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Abstract Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for 
noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its 
temporal resolution. A key challenge is understanding the relationship between neural activity and 
the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled 
by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and 
individuals, confounding our ability to make inferences about the timing of the underlying neural 
processes. Here, we show that resting-state fMRI signals contain information about HRF temporal 
dynamics that can be leveraged to understand and characterize variations in HRF timing across 
both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI 
signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. 
These spectral differences extended to subcortex as well, revealing significantly faster hemody-
namic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate 
that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals 
and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, 
our results show that caution should be used in studies of resting-state fMRI spectral properties, 
because differences in fMRI frequency content can arise from purely vascular origins. This finding 
provides new insight into the temporal properties of fMRI signals across voxels, which is crucial 
for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural 
dynamics.

Editor's evaluation
This manuscript addresses the important issue of hemodynamic response function (HRF) variability 
across brain areas and will be valuable to researchers who use fMRI and other types of functional 
imaging that rely on neurovascular coupling. Using simulations and experiments, the authors provide 
compelling evidence that differences in the HRF can impact spectrum-based metrics such as ALFF 
and fALFF. A better understanding of the variability of the HRF is critical for the proper interpreta-
tion of activation onset times and of differences observed in clinical populations where both neural 
and vascular alterations can be expected.
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Introduction
Functional magnetic resonance imaging (fMRI) enables non-invasive measurement of human brain 
activity via the hemodynamic response. When activity in a population of neurons changes, these 
changes give rise to the blood-oxygenation-level-dependent (BOLD) signal measured in most fMRI 
studies (Ogawa et al., 1990). Thus far, however, BOLD fMRI has exhibited relatively limited ability to 
provide the fine-grained temporal information necessary for deepening our understanding of brain 
dynamics. This is due to the fact that the signals obtained from BOLD fMRI are not direct measures 
of neural activity, but rather reflect the coupling between neuronal activity and the hemodynamic 
response, which evolves on a time course of seconds (Kwong et al., 1992; Ogawa et al., 1990). 
This coupling between neural activity and the BOLD signal can be represented by the hemodynamic 
response function (HRF) (Aguirre et al., 1998; Handwerker et al., 2004). The properties of the HRF 
depend on many interconnected factors, including the effects of local vascular architecture and cere-
brovascular dynamics, that vary substantially across the brain and between individuals (Aguirre et al., 
1998; Handwerker et al., 2004; Len and Neary, 2011; Logothetis et al., 2001). The relative timing 
and shape of the HRF, therefore, also varies considerably across brain regions and even between 
neighboring voxels (Buckner et al., 1998; Lee et al., 1995; Birn et al., 2001; Siero et al., 2011; 
Miezin et al., 2000; Siero et al., 2015). Hemodynamic response temporal lag variation is substan-
tially larger than many neural effects of interest, introducing variability on the order of several seconds 
(Buckner et al., 1998; Lee et al., 1995; Birn et al., 2001; Siero et al., 2011). Thus, to enable infer-
ences about the relative timing of neural activity using signals obtained from BOLD fMRI, it is crucial 
to understand the variations in HRF timing across the brain.

Advances in acquisition technology now allow high-resolution whole brain fMRI data to be acquired 
at fast (<500ms) rates (Polimeni and Lewis, 2021; Chen et al., 2019; Barth et al., 2016; Chiew 
et al., 2018; Hennig et al., 2007; Setsompop et al., 2016), suggesting that fMRI could provide a 
unique tool to noninvasively track temporal sequences of neural activity (Menon et al., 1998) across 
the entire brain. Indeed, recent studies have revealed highly structured temporal dynamics using 
fMRI and suggest that fMRI can enable whole-brain mapping of temporal sequences (Lee et  al., 

eLife digest Functional magnetic resonance imaging (fMRI) is a tool that can be used to non-
invasively measure the activity of the human brain. Active parts of the brain require more oxygen, 
which increases blood flow to these areas. fMRI can detect these changes, and its signal reflects the 
coupling between brain activity and changes in blood flow.

The mechanism that couples brain activity to blood flow is known as the ‘hemodynamic response’, 
and its timing varies across the brain. Therefore, to interpret fMRI signals correctly and use them to 
measure underlying brain activity, it is necessary to understand how the response changes across the 
brain.

Current methods for probing hemodynamic response variation are either limited to specific brain 
regions or require patients to hold their breath – something not all groups of patients can do. To solve 
this problem, Bailes et al. investigated whether resting-state fMRI signals contain information about 
how the hemodynamic response changes across the brain. This information could then be used to 
better infer brain activity from fMRI measurements.

The experiments showed that resting-state fMRI signals can be used to characterize and predict 
the timing of the hemodynamic response. Specifically, the frequencies in resting-state fMRI signals are 
impacted by changes in the hemodynamic response and can therefore be used to predict hemody-
namic timing. Additionally, Bailes et al. showed that these predictions are better than those obtained 
in experiments requiring patients to hold their breath, which is the current gold standard. The findings 
also demonstrate that the information from the frequencies of resting-state fMRI signals should be 
interpreted carefully, as differences in these frequencies can have a non-neural origin.

Bailes et al. propose a highly generalizable approach for mapping and predicting variations of the 
hemodynamic response across the whole brain. These findings provide insights into the time-related 
properties of fMRI signals that are crucial for accurate analyses. This will be of particular importance 
as the field moves towards fMRI studies focused on rapid neural dynamics and higher-level cognition.

https://doi.org/10.7554/eLife.86453
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2013; Setzer et al., 2021; Raut et al., 2021; Mitra et al., 2016; Vizioli et al., 2018). Furthermore, 
hemodynamic signals have been shown to contain more information about fast and high-frequency 
activity than previously thought (Lee et al., 2013; Smith et al., 2012; Chen and Glover, 2015; Lewis 
et al., 2016; Sasai et al., 2021). Studies examining individual brain regions have demonstrated that 
fMRI can achieve impressive temporal precision within regions, on the order of 100ms (Lin et al., 
2013), meaning that high fidelity temporal information is present within these hemodynamic signals. 
However, a key remaining challenge is that the hemodynamic differences across the brain confound 
our ability to infer the timing of the underlying neural activity from BOLD fMRI. Specifically, if a given 
brain region shows earlier BOLD activity, it could be due to faster neural activity or simply due to a 
faster hemodynamic response in that region. Fully exploiting the higher temporal resolution provided 
by fast fMRI techniques will therefore ultimately require accounting for differences in the temporal 
dynamics of the hemodynamic response across the whole brain.

Despite the well-known heterogeneity of hemodynamic timing, most common analysis approaches 
for BOLD fMRI data assume a standard, canonical HRF shape throughout the brain (Glover, 1999). This 
approach is understandable, since the true HRF is not known, but it nevertheless cannot account for 
the vascular confound introduced by hemodynamic response variability. Incorrect assumptions about 
the shape and timing of the HRF can lead to incorrect inferences regarding the underlying neural 
activity (Gonzalez-Castillo et al., 2012; Lindquist et al., 2009; Handwerker et al., 2012), and studies 
that assume a whole brain canonical HRF are unable to decouple the neural and vascular components 
of the BOLD signal (Handwerker et al., 2004; Rangaprakash et al., 2018; Rangaprakash et al., 
2017; Deshpande et al., 2010; Chang et al., 2008). Even when using flexible modeling approaches, 
such as basis sets or finite impulse response models, it is not possible to determine whether a given 
region’s faster fMRI response reflects fast neural activity, or simply faster local neurovascular coupling 
(Handwerker et al., 2012).

The fact that most studies do not account for variations in HRF dynamics is largely due to method-
ological challenges. Previous work has demonstrated that it is possible to quantify hemodynamic lags 
across brain regions, and even on a voxel-wise level, to detect the relative order of BOLD responses 
with high temporal precision (Siero et al., 2011; Miezin et al., 2000; Siero et al., 2015; Lin et al., 
2013; Chang et al., 2008; Sicard and Duong, 2005; Lin et al., 2018; Misaki et al., 2013; Kastrup 
et al., 1999; Liu et al., 2017; Bright et al., 2009; Chen et al., 2021; Wu et al., 2013; Wu et al., 
2021). One such method is the use of a stimulus paradigm that drives activity in particular brain 
regions where the neuronal response properties are relatively well understood and controlled such 
as primary sensory or motor cortices (Handwerker et al., 2004; Birn et al., 2001; Siero et al., 2011; 
Miezin et al., 2000; Lin et al., 2018). However, this approach cannot be applied to the majority of 
the brain, where the neuronal response properties are not known ahead of time. Alternatively, using 
a breath hold or similar hypercapnic challenge can modulate cerebral blood flow (CBF) to all vascular-
ized regions with minimal changes in cerebral metabolic rate of oxygen (CMRO2), allowing mapping 
of vascular latencies (Chang et al., 2008; Sicard and Duong, 2005; Kastrup et al., 1999; Liu et al., 
2017; Bright et al., 2009; Chen et al., 2021; Pinto et al., 2021). However, breath hold tasks are not 
suitable for all subject populations, as some patients may have difficulty complying with the breath 
hold task. Furthermore, breath hold tasks modulate and measure cerebrovascular reactivity (CVR), 
which contributes to neurovascular coupling but is a distinct process. While neurovascular coupling 
reflects the alterations in local hemodynamics that occur in response to changes in neural activity, CVR 
is specifically a measure of a blood vessel’s capacity to dilate and constrict in response to a vasoactive 
stimulus, and does not include the extensive metabolic and molecular factors that also drive neurovas-
cular coupling (Pinto et al., 2021; D’Esposito et al., 2003; Iadecola, 2017). In fact, there is evidence 
that while CVR is affected by healthy aging, some metrics of neurovascular coupling are not, hinting 
that distinct mechanisms may shape these two patterns (Stefanidis et al., 2019; West et al., 2019; 
Grinband et al., 2017).

A task-free, neurovascular-based approach for detecting the lags of intrinsic neurovascular 
coupling would therefore be broadly relevant for analyzing fMRI data. A potential alternative route 
towards identifying local hemodynamic properties is to examine the properties of resting-state fMRI 
data. Resting-state fMRI signals reflect neurovascular coupling induced by spontaneous neural activity 
(Mateo et al., 2017; Ma et al., 2016) and confer the additional benefit of being task-independent, 
which makes it a viable scan type for patient populations. Moreover, unlike stimulus- or task-based 
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paradigms for mapping local hemodynamic response timings in specific brain regions, resting-state 
fMRI can be used to examine the HRF across the whole brain. These advantages have prompted past 
research into the utility of resting-state fMRI signals to estimate the HRF itself with prior work utilizing 
deconvolution approaches to explore HRF timing in resting-state data (Wu et al., 2013; Wu et al., 
2021; Sreenivasan et al., 2015). However, these approaches require assumptions about the under-
lying neural events, which are not known. We therefore investigated whether intrinsic signatures of 
local neurovascular coupling dynamics are present in the resting-state fMRI signal.

Our goal was to understand whether information about the temporal dynamics of the hemody-
namic response is present in resting-state fMRI data. We first used simulations of the BOLD response 
to illustrate how distinct, physiologically relevant HRF shapes should produce marked differences in 
the frequency content of resting-state signals. Next, we verified this result in fast fMRI data collected 
at 7 Tesla (T) using visual stimulation to induce a neural response with known timing in primary visual 
cortex (V1). We quantified the temporal delay of voxels in V1 in response to a controlled, oscillating 
visual stimulus, and found that voxels with fast and slow hemodynamic responses exhibited distinct 
resting-state spectral features. We further extended our analyses to the visual thalamus (lateral genic-
ulate nucleus, LGN) and found that this principle generalized to subcortex. To understand the poten-
tial of this information as a tool to predict the temporal properties of individual voxels, we then trained 
classifiers to use information from the resting-state spectrum to classify voxels as being fast or slow 
cortical voxels, or even faster LGN voxels. We found that resting-state signals were better predic-
tors of voxel-wise differences in relative hemodynamic timing than latencies measured from a gold 
standard breath hold task. Our results establish that information about hemodynamic timing can be 
extracted from the frequency spectrum of resting-state fMRI signals. This demonstrates that resting-
state fMRI can provide a way to understand and predict the temporal dynamics of the HRF across the 
brain, which is critical for interpreting neural activity using BOLD fMRI.

Results
The temporal dynamics of the HRF profoundly impact the spectrum of 
simulated BOLD responses
Previous modeling work has illustrated that narrower HRFs should result in BOLD responses containing 
more high frequency power (Chen and Glover, 2015), suggesting that local variations in HRF timing 
should manifest as local variations in the frequency content of BOLD signals. We therefore hypoth-
esized that the frequency spectrum of BOLD dynamics in the resting-state can be used to infer the 
relative timing of the task-driven hemodynamic response. We first aimed to illustrate this property by 
simulating the BOLD frequency response using HRFs with different temporal dynamics. If we assume 
that the BOLD response is a linear time-invariant system, we can compute the BOLD response as 
a convolution between a given input (i.e. the stimulus) and the characteristic input response of the 
system (i.e. the HRF). Then, by varying the frequency of the stimulus we can construct a spectrum of 
the BOLD frequency response for HRFs with faster or slower dynamics (Figure 1A). We performed this 
simulation using six different HRFs (Figure 1B) with physiologically representative values for their time-
to-peak (TTP), full width at half maximum (FWHM), and amplitude (Siero et al., 2011). We observed 
that while HRFs with faster dynamics produced less power in the low frequency bands compared to 
those with slower dynamics, they also showed a shallower decline in power at higher frequencies 
(Figure 1C). Furthermore, this effect was preserved when we normalized the different HRFs to have 
the same peak amplitude (Figure 1—figure supplement 1A), demonstrating that this phenomenon 
is not solely due to the higher amplitude of slower HRFs (Figure 1—figure supplement 1B). This 
effect was also preserved if we accounted for the 1/f-like spectral pattern that neural activity displays 
(Figure 1—figure supplement 1C–E). And finally, although prior work has shown that the TTP and 
FWHM of the HRF are correlated (Siero et al., 2011; de Zwart et al., 2005), we also tested the effect 
of holding one parameter constant (Figure 1—figure supplement 2). Varying the FWHM had a more 
profound impact on the frequency spectrum compared to varying the TTP (Figure 1—figure supple-
ment 2), as expected due to the higher frequency content of narrower HRF shapes, although short 
TTPs also had a smaller effect on the spectrum. These simulations demonstrate that there should be 
profound differences in the relative power at low versus high frequencies for voxels with fast vs. slow 

https://doi.org/10.7554/eLife.86453
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HRFs, which we hypothesized can be quantified and related to the temporal dynamics of the hemo-
dynamic response.

Features of the resting-state spectrum show significant differences 
between fast and slow voxels
Based on these simulation results, we then examined the frequency content of resting-state fMRI data. 
Spontaneous BOLD fluctuations captured in resting-state fMRI are linked to fluctuations in neuronal 
activity (Mateo et al., 2017; Ma et al., 2016; Fox and Raichle, 2007), and accordingly, reflect the 
neurovascular coupling mechanisms that link neural fluctuations to BOLD fluctuations. To empirically 
test the prediction that fast and slow voxels should have distinct frequency content in the resting-
state, we first used a task paradigm to identify voxels in V1 with consistently fast or slow hemodynamic 
responses. To drive continuous oscillations in V1 we presented the subjects with a 12 Hz counterphase 

Figure 1. Simulations show that the temporal properties of the hemodynamic response function affect the frequency spectrum of the BOLD signal. 
(A) We generated a simulated BOLD response to determine the response amplitude of each HRF to each neural frequency. By convolving a given HRF 
with an oscillating stimulus, and sweeping across a range of frequencies, we generated a frequency spectrum of the simulated BOLD responses. This 
simulation was repeated using HRFs with varying temporal properties, to compare the frequency spectrum of simulated BOLD responses with faster or 
slower hemodynamic responses. (B) We generated a range of HRFs with physiologically plausible timings and amplitudes (Siero et al., 2011). (C) We 
found that temporal properties of the HRF had noticeable effects on the simulated spectra, particularly under 0.2 Hz.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Simulation results are robust to changes in HRF amplitude and 1 /f decay of stimulus amplitude.

Figure supplement 2. Impact of varying either TTP or FWHM on the power spectrum of simulated BOLD signals.

https://doi.org/10.7554/eLife.86453
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flickering radial checkerboard with the luminance contrast of the checkerboard modulated in time 
as a sine wave of 0.05 Hz (Figure 2A, top). We used a combination of an anatomical and functional 
localizer to identify stimulus-driven voxels in V1 (Figure 2B). For those voxels that were significantly 
driven by the stimulus, we then calculated the phase lag, or relative response latency to the stimulus 
(Figure 2C). Consistent with prior studies (Birn et al., 2001; Lewis et al., 2016; de Zwart et al., 
2005) we found a wide range of hemodynamic response lags within V1 (Figure 2A, bottom). From this 
distribution, we extracted groups of fast and slow responding voxels (Figure 2D–E). Then, for each 

Figure 2. Experimental design: oscillating visual stimuli identify fast- and slow-responding voxels in V1. (A) Subjects viewed a flickering checkerboard 
with oscillating luminance contrast to drive neural oscillations in V1. Some voxels showed a faster response to the visual stimulus and other showed 
a slower response, with a noticeable difference in the temporal dynamics of the mean response in these groups. Shading represents standard error. 
(B) Example of a functional localizer in one subject with the white lines denoting the outline of the primary visual cortex (V1) based on anatomical 
segmentation. One visual stimulus run was used as a functional localizer to identify stimulus-driven voxels in V1. (C) For all stimulus-driven voxels in 
V1, the phase of the response to the visual stimulus was calculated from the average of the visual stimulus runs not used as the functional localizer, 
corresponding to the local hemodynamic delay. (D) We defined groups of ‘fast’ and ‘slow’ voxels using a Gaussian fit to the histogram of phases. 
Histogram shows example from one representative subject. (E) Example map of fast and slow voxels generated for a single subject. (F) Frequency 
spectrum of a representative slow and fast voxel’s resting-state signal, showing a difference in power drop off across frequencies, with a steeper slope 
for the slower voxel.

https://doi.org/10.7554/eLife.86453
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voxel identified as fast or slow within the task run, we calculated that voxel’s frequency spectrum in 
the resting-state. Figure 2F shows the resting-state spectrum of a representative fast and slow voxel 
from a single subject where the differences in the spectra, particularly the distinct slope under 0.2 Hz, 
are visible.

Our simulations had predicted a difference in the overall frequency content of resting-state fMRI 
signals in voxels with fast versus slow HRFs. To quantify this property across voxels, we sought to 
generate a set of spectral features that could capture these resting-state spectral dynamics. We 
constructed four spectral features to capture spectral properties: the slope using a linear fit under 
0.2 Hz, the exponent of an aperiodic 1 /f fit, the amplitude of low frequency fluctuations (0.01–0.1 Hz 
power; ALFF) (Zang et al., 2007), and the fractional ALFF (ratio of 0.01–0.08 Hz to 0–0.25 Hz; fALFF) 
(Zou et al., 2008; Figure 3). Each feature of the resting-state spectra revealed significant differences 
(Wilcoxon rank-sum test, p<0.05) between fast and slow voxels across subjects. The slope showed 
significant differences between the fast and slow voxels within each individual subject (15/15), while 
the aperiodic exponent, ALFF, and fALFF showed significant differences in 14, 11, and 13 subjects, 
respectively. (See Supplementary file 1 for p-values). Each of these features reflects information about 
the frequency content at high and low frequencies, suggesting that this was an effective metric for 
differentiating voxels with fast or slow hemodynamic responses. Notably, the most effective features 
for distinguishing fast and slow voxels were the ones that explicitly captured the relative difference in 
high-frequency vs. low-frequency power.

Faster hemodynamic responses in thalamus are also reflected in 
shallower frequency spectra
A key strength of fMRI is its ability to noninvasively image activity in the subcortex. Having estab-
lished that the resting-state spectrum contained signatures of local hemodynamic response timing 
within V1, we next aimed to test whether this principle extended to the visual thalamus, specifically 
the LGN. Prior studies have shown that LGN has faster hemodynamic responses than V1 (Lau et al., 
2011; Yen et al., 2011; Lewis et al., 2018); however, due to its small size and lower signal-to-noise 
ratio, extracting its spectral features accurately could be more challenging. We generated individual 
masks of the LGN within each subject using the individual anatomical segmentation (Fischl, 2012) and 
a functional localizer (Figure 4A). To confirm the presence of stimulus-locked oscillations in the LGN 
and to assess the relative timing of its response, we first examined the latency of the average response 
to the visual stimulus in the LGN, as compared to the fast and slow groups in V1. We observed that 
the LGN peaked before both the fast and slow groups in V1 (Figure 4B), consistent with prior work 
demonstrating faster hemodynamics in thalamus (Lau et al., 2011; Yen et al., 2011; Lewis et al., 
2018). Then, to test whether this faster hemodynamic response was similarly linked to flatter resting-
state spectra, we compared the LGN voxels’ resting-state features to the previously identified fast and 
slow voxels in the cortex. We found that for all subjects there were clear differences in each spectral 
feature within the LGN compared to both the fast and slow voxels of the visual cortex (Figure 4C–F; 
See Supplementary file 1 for p-values). The feature that had the poorest sensitivity to differences 
between the LGN features and cortical features is ALFF, which could be explained by ALFF’s higher 
sensitivity to non-neural noise sources (Zou et al., 2008). We thus observed even shallower frequency 
slopes for the fast LGN voxels – again consistent with our simulation results, demonstrating that this 
pattern held not just within V1 but even extended to the LGN of the thalamus. This observation was 
also robust to controlling for the higher thermal noise in LGN signals (Figure 4—figure supplement 
1).

Resting-state spectral information better characterizes neurovascular 
coupling delays than a breath hold task
Perhaps the most established method of mapping hemodynamic latencies across the brain is using 
a breath hold task to quantify cerebrovascular reactivity (Chang et al., 2008; Kastrup et al., 1999; 
Liu et al., 2017; Bright et al., 2009; Chen et al., 2021; Pinto et al., 2021). Therefore, we tested 
whether similar information about hemodynamic latencies found using the resting-state spectra could 
be found in data from the breath hold task. To determine this, we first mapped the vascular latency 
in response to the breath hold task on a voxel-wise basis across the brain (Chang et al., 2008). We 
then compared each voxel’s relative vascular latency from the breath hold task across the three groups 

https://doi.org/10.7554/eLife.86453


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 8 of 25

Figure 3. Features of the resting-state spectrum differed between fast and slow voxels in each subject. For each 
subject, we calculated four features of the resting-state frequency spectrum and compared the values between 
the task-defined fast and slow voxels using a Wilcoxon rank sum test. For the (A) slope, using a linear fit of 
frequency spectrum under 0.2 Hz, 15/15 subjects showed significant differences; (B) exponent of an aperiodic 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.86453
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identified in the visual task – the fast and slow cortical voxels and LGN voxels. We found that some 
subjects showed the expected temporal sequence of activation, where LGN voxels and fast cortical 
voxels respond earlier than slow cortical voxels (Figure 5A), but this effect was not present in all 
subjects (Figure 5B). Even among the subjects that exhibited the expected order of activation, few 
of them showed individual-level significant differences in breath hold latency between the groups 
(Figure 5C). Specifically, in only 7/15 subjects was the average breath hold latency of fast cortical 
voxels significantly faster compared to slow cortical voxels. Furthermore, the breath hold latency in 
LGN voxels was slower than expected in some subjects: it was significantly slower than fast cortical 
voxels in 5 subjects and significantly slower than slow cortical voxels in 1 subject (Wilcoxon rank-sum 

1 /f fit under 0.5 Hz, 14/15 subjects showed significant differences; (C) amplitude of low frequency fluctuations 
(ALFF), 11/15 subjects showed significant differences; and (D) fractional ALFF, 13/15 subjects showed significant 
differences. Black lines indicate a significant difference in a given subject (Wilcoxon rank-sum test, p<0.05) and red 
lines indicate a non-significant difference.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The same pattern of frequency content for fast and slow voxels replicated in an 
independent dataset acquired at 3T.

Figure supplement 2. There is no consistent pattern of relationship between fast and slow voxels’ estimated 
noise floor of the frequency spectrum.

Figure supplement 3. Example subjects showing significant (p<0.05) correlations between each spectral feature 
and phase on a voxel-wise basis.

Figure 3 continued

Figure 4. The coupling of response timing and resting-state spectral content is maintained in the LGN. (A) Example LGN localizer in one subject 
showing uncorrected z-statistic in the localizer run within the anatomical mask of LGN defined by the white outline. (B) Average time series of fast and 
slow V1 voxels compared to LGN voxels for an example subject. LGN displayed a fast visually-driven response, leading even the earliest cortical voxels. 
Time series are smoothed for display using a 10-point moving average. Shading represents standard error. (C–F) For each subject we calculated the four 
resting-state spectral features for the LGN and compared them to the fast and slow voxels in V1. For the (C) slope, 15/15 subjects showed significant 
differences between fast vs. LGN and slow vs. LGN; (D) exponent of an aperiodic 1 /f fit, 15/15 subjects showed significant differences between fast-LGN 
and slow-LGN; (E) ALFF, 5/15 subjects showed significant differences between fast vs. LGN and 7/15 between slow vs. LGN; and (F) fALFF, 15/15 subjects 
showed significant differences between fast-LGN and between slow-LGN. Black lines indicate a significant difference (Wilcoxon rank-sum test, p<0.05) 
and red lines indicate a non-significant difference.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Accounting for thermal noise does not significantly change the estimated slope of the frequency spectrum under 0.2 Hz in V1 or 
LGN voxels.

https://doi.org/10.7554/eLife.86453
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test, p<0.05). These results demonstrate that although the vascular latencies derived from the breath 
hold task do show significant differences between fast and slow cortical voxels and LGN voxels across 
the group, this effect is less robust in individual subjects than the resting-state spectral features. 
Additionally, not all subjects demonstrated the expected order of latencies between the three groups 
– with LGN first followed by fast cortical and, lastly, slow cortical voxels. Taken together, these results 
suggest that the features of the resting-state spectrum capture additional information about local 
differences in neurovascular coupling delays.

Features of the resting-state spectrum can predict voxels with fast or 
slow hemodynamic response timing
Our results showed consistent signatures of hemodynamic response latency in the resting-state fMRI 
signal, suggesting that this information could potentially be used to predict local neurovascular laten-
cies. Indeed, we found that these spectral features were significantly correlated with the absolute 
timing of their hemodynamic responses (Figure 3—figure supplement 3, Supplementary file 3). 
To investigate the utility of the resting-state spectrum to predict the temporal dynamics of the HRF, 
we tested whether support vector machines (SVMs) could classify slow, fast, and fastest (LGN) voxels 
using information from the resting-state spectrum. First, we trained a SVM to classify slow, fast, and 
LGN voxels based on the four features of the resting-state spectra identified in Figure 3. We found 
that the classifier validation accuracies, both within each individual subject and on the dataset that 
combined all subjects, were well above chance (Figure 6), demonstrating robust prediction of local 
hemodynamic delays (per-subject accuracy in Supplementary file 2). We next considered whether 
correlated information between neighboring voxels could be contributing this prediction, to test 
whether we could generalize to distant voxels. To control for instances of voxels in the test set being 
in close proximity to voxels in the training set, we trained a new set of models using voxels in a single 
hemisphere (left or right) as the training set, and voxels in the other hemisphere as the testing set. 
Following this procedure, the number of voxels for training and testing was often closer to a 50–50 
split than an 80–20 split; however, validation accuracies both within individual subjects and across 
subjects nevertheless remained well above chance. Interestingly, the overall performance across 

Figure 5. Breath hold vascular latencies yield less robust characterization of task-driven hemodynamic response lags. (A) Plot of one subject’s average 
BOLD response to the breath hold task in fast (teal) and slow (pink) cortical voxels as well as LGN voxels (yellow). The shaded areas are the standard 
error across voxels of that group. Colored arrows denote the peak of the response to the breath hold. The LGN time series peaks slightly earlier than 
the fast cortical voxels and both the LGN and fast cortical voxels peak well before the slow cortical voxels. This sequence of activation matches what is 
expected based on the hemodynamic lags across these structures. (B) Plot of one subject’s average BOLD response to the breath hold task where the 
order of activation is not as expected. While the slow cortical voxels reached their peak last, the fast cortical voxels peaked before LGN voxel, meaning 
that the breath hold would not accurately predict latency in this subject. (C) Comparison of the average breath hold latency in fast, slow, and LGN voxels 
in all subjects. For 9/15 subjects, the average latency of the fast cortical voxels was less than the slow cortical voxels, as expected, and 7 of these 9 had 
a significant difference. For only 2/15 subjects, the average latency of the LGN voxels was less than fast voxels, as expected, but only 1 of these 2 had 
a statistically significant difference. For 4/15 subjects, the average latency of slow cortical voxels was larger than LGN voxels, and 1 of these 4 had a 
statistically significant difference. (Wilcoxon rank-sum test, p<0.05).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Subject motion during the breath hold task was significantly worse than the visual stimulus task.

https://doi.org/10.7554/eLife.86453
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subjects was higher, suggesting better generalization across subjects when training on spatially sepa-
rated voxels (Figure 6—figure supplement 1).

Regression models aiming to predict specific response timing (rather than classifying fast vs. slow) 
were significantly above chance but still performed poorly, with an average coefficient of determina-
tion of 0.104 and an average root mean squared error of 0.923 (Supplementary file 4), likely due to 
the fact that absolute HRF timing depends on task state (Chen and Glover, 2015). We next inves-
tigated whether our chosen features were sufficient for classification, or whether additional useful 
information was present in the full resting-state spectrum, by training a second SVM classifier to use 
each voxel’s resting-state spectrum as the predictor for the classifier. The input to the classifier was the 
resting-state spectrum limited to up to 0.5 Hz to reduce the number of features fed into the model 
to avoid overfitting. Once again, we found that the accuracies, both within individual subjects and 
on the dataset that combined all subjects, were well above chance (Figure 6; per-subject accuracy in 
Supplementary file 2). The SVM classifiers trained using the spectrum trended toward slightly higher 
classification accuracies than the pre-selected features (Figure 6), but the performance of the two 
models was not significantly different (p=0.2828; Wilcoxon rank-sum test). We therefore concluded 
that our constructed spectral features are capturing key aspects of the resting-state spectrum that are 
important for predicting hemodynamic latency.

Figure 6. Average classification accuracy of SVM classifier trained using different features. The classification 
accuracies reported are the average validation accuracy across 1000 bootstraps. The black markers indicate the 
models trained using resting-state spectral features from all subjects combined into one model; the colored 
markers show results from individual subjects (n=15). Both models trained using features of the resting-state 
spectrum performed significantly better than the model trained using the breath hold latencies; however, there 
was no significant difference in performance between the two models trained using information from the resting-
state spectrum (=0.283). All classifiers perform significantly above chance (33%). *** p<0.0005 (Wilcoxon rank-sum 
test).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Classification accuracies of SVM classifier when requiring that training and test voxels be 
physically separated.

https://doi.org/10.7554/eLife.86453
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We next tested whether the resting-state signals performed better than the breath hold task at 
differentiating between fast, slow, and LGN voxels. We trained another SVM classifier to use the 
breath hold latencies as predictors and found that this model performed significantly above chance 
(Figure  6), consistent with prior work demonstrating its utility in predicting delays. However, it 
nevertheless performed significantly worse than both resting-state models (Wilcoxon rank-sum test, 
p<0.0005; per-subject accuracy in Supplementary file 2). This result further supported the conclu-
sion that resting-state spectral information performs well at capturing differences in hemodynamic 
response timings.

Discussion
We conclude that the frequency spectrum of resting-state fMRI signals contains rich information about 
local hemodynamic timing. Our simulations first illustrated the rationale for this effect: HRFs with 
faster temporal dynamics produce less power in the low frequency bands and a shallower attenuation 
of power at high frequencies. This effect is preserved even when we account for the higher amplitude 
of slower HRFs and the 1  /f decay of the amplitude of spontaneous neural activity. Following this 
observation, we constructed several quantitative features based on the resting-state spectrum, each 
capturing a similar property: the relative amplitude of high vs. low frequencies, and when used as 
predictors for a SVM were able to classify individual voxels as fast or slow. Our findings demonstrate 
that the temporal properties of the HRF affect the spectral features of resting-state fMRI signals and 
present a framework for characterizing the temporal properties of the hemodynamic response across 
voxels, which is crucial for accurate fMRI analyses.

The work presented here has broad implications for fMRI studies using the frequency content of 
the BOLD signal to make inferences about intrinsic brain activity. Prior work has identified changes in 
the spectral content of fMRI signals in certain clinical populations, including major depressive disorder 
(Wang et al., 2016), mild cognitive impairment (Han et al., 2011), and Alzheimer’s disease (Yang 
et  al., 2020), and interpreted these differences as changes in intrinsic brain activity. However, as 
seen here, differences in hemodynamic response timings will also alter the frequency content of fMRI 
signals. Furthermore, prior work has shown that intrinsic timescales of BOLD activity vary across brain 
regions and can be used to predict individual subject patterns (Fallon et al., 2020). Our work suggests 
hemodynamic differences may contribute to these observations. Therefore, changes in the spectral 
content of fMRI signals can arise not just from differences in intrinsic brain activity but could also be 
indicators of different hemodynamic response timing.

A common theme across the spectral features we constructed was that they were sensitive to the 
relative contributions of low- and high-frequency power. Two features we selected (the slope of the 
spectrum and the exponent of the aperiodic 1 /f fit) are direct measures of the attenuation in power 
towards higher frequencies. Similar information is contained in the commonly used metrics ALFF 
and fALFF (Zou et al., 2008): ALFF is a marker of the power in low frequency bands and fALFF is a 
measure of the ratio of high to low frequency power. While each of these features showed signifi-
cant differences between fast and slow cortical voxels, only the slope and fALFF exhibited significant 
differences within each individual subject. These features explicitly capture the relative difference in 
high-frequency vs. low-frequency power, corresponding to the main prediction of our simulations. 
Conversely, ALFF had the poorest sensitivity within subjects which could be due to the fact that ALFF 
is the only feature that does not include information from both low and high frequency ranges and is 
instead limited to a relatively narrow band of frequencies, 0.01–0.08 Hz. Overall, our results suggest 
that while some information is contained in the magnitude of the fMRI signal alone, capturing the rela-
tive power in high versus low frequencies is the most important metric for predicting hemodynamic 
timing. Moreover, using the resting-state spectrum itself did not perform significantly better than our 
chosen features in classifying fast and slow voxels, suggesting that the relative power is indeed the 
primary contributor when predicting variations in local HRF timings.

Our results highlight the substantial variability in hemodynamic timing even within a single cortical 
area, and provide a way to predict this speed, but the specific reasons why individual voxels are fast or 
slow are not yet clear. A multitude of neurovascular and anatomical factors contribute to the variability 
in hemodynamic response timing across the brain. For example, the anatomical organization of the 
vascular network inherently introduces temporal dispersion to the hemodynamic response. As blood 
travels through the vascular network in response to changes in neuronal activity it not only encounters 
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a range of vessel diameters, but also many branch points which each introduce delays. Prior work has 
shown that the timing and duration of the hemodynamic response both increase towards the cortical 
surface while the fastest, narrowest hemodynamic responses occurred in deeper gray matter (Siero 
et al., 2011; de Zwart et al., 2005; Duvernoy et al., 1981). This suggests the possibility that the fast 
responding voxels identified in our study are more concentrated in deeper gray matter, although the 
spatial resolution of our images was not sufficient to separate voxels by cortical depth in this study. 
Vascular elasticity and reactivity also change across the vascular network and vary between regions 
further contributing to the variable timing of the hemodynamic response across the brain (Uludağ and 
Blinder, 2018; Drew, 2019). Arteries are surrounded by smooth muscle cells that rapidly relax and 
expand their diameter in response to neural activity while veins dilate much more slowly (Drew, 2019). 
Local differences in the relative concentrations of arteries and veins could therefore also introduce 
differences in the temporal dynamics of the BOLD signal (Siero et al., 2011; de Zwart et al., 2005; 
Taylor et al., 2018), suggesting that the slow responding voxels may be more likely to contain veins. 
These relationships between vascular anatomy and timing further highlight that fMRI studies analyzing 
spectral power or temporal autocorrelation should take into consideration how local vascular anatomy 
affects these metrics.

A unique advantage of fMRI is its ability to image throughout the whole brain, and our results 
suggest the potential for extracting more information from fMRI studies of subcortex. Due to signif-
icant improvements in both the sensitivity and spatial resolution of fMRI, an increasing number of 
studies are utilizing fMRI to study small, deep brain structures such as the thalamus and brainstem 
(Beissner et  al., 2014; Sclocco et  al., 2018; Saranathan et  al., 2021; Beissner and Baudrexel, 
2014). The ability to image these deeper brain structures in humans opens the door to studying 
diverse aspects of cognition associated with these deeper brain regions (Beissner et  al., 2014; 
Sclocco et  al., 2018; Saranathan et  al., 2021; Beissner and Baudrexel, 2014; Sherman, 2007). 
However, these deep brain structures also have unique physiological and anatomical properties that 
alter their vascular dynamics (Lau et al., 2011; Yen et al., 2011; Lewis et al., 2018; Duvernoy, 2009; 
Devonshire et al., 2012). Faster hemodynamic responses are frequently reported in subcortex, but 
hemodynamic responses in these regions are less well characterized than in the cortex. Our analyses 
found that variations in HRF timing are reflected in the frequency spectra of thalamic voxels as well, 
despite their differing signal-to-noise ratio. This result demonstrates the utility of our approach in 
subcortex and could benefit neuroimaging studies of structures such as the thalamus, a target of 
increasing interest in fMRI.

Improvements in the temporal resolution of BOLD fMRI have also sparked interest in detecting 
neural sequences at sub-second timescales, which are highly relevant for many studies of cognition. 
Recent studies have leveraged fast fMRI to detect rapid sequences of neural events related to visual 
sequence detection (Wittkuhn and Schuck, 2021), auditory dynamics (Frühholz et al., 2020), and 
changes in arousal state (Setzer et al., 2021). As we continue to identify these rapid neural sequences, 
it will become even more crucial to consider how the hemodynamic response varies across regions to 
determine whether a given sequence represents regional differences in neuronal or in hemodynamic 
timing. Considering spectral signatures can support inference of precise timing of neural activity by 
providing information about relative hemodynamic latencies between voxels and regions.

We found that the resting-state signals predicted voxel-wise differences in relative hemodynamic 
response timing significantly better using a breath hold to estimate vascular delays, the current gold 
standard. This observation could be explained by multiple factors. One potential factor is subject 
motion (Figure 5—figure supplement 1). There was significantly more motion during the breath hold 
task compared to the visual stimulus (Wilcoxon rank-sum test, p=0.01), which could lead to breath 
tasks providing less reliable information. Additionally, the models trained using the breath hold laten-
cies were only able to leverage one piece of information: the measure of vascular latency derived from 
cross-correlation. The information from taking the cross-correlation in the time domain may also be 
more sensitive to noise, especially at the fast sampling rate of our scans. However, a more important 
factor may be the biological mechanisms generating each signal. The breath hold task directly modu-
lates cerebrovascular reactivity with minimal accompanying changes in CMRO2, allowing for assess-
ment of local cerebral vascular reactivity uncoupled from neuronal activation (Kastrup et al., 1999). 
CVR is important to assess in many clinical applications, and the breath hold-based approach remains 
a gold standard for CVR mapping (Kastrup et al., 1999; Liu et al., 2017; Bright et al., 2009; Pinto 
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et al., 2021). However, while CVR is a significant modulator of the hemodynamic response, it is only 
one component of neurovascular coupling, and there are many other factors and signaling pathways 
that also contribute. In particular, local metabolic factors and feedback mechanisms also modulate 
of blood flow in the brain and are not replicated in the breath hold task (Iadecola, 2017; Hosford 
and Gourine, 2019). The hemodynamic responses induced by neural activity may, therefore, not be 
identical in timing to those induced by a purely vascular signal. By contrast, the signals obtained from 
resting-state fMRI are coupled to underlying neural activity in an analogous manner as during a task 
condition (Mateo et al., 2017; Ma et al., 2016; Fox and Raichle, 2007). The improved performance 
of the resting-state-based prediction may therefore reflect that it is intrinsically more similar to a 
task than the breath hold condition, as the underlying biological origins of resting-state signals share 
common mechanisms with task-induced neurovascular coupling. Future applications may therefore 
benefit from continuing to use breath tasks as a gold standard to assess CVR, whereas resting-state 
analyses may be a better metric of neurovascular coupling.

One limitation of our study is that our approach has thus far only been validated in the visual 
system, which is the basis for the majority of our knowledge about the HRF. Given that the HRF has 
been shown to vary across the brain, the generalizability of our approach to different brain regions 
has yet to be established. However, studies that have empirically derived the HRF in other brain 
regions, such as the motor cortex (Siero et  al., 2011) or somatosensory cortex (de Zwart et  al., 
2005), have produced HRFs with similar shapes and parameters to the double-gamma HRF utilized 
in our simulations (Handwerker et al., 2004; Siero et al., 2011; de Zwart et al., 2005; Taylor et al., 
2018) providing evidence that this approach may be generalizable across the brain. Still, future work 
could investigate this approach in other primary sensory systems such as the auditory system where 
there are reliable stimulation paradigms. Additionally, this study used data collected at an ultra-high 
magnetic field strength (7T) which affords a higher signal-to-noise ratio (SNR) compared to more 
traditional 3T fMRI. However, we also performed the same spectral analysis in an independent dataset 
acquired at 3T and robustly replicated our result, demonstrating that this pattern is preserved despite 
a lower SNR and different acquisition parameters (Figure 3—figure supplement 1).

The work discussed here suggests a wide range of neuroscience applications for our approach to 
measuring hemodynamic timing. One logical next step would be to use the ability to characterize 
temporal variation in the HRF to not just predict, but to correct for vascular delays. Previous work 
demonstrated that correcting for varying hemodynamic latencies across the brain can affect functional 
connectivity analyses (Rangaprakash et  al., 2018; Chang et  al., 2008). Our results could further 
enhance removal of non-neural latency differences that confound functional connectivity metrics, both 
static and dynamic, and can increase confidence that the networks we are analyzing are derived from 
neuronal dynamics. This has become increasingly of interest as more studies use functional connec-
tivity, particularly in resting-state, to study dynamics underlying diseases such as PTSD (Jin et al., 
2017; Rabinak et al., 2011; Maron-Katz et al., 2020; Zhu et al., 2017), Alzheimer’s Disease (Greicius 
et al., 2004; Bai et al., 2008; Agosta et al., 2012; Koch et al., 2012), Parkinson’s Disease (Helmich 
et al., 2010; Hacker et al., 2012; Agosta et al., 2014; Baggio et al., 2015; Putcha et al., 2015), 
and others (Filippi et al., 2019). Since changes in neurovascular function have been observed in many 
disorders (de la Torre and Mecocci, 2018; Gutteridge et al., 2020; Burrage et al., 2018), analyzing 
spectral dynamics may help interpret functional connectivity differences in clinical populations.

Although we focused on the utility of resting-state spectral information to classify voxels as having 
relatively fast or slow hemodynamic response timings, we did also examine the correlation with abso-
lute timing measures. We found that most subjects had significant positive correlations between each 
of the spectral features and the task response latency. Despite this fact, when estimating contin-
uous predictions of absolute hemodynamic response lag, prediction performance was poor. Impor-
tantly, previous evidence has shown that the absolute timing of the HRF varies between task and 
resting-state conditions (Chen and Glover, 2015), suggesting that caution is needed in using absolute 
measures of hemodynamic latencies, as these may not generalize across conditions. Measuring rela-
tive differences in HRF timing might therefore be a more effective method to correct for variations in 
the hemodynamic response across brain regions, since task state can modulate the absolute timing of 
the hemodynamic response. Furthermore, the relative differences provide the key information neces-
sary to interpret sequences of activity across brain regions, enabling examination of whether purely 
vascular differences are present across those regions.
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Together, our results demonstrate that the resting-state fMRI signal contains information about 
local hemodynamic response speeds. This approach can help understand brain-wide variations in HRF 
dynamics, which is critical as the field moves toward a new era of fMRI studies utilizing fast fMRI to 
study rapid neuronal dynamics and higher level cognition.

Materials and methods
Simulations
Spectra of simulated BOLD responses were generated by convolving a given HRF with oscillating 
stimuli, ranging from 0.1 to 0.5 Hz, and taking the magnitude of the simulated BOLD response as the 
power at that frequency (Figure 1A). We used six HRFs with varying time-to-peak (TTP), full width 
at half maximum (FWHM), and peak percent signal changes (PSCs) to represent a range of physio-
logically relevant HRFs (Figure 1B). These properties were drawn from previous work characterizing 
varying HRF temporal dynamics at different cortical depths (Siero et al., 2011) and the values used 
are reported below in Supplementary file 5. We also normalized these HRFs by their maximum 
percent signal change and re-simulated the BOLD responses to create a new simulated spectrum for 
each HRF (Figure 1C). Additionally, we performed simulations to account for the dominant 1/f-like 
spectral pattern of neural activity by setting the amplitude of the oscillating stimuli to be 1/stimulus 
frequency ranging from 0.1 to 0.5 Hz (Figure 1—figure supplement 1).

Subject population
All experimental procedures were approved by the Massachusetts General Hospital Institutional 
Review Board (protocol number: 2014P001068), and all subjects provided informed consent. Twen-
ty-one participants were scanned in total; five were excluded for excessive motion and one was 
excluded for poor performance on the visual task suggesting they had closed their eyes. This left 
15 subjects whose data was analyzed (mean age = 28 years, range = 22–42 years, 8 female).

Experimental design
Subjects underwent a total of 7 functional scans: 3 visual stimulus, 2 breath hold, and 2 resting-state 
runs. All stimuli were programmed in MATLAB using Psychtoolbox (Brainard, 1997).

Visual stimulus
Each visual stimulus functional run lasted 254 s, with the first 14 s showing a gray screen with the red 
fixation dot and the following 240 s consisting of the 12 Hz counterphase flickering radial checker-
board. To drive continuous neural oscillations in the visual cortex, the luminance contrast of the flick-
ering checkerboard oscillated at a frequency of 0.05 Hz (except for one subject who was presented 
with 0.1 Hz oscillations). To assist the subjects with fixation, in the center of the visual field was a red 
dot that changed brightness at random intervals. Subjects were directed to press a button whenever 
the brightness of the red dot changed, and their average response time and response accuracy was 
reported at the end of each run. This allowed us to monitor participant engagement with the task. 
Each subject participated in 3 visual stimulus runs.

Breath hold Task
For each breath hold run subjects performed eight repetitions of an adapted version of a previously 
established breath hold task (Chang et al., 2008): a block comprised of 27 s of free breathing, 3 cycles 
of paced breathing (3 s breathe out, 3 s breathe in), a 15 s breath hold, and, lastly, a 30-s period of free 
breathing. The total time for the breath hold task scans was 8.5 min. The instructions for breathing 
were projected to the subjects displaying the text ‘Breathe Freely’; ‘Breathe Out’; ‘Breathe In’; and 
‘HOLD BREATH’. All but one subject participated in 2 breath hold runs; a single subject performed 
only 1 breath hold run. For 2 subjects, a single breath hold run was excluded from analyses for exces-
sive motion defined here as greater than 0.5 mm average motion across the whole run. No additional 
runs were excluded for these subjects.
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Resting-state
Each subject participated in 2 resting-state runs where they were instructed to relax in the scanner with 
their eyes open and to try not to fall asleep. For some of the subjects, a fixation dot was presented to 
help minimize eye movements. Each resting-state scan lasted 8.5 minutes.

MRI Data Acquisition
Subjects were scanned on a 7 Tesla Siemens MAGNETOM scanner with a custom-built 32-channel head 
coil. Anatomical images were acquired with 0.75  mm isotropic multiecho magnetization-prepared 
rapid gradient-echo (MEMPRAGE) protocol (van der Kouwe et al., 2008) with TR = 2.530ms, echo 
time (TE)=1.76ms and 3.7ms, inversion time (TI)=1100ms, echo-spacing=6.2ms, 7o flip angle, band-
width = 651 Hz, in-plane acceleration R=2, FOV = 320 x 320 x 244 mm and a total scan time of 
7:20  min. For functional runs, 15 oblique slices were positioned to target the calcarine sulcus to 
include primary visual cortex (V1) and angled to include the lateral geniculate nucleus (LGN) located 
in the thalamus. Functional runs were acquired as single-shot gradient-echo EPI with 2 mm isotropic 
resolution, TR = 227ms, TE = 24ms, echo-spacing=0.59ms, 30o flip angle, bandwidth = 2604  Hz, 
in-plane acceleration R=2, SMS Multiband Factor = 3, CAIPI shift = FOV/3 (Setsompop et al., 2012).

Physiological Monitoring
For all the functional scans, subjects’ heart rate and respiration were monitored using piezoelectric 
transducer on the non-dominant thumb and a respiratory belt around the upper rib cage, respectively. 
The physiological recordings were obtained at a sampling rate of 1000 Hz using a PowerLab physio 
box connected to a computer running LabChart 7 from ADInstruments.

fMRI Analyses
fMRI preprocessing
Anatomical images were bias-corrected using SPM (https://www.fil.ion.ucl.ac.uk/spm/) and segmented 
using FreeSurfer (Fischl, 2012). Functional runs were preprocessed with slice-timing correction, 
performed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), and motion correction, performed using 
AFNI software (https://afni.nimh.nih.gov/). No spatial smoothing was applied.

Because fast fMRI has distinct contributions from systemic physiological noise, including cardiac 
rhythms and respiration, physiological noise removal was performed on the visual stimulus and resting-
state functional runs using dynamic regression adapted from RETROICOR (Glover et al., 2000) in 
runs where physiological recordings were successfully collected. In runs where physiological record-
ings were not successfully collected (2 runs total), physiological noise was removed using a statistical 
model of harmonic regression with autoregressive noise (HRAN) (Agrawal et al., 2020).

Visual localizer
For each subject, one of the visual stimulus runs was used as a functional localizer to identify voxels 
that were significantly driven by the oscillating stimulus. A general linear model (GLM) was fit in FSL 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) using sine and cosine basis functions with the same period as the 
stimulus. The F-statistic of the combined fit to both the sine and cosine basis function was transformed 
to a Z-score and voxels with a Z-score above 2.5 were selected for further analysis. This functional 
localizer was then constrained by its intersection with the anatomical definition of V1 (Figure 2B). 
Specifically, the V1 segmentation was generated automatically from the MEMPRAGE volume based 
on the cortical surface reconstruction generated using FreeSurfer (Fischl, 2012). The selected voxels 
from the localizer run were then mapped to each other functional run in a single transformation step. 
This was done by first registering all functional runs to the anatomical scan using boundary-based 
registration (Greve and Fischl, 2009) and then resampling the desired volume into the localizer field 
of view using the registration matrices.

LGN segmentation
The lateral geniculate nucleus (LGN) was segmented using both anatomical and functional constraints. 
The anatomically defined boundaries of the LGN were generated using the FreeSurfer developmental 
version that generates an individual-level probabilistic atlas in individual anatomical space (Iglesias 
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et al., 2018). From this probabilistic atlas we considered voxels with at least a 30% probability of falling 
within LGN and dilated this mask to capture border voxels. We next applied a functional constraint 
using the visual localizer where voxels in the dilated mask with a Z-score above 2.5 were considered 
part of our final LGN map in each subject.

Voxel-wise phase analysis and groupings
We then averaged the two remaining visual stimulus runs and extracted voxel’s average time series 
between the two runs. We discarded the first 14 s to analyze the steady-state response to the visual 
stimulus. An estimation of the voxel’s lag in relation to the oscillating stimulus was calculated using 
the arctangent of the sine and cosine regressor estimates. This allowed us to generate a histogram 
of latencies to the visual stimulus (Figure 2C). To extract ‘fast’ and ‘slow’ reacting voxels, a Gaussian 
model was fit to the histogram of phase delays. The centroid (‍b‍) and Full Width at Half Maximum 
(‍FWHM ‍) of the Gaussian fit were calculated. Groups of fast and slow voxels were then Edges of the 
Gaussian fit were defined as ± ‍

1
2 FWHM ‍ and fast and slow groups were made that each had a width 

of ‍
1
3 FWHM ‍. Fast voxels were identified as being within 

‍

[
b − FWHM

2 , b − FWHM
6

]
‍
 while slow voxels were 

identified as 
‍

[
b + FWHM

6 , b + FWHM
2

]
‍
 (Figure 2C). This procedure was done for each individual subject 

and on average yielded 142 fast voxels (range 64–236) and 139 slow voxels (range 68–254). Masks of 
fast and slow voxels were generated per subject and then mapped to the resting-state runs to inform 
the spectral analysis (Figure 2D).

Resting-state spectral analysis
Fast and slow voxels were always identified in task-driven runs, allowing us to assess frequency 
content in the resting-state run using fully independent data. The maps of fast and slow voxels were 
registered to each individual resting-state run, and for each voxel within these masks, after discarding 
the first 14 s, the voxel-wise resting-state power spectrum was calculated using the Chronux toolbox 
(Bokil et al., 2010) with five tapers. We used four features to characterize the resting-state spectra: 
(1) slope of linear fit under 0.2 Hz; (2) the exponent of the aperiodic 1 /f fit under 0.5 Hz; (3) the ampli-
tude of low frequency fluctuations (ALFF); and (4) the fractional ALFF (fALFF). Each of these features 
was z-scored within the run and then averaged on a voxel-wise basis between the two resting-state 
runs. All analysis of the resting-state spectra was performed in MATLAB. See Figure 3A–D for more 
information.

Slope
A linear fit was generated for each voxel’s resting-state spectrum under 0.2 Hz using least-squares to 
determine the coefficients of a first order polynomial. From this we were able to record the slope of 
that linear fit for each voxel.

Exponent of aperiodic fit
Equation 1 was fit using the Levenberg-Marquardt algorithm to solve non-linear least squares for 
each voxel’s resting-state spectra. In this equation, ‍F‍ is the independent variable and the ‍b‍ and ‍x‍ are 
the values being fit. The exponent of the resultant fit (‍x‍) was recorded for each voxel.

	﻿‍ y = b − log10
(
F x)

‍� (1)

Amplitude of low-frequency fluctuations (ALFF)
For each voxel, ALFF was calculated according to the method outlined in Zou et al., 2008. Briefly, each 
voxel’s time series was band pass filtered between 0.01 and 0.08 Hz. Then, the voxel’s time series is 
transformed into the frequency domain via Fast Fourier Transform (FFT). The power at each frequency 
is proportional to the square of the amplitude of the FFT at that frequency, and for each voxel, the 
ALFF value was taken as the averaged square root of the power in the 0.01–0.08 Hz frequency range. 
This is shown in Equation 2 where ‍FFT

(
k
)
‍ is the magnitude of the FFT at frequency ‍k‍, ‍N ‍ is the number 

of time points, ‍P‍ is the power spectrum, and the bar represents the average in the specified range.

	﻿‍
P =

∣∣FFT
∣∣2

N
; ALFF =

−√
P[

0.01,0.8
]
‍� (2)
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Fractional ALFF (fALFF)
Each voxel’s fALFF was calculated as described in Zou et al., 2008. Fractional ALFF is briefly defined 
as the ratio of the power of each frequency at the low frequency range (0.01–0.08 Hz) to that of the 
‘global’ frequency range (0.01–0.25 Hz). See Equation 3.

	﻿‍
fALFF =

ALFF[
0.01, 0.8

]

ALFF[
0.01,0.25

]
‍�

(3)

Breath-hold latency calculations
Voxel-wise hemodynamic latencies were calculated according to the method outlined in Chang et al., 
2008. Each voxel’s hemodynamic latency was defined as the time-lag yielding the maximum cross-
correlation between the given voxel’s time series, ‍x

(
t
)
‍, and a reference time series, ‍y

(
t
)
‍. The refer-

ence time series was found by taking the average time series across voxels in the brain that exceeded 
a minimum correlation of ‍r > 0.25‍ with the breath hold task regressor. This breath hold task regressor 
was defined as the convolution of a box car function, where the value is set to 1 during the breath 
hold and 0 at other times, and a sign-reversed canonical HRF (Glover, 1999). Both ‍x

(
t
)
‍ and ‍y

(
t
)
‍ were 

resampled to a resolution of 100ms before computing cross-correlations.

Support vector machine (SVM) classification of fast, slow, and LGN 
voxels
SVM classifiers were trained both within and across subjects using Scikit-learn in Python (Pedregosa, 
2011). Three models were trained with different predictive features: (1) the resting-state spectrum 
between 0 and 0.5 Hz, (2) the 4 features of the resting-state spectrum previously identified, and (3) the 
latency of the response to the breath hold task. The resting-state spectrum was extracted by taking 
the power at frequencies up to 0.5 Hz ultimately generating a set of 461 features. For all models, 
before being put into the classifier, the data was normalized by removing the mean and dividing by 
the standard deviation across voxels for each feature independently using the StandardScaler function 
of Scikit-learn. For all models, the parameters of the SVM classifier were as follows: regularization 
parameter (‍C‍)=10, kernel type =radial basis function (rbf), kernel coefficient ‍(γ) = 1

nfeatures∗X.variance‍ . To 
get validation accuracies both within and across subjects, 1000 bootstraps were performed where 
the 80–20 test-train split of voxels was randomly chosen for each bootstrap. The average validation 
accuracies over the 1000 bootstraps were calculated along with the 95% confidence intervals. This 
methodology was followed for all 3 SVM classifiers.

Support vector machine (SVM) regression to predict relative 
hemodynamic response latency
SVM models for regression were trained within subject to continuously predict the hemodynamic 
response latency estimated from the visual stimulus. We limited the regression to voxels whose hemo-
dynamic response latency relative to the median was between [–3, 3] sec. Two different models were 
trained with different predictive features: (1) the resting-state spectrum between 0 and 0.5 Hz and 
(2) the 4 features of the resting-state spectrum previously identified. The input data to the model 
was normalized by removing the mean and dividing by the standard deviation cross voxels using the 
StandardScaler function of Scikit-learn. The parameters of the SVM regression model were as follows: 
kernel type = radial basis function, kernel coefficient ‍(γ) = 1

nfeatures∗X.variance‍, regularization parameter 

= 10, epsilon = 0.1. To get the validation coefficient of determination (‍R2‍, 1000 bootstraps were 
performed on an 80–20 test-train split of voxels that were randomly chosen for each bootstrap. The 
average ‍R2‍ over the 1000 bootstraps was calculated along with the 95% confidence interval.

Replication dataset at 3 Tesla
To generate the replication figure (Figure 3—figure supplement 1), we analyzed 10 subjects (mean 
age = 23 years, range = 19–29, 6 female) from a previously published dataset (Williams et al., 2023). 
Subjects were selected for analysis if they had completed at least one run of a visual task as well as 
one resting-state scan of at least 10 min. Briefly, subjects were scanned on a 3 Tesla Siemens Prisma 
scanner with a 64-channel head and neck coil. Anatomical runs were acquired with 1 mm isotropic 

https://doi.org/10.7554/eLife.86453
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T1-weighted multi-echo MPRAGE (van der Kouwe et al., 2008). Functional runs were acquired using 
TR = 0.378 s, 2.5 mm isotropic voxels, and multiband factor = 8. Similar preprocessing steps were 
performed for this dataset as described above in fMRI Preprocessing including slice-timing correc-
tion and motion correction. More information about the specific acquisition parameters and prepro-
cessing can be found in the original open-access publication (Williams et al., 2023).

The visual stimulus was a counterphase 12 Hz flickering checkerboard stimulus that lasted 254 s with 
fixed 16 s ON and 16 s OFF periods beginning with an OFF period. To assist the subjects with fixation, 
in the center of the checkerboard was a red dot that changed brightness at random interval. Subjects 
were instructed to press a button whenever they detected a color change. During the resting-state 
scans subjects performed a behavioral task where they were instructed to close their eyes and press a 
button on a response box on every breath in. This behavioral task enabled us to behaviorally monitor 
if the subjects fell asleep. Only subjects that were consistently doing the behavioral task during the 
entire resting-state run were included in our analysis.

A GLM was fit in FSL to identify voxels that were driven by the stimulus and voxels with a Z-statistic 
above 2.5 were selected for further analysis. This functional localizer was then further constrained by 
its intersection with the anatomical definition of V1. Voxel-wise hemodynamic response lags within this 
combined mask were calculated and groups of fast and slow voxels were extracted using the methods 
described above in Voxel-wise Phase Analysis and Groupings. Then, the fast and slow voxels were 
registered to the resting-state run and the same procedure outlined above in Resting-state Spectral 
Analysis was used to extract the 4 spectral features of interest.

Acknowledgements
This work was supported by National Institutes of Health grants R00-MH111748, U19-NS123717, and 
R01-AG070135, the Searle Scholars Program, the Pew Biomedical Scholars Program, the Sloan Fellow-
ship, and the One Mind Rising Star award. Resources were provided by NIH grant P41-EB030006 and 
T32-GM008764.

Additional information

Funding

Funder Grant reference number Author

National Institutes of 
Health

R00-MH111748 Laura D Lewis

National Institutes of 
Health

U19-NS123717 Laura D Lewis

National Institutes of 
Health

R01-AG070135 Laura D Lewis

Searle Scholars Program Laura D Lewis

Pew Charitable Trusts Pew Biomedical Scholars 
Program

Laura D Lewis

Sloan Research Fellowship Sloan Fellowship Laura D Lewis

One Mind One Mind Rising Star 
Award

Laura D Lewis

National Institutes of 
Health

T32-GM008764 Sydney M Bailes

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Sydney M Bailes, Conceptualization, Data curation, Software, Formal analysis, Validation, Investiga-
tion, Visualization, Methodology, Writing - original draft; Daniel EP Gomez, Beverly Setzer, Software, 

https://doi.org/10.7554/eLife.86453


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 20 of 25

Investigation, Writing - review and editing; Laura D Lewis, Conceptualization, Resources, Supervision, 
Funding acquisition, Validation, Investigation, Visualization, Methodology, Project administration, 
Writing - review and editing

Author ORCIDs
Sydney M Bailes ‍ ‍ http://orcid.org/0000-0003-1712-9233
Laura D Lewis ‍ ‍ http://orcid.org/0000-0002-4003-0277

Ethics
All experimental procedures were approved by the Massachusetts General Hospital Institutional 
Review Board and all subjects provided informed consent. (protocol number: 2014P001068).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.86453.sa1
Author response https://doi.org/10.7554/eLife.86453.sa2

Additional files
Supplementary files
•  MDAR checklist 

•  Supplementary file 1. Subject-wise p-values of Wilcoxon rank-sum test comparing each spectral 
feature in fast and slow voxels.

•  Supplementary file 2. Subject-wise average SVM classification accuracy with confidence intervals.

•  Supplementary file 3. Subject-wise results from fit of linear model relating each spectral feature 
with phase.

•  Supplementary file 4. Subject-wise performance of regression model to predict specific response 
timing from spectral features.

•  Supplementary file 5. Parameters of simulated HRFs.

Data availability
The data used in this paper has been deposited on OpenNeuro (https://doi.org/10.18112/openneuro.​
ds004645.v1.0.0).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Bailes SM, Gomez 
DEP, Setzer B, Lewis 
LD

2023 Resting-state fMRI signals 
contain spectral signatures 
of local hemodynamic 
response timing

https://​doi.​org/​10.​
18112/​openneuro.​
ds004645.​v1.​0.0

OpenNeuro, 10.18112/
openneuro.ds004645.v1.0.0

References
Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M. 2012. Resting state fMRI in Alzheimer’s disease: 

beyond the default mode network. Neurobiology of Aging 33:1564–1578. DOI: https://doi.org/10.1016/j.​
neurobiolaging.2011.06.007

Agosta F, Caso F, Stankovic I, Inuggi A, Petrovic I, Svetel M, Kostic VS, Filippi M. 2014. Cortico-striatal-thalamic 
network functional connectivity in hemiparkinsonism. Neurobiology of Aging 35:2592–2602. DOI: https://doi.​
org/10.1016/j.neurobiolaging.2014.05.032

Agrawal U, Brown EN, Lewis LD. 2020. Model-based physiological noise removal in fast fMRI. NeuroImage 
205:116231. DOI: https://doi.org/10.1016/j.neuroimage.2019.116231, PMID: 31589991

Aguirre GK, Zarahn E, D’esposito M. 1998. The variability of human, BOLD hemodynamic responses. 
NeuroImage 8:360–369. DOI: https://doi.org/10.1006/nimg.1998.0369, PMID: 9811554

Baggio H-C, Segura B, Sala-Llonch R, Marti M-J, Valldeoriola F, Compta Y, Tolosa E, Junqué C. 2015. Cognitive 
impairment and resting-state network connectivity in Parkinson’s disease. Human Brain Mapping 36:199–212. 
DOI: https://doi.org/10.1002/hbm.22622, PMID: 25164875

Bai F, Zhang Z, Yu H, Shi Y, Yuan Y, Zhu W, Zhang X, Qian Y. 2008. Default-mode network activity distinguishes 
amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state 
functional MRI study. Neuroscience Letters 438:111–115. DOI: https://doi.org/10.1016/j.neulet.2008.04.021

https://doi.org/10.7554/eLife.86453
http://orcid.org/0000-0003-1712-9233
http://orcid.org/0000-0002-4003-0277
https://doi.org/10.7554/eLife.86453.sa1
https://doi.org/10.7554/eLife.86453.sa2
https://doi.org/10.18112/openneuro.ds004645.v1.0.0
https://doi.org/10.18112/openneuro.ds004645.v1.0.0
https://doi.org/10.18112/openneuro.ds004645.v1.0.0
https://doi.org/10.18112/openneuro.ds004645.v1.0.0
https://doi.org/10.18112/openneuro.ds004645.v1.0.0
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/j.neurobiolaging.2014.05.032
https://doi.org/10.1016/j.neurobiolaging.2014.05.032
https://doi.org/10.1016/j.neuroimage.2019.116231
http://www.ncbi.nlm.nih.gov/pubmed/31589991
https://doi.org/10.1006/nimg.1998.0369
http://www.ncbi.nlm.nih.gov/pubmed/9811554
https://doi.org/10.1002/hbm.22622
http://www.ncbi.nlm.nih.gov/pubmed/25164875
https://doi.org/10.1016/j.neulet.2008.04.021


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 21 of 25

Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. 2016. Simultaneous multislice (SMS) imaging techniques. 
Magnetic Resonance in Medicine 75:63–81. DOI: https://doi.org/10.1002/mrm.25897

Beissner F, Baudrexel S. 2014. Investigating the human brainstem with structural and functional MRI. Frontiers in 
Human Neuroscience 8:116. DOI: https://doi.org/10.3389/fnhum.2014.00116, PMID: 24616692

Beissner F, Schumann A, Brunn F, Eisenträger D, Bär KJ. 2014. Advances in functional magnetic resonance 
imaging of the human brainstem. NeuroImage 86:91–98. DOI: https://doi.org/10.1016/j.neuroimage.2013.07.​
081, PMID: 23933038

Birn RM, Saad ZS, Bandettini PA. 2001. Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD 
response. NeuroImage 14:817–826. DOI: https://doi.org/10.1006/nimg.2001.0873, PMID: 11554800

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. 2010. Chronux: A platform for analyzing neural signals. 
Journal of Neuroscience Methods 192:146–151. DOI: https://doi.org/10.1016/j.jneumeth.2010.06.020, PMID: 
20637804

Brainard DH. 1997. The Psychophysics Toolbox. Spatial Vision 10:433–436 PMID: 9176952. 
Bright MG, Bulte DP, Jezzard P, Duyn JH. 2009. Characterization of regional heterogeneity in cerebrovascular 

reactivity dynamics using novel hypocapnia task and BOLD fMRI. NeuroImage 48:166–175. DOI: https://doi.​
org/10.1016/j.neuroimage.2009.05.026, PMID: 19450694

Buckner RL, Koutstaal W, Schacter DL, Dale AM, Rotte M, Rosen BR. 1998. Functional-anatomic study of 
episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. 
NeuroImage 7:163–175. DOI: https://doi.org/10.1006/nimg.1998.0328, PMID: 9597658

Burrage E, Marshall KL, Santanam N, Chantler PD. 2018. Cerebrovascular dysfunction with stress and 
depression. Brain Circulation 4:43–53. DOI: https://doi.org/10.4103/bc.bc_6_18, PMID: 30276336

Chang C, Thomason ME, Glover GH. 2008. Mapping and correction of vascular hemodynamic latency in the 
BOLD signal. NeuroImage 43:90–102. DOI: https://doi.org/10.1016/j.neuroimage.2008.06.030, PMID: 
18656545

Chen JE, Glover GH. 2015. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz. 
NeuroImage 107:207–218. DOI: https://doi.org/10.1016/j.neuroimage.2014.12.012, PMID: 25497686

Chen JE, Polimeni JR, Bollmann S, Glover GH. 2019. On the analysis of rapidly sampled fMRI data. NeuroImage 
188:807–820. DOI: https://doi.org/10.1016/j.neuroimage.2019.02.008, PMID: 30735828

Chen K, Yang H, Zhang H, Meng C, Becker B, Biswal B. 2021. Altered cerebrovascular reactivity due to 
respiratory rate and breath holding: a BOLD-fMRI study on healthy adults. Brain Structure & Function 
226:1229–1239. DOI: https://doi.org/10.1007/s00429-021-02236-5, PMID: 33598760

Chiew M, Graedel NN, Miller KL. 2018. Recovering task fMRI signals from highly under-sampled data with 
low-rank and temporal subspace constraints. NeuroImage 174:97–110. DOI: https://doi.org/10.1016/j.​
neuroimage.2018.02.062, PMID: 29501875

de la Torre J, Mecocci P. 2018. The vascular hypothesis of alzheimer’s disease: a key to preclinical prediction of 
dementia using neuroimaging. Journal of Alzheimer’s Disease 63:35–52. DOI: https://doi.org/10.3233/JAD-​
180004

de Zwart JA, Silva AC, van Gelderen P, Kellman P, Fukunaga M, Chu R, Koretsky AP, Frank JA, Duyn JH. 2005. 
Temporal dynamics of the BOLD fMRI impulse response. NeuroImage 24:667–677. DOI: https://doi.org/10.​
1016/j.neuroimage.2004.09.013, PMID: 15652302

Deshpande G, Sathian K, Hu X. 2010. Effect of hemodynamic variability on Granger causality analysis of fMRI. 
NeuroImage 52:884–896. DOI: https://doi.org/10.1016/j.neuroimage.2009.11.060

D’Esposito M, Deouell LY, Gazzaley A. 2003. Alterations in the BOLD fMRI signal with ageing and disease: a 
challenge for neuroimaging. Nature Reviews. Neuroscience 4:863–872. DOI: https://doi.org/10.1038/nrn1246, 
PMID: 14595398

Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JEW, Overton PG. 2012. 
Neurovascular coupling is brain region-dependent. NeuroImage 59:1997–2006. DOI: https://doi.org/10.1016/j.​
neuroimage.2011.09.050

Drew PJ. 2019. Vascular and neural basis of the BOLD signal. Current Opinion in Neurobiology 58:61–69. DOI: 
https://doi.org/10.1016/j.conb.2019.06.004

Duvernoy HM, Delon S, Vannson JL. 1981. Cortical blood vessels of the human brain. Brain Research Bulletin 
7:519–579. DOI: https://doi.org/10.1016/0361-9230(81)90007-1, PMID: 7317796

Duvernoy H. 2009. The Human Brain Springer-Verlag.
Fallon J, Ward PGD, Parkes L, Oldham S, Arnatkevičiūtė A, Fornito A, Fulcher BD. 2020. Timescales of 

spontaneous fMRI fluctuations relate to structural connectivity in the brain. Network Neuroscience 4:788–806. 
DOI: https://doi.org/10.1162/netn_a_00151

Filippi M, Spinelli EG, Cividini C, Agosta F. 2019. Resting state dynamic functional connectivity in 
neurodegenerative conditions: a review of magnetic resonance imaging findings. Frontiers in Neuroscience 
13:657. DOI: https://doi.org/10.3389/fnins.2019.00657

Fischl B. 2012. FreeSurfer. NeuroImage 62:774–781. DOI: https://doi.org/10.1016/j.neuroimage.2012.01.021, 
PMID: 22248573

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic 
resonance imaging. Nature Reviews. Neuroscience 8:700–711. DOI: https://doi.org/10.1038/nrn2201, PMID: 
17704812

Frühholz S, Trost W, Grandjean D, Belin P. 2020. Neural oscillations in human auditory cortex revealed by fast 
fMRI during auditory perception. NeuroImage 207:116401. DOI: https://doi.org/10.1016/j.neuroimage.2019.​
116401, PMID: 31783116

https://doi.org/10.7554/eLife.86453
https://doi.org/10.1002/mrm.25897
https://doi.org/10.3389/fnhum.2014.00116
http://www.ncbi.nlm.nih.gov/pubmed/24616692
https://doi.org/10.1016/j.neuroimage.2013.07.081
https://doi.org/10.1016/j.neuroimage.2013.07.081
http://www.ncbi.nlm.nih.gov/pubmed/23933038
https://doi.org/10.1006/nimg.2001.0873
http://www.ncbi.nlm.nih.gov/pubmed/11554800
https://doi.org/10.1016/j.jneumeth.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20637804
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.neuroimage.2009.05.026
https://doi.org/10.1016/j.neuroimage.2009.05.026
http://www.ncbi.nlm.nih.gov/pubmed/19450694
https://doi.org/10.1006/nimg.1998.0328
http://www.ncbi.nlm.nih.gov/pubmed/9597658
https://doi.org/10.4103/bc.bc_6_18
http://www.ncbi.nlm.nih.gov/pubmed/30276336
https://doi.org/10.1016/j.neuroimage.2008.06.030
http://www.ncbi.nlm.nih.gov/pubmed/18656545
https://doi.org/10.1016/j.neuroimage.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25497686
https://doi.org/10.1016/j.neuroimage.2019.02.008
http://www.ncbi.nlm.nih.gov/pubmed/30735828
https://doi.org/10.1007/s00429-021-02236-5
http://www.ncbi.nlm.nih.gov/pubmed/33598760
https://doi.org/10.1016/j.neuroimage.2018.02.062
https://doi.org/10.1016/j.neuroimage.2018.02.062
http://www.ncbi.nlm.nih.gov/pubmed/29501875
https://doi.org/10.3233/JAD-180004
https://doi.org/10.3233/JAD-180004
https://doi.org/10.1016/j.neuroimage.2004.09.013
https://doi.org/10.1016/j.neuroimage.2004.09.013
http://www.ncbi.nlm.nih.gov/pubmed/15652302
https://doi.org/10.1016/j.neuroimage.2009.11.060
https://doi.org/10.1038/nrn1246
http://www.ncbi.nlm.nih.gov/pubmed/14595398
https://doi.org/10.1016/j.neuroimage.2011.09.050
https://doi.org/10.1016/j.neuroimage.2011.09.050
https://doi.org/10.1016/j.conb.2019.06.004
https://doi.org/10.1016/0361-9230(81)90007-1
http://www.ncbi.nlm.nih.gov/pubmed/7317796
https://doi.org/10.1162/netn_a_00151
https://doi.org/10.3389/fnins.2019.00657
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
https://doi.org/10.1038/nrn2201
http://www.ncbi.nlm.nih.gov/pubmed/17704812
https://doi.org/10.1016/j.neuroimage.2019.116401
https://doi.org/10.1016/j.neuroimage.2019.116401
http://www.ncbi.nlm.nih.gov/pubmed/31783116


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 22 of 25

Glover GH. 1999. Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9:416–429. DOI: 
https://doi.org/10.1006/nimg.1998.0419, PMID: 10191170

Glover GH, Li TQ, Ress D. 2000. Image-based method for retrospective correction of physiological motion 
effects in fMRI: RETROICOR. Magnetic Resonance in Medicine 44:162–167. DOI: https://doi.org/10.1002/​
1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e, PMID: 10893535

Gonzalez-Castillo J, Saad ZS, Handwerker DA, Inati SJ, Brenowitz N, Bandettini PA. 2012. Whole-brain, 
time-locked activation with simple tasks revealed using massive averaging and model-free analysis. PNAS 
109:5487–5492. DOI: https://doi.org/10.1073/pnas.1121049109, PMID: 22431587

Greicius MD, Srivastava G, Reiss AL, Menon V. 2004. Default-mode network activity distinguishes Alzheimer’s 
disease from healthy aging: Evidence from functional MRI. PNAS 101:4637–4642. DOI: https://doi.org/10.​
1073/pnas.0308627101

Greve DN, Fischl B. 2009. Accurate and robust brain image alignment using boundary-based registration. 
NeuroImage 48:63–72. DOI: https://doi.org/10.1016/j.neuroimage.2009.06.060, PMID: 19573611

Grinband J, Steffener J, Razlighi QR, Stern Y. 2017. BOLD neurovascular coupling does not change significantly 
with normal aging. Human Brain Mapping 38:3538–3551. DOI: https://doi.org/10.1002/hbm.23608, PMID: 
28419680

Gutteridge DS, Saredakis D, Badcock NA, Collins-Praino LE, Keage HAD. 2020. Cerebrovascular function during 
cognition in Parkinson’s disease: A functional transcranial Doppler sonography study. Journal of the 
Neurological Sciences 408:116578. DOI: https://doi.org/10.1016/j.jns.2019.116578, PMID: 31751909

Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. 2012. Resting state functional connectivity of the 
striatum in Parkinson’s disease. Brain 135:3699–3711. DOI: https://doi.org/10.1093/brain/aws281, PMID: 
23195207

Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. 2011. Frequency-dependent changes in the amplitude of 
low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. NeuroImage 
55:287–295. DOI: https://doi.org/10.1016/j.neuroimage.2010.11.059, PMID: 21118724

Handwerker DA, Ollinger JM, D’Esposito M. 2004. Variation of BOLD hemodynamic responses across subjects 
and brain regions and their effects on statistical analyses. NeuroImage 21:1639–1651. DOI: https://doi.org/10.​
1016/j.neuroimage.2003.11.029, PMID: 15050587

Handwerker DA, Gonzalez-Castillo J, D’Esposito M, Bandettini PA. 2012. The continuing challenge of 
understanding and modeling hemodynamic variation in fMRI. NeuroImage 62:1017–1023. DOI: https://doi.org/​
10.1016/j.neuroimage.2012.02.015

Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. 2010. Spatial remapping of cortico-striatal 
connectivity in Parkinson’s disease. Cerebral Cortex 20:1175–1186. DOI: https://doi.org/10.1093/cercor/​
bhp178, PMID: 19710357

Hennig J, Zhong K, Speck O. 2007. MR-Encephalography: Fast multi-channel monitoring of brain physiology 
with magnetic resonance. NeuroImage 34:212–219. DOI: https://doi.org/10.1016/j.neuroimage.2006.08.036

Hosford PS, Gourine AV. 2019. What is the key mediator of the neurovascular coupling response? Neuroscience 
and Biobehavioral Reviews 96:174–181. DOI: https://doi.org/10.1016/j.neubiorev.2018.11.011, PMID: 
30481531

Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and 
disease. Neuron 96:17–42. DOI: https://doi.org/10.1016/j.neuron.2017.07.030, PMID: 28957666

Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, van der Kouwe A Fischl B, 
Caballero-Gaudes C, Paz-Alonso PM. 2018. A probabilistic atlas of the human thalamic nuclei combining ex 
vivo MRI and histology. NeuroImage 183:314–326. DOI: https://doi.org/10.1016/j.neuroimage.2018.08.012, 
PMID: 30121337

Jin C, Jia H, Lanka P, Rangaprakash D, Li L, Liu T, Hu X, Deshpande G. 2017. Dynamic brain connectivity is a 
better predictor of PTSD than static connectivity. Human Brain Mapping 38:4479–4496. DOI: https://doi.org/​
10.1002/hbm.23676, PMID: 28603919

Kastrup A, Krüger G, Glover GH, Moseley ME. 1999. Assessment of cerebral oxidative metabolism with breath 
holding and fMRI. Magnetic Resonance in Medicine 42:608–611. DOI: https://doi.org/10.1002/(sici)1522-2594(​
199909)42:3<608::aid-mrm26>3.0.co;2-i, PMID: 10467308

Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M, Bokde ALW, Hampel H, Coates U, Reiser M, Meindl T. 
2012. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. 
Neurobiology of Aging 33:466–478. DOI: https://doi.org/10.1016/j.neurobiolaging.2010.04.013, PMID: 
20541837

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, 
Cohen MS, Turner R. 1992. Dynamic magnetic resonance imaging of human brain activity during primary 
sensory stimulation. PNAS 89:5675–5679. DOI: https://doi.org/10.1073/pnas.89.12.5675, PMID: 1608978

Lau C, Zhang JW, Xing KK, Zhou IY, Cheung MM, Chan KC, Wu EX. 2011. BOLD responses in the superior 
colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus. NeuroImage 58:878–
884. DOI: https://doi.org/10.1016/j.neuroimage.2011.06.055, PMID: 21741483

Lee AT, Glover GH, Meyer CH. 1995. Discrimination of large venous vessels in time-course spiral blood-oxygen-
level-dependent magnetic-resonance functional neuroimaging. Magnetic Resonance in Medicine 33:745–754. 
DOI: https://doi.org/10.1002/mrm.1910330602

Lee HL, Zahneisen B, Hugger T, LeVan P, Hennig J. 2013. Tracking dynamic resting-state networks at higher 
frequencies using MR-encephalography. NeuroImage 65:216–222. DOI: https://doi.org/10.1016/j.neuroimage.​
2012.10.015, PMID: 23069810

https://doi.org/10.7554/eLife.86453
https://doi.org/10.1006/nimg.1998.0419
http://www.ncbi.nlm.nih.gov/pubmed/10191170
https://doi.org/10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
https://doi.org/10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
http://www.ncbi.nlm.nih.gov/pubmed/10893535
https://doi.org/10.1073/pnas.1121049109
http://www.ncbi.nlm.nih.gov/pubmed/22431587
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1016/j.neuroimage.2009.06.060
http://www.ncbi.nlm.nih.gov/pubmed/19573611
https://doi.org/10.1002/hbm.23608
http://www.ncbi.nlm.nih.gov/pubmed/28419680
https://doi.org/10.1016/j.jns.2019.116578
http://www.ncbi.nlm.nih.gov/pubmed/31751909
https://doi.org/10.1093/brain/aws281
http://www.ncbi.nlm.nih.gov/pubmed/23195207
https://doi.org/10.1016/j.neuroimage.2010.11.059
http://www.ncbi.nlm.nih.gov/pubmed/21118724
https://doi.org/10.1016/j.neuroimage.2003.11.029
https://doi.org/10.1016/j.neuroimage.2003.11.029
http://www.ncbi.nlm.nih.gov/pubmed/15050587
https://doi.org/10.1016/j.neuroimage.2012.02.015
https://doi.org/10.1016/j.neuroimage.2012.02.015
https://doi.org/10.1093/cercor/bhp178
https://doi.org/10.1093/cercor/bhp178
http://www.ncbi.nlm.nih.gov/pubmed/19710357
https://doi.org/10.1016/j.neuroimage.2006.08.036
https://doi.org/10.1016/j.neubiorev.2018.11.011
http://www.ncbi.nlm.nih.gov/pubmed/30481531
https://doi.org/10.1016/j.neuron.2017.07.030
http://www.ncbi.nlm.nih.gov/pubmed/28957666
https://doi.org/10.1016/j.neuroimage.2018.08.012
http://www.ncbi.nlm.nih.gov/pubmed/30121337
https://doi.org/10.1002/hbm.23676
https://doi.org/10.1002/hbm.23676
http://www.ncbi.nlm.nih.gov/pubmed/28603919
https://doi.org/10.1002/(sici)1522-2594(199909)42:3<608::aid-mrm26>3.0.co;2-i
https://doi.org/10.1002/(sici)1522-2594(199909)42:3<608::aid-mrm26>3.0.co;2-i
http://www.ncbi.nlm.nih.gov/pubmed/10467308
https://doi.org/10.1016/j.neurobiolaging.2010.04.013
http://www.ncbi.nlm.nih.gov/pubmed/20541837
https://doi.org/10.1073/pnas.89.12.5675
http://www.ncbi.nlm.nih.gov/pubmed/1608978
https://doi.org/10.1016/j.neuroimage.2011.06.055
http://www.ncbi.nlm.nih.gov/pubmed/21741483
https://doi.org/10.1002/mrm.1910330602
https://doi.org/10.1016/j.neuroimage.2012.10.015
https://doi.org/10.1016/j.neuroimage.2012.10.015
http://www.ncbi.nlm.nih.gov/pubmed/23069810


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 23 of 25

Len TK, Neary JP. 2011. Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical 
Physiology and Functional Imaging 31:85–93. DOI: https://doi.org/10.1111/j.1475-097X.2010.00990.x, PMID: 
21078064

Lewis LD, Setsompop K, Rosen BR, Polimeni JR. 2016. Fast fMRI can detect oscillatory neural activity in humans. 
PNAS 113:E6679–E6685. DOI: https://doi.org/10.1073/pnas.1608117113, PMID: 27729529

Lewis LD, Setsompop K, Rosen BR, Polimeni JR. 2018. Stimulus-dependent hemodynamic response timing 
across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI. 
NeuroImage 181:279–291. DOI: https://doi.org/10.1016/j.neuroimage.2018.06.056, PMID: 29935223

Lin F-H, Witzel T, Raij T, Ahveninen J, Wen-Kai Tsai K, Chu Y-H, Chang W-T, Nummenmaa A, Polimeni JR, 
Kuo W-J, Hsieh J-C, Rosen BR, Belliveau JW. 2013. fMRI hemodynamics accurately reflects neuronal timing in 
the human brain measured by MEG. NeuroImage 78:372–384. DOI: https://doi.org/10.1016/j.neuroimage.​
2013.04.017

Lin F-H, Polimeni JR, Lin J-FL, Tsai KW-K, Chu Y-H, Wu P-Y, Li Y-T, Hsu Y-C, Tsai S-Y, Kuo W-J. 2018. Relative 
latency and temporal variability of hemodynamic responses at the human primary visual cortex. NeuroImage 
164:194–201. DOI: https://doi.org/10.1016/j.neuroimage.2017.01.041

Lindquist MA, Meng Loh J, Atlas LY, Wager TD. 2009. Modeling the hemodynamic response function in fMRI: 
Efficiency, bias and mis-modeling. NeuroImage 45:S187–S198. DOI: https://doi.org/10.1016/j.neuroimage.​
2008.10.065

Liu P, Li Y, Pinho M, Park DC, Welch BG, Lu H. 2017. Cerebrovascular reactivity mapping without gas challenges. 
NeuroImage 146:320–326. DOI: https://doi.org/10.1016/j.neuroimage.2016.11.054, PMID: 27888058

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis 
of the fMRI signal. Nature 412:150–157. DOI: https://doi.org/10.1038/35084005, PMID: 11449264

Ma Y, Shaik MA, Kozberg MG, Kim SH, Portes JP, Timerman D, Hillman EMC. 2016. Resting-state hemodynamics 
are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. PNAS 
113:E8463–E8471. DOI: https://doi.org/10.1073/pnas.1525369113

Maron-Katz A, Zhang Y, Narayan M, Wu W, Toll RT, Naparstek S, De Los Angeles C, Longwell P, Shpigel E, 
Newman J, Abu-Amara D, Marmar C, Etkin A. 2020. Individual Patterns of Abnormality in Resting-State 
Functional Connectivity Reveal Two Data-Driven PTSD Subgroups. American Journal of Psychiatry 177:244–
253. DOI: https://doi.org/10.1176/appi.ajp.2019.19010060

Mateo C, Knutsen PM, Tsai PS, Shih AY, Kleinfeld D. 2017. Entrainment of arteriole vasomotor fluctuations by 
neural activity is a basis of blood-oxygenation-level-dependent “resting-state” connectivity. Neuron 96:936–
948.. DOI: https://doi.org/10.1016/j.neuron.2017.10.012, PMID: 29107517

Menon RS, Luknowsky DC, Gati JS. 1998. Mental chronometry using latency-resolved functional MRI. PNAS 
95:10902–10907. DOI: https://doi.org/10.1073/pnas.95.18.10902

Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. 2000. Characterizing the hemodynamic response: 
effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative 
timing. NeuroImage 11:735–759. DOI: https://doi.org/10.1006/nimg.2000.0568, PMID: 10860799

Misaki M, Luh WM, Bandettini PA. 2013. Accurate decoding of sub-TR timing differences in stimulations of 
sub-voxel regions from multi-voxel response patterns. NeuroImage 66:623–633. DOI: https://doi.org/10.1016/​
j.neuroimage.2012.10.069, PMID: 23128073

Mitra A, Snyder AZ, Hacker CD, Pahwa M, Tagliazucchi E, Laufs H, Leuthardt EC, Raichle ME. 2016. Human 
cortical–hippocampal dialogue in wake and slow-wave sleep. PNAS 113:E6868–E6876. DOI: https://doi.org/10.​
1073/pnas.1607289113

Ogawa S, Lee TM, Kay AR, Tank DW. 1990 . Brain magnetic resonance imaging with contrast dependent on 
blood oxygenation. PNAS 87:9868–9872. DOI: https://doi.org/10.1073/pnas.87.24.9868, PMID: 2124706

Pedregosa F. 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research: JMLR 
12:2825–2830.

Pinto J, Bright MG, Bulte DP, Figueiredo P. 2021. Cerebrovascular reactivity mapping without gas challenges: a 
methodological guide. Frontiers in Physiology 11:1711. DOI: https://doi.org/10.3389/fphys.2020.608475

Polimeni JR, Lewis LD. 2021. Imaging faster neural dynamics with fast fMRI: A need for updated models of the 
hemodynamic response. Progress in Neurobiology 207:102174. DOI: https://doi.org/10.1016/j.pneurobio.​
2021.102174, PMID: 34525404

Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE. 2015. Altered intrinsic functional coupling between 
core neurocognitive networks in Parkinson’s disease. NeuroImage. Clinical 7:449–455. DOI: https://doi.org/10.​
1016/j.nicl.2015.01.012, PMID: 25685711

Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, Phan KL. 2011. Altered amygdala 
resting-state functional connectivity in post-traumatic stress disorder. Frontiers in Psychiatry 2:62. DOI: https://​
doi.org/10.3389/fpsyt.2011.00062, PMID: 22102841

Rangaprakash D, Dretsch MN, Yan W, Katz JS, Denney TS Jr, Deshpande G. 2017. Hemodynamic variability in 
soldiers with trauma: Implications for functional MRI connectivity studies. NeuroImage. Clinical 16:409–417. 
DOI: https://doi.org/10.1016/j.nicl.2017.07.016, PMID: 28879082

Rangaprakash D, Wu GR, Marinazzo D, Hu X, Deshpande G. 2018. Hemodynamic response function (HRF) 
variability confounds resting-state fMRI functional connectivity. Magnetic Resonance in Medicine 80:1697–
1713. DOI: https://doi.org/10.1002/mrm.27146, PMID: 29656446

Raut RV, Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, Raichle ME. 2021. Global waves synchronize the brain’s 
functional systems with fluctuating arousal. Science Advances 7:eabf2709. DOI: https://doi.org/10.1126/sciadv.​
abf2709, PMID: 34290088

https://doi.org/10.7554/eLife.86453
https://doi.org/10.1111/j.1475-097X.2010.00990.x
http://www.ncbi.nlm.nih.gov/pubmed/21078064
https://doi.org/10.1073/pnas.1608117113
http://www.ncbi.nlm.nih.gov/pubmed/27729529
https://doi.org/10.1016/j.neuroimage.2018.06.056
http://www.ncbi.nlm.nih.gov/pubmed/29935223
https://doi.org/10.1016/j.neuroimage.2013.04.017
https://doi.org/10.1016/j.neuroimage.2013.04.017
https://doi.org/10.1016/j.neuroimage.2017.01.041
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2016.11.054
http://www.ncbi.nlm.nih.gov/pubmed/27888058
https://doi.org/10.1038/35084005
http://www.ncbi.nlm.nih.gov/pubmed/11449264
https://doi.org/10.1073/pnas.1525369113
https://doi.org/10.1176/appi.ajp.2019.19010060
https://doi.org/10.1016/j.neuron.2017.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29107517
https://doi.org/10.1073/pnas.95.18.10902
https://doi.org/10.1006/nimg.2000.0568
http://www.ncbi.nlm.nih.gov/pubmed/10860799
https://doi.org/10.1016/j.neuroimage.2012.10.069
https://doi.org/10.1016/j.neuroimage.2012.10.069
http://www.ncbi.nlm.nih.gov/pubmed/23128073
https://doi.org/10.1073/pnas.1607289113
https://doi.org/10.1073/pnas.1607289113
https://doi.org/10.1073/pnas.87.24.9868
http://www.ncbi.nlm.nih.gov/pubmed/2124706
https://doi.org/10.3389/fphys.2020.608475
https://doi.org/10.1016/j.pneurobio.2021.102174
https://doi.org/10.1016/j.pneurobio.2021.102174
http://www.ncbi.nlm.nih.gov/pubmed/34525404
https://doi.org/10.1016/j.nicl.2015.01.012
https://doi.org/10.1016/j.nicl.2015.01.012
http://www.ncbi.nlm.nih.gov/pubmed/25685711
https://doi.org/10.3389/fpsyt.2011.00062
https://doi.org/10.3389/fpsyt.2011.00062
http://www.ncbi.nlm.nih.gov/pubmed/22102841
https://doi.org/10.1016/j.nicl.2017.07.016
http://www.ncbi.nlm.nih.gov/pubmed/28879082
https://doi.org/10.1002/mrm.27146
http://www.ncbi.nlm.nih.gov/pubmed/29656446
https://doi.org/10.1126/sciadv.abf2709
https://doi.org/10.1126/sciadv.abf2709
http://www.ncbi.nlm.nih.gov/pubmed/34290088


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 24 of 25

Saranathan M, Iglehart C, Monti M, Tourdias T, Rutt B. 2021. In vivo high-resolution structural MRI-based atlas of 
human thalamic nuclei. Scientific Data 8:275. DOI: https://doi.org/10.1038/s41597-021-01062-y, PMID: 
34711852

Sasai S, Koike T, Sugawara SK, Hamano YH, Sumiya M, Okazaki S, Takahashi HK, Taga G, Sadato N. 2021. 
Frequency-specific task modulation of human brain functional networks: A fast fMRI study. NeuroImage 
224:117375. DOI: https://doi.org/10.1016/j.neuroimage.2020.117375, PMID: 32950690

Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. 2018. Challenges and opportunities for brainstem 
neuroimaging with ultrahigh field MRI. NeuroImage 168:412–426. DOI: https://doi.org/10.1016/j.neuroimage.​
2017.02.052

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. 2012. Blipped-controlled aliasing in 
parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magnetic 
Resonance in Medicine 67:1210–1224. DOI: https://doi.org/10.1002/mrm.23097, PMID: 21858868

Setsompop K, Feinberg DA, Polimeni JR. 2016. Rapid brain MRI acquisition techniques at ultra-high fields . NMR 
in Biomedicine 29:1198–1221. DOI: https://doi.org/10.1002/nbm.3478

Setzer B, Fultz NE, Gomez DEP, Williams SD, Bonmassar G, Polimeni JR, Lewis LD. 2021. A temporal sequence 
of thalamic activity unfolds at transitions in behavioral arousal state. Neuroscience 13:5442. DOI: https://doi.​
org/10.1101/2021.12.01.470627

Sherman SM. 2007. The thalamus is more than just a relay. Current Opinion in Neurobiology 17:417–422. DOI: 
https://doi.org/10.1016/j.conb.2007.07.003

Sicard KM, Duong TQ. 2005. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked 
BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage 25:850–858. DOI: https://doi.org/​
10.1016/j.neuroimage.2004.12.010, PMID: 15808985

Siero JCW, Petridou N, Hoogduin H, Luijten PR, Ramsey NF. 2011. Cortical depth-dependent temporal dynamics 
of the BOLD response in the human brain. Journal of Cerebral Blood Flow and Metabolism 31:1999–2008. 
DOI: https://doi.org/10.1038/jcbfm.2011.57, PMID: 21505479

Siero JCW, Hendrikse J, Hoogduin H, Petridou N, Luijten P, Donahue MJ. 2015. Cortical depth dependence of 
the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magnetic Resonance in 
Medicine 73:2283–2295. DOI: https://doi.org/10.1002/mrm.25349, PMID: 24989338

Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, 
Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K. 2012. Temporally-independent functional 
modes of spontaneous brain activity. PNAS 109:3131–3136. DOI: https://doi.org/10.1073/pnas.1121329109, 
PMID: 22323591

Sreenivasan KR, Havlicek M, Deshpande G. 2015. Nonparametric hemodynamic deconvolution of FMRI using 
homomorphic filtering. IEEE Transactions on Medical Imaging 34:1155–1163. DOI: https://doi.org/10.1109/​
TMI.2014.2379914, PMID: 25531878

Stefanidis KB, Askew CD, Klein T, Lagopoulos J, Summers MJ. 2019. Healthy aging affects cerebrovascular 
reactivity and pressure-flow responses, but not neurovascular coupling: A cross-sectional study. PLOS ONE 
14:e0217082. DOI: https://doi.org/10.1371/journal.pone.0217082, PMID: 31095646

Taylor AJ, Kim JH, Ress D. 2018. Characterization of the hemodynamic response function across the majority of 
human cerebral cortex. NeuroImage 173:322–331. DOI: https://doi.org/10.1016/j.neuroimage.2018.02.061, 
PMID: 29501554

Uludağ K, Blinder P. 2018. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. 
NeuroImage 168:279–295. DOI: https://doi.org/10.1016/j.neuroimage.2017.02.063

van der Kouwe AJW, Benner T, Salat DH, Fischl B. 2008. Brain morphometry with multiecho MPRAGE. 
NeuroImage 40:559–569. DOI: https://doi.org/10.1016/j.neuroimage.2007.12.025, PMID: 18242102

Vizioli L, Bratch A, Lao J, Ugurbil K, Muckli L, Yacoub E. 2018. Temporal multivariate pattern analysis (tMVPA): A 
single trial approach exploring the temporal dynamics of the BOLD signal. Journal of Neuroscience Methods 
308:74–87. DOI: https://doi.org/10.1016/j.jneumeth.2018.06.029, PMID: 29969602

Wang L, Kong Q, Li K, Su Y, Zeng Y, Zhang Q, Dai W, Xia M, Wang G, Jin Z, Yu X, Si T. 2016. Frequency-
dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study. 
Neuroscience Letters 614:105–111. DOI: https://doi.org/10.1016/j.neulet.2016.01.012

West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, Spence JS, Rypma B. 2019. BOLD 
hemodynamic response function changes significantly with healthy aging. NeuroImage 188:198–207. DOI: 
https://doi.org/10.1016/j.neuroimage.2018.12.012, PMID: 30529628

Williams SD, Setzer B, Fultz NE, Valdiviezo Z, Tacugue N, Diamandis Z, Lewis LD. 2023. Correction: Neural 
activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in 
humans. PLOS Biology 21:e3002035. DOI: https://doi.org/10.1371/journal.pbio.3002035, PMID: 37099747

Wittkuhn L, Schuck NW. 2021. Dynamics of fMRI patterns reflect sub-second activation sequences and reveal 
replay in human visual cortex. Nature Communications 12:1795. DOI: https://doi.org/10.1038/s41467-021-​
21970-2, PMID: 33741933

Wu G-R, Liao W, Stramaglia S, Ding J-R, Chen H, Marinazzo D. 2013. A blind deconvolution approach to recover 
effective connectivity brain networks from resting state fMRI data. Medical Image Analysis 17:365–374. DOI: 
https://doi.org/10.1016/j.media.2013.01.003, PMID: 23422254

Wu G-R, Colenbier N, Van Den Bossche S, Clauw K, Johri A, Tandon M, Marinazzo D. 2021. rsHRF: A toolbox for 
resting-state HRF estimation and deconvolution. NeuroImage 244:118591. DOI: https://doi.org/10.1016/j.​
neuroimage.2021.118591

https://doi.org/10.7554/eLife.86453
https://doi.org/10.1038/s41597-021-01062-y
http://www.ncbi.nlm.nih.gov/pubmed/34711852
https://doi.org/10.1016/j.neuroimage.2020.117375
http://www.ncbi.nlm.nih.gov/pubmed/32950690
https://doi.org/10.1016/j.neuroimage.2017.02.052
https://doi.org/10.1016/j.neuroimage.2017.02.052
https://doi.org/10.1002/mrm.23097
http://www.ncbi.nlm.nih.gov/pubmed/21858868
https://doi.org/10.1002/nbm.3478
https://doi.org/10.1101/2021.12.01.470627
https://doi.org/10.1101/2021.12.01.470627
https://doi.org/10.1016/j.conb.2007.07.003
https://doi.org/10.1016/j.neuroimage.2004.12.010
https://doi.org/10.1016/j.neuroimage.2004.12.010
http://www.ncbi.nlm.nih.gov/pubmed/15808985
https://doi.org/10.1038/jcbfm.2011.57
http://www.ncbi.nlm.nih.gov/pubmed/21505479
https://doi.org/10.1002/mrm.25349
http://www.ncbi.nlm.nih.gov/pubmed/24989338
https://doi.org/10.1073/pnas.1121329109
http://www.ncbi.nlm.nih.gov/pubmed/22323591
https://doi.org/10.1109/TMI.2014.2379914
https://doi.org/10.1109/TMI.2014.2379914
http://www.ncbi.nlm.nih.gov/pubmed/25531878
https://doi.org/10.1371/journal.pone.0217082
http://www.ncbi.nlm.nih.gov/pubmed/31095646
https://doi.org/10.1016/j.neuroimage.2018.02.061
http://www.ncbi.nlm.nih.gov/pubmed/29501554
https://doi.org/10.1016/j.neuroimage.2017.02.063
https://doi.org/10.1016/j.neuroimage.2007.12.025
http://www.ncbi.nlm.nih.gov/pubmed/18242102
https://doi.org/10.1016/j.jneumeth.2018.06.029
http://www.ncbi.nlm.nih.gov/pubmed/29969602
https://doi.org/10.1016/j.neulet.2016.01.012
https://doi.org/10.1016/j.neuroimage.2018.12.012
http://www.ncbi.nlm.nih.gov/pubmed/30529628
https://doi.org/10.1371/journal.pbio.3002035
37099747
https://doi.org/10.1038/s41467-021-21970-2
https://doi.org/10.1038/s41467-021-21970-2
http://www.ncbi.nlm.nih.gov/pubmed/33741933
https://doi.org/10.1016/j.media.2013.01.003
http://www.ncbi.nlm.nih.gov/pubmed/23422254
https://doi.org/10.1016/j.neuroimage.2021.118591
https://doi.org/10.1016/j.neuroimage.2021.118591


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bailes et al. eLife 2023;12:e86453. DOI: https://doi.org/10.7554/eLife.86453 � 25 of 25

Yang L, Yan Y, Li Y, Hu X, Lu J, Chan P, Yan T, Han Y. 2020. Frequency-dependent changes in fractional amplitude 
of low-frequency oscillations in Alzheimer’s disease: a resting-state fMRI study. Brain Imaging and Behavior 
14:2187–2201. DOI: https://doi.org/10.1007/s11682-019-00169-6, PMID: 31478145

Yen CCC, Fukuda M, Kim SG. 2011. BOLD responses to different temporal frequency stimuli in the lateral 
geniculate nucleus and visual cortex: insights into the neural basis of fMRI. NeuroImage 58:82–90. DOI: https://​
doi.org/10.1016/j.neuroimage.2011.06.022, PMID: 21704712

Zang Y-F, He Y, Zhu C-Z, Cao Q-J, Sui M-Q, Liang M, Tian L-X, Jiang T-Z, Wang Y-F. 2007. Altered baseline brain 
activity in children with ADHD revealed by resting-state functional MRI. Brain & Development 29:83–91. DOI: 
https://doi.org/10.1016/j.braindev.2006.07.002, PMID: 16919409

Zhu X, Helpman L, Papini S, Schneier F, Markowitz JC, Van Meter PE, Lindquist MA, Wager TD, Neria Y. 2017. 
Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major 
depression. Depression and Anxiety 34:641–650. DOI: https://doi.org/10.1002/da.22594, PMID: 28030757

Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F. 2008. An improved approach to 
detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of 
Neuroscience Methods 172:137–141. DOI: https://doi.org/10.1016/j.jneumeth.2008.04.012, PMID: 18501969

https://doi.org/10.7554/eLife.86453
https://doi.org/10.1007/s11682-019-00169-6
http://www.ncbi.nlm.nih.gov/pubmed/31478145
https://doi.org/10.1016/j.neuroimage.2011.06.022
https://doi.org/10.1016/j.neuroimage.2011.06.022
http://www.ncbi.nlm.nih.gov/pubmed/21704712
https://doi.org/10.1016/j.braindev.2006.07.002
http://www.ncbi.nlm.nih.gov/pubmed/16919409
https://doi.org/10.1002/da.22594
http://www.ncbi.nlm.nih.gov/pubmed/28030757
https://doi.org/10.1016/j.jneumeth.2008.04.012
http://www.ncbi.nlm.nih.gov/pubmed/18501969

	Resting-­state fMRI signals contain spectral signatures of local hemodynamic response timing
	Editor's evaluation
	Introduction
	Results
	The temporal dynamics of the HRF profoundly impact the spectrum of simulated BOLD responses
	Features of the resting-state spectrum show significant differences between fast and slow voxels
	Faster hemodynamic responses in thalamus are also reflected in shallower frequency spectra
	Resting-state spectral information better characterizes neurovascular coupling delays than a breath hold task
	Features of the resting-state spectrum can predict voxels with fast or slow hemodynamic response timing

	Discussion
	Materials and methods
	Simulations
	Subject population
	Experimental design
	Visual stimulus
	Breath hold Task
	Resting-state
	MRI Data Acquisition
	Physiological Monitoring
	fMRI Analyses
	fMRI preprocessing
	Visual localizer

	LGN segmentation
	Voxel-wise phase analysis and groupings
	Resting-state spectral analysis
	Slope
	Exponent of aperiodic fit
	Amplitude of low-frequency fluctuations (ALFF)
	Fractional ALFF (fALFF)

	Breath-hold latency calculations
	Support vector machine (SVM) classification of fast, slow, and LGN voxels
	Support vector machine (SVM) regression to predict relative hemodynamic response latency
	Replication dataset at 3 Tesla

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


