
macaque cerebral cortex. Cerebral Cortex 24:17–36. DOI: https://doi.org/10.1093/cercor/bhs270, PMID:
23010748

Masse NY, Yang GR, Song HF, Wang XJ, Freedman DJ. 2019. Circuit mechanisms for the maintenance and
manipulation of information in working memory. Nature Neuroscience 22:1159–1167. DOI: https://doi.org/10.​
1038/s41593-019-0414-3, PMID: 31182866

McKinney W. 2011. pandas: a foundational Python library for data analysis and statistics. Python for High
Performance and Scientific Computing 14:1–9.

Meunier D, Lambiotte R, Bullmore ET. 2010. Modular and hierarchically modular organization of brain networks.
Frontiers in Neuroscience 4:200. DOI: https://doi.org/10.3389/fnins.2010.00200, PMID: 21151783

Morcos AS, Harvey CD. 2016. History-dependent variability in population dynamics during evidence
accumulation in cortex. Nature Neuroscience 19:1672–1681. DOI: https://doi.org/10.1038/nn.4403, PMID:
27694990

Motta A, Berning M, Boergens KM, Staffler B, Beining M, Loomba S, Hennig P, Wissler H, Helmstaedter M. 2019.
Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366:eaay3134. DOI: https://​
doi.org/10.1126/science.aay3134, PMID: 31649140

Neftci EO, Mostafa H, Zenke F. 2019. Surrogate gradient learning in spiking neural networks: bringing the power
of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine 36:51–63. DOI:
https://doi.org/10.1109/MSP.2019.2931595

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information
Processing Systems. .

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V. 2011. Scikit-learn: machine learning in python. The Journal of Machine Learning Research 12:2825–
2830.

Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig MO. 2007 Efficient parallel simulation of large-scale
neuronal networks on clusters of multiprocessor computers. Euro-Par 2007 Parallel Processing: 13th
International Euro-Par Conference, Rennes, France, August 28-31, 2007. Proceedings 13. 672–681.

Plotnikov D, Rumpe B, Blundell I, Ippen T, Eppler JM, Morrison A. 2016 NESTML: A Modeling Language for
Spiking Neurons. [arXiv]. https://​arxiv.​org/​abs/​1606.​02882​DOI: https://doi.org/https://arxiv.org/
abs/1606.02882

Poirazi P, Papoutsi A. 2020. Illuminating dendritic function with computational models. Nature Reviews.
Neuroscience 21:303–321. DOI: https://doi.org/10.1038/s41583-020-0301-7, PMID: 32393820

Poo M, Du J, Ip NY, Xiong Z-Q, Xu B, Tan T. 2016. China brain project: basic neuroscience, brain diseases, and
brain-inspired computing. Neuron 92:591–596. DOI: https://doi.org/10.1016/j.neuron.2016.10.050

https://doi.org/10.7554/eLife.86365
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1007/978-3-030-50371-0
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2011.00035
http://www.ncbi.nlm.nih.gov/pubmed/22291636
https://doi.org/10.3389/fninf.2014.00078
http://www.ncbi.nlm.nih.gov/pubmed/25346682
https://doi.org/10.1038/nn.3405
http://www.ncbi.nlm.nih.gov/pubmed/23708144
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1523/JNEUROSCI.5684-10.2011
https://doi.org/10.1523/JNEUROSCI.5684-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795531
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/978-3-642-35289-8
https://doi.org/10.1162/neco.2008.10-07-622
http://www.ncbi.nlm.nih.gov/pubmed/18533821
https://doi.org/10.1093/cercor/bhs270
http://www.ncbi.nlm.nih.gov/pubmed/23010748
https://doi.org/10.1038/s41593-019-0414-3
https://doi.org/10.1038/s41593-019-0414-3
http://www.ncbi.nlm.nih.gov/pubmed/31182866
https://doi.org/10.3389/fnins.2010.00200
http://www.ncbi.nlm.nih.gov/pubmed/21151783
https://doi.org/10.1038/nn.4403
http://www.ncbi.nlm.nih.gov/pubmed/27694990
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1126/science.aay3134
http://www.ncbi.nlm.nih.gov/pubmed/31649140
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/https://arxiv.org/abs/1606.02882
https://doi.org/https://arxiv.org/abs/1606.02882
https://doi.org/10.1038/s41583-020-0301-7
http://www.ncbi.nlm.nih.gov/pubmed/32393820
https://doi.org/10.1016/j.neuron.2016.10.050

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 21 of 52

Potjans TC, Diesmann M. 2014. The cell-type specific cortical microcircuit: relating structure and activity in a
full-scale spiking network model. Cerebral Cortex 24:785–806. DOI: https://doi.org/10.1093/cercor/bhs358,
PMID: 23203991

Ramezanian-Panahi M, Abrevaya G, Gagnon-Audet JC, Voleti VS, Rish I, Dumas G. 2022. Generative models of
brain dynamics. Frontiers in Artificial Intelligence 5:807406. DOI: https://doi.org/10.3389/frai.2022.807406,
PMID: 35910192

Rinzel J. 1985. Bursting Oscillations in an Excitable membrane model. Ordinary and Partial Differential Equations
Springer. p. 304–316.

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R. 2006. Event-driven simulation scheme for spiking neural
networks using lookup tables to characterize neuronal dynamics. Neural Computation 18:2959–2993. DOI:
https://doi.org/10.1162/neco.2006.18.12.2959, PMID: 17052155

Sabne A. 2020. XLA: compiling machine learning for peak performance. XLA. https://www.tensorflow.org/xla
Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V. 2013. The Virtual Brain: a

simulator of primate brain network dynamics. Frontiers in Neuroinformatics 7:10. DOI: https://doi.org/10.3389/​
fninf.2013.00010, PMID: 23781198

Saxe A, Nelli S, Summerfield C. 2021. If deep learning is the answer, what is the question? Nature Reviews.
Neuroscience 22:55–67. DOI: https://doi.org/10.1038/s41583-020-00395-8, PMID: 33199854

Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS. 2017 A Survey of Neuromorphic
Computing and Neural Networks in Hardware. [arXiv]. https://​arxiv.​org/​abs/​1705.​06963

Song HF, Yang GR, Wang X-J, Sporns O. 2016. Training excitatory-inhibitory recurrent neural networks for
cognitive tasks: a simple and flexible framework. PLOS Computational Biology 12:e1004792. DOI: https://doi.​
org/10.1371/journal.pcbi.1004792

Stimberg M, Goodman DFM, Benichoux V, Brette R. 2014. Equation-oriented specification of neural models for
simulations. Frontiers in Neuroinformatics 8:6. DOI: https://doi.org/10.3389/fninf.2014.00006

Stimberg M, Brette R, Goodman DF. 2019. Brian 2, an intuitive and efficient neural simulator. eLife 8:e47314.
DOI: https://doi.org/10.7554/eLife.47314, PMID: 31429824

Stimberg M, Goodman DFM, Nowotny T. 2020. Brian2GeNN: accelerating spiking neural network simulations
with graphics hardware. Scientific Reports 10:410. DOI: https://doi.org/10.1038/s41598-019-54957-7, PMID:
31941893

Sussillo D, Abbott LF. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron
63:544–557. DOI: https://doi.org/10.1016/j.neuron.2009.07.018, PMID: 19709635

Sussillo D, Barak O. 2013. Opening the black box: low-dimensional dynamics in high-dimensional recurrent
neural networks. Neural Computation 25:626–649. DOI: https://doi.org/10.1162/NECO_a_00409, PMID:
23272922

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. 2015. A neural network that finds A naturalistic solution for
the production of muscle activity. Nature Neuroscience 18:1025–1033. DOI: https://doi.org/10.1038/nn.4042,
PMID: 26075643

Swadlow HA. 1990. Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake
rabbit: receptive fields and axonal properties. Journal of Neurophysiology 63:1477–1498. DOI: https://doi.org/​
10.1152/jn.1990.63.6.1477, PMID: 2358887

Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. 2019. Deep learning in spiking neural
networks. Neural Networks 111:47–63. DOI: https://doi.org/10.1016/j.neunet.2018.12.002

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA. 2017. Software for brain network simulations: a
comparative study. Frontiers in Neuroinformatics 11:46. DOI: https://doi.org/10.3389/fninf.2017.00046, PMID:
28775687

Traub RD, Miles R. 1991. Neuronal Networks of the Hippocampus Cambridge University Press. DOI: https://doi.​
org/10.1017/CBO9780511895401

van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, scikit-
image contributors. 2014. scikit-image: image processing in Python. PeerJ 2:e453. DOI: https://doi.org/10.​
7717/peerj.453, PMID: 25024921

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E,
Kern R, Larson E, Carey CJ, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2

Vitay J, Dinkelbach HÜ, Hamker FH. 2015. ANNarchy: a code generation approach to neural simulations on
parallel hardware. Frontiers in Neuroinformatics 9:19. DOI: https://doi.org/10.3389/fninf.2015.00019, PMID:
26283957

Vogels TP, Abbott LF. 2005. Signal propagation and logic gating in networks of integrate-and-fire neurons. The
Journal of Neuroscience 25:10786–10795. DOI: https://doi.org/10.1523/JNEUROSCI.3508-05.2005, PMID:
16291952

Wang XJ. 2002. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968. DOI:
https://doi.org/10.1016/s0896-6273(02)01092-9, PMID: 12467598

Wang C. 2023. Examples for Brainpy computation. 8458a74. GitHub. https://github.com/brainpy/examples/
Wang C. 2024. Brainpy-Elife-reproducibility. swh:1:rev:243f27ade4d01063f50ef79b5c219727a1265040. Software

Heritage. https://archive.softwareheritage.org/swh:1:dir:d691473d95b3110881f3e71b40d28400fdebdc59;​
origin=https://github.com/brainpy/brainpy-elife-reproducibility;visit=swh:1:snp:b28104016ab5b30b91c208de​
8d3735c37b819cac;anchor=swh:1:rev:243f27ade4d01063f50ef79b5c219727a1265040

https://doi.org/10.7554/eLife.86365
https://doi.org/10.1093/cercor/bhs358
http://www.ncbi.nlm.nih.gov/pubmed/23203991
https://doi.org/10.3389/frai.2022.807406
http://www.ncbi.nlm.nih.gov/pubmed/35910192
https://doi.org/10.1162/neco.2006.18.12.2959
http://www.ncbi.nlm.nih.gov/pubmed/17052155
https://www.tensorflow.org/xla
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
http://www.ncbi.nlm.nih.gov/pubmed/23781198
https://doi.org/10.1038/s41583-020-00395-8
http://www.ncbi.nlm.nih.gov/pubmed/33199854
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.7554/eLife.47314
http://www.ncbi.nlm.nih.gov/pubmed/31429824
https://doi.org/10.1038/s41598-019-54957-7
http://www.ncbi.nlm.nih.gov/pubmed/31941893
https://doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.1162/NECO_a_00409
http://www.ncbi.nlm.nih.gov/pubmed/23272922
https://doi.org/10.1038/nn.4042
http://www.ncbi.nlm.nih.gov/pubmed/26075643
https://doi.org/10.1152/jn.1990.63.6.1477
https://doi.org/10.1152/jn.1990.63.6.1477
http://www.ncbi.nlm.nih.gov/pubmed/2358887
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3389/fninf.2017.00046
http://www.ncbi.nlm.nih.gov/pubmed/28775687
https://doi.org/10.1017/CBO9780511895401
https://doi.org/10.1017/CBO9780511895401
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
http://www.ncbi.nlm.nih.gov/pubmed/25024921
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3389/fninf.2015.00019
http://www.ncbi.nlm.nih.gov/pubmed/26283957
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16291952
https://doi.org/10.1016/s0896-6273(02)01092-9
http://www.ncbi.nlm.nih.gov/pubmed/12467598
https://github.com/brainpy/examples/
https://archive.softwareheritage.org/swh:1:dir:d691473d95b3110881f3e71b40d28400fdebdc59;origin=https://github.com/brainpy/brainpy-elife-reproducibility;visit=swh:1:snp:b28104016ab5b30b91c208de8d3735c37b819cac;anchor=swh:1:rev:243f27ade4d01063f50ef79b5c219727a1265040
https://archive.softwareheritage.org/swh:1:dir:d691473d95b3110881f3e71b40d28400fdebdc59;origin=https://github.com/brainpy/brainpy-elife-reproducibility;visit=swh:1:snp:b28104016ab5b30b91c208de8d3735c37b819cac;anchor=swh:1:rev:243f27ade4d01063f50ef79b5c219727a1265040
https://archive.softwareheritage.org/swh:1:dir:d691473d95b3110881f3e71b40d28400fdebdc59;origin=https://github.com/brainpy/brainpy-elife-reproducibility;visit=swh:1:snp:b28104016ab5b30b91c208de8d3735c37b819cac;anchor=swh:1:rev:243f27ade4d01063f50ef79b5c219727a1265040

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 22 of 52

Wang C, Zhang T, Chen X, He S. 2024. BrainPy. GitHub. https://github.com/brainpy/BrainPy/
Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons.

Biophysical Journal 12:1–24. DOI: https://doi.org/10.1016/S0006-3495(72)86068-5, PMID: 4332108
Wong KF, Wang XJ. 2006. A recurrent network mechanism of time integration in perceptual decisions. The

Journal of Neuroscience 26:1314–1328. DOI: https://doi.org/10.1523/JNEUROSCI.3733-05.2006, PMID:
16436619

Wu S, Hamaguchi K, Amari S-I. 2008. Dynamics and computation of continuous attractors. Neural Computation
20:994–1025. DOI: https://doi.org/10.1162/neco.2008.10-06-378, PMID: 18085986

Wu X, Liu X, Li W, Wu Q. 2018. Improved expressivity through dendritic neural networks. Advances in neural
information processing systems. .

Xu Y, Lee H, Chen D, Hechtman B, Huang Y, Joshi R, Krikun M, Lepikhin D, Ly A, Maggioni M. 2021. GSPMD:
General and Scalable Parallelization for ML Computation Graphs. [arXiv]. https://​arxiv.​org/​abs/​2105.​04663

Yavuz E, Turner J, Nowotny T. 2016. GeNN: a code generation framework for accelerated brain simulations.
Scientific Reports 6:18854. DOI: https://doi.org/10.1038/srep18854, PMID: 26740369

https://doi.org/10.7554/eLife.86365
https://github.com/brainpy/BrainPy/
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16436619
https://doi.org/10.1162/neco.2008.10-06-378
http://www.ncbi.nlm.nih.gov/pubmed/18085986
https://doi.org/10.1038/srep18854
http://www.ncbi.nlm.nih.gov/pubmed/26740369

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 23 of 52

Appendix 1

Review of the existing programming paradigm
In general, the existing tools for brain dynamics programming can be roughly divided into two
categories: low-level programming and descriptive language.

The representatives of the first category include NEURON (Hines and Carnevale, 1997), NEST
(Gewaltig and Diesmann, 2007), CARLsim (Beyeler et al., 2015; Chou et al., 2018), NeuronGPU
(Golosio et al., 2021), Arbor (Akar et al., 2019), and others. These simulators offer a library of
standard models written in C/C++ (particularly for NEST), CUDA (for CARLsim, NeuronGPU, and
Arbor), or domain-specific languages (for NEURON and Arbor) to ensure efficient execution,
along with a user-friendly Python interface for ease of use. Users can create neural networks in
Python by utilizing the neuron and synapse models provided in the library. However, when a new
model is required, users must learn to program using the low-level language. This significantly
increases the learning cost and restricts the flexibility in defining new models (Tikidji-Hamburyan
et al., 2017).

The second category tools include Brian (Goodman and Brette, 2008), Brian2 (Stimberg et al.,
2014; Stimberg et al., 2019), ANNarchy (Vitay et al., 2015), GeNN (Yavuz et al., 2016), BMTK
(Dai et al., 2020a), NetPyNE (Dura-Bernal et al., 2019), NeuroML (Gleeson et al., 2010), and
NMODL (Krzhizhanovskaya et al., 2020), which employ a code generation approach based on
descriptive languages. Descriptive simulators allow users to create new models based on convenient
descriptions (such as text, Goodman and Brette, 2008; Stimberg et al., 2014; Stimberg et al.,
2019; Vitay et al., 2015; JSON, Dai et al., 2020a; Dura-Bernal et al., 2019; XML files, Gleeson
et al., 2010; or customized languages, Krzhizhanovskaya et al., 2020) and then translate the
descriptions into low-level codes to speed up model running. In such a way, descriptive simulators
enable model customization based on high-level descriptive languages and ensure efficient running
by generating low-level codes.

Currently, descriptive language has become a standard approach for brain simulation (Blundell
et al., 2018). Simulators employing this first approach also start to provide their descriptive language
interface for code generation. For instance, the NEST simulator provided its domain-specific language
NESTML (Plotnikov et al., 2016) to describe stereotypical neuron and synapse models. Similarly, the
NEURON simulator recently released its modern descriptive interface NetPyNE (Dura-Bernal et al.,
2019), which employs the standard JSON format to allow users to describe neural circuit models
by composing the existing available NEURON building block models. However, users still need to
code based on its low-level programming interface to customize new models for channels, neurons,
or synapses.

Descriptive languages have been highly successful for brain simulation (Blundell et al.,
2018). A major benefit of these declarative approaches is the clear separation between model
specification and implementation. This frees users from low-level programming details, enabling
them to intuitively specify complex models in a concise, semantically clear way. The declarative
nature of descriptive languages allows modelers to focus on computational neuroscience instead
of implementation specifics. This has enabled rapid prototyping and sharing of models in the
field. Overall, descriptive simulation languages have greatly improved modeler productivity thanks
to their high-level, implementation-agnostic nature. However, they have intrinsic limitations on
transparency, extensibility, and flexibility. One prominent feature of these descriptive languages is
that they completely separate the model definition from the simulation, and therefore are not directly
executable (Blundell et al., 2018). This kind of programming paradigm will cause great restrictions
on usability and flexibility because it disables model debugging, error correction, and direct logic
controlling. Moreover, descriptive languages are usually designed for specific kinds of models or one
particular modeling approach. They are written in more than two programming languages: one is
based on a low-level language (e.g., C++, CUDA) to implement its core functionality, and the other
is based on a high-level language (e.g., Python, Matlab) for ease of use. Once they are not tailored
to users’ needs, extensions to accommodate new components must be made in both high- and
low-level languages, which is hard or nearly impossible for normal users. What is more, descriptive
languages greatly reduce the expressive power of a general-purpose programming language and
make it hard to describe all aspects of a simulation experiment, including clipping variables out

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 24 of 52

of bounds, input–output relations, model debugging, code optimization, dynamics analysis, and
others.

In summary, significant challenges to transparency, flexibility, efficiency, and extensibility are still
present in the existing programming paradigm for brain simulation. We can draw the conclusion that
current software solutions cannot lead us to a general-purpose programming framework that allows
us to freely define brain dynamics models in various application domains.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 25 of 52

Appendix 2

JIT compilation and JIT compilers
A notorious challenge in scientific computing is the trade-off between usability and efficiency. The
former seeks the fast prototyping of thoughts and ideas, whereas the latter pursues efficient code
execution. For a long time in the past, it was difficult to strike a balance between the two. For
example, statically typed compiled programming languages such as C or C++ are incredibly efficient
in code execution, but their productivity is relatively low due to their complex and heavy syntax.
In contrast, dynamically typed interpreted programming languages like Python and R are easy to
learn and use, but they have slow running speeds. Nowadays, with the increasing complexity of
models, the demand for both usability and efficiency has increased dramatically. Fortunately, recent
advancements in just-in-time (JIT) compilation technology (Lattner and Adve, 2004; Lattner et al.,
2020) have provided viable answers to this two-language problem. In particular, a new generation
of computational engines based on JIT compilation (Aycock, 2003) has begun to have an impact on
a variety of scientific computing disciplines.

The JIT compilation can be seen as the combination of the statically typed compilation and
dynamically typed interpretation. It benefits from both the convenience of dynamic high-level
languages like Python and the efficiency of static low-level languages such as C++. At the start of a
program execution, a JIT compiler acts like an interpreter. It runs your code step by step, and can
output the intermediate results at the run-time for debugging. However, if some hot code snippets
that are executed frequently, for example, certain functions or loop bodies, are detected or manually
labeled, they will be submitted to the JIT compiler for compilation and storage. In this sense, it acts
like a statically typed compiler. Once the compiled code snippets are entered again, the program
will directly execute the compiler-generated low-level code without time-consuming interpreting
again. Hot code snippets can be automatically detected by the JIT compiler, or be manually labeled
by users.

JIT compilation is a mature and well-established technology. It has been adopted in modern
programming languages like JAVA, Julia, and Python. JAVA language provides JIT compilation in its
JAVA virtual machine (JVM) to accelerate the execution of JAVA code (Grcevski et al., 2004). Java
source code is first compiled into the platform-independent Java bytecode (.class file). Then, JVM
loads the bytecode, interprets it, and executes it. To increase the running speed, JVM detects code
that is frequently called through the hotspot detection and submits its bytecode to the JIT compiler
to compile them into machine code. For the code with lower frequency, executing it through the
JVM interpretation can save the time of the JIT compilation; while for the hot code frequently called,
JIT compilation can significantly improve the running speed after the code is compiled. However,
compared with Python, JAVA has poor ecosystem support for numerical computing. Its JIT is not
specialized in numerical computing, but in general domains.

Julia (Bezanson et al., 2017), another dynamic high-level programming language, is recently
proposed for high-performance scientific computing. Julia features intuitive, productive, and
general-purpose syntax inspired by the success of Python, Matlab, and C++. Moreover, it achieves
attractive performance through the JIT compilation based on the LLVM compiler infrastructure
(Lattner and Adve, 2004). In a remarkably short time, Julia has provided excellent routines for
mathematical functions, machine-learning algorithms, data processing tools, visualization utilities,
and others. However, Julia is still young. Costs, such as lack of familiarity, rough edges, correctness
bugs, and continual language changes, are still imposed on normal users.

Python is a well-known and popular interactive dynamic programming language. It has a long history
in numerical computing (Dubois et al., 1996; Harris et al., 2020). The ecosystem of scientific computing,
including array programming (Harris et al., 2020), scientific algorithms (Virtanen et al., 2020), machine
learning (Pedregosa et al., 2011), deep learning (Abadi et al., 2016; Paszke et al., 2019; Frostig
et al., 2018), image processing (van der Walt et al., 2014), data analysis and statistics (McKinney,
2011), network analysis (Hagberg and Swart, 2008), visualization (Hunter, 2007), and many others, has
been well established in Python. Before Julia, the JIT compilation was introduced into Python by PyPy
in 2007. Later, other attempts, including Pyston, Pyjion, Psyco, JitPy, HOPE, etc., are proposed. With a
long history of JIT development, Python nowadays has provided mature platforms of JIT compilation
focusing on numerical computing. These numerical JIT platforms include Numba (Lam et al., 2015),
JAX (Frostig et al., 2018), and XLA (Sabne, 2020). Each of them has its own characteristics.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 26 of 52

JAX (Frostig et al., 2018) is a flourishing machine-learning library developed by Google. It aims to
provide high-level numerical functions to help users fast prototype machine learning ideas. Moreover,
these numerical functions can benefit from powerful functional transformations, like automatic
differentiation grad, JIT compilation jit, automatic vectorization vmap, and parallelization pmap.
JAX makes heavy use of XLA (Sabne, 2020) (see the following text) for code optimization. Specifically,
for ease of use, high-level numerical functions in JAX are NumPy like. JAX provides many numerical
functions in NumPy, including basic mathematical operators, linear algebra functions, and Fourier
transform routines. However, some fundamental designs are significantly different from NumPy, for
instance, the well-established syntax for in-place updating and random samplings. This is the reason
why we provide another set of numerical functions consistent with NumPy. In addition to its NumPy-
like API, JAX provides a wonderful set of composable functional transformations. Among them,
automatic differentiation in JAX supports both forward and backward modes for arbitrary numerical
functions. It can take derivatives of a function with a large subset of Python syntax, including loops,
conditions, recursions, and closures. Moreover, JAX utilizes XLA to JIT compile your Python code
on modern devices, like Central Processing Units (CPUs), Graphics Processing Units (GPUs), and
Tensor Processing Units (TPUs). It can significantly accelerate the execution speed of your code and
allows you to get maximal performance without having to leave Python. JAX also provides automatic
vectorization or batching. It supports transforming loops to vector operations via a single functional
call vmap. What’s more, JAX delivers pmap to express single-instruction multiple-data programs.
Applying pmap to a function will JIT compile and execute the code in parallel on XLA devices,
like multiple GPUs or TPU cores. Similar to vmap, pmap transformation maps a function over array
axes. But what is different is that the former vectorizes functions by compiling the mapped axis as
primitive operations, whereas the latter replicates the function and runs each replica on its own XLA
device in parallel. Automatic differentiation and compilation in JAX can be composed arbitrarily to
enable rapid experimentation of novel algorithms.

XLA (Sabne, 2020) is a domain-specific linear algebra compiler developed by Google that aims
to improve the execution speed, memory usage, portability, and mobile footprint reduction of
machine-learning algorithms. XLA compiler provides support for JIT compilation based on LLVM
(Lattner and Adve, 2004). The front-end program (e.g., JAX) which wants to take advantage of
the JIT compilation of XLA should first define the computation graph as ‘High-Level Optimizer IR’
(HLO IR). Then, XLA takes this graph defined in HLO IR and compiles it into machine instructions for
different backend architectures. Currently, XLA supports JIT compilation on backend devices of x86-
64 CPUs, NVIDIA GPUs, and Google TPUs. XLA is designed for easy portability on new hardware.
It provides an abstract interface that a new hardware device can implement to create a backend to
run existing computation graphs. Instead of implementing every existing operator for new hardware,
XLA provides a simple and scalable mechanism that can retarget different backends. This advantage
may be valuable for neuromorphic computing (Schuman et al., 2017), because new neuromorphic
hardware can be interfaced as a new backend of XLA computation.

Numba (Lam et al., 2015) is a JIT compiler for numerical functions in Python. Similar to JAX,
Numba supports the JIT compilation of a subset of Python and NumPy code based on the LLVM
compiler. However, different from JAX which accelerates the computation flow composed of high-
level operators, Numba pays more attention to the acceleration of loop-based functions. Numba
achieves excellent optimizations on Python functions with a lot of loops. It allows users to write
fine-grained code with native Python control flows and meanwhile obtains the running speed
approaching C. This is a huge advantage compared to JAX because JAX does not support the
automatic vectorization of a for-loop function.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 27 of 52

Appendix 3
Continuous integration and documentation generation
To ensure any code changes do not introduce unintended bugs or side effects, we standardized
the development process and enabled the automatic continuous integration (CI) of BrainPy with
GitHub Actions. Moreover, to update the tutorial and documentation with the latest code changes,
we automated the documentation building of BrainPy with Read the Docs. Appendix 3—figure 1
illustrates the whole workflow of BrainPy development. First, any code change should be proposed
through GitHub Pull Request. Once a Pull Request is opened, CI pipelines are triggered to test
BrainPy codes on Windows, Linux, and macOS platforms (Appendix 3—figure 1 (1)). After all test
suites are passed, the code reviewer should manually inspect the significance and correctness
of the proposed code changes again. If all things are fine, the reviewer can merge the code into
the master branch (Appendix 3—figure 1 (2)). After merging, a new set of test cases is triggered
automatically to test that the latest BrainPy codebase does not have bugs (Appendix 3—figure 1
(3)). Besides, the merging operation also triggers the automatic documentation generation through
the documentation hosting platform Read the Docs (Appendix 3—figure 1 (4)), in which the latest
documentation, including the code annotation, user manual, and tutorials, are automatically built
with Sphinx and hosted online at https://brainpy.readthedocs.io/.

（ ）

Appendix 3—figure 1. The pipeline of automatic continuous integration and documentation building in BrainPy.

https://doi.org/10.7554/eLife.86365
https://brainpy.readthedocs.io/

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 28 of 52

Appendix 4
Mathematical operators for brain dynamics modeling
Brain dynamics modeling involves conventional computation based on dense matrices and event-
driven computation based on sparse connections. BrainPy provides operators for these two
kinds of computations. For the list of the number of currently implemented operators please see
Appendix 4—table 1.

Appendix 4—table 1. Number of mathematical operators implemented in BrainPy.
This list will continue to expand since BrainPy will continue to add more operators for brain
dynamics modeling. The list of implemented operators is online available at https://brainpy.​
readthedocs.io/en/latest/apis/math.html.

Number

Dense operators with NumPy syntax 472

Dense operators with TensorFlow syntax 25

Dense operators with PyTorch syntax 10

Sparse and event-driven operators 20

Dense matrix operators
JAX (Frostig et al., 2018) has provided most numerical functions in NumPy (Harris et al., 2020).
However, there are several significant differences between JAX and NumPy. First, the array structure
in JAX does not support in-place updating. Second, numerical functions that need in-place updating
are missing in JAX. Third, random sampling functions are significantly different from NumPy.

The dense matrix operators in BrainPy are based on JAX’s implementations but are designed to
be seamlessly consistent with NumPy. First, we provide ​brainpy.​math.​Array which is consistent
with NumPy’s ndarray structure, and a series of mathematical operations for ​brainpy.​math.​Array
which is similar to those for ndarray. Second, mathematical operators for ​brainpy.​math.​Array,
such as indexing, slicing, sorting, rounding, arithmetic operations, linear algebraic functions, and
Fourier transform routines, are all supported. Many of these operators (nearly 85%) are directly
implemented through the NumPy-like functions in JAX, while BrainPy provides dozens of APIs
missing or inconsistent in JAX. Third, to unify random number generators, BrainPy implements
most of the random sampling functions in NumPy, including its univariate distributions, multivariate
distributions, standard distributions, and utility functions.

Moreover, BrainPy is working on dense operators provided in PyTorch (Paszke et al., 2019)
and TensorFlow (Abadi et al., 2016) libraries. In the future, BrainPy will continue to cover dense
array operators in TensorFlow and PyTorch, since these implementation syntaxes have been widely
accepted in the community.

Dedicated operators
Brain dynamics models differ from deep neural network (DNN) models in the way they perform
computation. Brain dynamics models typically have sparse connections (less than 20% of neurons
are connected to each other) and perform event-driven computations (synaptic currents are only
transmitted when a presynaptic neuron spikes). These unique features make brain dynamics models
less efficient when conventional dense array operators are used. To tackle this efficiency issue,
traditional brain simulators heavily rely on event-driven synaptic operations. Previous works have
explored event-driven synaptic operations on both CPU platforms (see Vitay et al., 2015; Plesser
et al., 2007; Stimberg et al., 2019) and GPU platforms (see Fidjeland et al., 2009; Brette and
Goodman, 2011; Yavuz et al., 2016; Alevi et al., 2022).

Despite the effectiveness of these simulators, one limitation is the lack of abstraction of event-
driven synaptic operations as primitive low-level operators. In other words, these operations are not
treated as fundamental building blocks that can be easily manipulated and optimized. This absence
of abstraction hampers the development of more efficient algorithms and restricts the flexibility and
extensibility of the simulators. Therefore, it is crucial to bridge this gap and provide a higher level of
abstraction for event-driven synaptic operations, which we refer to as ‘event-driven operators’. Note
here in BrainPy, event-driven operators are employed within a clock-driven simulation schema, where

https://doi.org/10.7554/eLife.86365
https://brainpy.readthedocs.io/en/latest/apis/math.html
https://brainpy.readthedocs.io/en/latest/apis/math.html

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 29 of 52

the simulation advances in a synchronized manner, updating all neurons and synapses at each time
step. These event-driven operators process information based on the detection of spatial spiking
events. They execute computations when the presynaptic neuron fires spikes at each time step. This
contrasts with an event-driven simulation approach (Ros et al., 2006), where neuronal or synaptic
state updates are triggered by temporal spiking events, rather than updating all elements at each
time step. Therefore, the key distinction between our event-driven operators and an event-driven
simulation scheme lies in their scope and application: event-driven operators serve as fundamental
building blocks that define how individual components of an SNN respond to spatial events at the
current time step, while an event-driven simulation scheme serves as a methodology for simulating
the collective behavior of the entire network based on the occurrence of temporal spikes.

Moreover, by abstracting these operations into primitive low-level operators, BrainPy offers
automatic differentiation support compatible with ​jax.​grad. It also enables vectorization and
parallelization support compatible with ​jax.​vmap and ​jax.​pmap. This compatibility further
enhances the applicability of event-driven operators across a wider range of contexts.

Specifically, BrainPy provides these sparse and event-driven operators in the following modules: (1)
The ​brainpy.​math.​sparse module. This module provides a set of sparse operators that can store
synaptic connectivity compactly and compute synaptic currents efficiently. (2) The ​brainpy.​math.​
event module. This module implements event-driven operators that only perform computations
when spikes arrive. This can lead to significant improvements in efficiency, as the state of the system
does not need to be constantly updated when no spikes arrive.

In addition, efficient modeling of brain dynamics encounters scalability issues. The computational
resources and device memory requirements for brain dynamics models increase quadratically with
the number of neurons, as the synaptic connectivity grows almost quadratically in relation to the
number of neurons. This characteristic severely restricts the size of the network that can be simulated
on a single device using traditional array programming solutions.

One established approach to address this challenge is the utilization of JIT connectivity (Lytton
et al., 2008; Azevedo Carvalho et al., 2020; Knight and Nowotny, 2021). This method involves
regenerating the synaptic connectivity during computation by controlling the same random seed.
Specifically, the ​brainpy.​math.​jitconn module provides JIT connectivity as primitive operators,
specifically designed for cases where synaptic connections follow a fixed connectivity rule and do not
require modifications after initialization. These operators eliminate the memory overhead required
for connectivity storage, as synaptic connectivity can be generated JIT during the execution of the
operators. Notably, when compared to conventional operators, they enable the execution of large-
scale networks that are two to three orders of magnitude larger on a single device.

Moreover, BrainPy also provides operators that are involved in transformations among presynaptic
neuronal data, synaptic data, and postsynaptic neuronal data in the ​brainpy.​math module.
Specifically, this module provides operators for mapping presynaptic neuronal data to its connected
synaptic dimension (pre-to-syn), arithmetic operators including summation, product, max, min,
mean, and softmax for transforming synaptic data to postsynaptic neuronal dimension (syn-to-post),
and arithmetic operators such as summation, product, max, min, and mean for directly computing
postsynaptic data from presynaptic events (pre-to-post).

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 30 of 52

Appendix 5

Numerical solvers for differential equations
To meet the large demand for solving differential equations in brain dynamics modeling, BrainPy
implements numerical solvers for ODEs, SDEs, fractional differential equations (FDEs), and delay
differential equations (DDEs). In general, numerical integration in BrainPy defines the system
evolution of ‍x(t) → x(t + dt)‍, where ‍x‍ is the state, ‍t‍ is the current time, and ‍dt‍ is the integration step.

ODE numerical solvers
In BrainPy, the integration of an ODE system ‍dx/dt = f(x, t)‍ is performed as

1 ​integral=​brainpy.​odeint(​f=<function>,
2                              method=<str>,
3                              dt=<float>)

where method denotes the numerical method used to integrate the ODE function, and dt
controls the initial or default numerical integration step. A variety of numerical integration methods
for ODEs, including Runge–Kutta, adaptive Runge–Kutta, and Exponential methods, are supported
in BrainPy (see Appendix 5—table 1).

Appendix 5—table 1. Numerical solvers provided in BrainPy for ordinary differential equations.

Solver type Solver name Keyword

Runge–Kutta method

Euler euler

Midpoint midpoint

Heun’s second-order method heun2

Ralston’s second-order method ralston2

Second-order Runge–Kutta method rk2

Third-order Runge–Kutta method rk3

Four-order Runge–Kutta method rk4

Heun’s third-order method heun3

Ralston’s third-order method ralston3

Third-order strong stability preserving Runge–Kutta method ssprk3

Ralston’s fourth-order method ralston4

Fourth-order Runge–Kutta method with 3/8-rule rk4_38rule

Adaptive Runge–Kutta method

Runge–Kutta–Fehlberg 4 (5) rkf45

Runge–Kutta–Fehlberg 1 (2) rkf12

Dormand–Prince method rkdp

Cash–Karp method ck

Bogacki–Shampine method bs

Heun–Euler method heun_euler

Exponential method Exponential Euler method exp_euler

SDE numerical solvers
For a general SDE system with multi-dimensional driving Wiener processes,

	﻿‍
dx = f(x, t, p1)dt +

m∑
α=1

gα(x, t, p2)dWα,
‍�

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 31 of 52

BrainPy supports its numerical integration with

1 integral = ​brainpy.​sd​eint(​f=<function > ,
2                                 g=<function > ,
3                                 method =<str > ,
4                                 dt =<float > ,
5                                 wiener_type=<’scalar’ or ’vector’>,
6                                 intg_type=<’Ito’ or ’Stratonovich’>)

where method specifies the numerical solver, dt the default integral step, wiener_type the
type of Wiener process (SCALAR_WIENER for scalar noise or VECTOR_WIENER for multi-dimensional
driving Wiener processes), and integral_type the integral type (ITO_SDE for the Itô integral or
STRA_SDE for the Stratonovich stochastic integral). See Appendix 5—table 2 for the full list of SDE
solvers currently implemented in BrainPy.

Appendix 5—table 2. Numerical solvers provided in BrainPy for stochastic differential equations.
‘Y’ denotes support. ‘N’ denotes not support.

Integral type Solver name Keyword Scalar Wiener Vector Wiener

Itô integral

Strong SRK scheme: SRI1W1 srk1w1_scalar Y N

Strong SRK scheme: SRI2W1 srk2w1_scalar Y N

Strong SRK scheme: KlPl KlPl_scalar Y N

Euler method euler Y Y

Milstein method milstein Y Y

Derivative-free Milstein method milstein2 Y Y

Exponential Euler exp_euler Y Y

Stratonovich integral

Euler method euler Y Y

Heun method heun Y Y

Milstein method milstein Y Y

Derivative-free Milstein method milstein2 Y Y

FDE numerical solvers
The numerical integration of FDEs is very similar to that of ODEs, except that the initial value, memory
length, and fractional order should be provided. Given the fractional-order differential equation

	﻿‍
dαx
dtα = F(x, t),‍�

where the fractional order ‍0 < α ≤ 1‍. BrainPy supports its numerical integration with the following
format of

1 ​brainpy.​fdeint(​f=<function> ,
2                  alpha=<float> ,
3                  num_memory=<int> ,
4                  inits=<dict> ,
5                  method=<str>)

BrainPy supports two types of FDE, that is, the Caputo derivative and Grünwald–Letnikov
derivative. Caputo derivatives are widely used in neuroscience modeling (Kaslik and Sivasundaram,
2012). However, the numerical integration of Caputo derivatives has a high memory consumption,
because it requires integration over all past activities. This implies that FDEs with the Caputo
derivative definition cannot be used to simulate realistic neural systems. However, the numerical
method for Grünwald–Letnikov FDEs, ​brainpy.​fde.​GLShortMemory, is highly efficient because
it does not require an infinite memory length for numerical solutions. With the increasing length of

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 32 of 52

short memory, the accuracy of the numerical approximation will increase. Therefore, ​brainpy.​fde.​
GLShortMemory can be applied to real-world neural modeling. See Appendix 5—table 3 for the
full list of FDE solvers currently implemented in BrainPy.

Appendix 5—table 3. Numerical solvers provided in BrainPy for fractional differential equations.

Derivative type Solver name Keyword

Caputo derivative

L1 schema l1

Euler method euler

Grünwald–Letnikov derivative Short Memory Principle short-memory

DDE numerical solvers
Delays occur in any type of differential equation. In realistic neural modeling, delays are often
inevitable. BrainPy supports equations with variables of constant delays, like

	﻿‍ y′(t) = f(t, y(t), y(t − τ1), y(t − τ2), . . . , y(t − τk)),‍�

where the time lags ‍τj‍ are the positive constants. It also supports systems with state-dependent
delays, for example,

	﻿‍ y′(t) = f(t, y(t), y(t − f1(y(t))), . . . , y(t − fk(y(t)))),‍�

where ‍fk‍ is the function that computes the delay length by the system state ‍y(t)‍. For neutral-typed
equations in which delays appear in derivative terms,

	﻿‍ y′(t) = f(t, y(t), y′(t − τ1), y′(t − τ2), . . . , y′(t − τk))‍�

BrainPy also supports its numerical integration.
BrainPy, in particular, implements interfaces to define these various delay variables. ​brainpy.​

math.​TimeDelay and ​brainpy.​math.​LengthDelay are provided to support state-dependent
variables. Both ​brainpy.​math.​TimeDelay and ​brainpy.​math.​LengthDelay are used to
delay neuronal signals in BrainPy, for example, Boolean spikes, real-valued synaptic conductance, or
membrane potentials.

The TimeDelay is the class representing a connection delay measured in time units. For
example, one might specify a ‍T ‍ ms delay. The TimeDelay class stores history values at times

‍[T0 − T, T0 − T + ∆t, · · · , T0 − 2∆t, T0 −∆t, T0]‍, where ‍T0‍ is the current time and ‍∆t‍ is the time step.
Users can retrieve the history values for any ‍t‍ in the interval ‍[T0 − T, T0]‍. For a ‍t‍ that exactly matches
one of the stored time points, TimeDelay directly returns the stored history values; otherwise,
TimeDelay uses linear interpolation to estimate values between the nearest stored data points, or
rounding to return the value from the nearest data point in time.

The LengthDelay class represents a connection delay based on the number or length of running
iterations. For instance, one can specify a delay of ‍L‍ iterations. It stores historical values at previous
time steps, such as ‍[L, L − 1, · · · , 1, 0]‍. Unlike TimeDelay, users can only retrieve the historical values
at specific discrete time steps that have been stored.

Despite the distinct usage characteristics of TimeDelay and LengthDelay, both of them
employ a circular array for their delay updates. This implementation involves utilizing an array of
fixed length along with a cursor that indicates the current updating position within the array (see
Appendix 5—figure 1).

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 33 of 52

Next position to update

Appendix 5—figure 1. The dynamic array to store the delay buffer.

The classes ​brainpy.​math.​NeuTimeDelay and ​brainpy.​math.​NeuLenDelay are identical
to ​brainpy.​math.​TimeDelay and ​brainpy.​math.​LengthDelay, respectively. However, they
are specifically designed to model neutral delay variables.

With these delay supports, the differential equations with delayed variables are intrinsically
supported in each integral function.

For delayed ODEs, users can use

1 ​brainpy.​odeint(​f=<function> ,
2                  method=<str> ,
3                  dt=<float> ,
4                  state_delays=<dict> ,
5                  neutral_delays=<dict>)

Similarly, the numerical integration of delayed SDEs should utilize

1 ​brainpy.​sdeint(​f=<function> ,
2                  g=<function> ,
3                  method=<str> ,
4                  dt=<float> ,
5                  state_delays=<dict>)

For delayed FDEs, one can use

1 ​brainpy.​fdeint(​f=<function> ,
2                  method=<str> ,
3                  dt=<float> ,
4                  num_memory=<int> ,
5                  inits=<dict>,
6                  state_delays=<dict>)

Note that we currently do not support neutral delays for delayed SDEs and FDEs. However, users
can easily customize their supports for equations with neutral delays.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 34 of 52

Appendix 6
Object-oriented JIT compilation and automatic differentiation
Under minimal constraints and assumptions, BrainPy enables the JIT compilation for class objects.
These assumptions include the following:

•	 The class for JIT must be a subclass of brainpy.BrainPyObject.
•	 Dynamically changed variables in the class must be labeled as ​brainpy.​math.​Variable. Other-

wise, they will be compiled as constants and cannot be updated during the program execution.
To take advantage of the JIT compilation, we can directly apply ​brainpy.​math.​jit() onto the instantiated
class objects, or functions of a class object.

​brainpy.​math.​grad() takes a function/object (‍f : Rn → R‍, which returns a scalar value) as the
input and returns a new function (‍∂f(x) → Rn

‍) which computes the gradient of the original function/
object.

1 ​grad_​f=​brainpy.​math.​grad(​f, grad_vars=<variables to take gradients>)

​brainpy.​math.​vector_​grad() takes vector-valued gradients for a function/object
(‍f : Rn → Rm

‍). It returns a new function (‍∂f(x) : Rm → Rn
‍) which evaluates the vector-Jacobian

products.

1 ​grad_​f=​brainpy.​math.​vector_​grad(​f, grad_vars<variables to take
gradients>)

Another way to take gradients of a vector-output value is using ​brainpy.​math.​jacobian(). It aims to
automatically compute the Jacobian matrices ‍∂f(x) ∈ Rm×n

‍ by the given function/object ‍f : Rn → Rm
‍

at the given point of ‍x ∈ Rn‍.

1 ​grad_​f=​brainpy.​math.​jacobian(​f, grad_vars<variables to take gradients>)

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 35 of 52

Appendix 7
Extension of BrainPy infrastructure
BrainPy features extensible architecture. New extensions can be easily made by using BrainPy
infrastructure. Even new tools at the infrastructure level can be customized by using BrainPy
operators.

At the toolbox level, BrainPy provides a mechanism in which the extension of a new tool can be
made by adding a new subclass. For instance, a new synaptic connection method can be extended
by subclassing brainpy.connect.TwoEndConnector:

1 class ​NewConnector(​bp.​conn.​TwoEndConnector):
2   def __init__(self):
3    # initializing connector
4
5   def build_csr(self):
6    # build the CSR data structure
7
8   def build_coo(self):
9    # build the COO data structure

As another example, customizing a new weight initialization method can be added by inheriting
from brainpy.initialize.Initializer base class:

1 class ​NewInitializer(​bp.​init.​Initializer):
2   def __init__(self):
3    # initializing connector
4
5   def __call__(self, shape, dtype =None):
6    # building weights

At the model building level, BrainPy enables to flexibly customize the user’s own dynamical
systems by simply subclassing brainpy.DynamicalSystem base class.

At the numerical integrator level, BrainPy provides an easy way to write new integrator methods.
For example, adding a new Runge–Kutta integrator can be done by subclassing ​brainpy.​ode.​
ExplicitRKIntegrator and providing the corresponding Butcher tableau:

1 class ​NewExplicitRK(​bp.​ode.​ExplicitRKIntegrator):
2   A = [] # The A matrix in the Butcher tableau.
3   B = [] # The B vector in the Butcher tableau.
4   C = [] # The C vector in the Butcher tableau.

In a similar way, a customized adaptive Runge–Kutta integrator can be extended by subclassing ​
brainpy.​ode.​AdaptiveRKIntegrator with the specification of the corresponding Butcher
tableau:

1 class ​NewAdaptiveRK(​bp.​ode.​ExplicitRKIntegrator):
2   A = [] # The A matrix in the Butcher tableau.
3   B1 = [] # The B1 vector in the Butcher tableau.
4   B2 = [] # The B2 vector in the Butcher tableau.
5   C = [] # The C vector in the Butcher tableau.

At the operator level, BrainPy is trying to provide a way to write fine-granularity low-level
operators in the same Python interface by adopting the same JIT compilation technology (please
refer to Appendix 8).

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 36 of 52

Appendix 8

Extension of low-level operators in BrainPy
By bridging Numba (Lam et al., 2015), JAX (Frostig et al., 2018), and XLA (Sabne, 2020), BrainPy
enables the customization of primitive operators through the native Python syntax. Exposing a
custom operator to JAX requires registering an XLA ‘custom call’, and providing its C callback for
Python. Based on the following two properties of Numba, we are aware of the possibility of using
Numba as a convenient method for writing low-level kernels that support JAX’s JIT compilation.
First, unlike JAX, which only supports the JIT compilation of high-level functions, Numba is a JIT
compiler that allows users to write a function with low-level fine-grained operations, for instance,
looping over an array, or conditional branching over array values. This implies that ​numba.​jit()
can be used as a means to write low-level kernel functions. The second property of Numba is that
it provides a mechanism to create a compiled function that is callable from the foreign C code,
such as XLA. Specifically, ​numba.​cfunc() can be used to create a C callback for Numba’s JIT
function to interface with XLA. Therefore, by integrating Numba with JAX and XLA, BrainPy provides
an interface where users write primitive operators directly with Python syntax. Note that Numba
supports various native Python features and a large subset of NumPy functions. Therefore, there is a
large flexibility in coding low-level primitives with Numba.

Below, we illustrate how to write a primitive operator in BrainPy. Particularly, to customize a
primitive operator we need to provide two functions. The first is an abstract evaluation function that
tells JAX what shapes and types of outputs are produced according to the input shapes and types:

1 def abstract_eval(*ins):
2   return outs

in which ins specifies the information of input shapes and types, outs denotes the array
information of shapes and types of outputs. The other function is the concrete computation function,
in which the output data is calculated according to the input data:

1 def concrete_comp(outs, ins):
2   # calculate outputs according to inputs

where outs and ins are output and input data owned by XLA, respectively. Note this function
should not return anything. All computations must be made in place. Finally, by using

1 # "name" is the operator name
2 # "concrete_comp" is the concrete computation function
3 # "abstract_eval" is the abstract evaluation function
4 op =​brainpy.​math.​CustomOpByNumba(​abstract_​eval, concrete_comp, name)

we register a primitive operator op. This operator op can be used anywhere the user wants.
The Numba-based approach for operator customization demonstrates comparable performance to
the native C++-based XLA operator registration. To illustrate this, we conducted a performance
comparison of the COBA network model (Vogels and Abbott, 2005) using both an event-driven
operator implementation based on Numba and C++.

This event-driven operator implements the matrix–vector multiplication ‍y = v · M‍ for synaptic
computation, where ‍v‍ is the presynaptic spikes, ‍M‍ the synaptic connection matrix, and ‍y‍ the
postsynaptic current. Specifically, it performs matrix–vector multiplication in a sparse and efficient
way by exploiting the event property of the input vector ‍v‍. Particularly, we performs event-driven
matrix–vector multiplication only for the non-zero elements of the vector, which are called events. This
can reduce the number of operations and memory accesses, and improve the running performance
of matrix–vector multiplication.

Based on our Python-level registration syntax, this operator can be implemented as:

1 from ​jax.​core import ShapedArray
2 import ​brainpy.​math as bm

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 37 of 52

3
4 # the abstract evaluation function
5 def abs_eval(events, indices, indptr, *, weight, post_num):
6    return [ShapedArray((post_num,), bm.float32),]
7
8 # the concrete function implementing the event-driven computation
9 def con_compute(outs, ins):
10   post_val, =outs
11   ​post_​val.​fill(​0)
12   events, indices, indptr, weight, _=ins
13   weight=weight[()]
14   for i in ​range(​events.​size):
15     if events[i]:
16       for j in range(indptr[i], indptr[i+1]):
17         index =indices[j]
18         post_val[index]+=weight
19
20 # operator registration
21 event_sum =bm.CustomOpByNumba(eval_shape =abs_eval, cpu_func =con_
compute)

Listing 1: The event-driven operator implemented with our Python syntax for the computation of

‍y = v · M‍.
This operator can also be implemented with the pure C++ syntax:

1 #include <cstdint>
2 #include <cstring>
3 #include <cmath>
4
5 template <typename F, typename I>
6 void cpu_csr_event_sum_homo(void *out, const void **in) {
7    const std::uint32_t pre_size = *reinterpret_cast<const std::uint32_t
*>(in[0]);
8    const std::uint32_t post_size = *reinterpret_cast<const std::uint32_t
*>(in(1));
9    const bool *events=reinterpret_cast<const bool *>(in(2));
10   const I *indices=reinterpret_cast <const I *>(in(3));
11   const I *indptr=reinterpret_cast <const I *>(in(4));
12   const F weight=reinterpret_cast<const F *>(in(5))[0];
13   F *result=reinterpret_cast<F *>(out);
14
15   // algorithm
16   memset(&result[0], 0, sizeof(F) * post_size);
17   for (std::uint32_t i=0; i<pre_size; ++i) {
18     if (events[i]){
19       for (I j=indptr[i]; j<indptr[i+1]; ++j) {
20         result[indices[j]]+=weight;
21       }
22     }
23   }
24 }

Listing 2: The event-driven operator utilizes C++ for the computation of ‍y = v · M‍. Here, we
present the main code snippet that implements the event-driven matrix–vector multiplication. Please
note that we have omitted the code for Python binding, compilation, registration, and other related

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 38 of 52

aspects. For detailed instructions and a comprehensive tutorial on XLA operator customization, we
encourage users to refer to the appropriate resource.

The speed comparison between the two approaches has been depicted in Figure 9. Although
the approach shows promising results on CPU hardware, it is not directly compatible with other
computing platforms like GPUs. This restricts the applicability and scalability of the proposed
method, as GPUs are increasingly used to accelerate brain dynamics models. To overcome this
limitation, currently, we are working on alternative approach that can be used in both CPU and
GPU devices, allowing for broader utilization of available hardware resources and unlocking new
possibilities for customizing any complex brain dynamics operators.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 39 of 52

Appendix 9
Multi-scale spiking neural network for the visual system modeling
We build a spiking network model examined in Figure 2 and Figure 3 for modeling the visual system
(V1, V2, V4, TEO, and TEpd). Simulations are performed using a network of Hodgkin–Huxley neurons,
with the local circuit and long-range connectivity structure derived from Markov et al., 2014. Each
of the five areas consists of 2000 neurons, with 1600 excitatory and 400 inhibitory neurons.

For each neuron, the membrane potential dynamics is modified from Traub and Miles, 1991 and
is described by the following equations:

	﻿‍
Cm

dV
dt

= −gL
(
V − EL

)
− ḡNam3h

(
V − ENa

)
− ḡKdn4 (V − EK

)
+ G(t)

‍�
(1)

where ‍V ‍ is the membrane potential, ‍G(t)‍ stands for synaptic interactions, ‍Cm‍ is the membrane
capacitance per unit area, ‍EK = −90 mV‍ and ‍ENa = 50 mV‍ are the potassium and sodium
reversal potentials, respectively, ‍El = −60 mV‍ is the leak reversal potential, ‍̄gK = 30 mS/cm2

‍ and

‍̄gNa = 100 mS/cm2
‍ are the potassium and sodium conductance per unit area, respectively, and

‍̄gl = 0.05 mS/cm2
‍ is the leak conductance per unit area.

Each neuron is composed of two active ion channels, including the potassium and sodium channels.
Because the potassium and sodium channels are voltage sensitive, according to the biological
experiments, ‍m‍, ‍n‍, and ‍h‍ are used to simulate the activation of the channels.

	﻿‍
dm
dt

= αm(V)(1 − m) − βm(V)m
‍�

(2)

	﻿‍
dh
dt

= αh(V)(1 − h) − βh(V)h
‍�

(3)

	﻿‍
dn
dt

= αn(V)(1 − n) − βn(V)n
‍�

(4)

Specifically, ‍n‍ measures the activation of potassium channels, and ‍m‍ and ‍h‍ measures the activation
and inactivation of sodium channels, respectively. ‍αx‍ and ‍βx‍ are rate constants for the ion channel ‍x‍
and depend exclusively on the membrane potential. The voltage-dependent expressions of the rate
constants were modified from the model described by Traub and Miles, 1991:

	﻿‍ αm = 0.32 ∗
(
13 − V + VT

)
/
[
exp

((
13 − V + VT

)
/4
)
− 1

]
‍� (5)

	﻿‍ βm = 0.28 ∗
(
V − VT − 40

)
/
[
exp

((
V − VT − 40

)
/5
)
− 1

]
‍� (6)

	﻿‍ αh = 0.128 ∗ exp
((

17 − V + VT
)

/18
)
‍� (7)

	﻿‍ βh = 4/
[
1 + exp

((
40 − V + VT

)
/5
)]

‍� (8)

	﻿‍ αn = 0.032 ∗
(
15 − V + VT

)
/
[
exp

((
15 − V + VT

)
/5
)
− 1

]
‍� (9)

	﻿‍ βn = 0.5 ∗ exp
((

10 − V + VT
)

/40
)

,‍� (10)

where ‍VT ‍ = −63 mV adjusts the threshold.
For the synapse, we use conductance-based synaptic interactions. Particularly, ‍G(t)‍ is given by:

	﻿‍
G(t) = −

∑
j

gji(t)
(
Vi − Ej

)
,
‍� (11)

where ‍Vi‍ is the membrane potential of neuron ‍i‍. The synaptic conductance from neuron ‍j‍ to neuron
‍i‍ is represented by ‍gji(t)‍, while ‍Ej‍ signifies the reversal potential of that synapse. For excitatory
synapses, ‍Ej‍ was set to 0 mV, whereas for inhibitory synapses, it was −80 mV. The dynamics of the
synaptic conductance is given by:

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 40 of 52

	﻿‍

dgji
dt

= −
gji

τdecay
+ gmax

∑
k

δ(t − tkj),
‍�

(12)

where ‍t
k
j ‍ is the spiking time of the presynaptic spike. Whenever a spike occurred in neuron ‍j‍, the

synaptic conductance ‍gji‍ experienced an immediate increase by a fixed amount ‍gmax‍. Subsequently,
the conductance ‍gji‍ decayed exponentially with a time constant of ‍τdecay = 5‍ ms for excitation and

‍τdecay = 10‍ ms for inhibition.
The connection density is set according to the experimental connectivity data (Markov et al.,

2014). The inter-areal connectivity is measured as a weight index (see Appendix 9—table 1), called
the extrinsic fraction of labeled neurons (Markov et al., 2014). The intra-area connectivity is set
according to the setting in a standard E/I balanced network (Brette et al., 2007).

Appendix 9—table 1. The weighted connectivity matrix among five brain areas: V1, V2, V4, TEO,
and TEpd (Markov et al., 2014).

V1 V2 V4 TEO TEpd

V1 0.0 0.7322 0.1277 0.2703 0.003631

V2 0.7636 0.0 0.1513 0.003274 0.001053

V4 0.0131 0.3908 0.0 0.2378 0.07488

TEO 0.0 0.02462 0.2559 0.0 0.2313

TEpd 0.0 0.000175 0.0274 0.1376 0.0

Moreover, we introduce distance-dependent inter-areal synaptic delays by assuming a conduction
velocity of 3.5 m/s (Swadlow, 1990) and using a distance matrix based on experimentally measured
wiring distances across areas (Markov et al., 2014).

Appendix 9—table 2. The delay matrix (ms) among five brain areas: V1, V2, V4, TEO, and TEpd
(Markov et al., 2014).

V1 V2 V4 TEO TEpd

V1 0. 2.6570 4.2285 4.2571 7.2857

V2 2.6570 0. 2.6857 3.4857 5.6571

V4 4.2285 2.6857 0. 2.8 4.7143

TEO 4.2571 3.4857 2.8 0. 3.0571

TEpd 7.2857 5.6571 4.7143 3.0571 0.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 41 of 52

Appendix 10
Training reservoir computing model with multiple algorithms
Reservoir computing is a type of recurrent neural network that is often used for processing temporal
data. Unlike traditional recurrent neural networks, reservoir computing fixes the weights of the
recurrent layer (known as the ‘reservoir’) and only trains the weights of the output layer. This makes
training much more efficient.

A reservoir computing model can be trained using various algorithms, such as online learning,
offline learning, and backpropagation learning, to optimize its performance. Online learning refers
to the process of updating the model in real time as new data becomes available. This algorithm
allows the model to adapt and adjust its predictions continuously. Offline learning, on the other
hand, involves training the model using a fixed dataset, where the entire dataset is used to update
the model’s parameters. This method is particularly useful when a large amount of data is available
upfront. Lastly, backpropagation learning utilizes a technique called backpropagation to train the
model by computing the gradients of the model’s parameters and adjusting them accordingly.

The unified building and training interface of BrainPy enables the training of the same reservoir
model with multiple training algorithms. By employing BrainPy, we can compare the performance of
different training algorithms and determine which approach yields the best results for the reservoir
computing model.

The following lists the details of such training.

Reservoir model
The dynamics of the reservoir model used here are given by:

	﻿‍ x(t) = (1 − α) · x(t − 1) + α · f(Win u(t) + Wrec x(t − 1)),‍� (13)

	﻿‍ y(t) = Wout x(t)‍� (14)

where ‍x(t)‍ is the reservoir state, ‍y(t)‍ the readout value, ‍Win‍ and ‍Wrec‍ are input and recurrent
connection matrices, respectively, ‍Wout‍ the readout weight matrix which can be trained by either
offline learning or online learning algorithms, ‍α ∈ (0, 1]‍ the leaky rate, ‍u(t)‍ the input at time step ‍t‍,
and ‍f ‍ the nonlinear activation function.
In BrainPy, the reservoir model can be easily instantiated as the following code:

1 reservoir =​brainpy.​dyn.​Reservoir(​input_​shape, output_shape, leaky_rate)

Inferring Lorenz strange attractor
The reservoir model is utilized for inference tasks in this work. To generate training and testing data,
we numerically integrate a simplified model of a weather system originally developed by Lorenz,
1963. This model comprises three coupled nonlinear differential equations:

	﻿‍ ẋ = 10(y − x),‍� (15)

	﻿‍ ẏ = x(28 − z) − y,‍� (16)

	﻿‍ ż = xy − 8z/3.‍� (17)

The state ‍X(t) = [x(t), y(t), z(t)]T
‍ represents a vector of Rayleigh–Bénard convection observables. The

system exhibits deterministic chaos, displaying sensitivity to initial conditions and forming a strange
attractor in the phase space trajectory (Figure 4D).
In this task, we train a reservoir model to predict the ‍T ‍-step-ahead value of all Lorenz variables,
‍x‍, ‍y‍, and ‍z‍. During training, we provide the model with all three variables. During testing, we only
provide the model with ‍x‍, ‍y‍, and ‍z‍ at ‍T ‍-step-ahead, and it must infer ‍x, y‍, and ‍z‍ after ‍T ‍ steps. Here,
we choose ‍T = 5‍.
In this task, the input size was set to 3, the recurrent layer of the reservoir model contained 100 units,
and the output size was 3, as used in Figure 4D-F.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 42 of 52

Training with ridge regression
The training objective of reservoir models is to find the optimal ‍Wout‍ that minimizes the square error
between ‍y(t)‍ and ‍y

target(t)‍. The common way to learn the linear output weight ‍Wout‍ is using the ridge
regression algorithm. The ridge regression, also known as regression with Tikhonov regularization,
is given by:

	﻿‍
Wout = Ytarget XT

(
XXT + βI

)−1

‍�
(18)

where ‍β‍ is a regularization coefficient, ‍I ‍ is the identity matrix, and ‍X ‍ is the concatenated hidden
states of all samples.
In BrainPy, the reservoir model trained with ridge regression can be implemented as:

1 model =ESN(num_in, num_rec, num_out)
2 trainer =bp.RidgeTrainer(model)
3 ​trainer.​fit([X, Y])
4 outputs =trainer.predict(X)

Training with FORCE learning
Ridge regression is an offline learning method, meaning that it needs all of the data to be present
before it can learn the model parameters. This can be a problem when training reservoir models with
a lot of data, because the memory requirements can be too high for some devices. FORCE learning
(Sussillo and Abbott, 2009), on the other hand, is an online learning algorithm. This means that it
can learn the model parameters one sample of data at a time. This makes it a much more efficient
way to train reservoir models with large datasets. Therefore, FORCE learning is a good choice for
training reservoir models when the amount of data is large or the memory resources are limited.

The FORCE learning is done using the recursive least squares (RLS) algorithm. It is a supervised
error-driven learning rule, that is the weight changes depending on the error made by each neuron:
the difference between the output of a neuron ‍yi(t)‍ and a desired value ‍y

target
i (t)‍.

	﻿‍ ei(t) = yi(t) − ytarget
i (t)‍� (19)

Contrary to the delta learning rule which modifies weights proportionally to the error and to the
direct input to a synapse (‍∆wij = −η · ei · xj‍), the RLS learning uses a running estimate of the inverse
correlation matrix of the inputs to each neuron:

	﻿‍
∆Wij

out = −ei
∑

k
Pi

jk · xk
‍�

(20)

Each neuron ‍i‍ therefore stores a square matrix ‍Pi‍, whose size depends on the number of weights
arriving at the neuron. Readout neurons receive synapses from all ‍N ‍ recurrent neurons, so the ‍P‍
matrix is ‍N ∗ N ‍.
The inverse correlation matrix ‍P‍ is updated at each time step with the following rule:

	﻿‍
∆Pi

jk = −
∑

m
∑

n Pi
jm · xm · xn · Pi

nk

1 +
∑

m
∑

n xm · Pi
mn · xn ‍�

(21)

Each matrix ‍Pi‍ is initialized to the diagonal matrix and scaled by a factor ‍1/δ‍, where ‍δ‍ is 1 in the
current implementation and can be used to modify implicitly the learning rate (Sussillo and Abbott,
2009).
In BrainPy, the reservoir model trained with FORCE learning can be implemented as:

1 model =ESN(num_in, num_rec, num_out)
2 trainer =bp.ForceTrainer(model, alpha =0.1)
3 ​trainer.​fit([X, Y])
4 ​trainer.​fit([X, Y])
5 outputs =trainer.predict(X)

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 43 of 52

Training with backpropagation algorithm
The readout layer in the reservoir model is just a single-layer Perceptron. To train its weights, we can
use the backpropagation algorithm. Backpropagation is a method used in artificial neural networks
to calculate a gradient that is needed in the calculation of the weights to be used in the network. The
loss function used here is the mean square error between the reservoir output and the target output:

	﻿‍
E = 1

2
∑

j
(yj − ytarget

j)2

‍�
(22)

The updated weight between neuron ‍i‍ and ‍j‍ is calculated by:

	﻿‍
∆Wij

out = ∂E
∂yi

∂yi
∂xj

.
‍�

(23)

In BrainPy, the reservoir model trained with backpropagation algorithms can be implemented as:

1 reservoir = ​bp.​dyn.​Reservoir(​num_​in, num_rec)
2 readout = ​bp.​dnn.​Dense(​num_​rec, num_out, mode =bm.training_mode)
3 trainer = bp.BPFF(target =readout,
4                     loss_fun =​bp.​losses.​mean_​squared_​error,
5                     optimizer =​bp.​optim.​Adam(​1e-​3))
6 # batch_data: the data generated by "reservoir"
7 ​trainer.​fit(​batch_​data, num_epoch =100)

Evaluation metrics
The performance of a reservoir computing model is usually measured with the mean squared error,
that is, the average squared difference between the predicted and actual values:

	﻿‍
E
(

y, ytarget
)

= 1
Ny

Ny∑
i=1

T∑
n=1

(
yi(n) − ytarget

i (n)
)2

,
‍�

(24)

where ‍Ny‍ is the number of training samples and ‍T ‍ is the number of time steps.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 44 of 52

Appendix 11
Experimental details for benchmark comparisons
In this section, we provide a comprehensive overview of the experimental benchmark details
used in Figure 6, Figure 7, and Figure 8. The purpose is to present a complete picture of the
experimental setup and methodology employed in our study. The details encompass the following
aspects: hardware specifications, software versions, algorithm hyperparameters, and performance
measurements.

By providing these experimental benchmark details, we aim to ensure transparency and
reproducibility, allowing readers and researchers to understand and replicate our experiments
accurately.

Hardware specifications
We conducted a series of experiments on various computing devices, namely the CPU, GPU, and TPU,
in order to validate and compare the simulation speeds of several widely utilized brain simulators.
The brain simulators under investigation included Brian2 (Stimberg et al., 2019), NEURON (Hines
and Carnevale, 1997), NEST (Gewaltig and Diesmann, 2007), GeNN (Yavuz et al., 2016), and
Brian2CUDA (Alevi et al., 2022).

Particularly, the computing devices we used here are:
•	 CPU: The CPU used was the Intel Xeon W-2255 processor. This is a 10-core, 20-thread CPU

based on Intel’s Cascade Lake microarchitecture. It has a base clock frequency of 3.7 GHz
and a max turbo boost up to 4.5 GHz. The Xeon W-2255 utilizes the LGA2066 socket and
supports up to 512 GB of ECC-registered DDR4-2933 RAM across 6 channels. It has 24.75 MB
of L3 cache. As a server-grade CPU with a high core count, the Xeon W-2255 is well suited for
heavily parallelized simulations.

•	 GPU: The GPU used was an NVIDIA RTX A6000. This is a high-end Ampere architecture GPU
aimed at professional visualization, AI, and compute workloads. The RTX A6000 has 10,752
CUDA cores, 336 tensor cores, and 84 RT cores. It comes equipped with 48 GB of GDDR6
memory clocked at 16 Gbps, providing up to 1 TB/s of memory bandwidth. The RTX A6000
has a maximum power consumption of 300 W and requires auxiliary power connectors. It uses
a PCIe 4.0x16 interface. With its large number of CUDA cores and abundant memory, the RTX
A6000 is well suited for massively parallel simulations and neural network training.

•	 TPU: The TPU simulations leveraged the Kaggle free TPU v3-8 cloud instance. This provides
access to one of Google’s TPU v3 chips via their cloud platform. Specifically, the v3-8 instance
gives 8 TPU v3 cores, each providing 128 GB/s of bandwidth to high-performance HBM memory.
The TPU v3 is optimized for both training and inferencing of DNNs, providing up to 420 TFLOPS
of mixed precision computing. By utilizing Google’s cloud TPUs, researchers can run models with
minimal coding changes while leveraging Google’s optimized deep learning frameworks.

Software versions
We carried out benchmark experiments using Python 3.10.12 running on Ubuntu 20.04.6 LTS. For any
experiments utilizing a GPU, we used version 11.6 of the NVIDIA CUDA Toolkit to take advantage
of the parallel processing capabilities of the GPU hardware. Other dependent software versions are:
NumPy 1.24.3, Numba 0.57.1, jax 0.4.16, and jaxlib 0.4.16.

The comparison brain simulators for benchmarking are:
•	 NEURON at version 8.2.0
•	 NEST at version 3.6
•	 Brian2 at version 2.5.4
•	 GeNN at version 4.8.1
•	 Brian2GeNN at version of 1.7.0: Brian2GeNN is a bridge between Brian2 and GeNN that

allows Brian2 users to run their simulations on GPUs using GeNN.
•	 Brian2CUDA at version of 1.0a3: Brian2CUDA is a native CUDA implementation of Brian2 that

allows Brian2 users to run their simulations on GPUs without the need for a bridge.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 45 of 52

Performance measurements
By testing against these simulators on benchmark tasks, we aimed to thoroughly evaluate the
performance in terms of simulation speed and accuracy across different model sizes and paradigms.

When evaluating simulation speed, we focused solely on measuring the execution time of the
simulation itself, excluding any time spent on compilation, initialization, or other preparatory steps.
This allowed us to make a direct comparison of the raw simulation performance between our
simulator and others. We simulated networks of varying sizes. This range of model scales allowed
us to determine how well our simulator performs as network size and complexity increase. The final
experimental results can be obtained in Figure 6, Figure 7, and Figure 8.

Accuracy evaluations
To evaluate the accuracy, we configured all simulators to use identical model parameters for a fair
comparison.

First, we verified that all simulators generated consistent average firing rates for a given network
model (see Appendix 11—figure 1 and Appendix 11—figure 2).

Appendix 11—figure 1. The average firing rate per neuron of the COBA network model (Vogels and Abbott,
2005) was measured across various simulators running on both GPU and TPU devices. However, it should be
noted that the BrainPy TPU x32 simulation was limited to 40,000 neurons due to memory constraints, resulting in a
truncated network size.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 46 of 52

Appendix 11—figure 2. The average firing rate per neuron of the COBAHH network model (Brette et al., 2007)
was measured across various simulators running on both GPU and TPU devices. However, it should be noted that
the BrainPy TPU x32 simulation was limited to 40,000 neurons due to memory constraints, resulting in a truncated
network size.

Second, we qualitatively compared the overall network activity patterns produced by each
simulator to ensure they exhibited the same dynamics. While exact spike-to-spike reproducibility
was not guaranteed between different simulator implementations, we confirmed that our simulator
produced activity consistent with the reference simulators for both firing rates and network-level
dynamics (see Appendix 11—figure 3 and Appendix 11—figure 4).

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 47 of 52

Appendix 11—figure 3. Rater diagrams of COBA network model with 4000 neurons (Vogels and Abbott, 2005)
across different simulators on CPU, GPU, and TPU devices. Here, we only present the simulation results for the
initial 100 ms of the experiment.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 48 of 52

Appendix 11—figure 4. Rater diagrams of COBAHH network model with 4000 neurons (Brette et al., 2007)
across different simulators on CPU, GPU, and TPU devices. Here, we only present the simulation results for the
initial 100 ms of the experiment.

Third, we recognize that the precision of numerical computation plays a crucial role in accurately
simulating biologically detailed neural networks, such as the COBAHH network model used in our
benchmarks. To assess the numerical integration accuracy of each neuron in the COBAHH network
model, we conducted a 5-s simulation and examined the presence of NaN membrane potentials
at the end of the simulation. The occurrence of NaN membrane potentials indicates that the
corresponding neurons are no longer active and signifies a loss of simulation accuracy. This analysis
was performed on the GPU backend of Brian2GeNN, Brian2CUDA, and BrainPy. The results of this
analysis can be found in Appendix 11—figure 5. We specifically focused on the analysis results of
single-precision floating-point simulations, as we did not encounter any NaN results when simulating
with double precision. Our observations reveal that the single-precision computation with XLA in
BrainPy exhibits a higher proportion of NaN results compared to Brian2CUDA and GeNN. Notably,
GeNN demonstrated very few occurrences of NaN membrane potentials after simulation, which may
be attributed to the special handling of NaN within the GeNN computation.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 49 of 52

Appendix 11—figure 5. Number of neurons with NaN membrane potential after performing a 5-s long simulation
of the COBAHH network model using the single-precision floating point.

To address the issue of a larger number of NaN membrane potentials leading to reduced
neuronal spiking and communication spikes, we took steps to resolve this problem in BrainPy. Our
aim was to ensure a fair comparison when benchmarking the simulation speed against other brain
simulators. Specifically, the occurrence of NaN membrane potentials was attributed to the use of
the ‍x/(exp(x) − 1)‍ operation during the integration of the Hodgkin–Huxley neuron model with low-
precision floating-point calculations. In order to mitigate the catastrophic loss of precision when ‍x‍ is
close to zero, we replaced this operation with the relative error exponential function, represented by

‍1/exprel(x)‍. This modification ensures that the numerical calculations do not result in NaN values even
during significantly long simulations. As a result of this fix, we did not encounter any instances of
NaN membrane potentials, even after conducting extensive and prolonged simulations. We believe
that these revised operations contribute to a more equitable benchmarking process, eliminating any
potential bias caused by the presence of NaN values. The speed benchmarking can be obtained in
Figure 8.

Experimental settings
In the below, we describe the experimental setting details used in Figure 6, Figure 7, and Figure 8.

Figure 6
In the experiments depicted in Figure 6A, we exercise precise control over the equivalent theoretical
FLOPs (floating-point operations) performed by the LIF (Leaky Integrate-and-Fire) neurons and the
matrix–vector multiplication ‍Mv‍ (‍W ∈ Rm×m‍ and ‍v ∈ Rm‍). In each trial, subsequent to determining
the size ‍m‍, we modify the number of neurons in the LIF simulation, ensuring that they collectively
execute the same theoretical FLOPs. To simplify the computation of the total FLOPS, we adopt the
Euler method with a single time step to solve the differential equations within the LIF neuron model.

On the other hand, for the COBA network (Vogels and Abbott, 2005) experiments showcased
in Figure 6B and Figure 6C, the dynamical equations were resolved using the Exponential Euler
method with a step size of 0.1ms. The synaptic computation was performed through dense
matrix multiplication. Given the presynaptic spikes represented by the vector ‍v‍, the postsynaptic
conductance (‍gpost‍) is computed using the equation ‍gpost = gmax ∗ v · M ‍, where ‍gmax‍ denotes the
maximum synaptic conductance, and ‍M ‍ represents the connection matrix. We assess the simulation
time of the network using the aforementioned dense operation under two conditions: with JIT
compilation and without JIT compilation.

.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 50 of 52

Figure 7
The COBA network model (Vogels and Abbott, 2005) is simulated using the Exponential Euler
numerical integration method to approximate solutions to the differential equations governing
network dynamics. A fixed simulation time step of 0.1 ms is utilized for numerical simulations.

Accurately isolating the computational time spent on simulating synaptic connections in the
COBA network is challenging, as the synapses are computed in an event-driven manner based on
spiking activity. Since the number of spikes generated in the network varies across simulations, this
causes variability in synapse simulation time measurements. To separately quantify time spent on
neuron versus synapse computations, we first profile the neuron simulation time in isolation. This is
measured by simulating only the neuronal dynamics without any synaptic connections for a 500-ms
duration. Next, we profile the end-to-end run time of the full COBA network simulation including
both neurons and dynamic synapses for the same 500-ms duration. Finally, the computational time
attributed specifically to simulating synapses can be directly estimated by subtracting the isolated
neuron simulation time from the full network simulation time. This approach separates and quantifies
the contributions of simulating neuronal and synaptic computations to the overall run time of COBA
network simulations.

For the model without dedicated OP, we employ dense matrix multiplication to perform the
synaptic computation, same as the operation used in Figure 6. On the other hand, For the model
with dedicated OP, we utilize our event-driven operator called ​brainpy.​math.​event.​csrmv
for handling the synaptic computation. This specialized operator is designed specifically to efficiently
handle such computations in an event-driven manner.

All simulations were performed using a single thread, excluding the acceleration effect of multi-
threading concurrence.

Figure 8
Same as Figure 7, the COBA network model (Vogels and Abbott, 2005), the COBAHH network
model (Brette et al., 2007), and the decision-making network model (Wang, 2002) are simulated
using the Exponential Euler numerical integration method with a fixed simulation time step of 0.1ms.

The simulations were conducted across a diverse range of computing devices (including CPUs,
GPUs, and TPUs), encompassing various hardware configurations, and were executed using networks
of different sizes. To ensure statistical robustness, each trial was repeated 10 times, thereby totaling
10 simulations for each experimental setup. These simulations were carried out for a duration of 5 s.
Finally, to provide a representative measure, we reported the average time taken across these 10
simulations.

On the CPU device, we simulate the model using a single thread across different simulators. On
Brian2, we open 12 threads for parallel simulation. However, we did not report the simulation speed
results of Brian2 runs on the COBA network model, since single-threaded Brian2 runs were faster
than using multi-threaded compartments in this case.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 51 of 52

Other supplements

Appendix 11—figure 6. The acceleration ratio of JIT compilation on LIF neuron models (Abbott, 1999) and
COBA network models (Vogels and Abbott, 2005). (A) The acceleration ratio of just-in-time (JIT) compilation
on the LIF neuron model is shown in the plot. The plotted values represent the simulation time ratios of the
LIF neuron without JIT and with JIT. The top panel illustrates the acceleration on the CPU device, while the
bottom panel demonstrates the acceleration on the GPU device. The acceleration ratios on both devices are
approximately five times faster. (B) The simulation time ratio of the dense operator compared to the LIF neuron
model with JIT compilation is shown. The top panel displays the time ratio on the CPU device, and the bottom
panel demonstrates the time ratio on the GPU device. The simulation time ratios on both devices are nearly
one, indicating that the jitted LIF neuron, with the same number of floating-point operations (FLOPs) as the ‘Dot’
operation, can run equivalently fast. (C) The acceleration ratio of the COBA network model (Vogels and Abbott,
2005) with JIT compilation compared to the model without JIT compilation on the CPU device is shown. The
plot demonstrates a tenfold increase in speed after JIT compilation on the CPU device. (D) Similar to (C), the
experiments were conducted on the GPU. Please refer to Figure 6 for the original data.

We evaluate the speedup of event-driven operators over traditional dense matrix operators on
both CPU and GPU devices. Evaluation results are listed in Appendix 11—figure 7. Both CPU
and GPU devices demonstrate a significant speed advantage of several orders of magnitude when
utilizing event-driven operators, in comparison to dense ones. Notably, as the number of neurons
increases, event-driven operators showcase an even greater speedup on both platforms.

https://doi.org/10.7554/eLife.86365

 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Wang et al. eLife 2023;13:e86365. DOI: https://doi.org/10.7554/eLife.86365 � 52 of 52

Appendix 11—figure 7. The acceleration ratio of dedicated operators of COBA network model (Vogels and
Abbott, 2005) on both CPU (A) and GPU (B) devices. Please refer to Figure 7 for the original data.

We also conducted COBA and COBAHH experiments on TPU devices. The experimental results
are shown in Appendix 11—figure 8. Although TPUs can perform double precision operations, they
are not as efficient at it as they are at lower precisions such as float16 or bfloat16. Therefore, we here
only tested models with single-precision operations.

Appendix 11—figure 8. The simulation speeds of BrainPy on kaggle TPU v3-8 device. (A) The simulation time of
the COBA (Vogels and Abbott, 2005) network model across different network sizes. (B) The simulation time of
the COBAHH (Brette et al., 2007) network model across different network sizes.

https://doi.org/10.7554/eLife.86365

	BrainPy, a flexible, integrative, efficient, and extensible framework for general-­purpose brain dynamics programming
	Editor's evaluation
	Introduction
	Method and results
	Infrastructure tailored for brain dynamics programming
	Flexible model building in BrainPy
	Integrated modeling in BrainPy
	Model simulation
	Model training
	Model analysis

	Efficient performance of BrainPy
	JIT compilation

	Dedicated operators
	Benchmarking

	Extensible architecture of BrainPy

	Discussion
	Limitations
	Future works

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1
	Review of the existing programming paradigm

	﻿Appendix 2﻿
	JIT compilation and JIT compilers

	﻿Appendix 3﻿
	Continuous integration and documentation generation

	﻿Appendix 4﻿
	Mathematical operators for brain dynamics modeling
	Dense matrix operators
	Dedicated operators

	﻿Appendix 5﻿
	Numerical solvers for differential equations
	ODE numerical solvers
	SDE numerical solvers
	FDE numerical solvers
	DDE numerical solvers

	﻿Appendix 6﻿
	Object-oriented JIT compilation and automatic differentiation

	﻿Appendix 7﻿
	Extension of BrainPy infrastructure

	﻿Appendix 8﻿
	Extension of low-level operators in BrainPy

	﻿Appendix 9﻿
	Multi-scale spiking neural network for the visual system modeling

	﻿Appendix 10﻿
	Training reservoir computing model with multiple algorithms
	Reservoir model
	Inferring Lorenz strange attractor
	Training with ridge regression
	Training with FORCE learning
	Training with backpropagation algorithm
	Evaluation metrics

	﻿Appendix 11﻿
	Experimental details for benchmark comparisons
	Hardware specifications
	Software versions
	Performance measurements
	Accuracy evaluations
	Experimental settings
	Figure 6
	Figure 7
	Figure 8

	Other supplements

