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Abstract Nested hippocampal oscillations in the rodent give rise to temporal dynamics that 
may underlie learning, memory, and decision making. Although theta/gamma coupling in rodent 
CA1 occurs during exploration and sharp- wave ripples emerge in quiescence, it is less clear that 
these oscillatory regimes extend to primates. We therefore sought to identify correspondences 
in frequency bands, nesting, and behavioral coupling of oscillations taken from macaque hippo-
campus. We found that, in contrast to rodent oscillations, theta and gamma frequency bands in 
macaque CA1 were segregated by behavioral states. In both stationary and freely moving designs, 
beta2/gamma (15–70 Hz) had greater power during visual search whereas the theta band (3–10 Hz; 
peak ~8 Hz) dominated during quiescence and early sleep. Moreover, theta- band amplitude was 
strongest when beta2/slow gamma (20–35 Hz) amplitude was weakest, instead occurring along 
with higher frequencies (60–150 Hz). Spike- field coherence was most frequently seen in these three 
bands (3–10 Hz, 20–35 Hz, and 60–150 Hz); however, the theta- band coherence was largely due 
to spurious coupling during sharp- wave ripples. Accordingly, no intrinsic theta spiking rhythmicity 
was apparent. These results support a role for beta2/slow gamma modulation in CA1 during active 
exploration in the primate that is decoupled from theta oscillations. The apparent difference to 
the rodent oscillatory canon calls for a shift in focus of frequency when considering the primate 
hippocampus.

Editor's evaluation
The rodent hippocampus is one of the main neuroscience models for memory, navigation, and 
plasticity, and research has suggested important roles for the theta- rhythmic modulation of firing 
activity and γ oscillations in these processes. This valuable study shows solid evidence of differences 
between a non- human primate and the rodent hippocampus, in that theta and γ frequencies are 
segregated by behavioral states, with theta dominating in quiescence and early sleep and β/γ during 
visual search.

Introduction
Hippocampal oscillations are heralded as canonical examples of how oscillations support cognition by 
coordinating neural circuit dynamics (Buzsáki and Draguhn, 2004; Colgin, 2016; Hahn et al., 2019; 
Klausberger and Somogyi, 2008). In turn, behavioral states constrain and entrain specific neural 
oscillations. In rodents, locomotion and other exploratory movements elicit an ~8 Hz theta oscilla-
tion in hippocampal CA1 (Buzsáki, 2002; Kramis et al., 1975; Vanderwolf, 1969; Whishaw and 
Vanderwolf, 1973) and a faster gamma oscillation (25–100 Hz) that nests within theta (Bragin et al., 
1995b; Colgin and Moser, 2010; Colgin, 2016; Csicsvari et al., 2003). In contrast, during quiescent 
states, theta and gamma oscillations are suppressed and sharp- wave ripple (SWR) complexes emerge, 
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the latter consisting of large high- frequency oscillations (HFO, 150–250 Hz) in CA1 that occur within 
a slower (sharp- wave) deflection (Buzsáki, 2015; Ylinen et al., 1995). Although the occurrence of 
SWRs during quiescence is highly conserved across species (Buzsáki, 2015), its dichotomy with theta 
is questionable (Hussin et al., 2020; Leonard et al., 2015). This may stem from differences in how 
and when theta oscillations appear across phylogenetic order (Green and Arduini, 1954; Ulanovsky 
and Moss, 2007), particularly among primates, including humans (Courellis et al., 2019; Green and 
Arduini, 1954; Halgren et al., 1978; Herweg et al., 2020; Jacobs, 2014; Mao et al., 2021 Stewart 
and Fox, 1991; Talakoub et  al., 2019; Tamura et  al., 2013). Consequently, gamma coupling to 
hippocampal theta (Bragin et al., 1995a; Colgin, 2016; Lisman and Jensen, 2013), and the presence 
– as postulated – of sub- bands of gamma (Buzsáki and Wang, 2012; Colgin, 2016; Colgin et al., 
2009; Csicsvari et al., 2003), could understandably be affected by the scarcity of theta oscillations 
in monkeys during species- relevant exploration (Courellis et al., 2019; Hoffman et al., 2013; Jutras 
et al., 2013; Leonard et al., 2015; Mao et al., 2021; Skaggs et al., 2007; Talakoub et al., 2019). In 
the present study, we therefore adopted a hypothesis- generating (data- driven) approach to identify 
(i) which oscillatory bands emerge in macaque hippocampal CA1 as a function of behavioral state; (ii) 
whether these oscillations coalesce or compete; and (iii) to what extent local single units are modu-
lated at these rhythms.

Results
Spectral analysis of hippocampal LFP during active visual search and 
quiescence
We recorded 42 sessions (M1: 26 sessions, M2: 16 sessions) in the hippocampal CA1 subfield of two 
macaques (Figure 1; Figure 1—figure supplement 1) during active visual search and quiescence 
(henceforth: ‘rest’). As a control for the effects of the stationary animal, we recorded from one of the 
above animals (M2) and a third animal (M3) in freely moving and overnight sleep conditions (Figure 1—
figure supplement 2). Consistent with previous reports (Leonard and Hoffman, 2017; Leonard et al., 
2015), we observed bouts of roughly 20–30 Hz oscillations predominantly during search, and slower- 
frequency, larger- amplitude local field potentials (LFPs) during rest (Figure 1A and C). To visualize the 
relationship between spectral power across frequency bands, we sorted quantiles of ~1 s segments 
based on their average power in the 20–30 Hz frequency band, revealing an antagonistic relationship 
between 20–30 Hz and <10 Hz frequencies (Figure 1B), that is when power at 20–30 Hz was greatest, 
<10 Hz power was qualitatively weakest. In contrast, stronger power at <10 Hz was accompanied by 
stronger power at >80 Hz. To determine whether the spectrum varies with behavioral epoch, as it 
does in rodents (Buzsáki, 1996; Whishaw and Vanderwolf, 1973), we calculated the power spec-
trum for each behavioral state (Figure 1D). To identify power beyond the 1/f background, we used 
the aperiodic- adjusted power spectrum (Demanuele et al., 2007; Donoghue et al., 2020). We found 
stronger 7–10 Hz power during rest compared to active search (Figure 1D, middle). In contrast, power 
in the higher frequencies from 15 Hz to 70 Hz was stronger during active search compared to rest, with 
a peak in the 20–30 Hz range (both, p<0.05, Wilcoxon signed rank test with FDR correction). In most 
non- rodent species examined, including humans, hippocampal theta- band oscillations during alert 
wakefulness are described as occurring intermittently, in short- lived bouts, unlike the protracted and 
predictable trains of theta oscillations seen in the rodent hippocampus (Green and Arduini, 1954; 
Jacobs, 2014; Jutras et al., 2013; M Aghajan et al., 2017; Talakoub et al., 2019; Ulanovsky and 
Moss, 2007; Watrous et al., 2013). To identify oscillations that are rare and short lived, and to allow 
for more direct comparison to conventions used in human iEEG/macroelectrode studies, we used 
the BOSC method (Caplan et al., 2001; Hughes et al., 2012; M Aghajan et al., 2017). This method 
quantifies the fraction of time that band- limited power exceeds amplitude and duration thresholds. 
The amplitude threshold is set after fitting signal to a log- log linear regression to account for the spec-
tral tilt (1/fx) of the distribution under consideration and accepting only residuals with at least 3 cycles 
exceeding 95% of the χ2 distribution. This classifies the graded power spectral measure into discrete 
‘hits’ and ‘misses’ across time. Consistent with continuous power spectral results, we found that theta 
bouts (‘hits’) were more prevalent during rest/sleep compared to online active behavioral states. The 
pattern was the opposite for beta2/gamma frequencies, which were more prevalent during active 
states (Figure 1—figure supplement 2, p<0.05, Wilcoxon signed rank test with FDR correction).

https://doi.org/10.7554/eLife.86548
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Figure 1. Oscillatory decoupling in CA1 field potentials. (A) Example traces of broadband local field potential (LFP) in CA1 during search. Data 
segments were taken from epochs with characteristic high 20–30 Hz power, shown in B (traces were linearly detrended for visualization). (B) Spectral 
density sorted by 20–30 Hz power. Surface plot shows data segments sorted into quantiles according to 20–30 Hz power, revealing an apparent increase 
in 5–10 Hz power when 20–30 Hz power is weakest. See Methods for details. (C) Example traces of wideband LFP in CA1 during the rest epoch showing 
characteristic interactions between <10 Hz and >60 Hz oscillations. Conventions as in A. (D) Top. Mean power spectral density during search (red), and 
rest (blue). Inset: mean power for low frequencies of main plot, with shaded 95% bootstrap confidence interval (N=42 sessions). Middle. Power spectral 
density after fitting and subtracting the aperiodic 1/f component during search and rest, with shaded 95% bootstrap confidence intervals. Gray areas 
show significant differences in power across behavioral epochs (p<0.05, Wilcoxon signed rank test, FDR corrected) Bottom. Power difference between 
search and rest. (E) Average cross- frequency power comodulogram (N=42 sessions). Dark outline represents areas that were significant in at least 80% of 
samples (p<0.05, cluster- based permutation test corrected for multiple comparisons). (F) Average bicoherence of the CA1 LFP (N=42 sessions). The dark 
outline represents areas that were significant in at least 80% of sessions (p<0.05, Monte Carlo test corrected for multiple comparisons). The decoupling 
is preserved when applying analysis methods sensitive to transient oscillations (Figure 1—figure supplement 2), and when analyzing CA1 LFPs from an 
additional monkey who moved freely in a search task, and during night- time rest (Figure 1—figure supplement 3).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Electrode localization.

Figure supplement 2. Spectral strength and coupling using alternate analysis methods.

Figure supplement 3. Oscillatory decoupling in CA1 of freely behaving monkeys.

Figure supplement 4. Relative probability distribution of bout durations.

https://doi.org/10.7554/eLife.86548
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In rodents, the frequency and the amplitude of 
theta oscillation is related to the speed of loco-
motion (Buzsáki, 2002; Fuhrmann et al., 2015; 
McFarland et al., 1975; Sheremet et al., 2016) 
although theta activity is also observed during 
awake immobile states of alertness (Kramis 
et  al., 1975; Sainsbury, 1998; Tai et  al., 2012; 
Vanderwolf, 1969). Theta movement correlates 
raise the concern that the scarcity of theta during 
active behaviors in the present study might be 
attributed to the animals’ immobility. To address 
this concern, we recorded wirelessly from the 
hippocampal CA1 of the second monkey (M2) 
and a third adult female macaque (M3) during 
freely moving active states including immersive 
visual search and during overnight rest/sleep 
(M3: 15 sessions, M2: 3 sessions). The results 
match those of the previous experiment, thereby 
demonstrating that the decrease in theta- band 
power and the increase in gamma power during 
active behaviors generalize, that is they were not 
merely due to the immobile state of the animals 
(Figure  1—figure supplement 3, Video  1). 
Furthermore, the duration and consistency of 
theta bouts during early sleep indicate that these 
methods (recording sites, electrode signal, and 
states) are capable of detecting theta oscillations, 

but that they appear during different epochs than those for recordings in rats and mice (Figure 1—
figure supplement 3, Video 1, Figure 1—figure supplement 4).

Hippocampal cross-frequency coupling
To assess the coupling of theta and gamma oscillations at a finer temporal scale, we computed the 
cross- frequency power correlations across the spectrum. Consistent with the qualitative pattern shown 
in Figure 1B, power at 3–8 Hz and 20–35 Hz were negatively correlated (Figure 1E, p<0.05, using a 
cluster- based permutation test corrected for multiple comparisons). In addition, power in the slower, 
3–8 Hz band was positively correlated with that of a much faster, 80–150 Hz band. We next applied 
a complementary approach, comparing the amplitude envelopes of these two bands (theta and slow 
gamma) over time, to track the finer temporal structure of power correlations. The results supported 
the epoched data results (Figure 1—figure supplement 2).

To estimate phase- amplitude coupling in the LFP, we performed bicoherence analysis (Figure 1F; 
Giehl et al., 2021; Hyafil, 2015; Kovach et al., 2018), revealing a peak cluster around the 25 Hz 
frequency range which confirms an interaction between the activity at this frequency and its second 
harmonic. In addition, the 3–8 Hz band was coupled to high frequencies of 95–150 Hz (p<0.05, cluster- 
based Monte Carlo statistical test). This is consistent with our cross- frequency amplitude coupling 
results and indicates that the correlated envelopes in Figure 1E are driven by phase- specific coupling 
of the high frequencies (Figure  1B). Nevertheless, our bicoherence results showed no significant 
phase- amplitude coupling between theta and gamma frequency range.

Oscillatory modulation of spiking activity
Peaks in spectral power do not necessarily indicate the presence of oscillations in the underlying 
neural activity (Buzsáki and Wang, 2012; Pesaran et al., 2018; Herweg et al., 2020; Jones, 2016). If 
oscillations are present in the local neural population, regular comodulation between spikes and local 
field oscillation phases should occur. We measured the spike- field coherence for the whole duration of 
the sessions by calculating pairwise phase consistency (PPC) (Vinck et al., 2010) for well- isolated units 
(N=404). Individual cells phase locked to multiple frequencies (Figure 2A; p<0.05, permutation test 

Video 1. Oscillatory dynamics in monkey CA1 during 
sleep and waking states. (Top) Broadband local field 
potential (LFP) during sleep (blue), and free movement 
in an enclosure during a search task (red), the 4–8 Hz 
bandpass filtered LFP, and the 25–50 Hz LFP, shown 
top to bottom, respectively. Detected bouts in each 
frequency band are highlighted with blue (sleep) and 
red (waking). The black vertical line shows 3 SD above 
the mean. (Bottom) Left: Movement, expressed as the 
vector norm of angular velocity. The gray horizontal 
line shows the threshold for movement. Middle: 
The envelope peak of detected theta (4–8 Hz) bouts 
plotted as a function of the gamma (25–50 Hz) peaks. 
Right: 1/f corrected (fitted residual) power spectrum. 
The distribution of power shifts to higher frequencies 
during awake compared to sleep.

https://elifesciences.org/articles/86548/figures#video1

https://doi.org/10.7554/eLife.86548
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and Rayleigh test, p<0.05), with the population showing the full range of spike preferred frequencies 
of modulation (Figure 2C).

One of the caveats of spike- field coherence measures is that they can be sensitive to large ampli-
tude non- periodic deflections. SWRs have a non- oscillatory amplitude envelope within the frequency 
range of 0.1–10 Hz in rodents and non- human primates (Hussin et al., 2020; Leonard et al., 2015; 
Maier et al., 2003; Rex et al., 2009; Skaggs et al., 2007). Furthermore, we previously observed that 
SWRs occur in primates during active visual exploration (Leonard and Hoffman, 2017; Leonard et al., 
2015) and that the probability of firing of cells increases during these events, for putative pyramidal 
and inhibitory cells alike (Hussin et al., 2020; Leonard et al., 2015; Skaggs et al., 2007). Given the 
limitations of spike- field coherence, the frequency characteristics of SWRs, spiking activity profile of 
neurons around these events, weaker power at 7–10 Hz during active search, and the strong coupling 
between bands matching the SWR events (3–8  Hz and  >95  Hz), we hypothesized that spike- LFP 
coherence at low frequencies might be partly produced as a byproduct of the slow deflection of SWRs 
(Hussin et al., 2020) rather than via harmonic oscillations. To test this, we extracted peri- SWR spikes, 
computed PPC only for these spikes in each cell [PPCswr], and then compared this to the PPC for 
spikes outside the SWR windows [PPCresidual]. Figure 2B shows an example cell that exhibits stronger 
spike- LFP coherence at 8 Hz during SWR than outside the SWR window (p<0.05, permutation test 

Figure 2. Spike- field coherence and its influence by sharp- wave ripples (SWRs). (A) Spike- local field potential (LFP) pairwise phase consistency (PPC) 
spectra for an example unit. Shaded gray shows significant values (p<0.05, permutation test and Rayleigh test, p<0.05). (B) Spike- LFP coherence for 
spikes during detected SWRs (dark gray) and for spikes remaining after extracting the SWR epochs (‘residual’, red). Light gray shading shows significant 
difference at p<0.05 in FDR- corrected permutation test for the SWR group. Inset: Normalized histogram of the phase values at 8 Hz, obtained from the 
spike- LFP coherence analysis shown in A. (C) Probability distribution of observing significant PPC values across all frequencies (solid black line), and 
only for preferred frequency (frequency with maximum PPC value) before adjusting for SWRs (N=404 units). (D) Difference in the proportion of cells with 
greater spike- LFP coherence for SWR (gray) and SWR- removed residual (red), for six frequency bands (N=185 units). (E) SWR residual difference of mean 
spike- LFP coherence. Shading shows 95% bootstrapped confidence interval (N = 185). Positive values indicating greater PPC for residual than SWR 
groups are shown in red, negative values (SWR>residual) in dark gray.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examples of detected ripple events.

Figure supplement 2. Spike- train autocorrelograms of example hippocampal cells.

https://doi.org/10.7554/eLife.86548
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with FDR correction). At the population level, coherence at lower frequencies (2–10 Hz) was greater 
during SWR than in the SWR- removed distributions. In contrast, the higher frequencies (10–200 Hz) 
maintained a greater coherence outside of the SWR time window (Figure 2D). This led to weaker 
mean spike- field coherence restricted to the <10 Hz range, after removing the influence of SWRs, 
suggesting a contribution of the non- oscillatory slow deflections in the SWR complex to the apparent 
cross- frequency interactions.

To ensure that oscillations were local and to avoid the influence of aperiodic deflections, we 
generated spike autocorrelograms. Periodic peaks of the spike autocorrelograms demonstrate theta 
rhythmicity in rat and mouse CA1 (Cacucci et al., 2004; O’Keefe and Recce, 1993; Royer et al., 
2010). To directly compare theta rhythmicity in our cell population with observations in the rodent, 
we computed the autocorrelogram for a complete population of well- isolated cells with at least 100 
spikes for the whole session and for the complete cell population from homologous subregions of 
CA1 in rodents, also across the whole session. Figure 3A shows an autocorrelogram of the theta 
spike- field coupled cell in Figure 2A (black, monkey) overlaid onto a theta rhythmic cell from the 
homologous CA1 region of a rat (i.e. temporal CA1) shown in gray. To quantify theta autocorrelogram 
rhythmicity, we calculated the theta modulation index (Jacobs, 2014). Compared to modulations seen 
in the rat (Figure 3B in gray), monkey cells typically showed near zero index values, that is, they were 
not modulated (Figure 3B in black). This was also evident in the sorted- cell and mean population 
autocorrelogram (Figure 3C, inset shows rat distribution). For a given firing rate, higher frequencies 
are less likely to demonstrate cycle- by- cycle periodicity due to their shorter periods; nevertheless, we 
observed a few examples of >20 Hz spike modulation in the spike- triggered averages and autocor-
relograms of several cells (Figure 4).

Discussion
In this study we evaluated the oscillatory dynamics of primate hippocampus during two general behav-
ioral states: first, during ‘online’ states of awake active behavior and second, during offline states. 
The waking- behavior recordings included stationary monkeys who were engaged in hippocampal- 
dependent, memory- guided visual exploration (Chau et al., 2011; Dragan et al., 2017; Yoo et al., 
2020), and freely moving monkeys exploring their environment. The offline- state recordings included 
post- task quiescent states in the darkened booth, and the early stages of overnight sleep, respectively. 
The most prominent oscillation in amplitude and prevalence during alert active behavior was in the 
beta2/slow gamma band (~20–35 Hz for stationary search and ~20–50 Hz in freely moving subjects). 

Figure 3. Examining spiking periodicity for theta modulation in macaque hippocampus. (A) Autocorrelogram of an example ‘theta’ unit from Figure 2A 
(black, N=945 total spikes) and a theta- modulated unit in rat (gray, N=5655 total spikes). (B) Distribution of the theta index in CA1 units from this study 
(black, N=240 units), and CA1 units of rat (gray, N=197 units). Dashed lines show mean values, color coded by species. (C) Sorted autocorrelograms of 
CA1 units, with mean, population ACG shown as a white trace. Inset: same as the main plot but for rats.

https://doi.org/10.7554/eLife.86548
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In contrast, theta- band (3–10 Hz, peak at ~8 Hz) amplitude and bout prevalence were greater during 
offline states of rest and sleep than during online active states. This bimodal oscillatory profile was 
also evident in finer temporal scales. Theta and beta2/gamma bands were decorrelated in the cross- 
frequency amplitude coupling, and in phase- amplitude bicoherence, quite unlike that observed in 
rodents (Zhou et al., 2019). Spike modulation by LFP frequency was seen in both bands; however, 
only the theta- band effect appeared to be partially due to non- oscillatory field events, such as the 
SWR. Despite longer and more prevalent theta oscillations in rest, overall, we found no clear evidence 
of theta- periodic modulation. This contrasts with the strong and prevalent modulation seen using the 
same analyses methods applied to signal from the rat in homologous regions of CA1. Across several 
measures we found consistent or compatible results in the coalescence among frequency bands, and 
between bands and behavioral states within this study. These patterns differ from well- established 
spectral- behavioral coupling in rodents.

Dormant theta
In rat and mouse hippocampal LFPs, theta activity (centered at 6–9 Hz) is most consistently present 
during activated cortical states, that is, during alert aroused behaviors and REM sleep (Buzsáki, 
2002; Colgin, 2013; Nuñez and Buño, 2021; Vanderwolf, 1969). In contrast, theta gives way to 
SWRs and irregular slow activity during quiescence and NREM sleep (Buzsáki, 2015; Buzsáki, 1989). 
Further, theta ‘nests’ different frequencies of gamma in a phase- specific manner during these ‘active’ 
cortical states (Colgin and Moser, 2010; Colgin, 2016; Lasztóczi and Klausberger, 2014; Lisman 
and Jensen, 2013). And finally, most classes of cells in CA1 are modulated by the theta rhythm 
(Klausberger and Somogyi, 2008; Klausberger et al., 2003; Royer et al., 2010). Indeed, theta is so 
reliably present and so spectrally dominant in fields, spikes, and intracellular currents during the active 
states when gamma occurs, that studies of hippocampal gamma oscillations and spikes are commonly 
conditioned on them.

Monkey CA1 LFPs also show reliable, durable theta oscillations with peak frequencies at 6–9 Hz; 
however, where measured across states, they do not demonstrate the above characteristics of theta. 
Instead, they show divergent brain- behavior coupling to that seen in rodents. Much of the literature in 
humans and monkeys has focused on brief epochs of alert, goal- directed behaviors within stationary 
visual and visuospatial tasks and may therefore be suboptimal for detecting theta oscillations. Yet 
where rest or sleep have been measured, stronger, more durable theta field potential oscillations 
appear during quiescence and NREM sleep (or anesthetized states, Kleen et al., 2021) than during 

Figure 4. Spike- local field potential (LFP) coherence of the slow gamma oscillation in macaque hippocampus. (A) Average spike- LFP coherence in 
gamma frequency range. Shading shows 95% bootstrap confidence interval (N = 404). (B) Spike- LFP coherence for a representative gamma- locked 
unit. This unit had a significant peak at 30 Hz (p<0.05, permutation test and Rayleigh test, p<0.05). (C) Top: Spike- triggered average LFP of the unit in B. 
Bottom: Autocorrelogram of the same unit.

https://doi.org/10.7554/eLife.86548
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alert/task- on states or REM sleep (Bódizs et al., 2001; Cox et al., 2019; Moroni et al., 2007; Tamura 
et al., 2013; Uchida et al., 2001). Whereas these behavioral- state correlates of field potential oscilla-
tions apparently differ by species, local control of unit activity may nevertheless reveal strong under-
lying rhythmic motifs.

To better understand local modulation, we measured CA1 spiking activity as a function of LFP oscil-
latory phase. All tested frequencies had at least some units that were preferentially phase locked to 
them, but the most common preferred frequencies were roughly matching the 3–10 Hz, 20–30 Hz, and 
60–150 Hz bands. The lowest band would be consistent with theta modulation of local spiking, which 
has been reported using a few different methods in human and macaques. Spike- field coherence in 
the theta frequency range was seen for microelectrode bundles including microwires in unspecified 
subregions of the human hippocampus (Rutishauser et al., 2010), and for recording sites estimated 
to be within the hippocampus proper of the freely moving macaque (Mao et al., 2021), though in 
the latter case, the higher gamma bands and delta bands were several times more likely to show 
SFC. Within the theta band, spurious coherence may arise in response to nonrhythmic deflections 
(Aru et al., 2015; de Cheveigné and Nelken, 2019; Jones, 2016; Vinck et al., 2022), such as the 
slow components of the SWR which is especially prominent in macaques and human (Hussin et al., 
2020; Liu et al., 2022). Indeed, we found that SWRs (Figure 2—figure supplement 1) dispropor-
tionally influenced the 2–10 Hz band (Figure 2B, D and E), whereas the gamma frequency range was 
largely unaffected. Because SWRs occur infrequently, it was somewhat surprising that SWR removal 
affected the overall results; however, the population activity during ripples typically includes 2–10× 
firing rate increases in nearly all cell types (Buzsáki, 2015; Hussin et al., 2020; Leonard et al., 2015; 
Skaggs et  al., 2007). As such, each ripple is likely contributing disproportionately to the spike- 
locked activity. In addition, we know that visual (Katz et al., 2020; Rey et al., 2014; Roux et al., 
2022) and saccade- elicited (‘ERP- like’) responses in the hippocampus (Hoffman et al., 2013; Jutras 
et al., 2009; Katz et al., 2022) increase theta- band power without necessarily producing harmonic 
oscillations. This would presumably only affect the segments from search, not sleep. Future human 
and monkey hippocampal studies should factor out the contributions of SWRs, and to the same end 
stimulus and saccade- locked transients, when evaluating low- frequency (<10 Hz) oscillations for non- 
stationary signals and when using methods that do not discriminate oscillations from transient deflec-
tions, as with spike- field coherence. The present results found residual coherence, and in addition, the 
typical duration of sleep theta bouts would well exceed the SWR envelope (as shown in Video 1 and 
Figure 1—figure supplement 4), therefore we consider the observed spectral peaks during rest likely 
reflect true oscillations and not simply collections of evoked transients.

The spike autocorrelogram is a more stringent measure of oscillatory modulation, not susceptible 
to LFP spectral analysis artifacts. The <10 Hz range including the theta band failed to show clear 
examples of theta modulation (Figure 2—figure supplement 2). This was not simply due to low firing 
rates: even high firing rate cells, which should include ‘theta- on’ interneurons, failed to show theta 
modulation. Indeed, the same analysis applied to units from a homologous region of rat CA1 (Royer 
et al., 2010) showed a predominance of theta modulation (even after pooling functional cell types). 
In light of our rest- related theta power and SWR- removed spike- field coherence, this was somewhat 
surprising, but consistent with the results in free- flying bats (Yartsev et al., 2011), monkeys (Courellis 
et al., 2019; Mao et al., 2021), and humans (Qasim et al., 2021). In such cases, to observe spike 
timing regularity to field potentials, the aperiodic – that is non oscillatory – slow fluctuations in the 
LFP must first be warped to ‘fit’ one another, to create a pseudo- oscillation (Bush and Burgess, 2020; 
Eliav et al., 2018; Mao et al., 2021; Qasim et al., 2021). Due to the different criteria used, compared 
to the theta rhythmic spiking reported in rodents, the theoretical or computational roles ascribed to 
the theta oscillations may need to be re- evaluated, or, more precisely defined in terms that do not 
depend on periodicity.

Slower oscillations, or irregular low- frequency components at 1–4  Hz ‘delta’ band, are more 
frequently correlated with spatial or associative memory effects (Goyal et al., 2020; Vivekananda 
et al., 2021; Watrous et al., 2013), leading to the supposition that rodent hippocampal theta is simply 
faster than in primates (Jacobs, 2014; Mao et al., 2021). If our present results were based on two 
distinct oscillations – the faster ‘offline’ theta and the slower ‘online/memory’ delta band – we would 
have predicted anti- correlations or segmentation in the power plots into sub- bands. We have yet to 
see such a segmentation, but we would stress that this remains a candidate for closer inspection. Finer 
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task behaviors might help to uncover this possible alert- behavior correlate. Even if this proves to be 
the case, it would raise further questions about which bands become considered homologous across 
species. If 1–4 Hz is envisaged as relating to septal- cholinergic theta in rats, what is the equivalent of 
the classic 8 Hz theta band in rats? Compounding this problem is a separate 1–4 Hz oscillation that 
was observed in rat hippocampus (Jackson et al., 2014; Schultheiss et al., 2020). When trying to 
consider homology across species, the LFP signals are only proxies for the underlying circuit activity. 
Identifying the local circuit motif, including receptor- specific neuromodulation in primates (Stewart 
and Fox, 1991), may help differentiate among various low- frequency oscillations and their functional 
roles across species.

Decoupled gamma
Gamma oscillations in rat and mouse CA1 comprise a wide high- frequency band (initially 40–100 Hz 
but more recently 20 Hz or 30–100 Hz) known for tight coupling within the theta oscillation (Bragin 
et al., 1995a; Buzsáki et al., 1983; Colgin and Moser, 2010; Colgin et al., 2009; Tort et al., 2008). 
In line with this coupling, gamma shares behavioral state correlates with theta: waking exploratory 
states and REM sleep. We found that the slower part of the gamma range (<~70 Hz) is decoupled 
from theta. Consistent with this finding, gamma power is seen as a relatively strong oscillation in 
monkeys and humans during REM sleep (Cantero et al., 2003; Takeuchi et al., 2015; Tamura et al., 
2013; Uchida et  al., 2001), as in rodents. Gamma oscillations, when measured, are often associ-
ated with hippocampal processing (e.g. memory guided search, Leonard et al., 2015; Montefusco- 
Siegmund et al., 2017), and retrieval (Montefusco- Siegmund et al., 2017) or subsequent memory 
effects (Jutras et al., 2009) in monkeys, or spatial coding and memory in rodents. In addition, a band- 
limited 20–40 Hz oscillation is seen in rodent CA1 (and is synchronized with LEC, Igarashi et al., 2014) 
during discrete item cueing or retrieval such as in olfactory associative place and sequence learning 
(Allen et al., 2016; França et al., 2014; Lansink et al., 2016; Lopes- Dos- Santos et al., 2018), and 
when exploring novel environments (França et al., 2021; Trimper et al., 2017). This frequency band 
is associated with activation of the trisynaptic pathway (DG and CA3, Colgin, 2016; Fernández- Ruiz 
et al., 2021; Hsiao et al., 2016; Rangel et al., 2015), but is also a coherent oscillation between CA1 
and LEC (Igarashi et al., 2014) implicating direct, temporoammonic pathways. Finally, beta2/gamma 
coherence is seen in hippocampal- retrosplenial and hippocampal- mFPC oscillations in monkeys 
during object- scene associative memory (Hussin et  al., 2022). The range of implicated pathways 
and regions underscores the need to identify the underlying microcircuits that give rise to these 
oscillations (Fernandez- Ruiz et al., 2023). Determining which are conserved across species will be an 
important topic for future research.

Gamma and theta coupling
The results of the current study show that theta oscillations are not prominent during awake behavior 
and do not couple with gamma, and thus, are not a good candidate for structuring possible gamma 
sub- bands. Although most studies in humans focus on coupling via slower or faster bands outside this 
range, we note two exceptions that ostensibly find increases in hippocampal theta- gamma coupling 
associated with active processing in the theta band (Axmacher et al., 2010; Stangl et al., 2021) and a 
third that included 5–11 Hz, for which the low- frequency- granting signal may have included the alpha 
band (Roux et al., 2022). Both of the former studies use macro- electrode iEEG with >1 mm contacts 
and 3–10 mm spacing between contacts, along with MR/CT coregistration, which are estimated to 
be in some regions of the hippocampus proper in only a subset of participants. Thus, any apparent 
discrepancies to the present findings may involve the inclusion of extra- hippocampal signals, though 
this would still be interesting to understand. Signal localization notwithstanding, the first study of 
working memory reported 6–10 Hz medial temporal lobe theta phase that was coupled with gamma 
oscillations (Axmacher et al., 2010). Although modulation strength was not associated with perfor-
mance, modulation width predicted reaction time. Pertinent to the state correlates of theta, they 
show that the intertrial interval (ITI) – that is a potentially offline state – shared a strong modulation, 
similar to that seen during the memory epoch, except at the onset of the WM epoch, where intertrial 
coherence was strongest. In the second study, recording MTL iEEG in ambulating patients, theta 
power did not increase with movement speed (if anything, it nominally decreased), and search during 
movement was associated with weaker theta; however, when stationary, some theta modulation was 
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seen and in addition, general theta- gamma coupling was reported between 6 Hz and 10 Hz and high 
gamma during movement and between 6 Hz and 10 Hz and a slower gamma when stationary and 
observing others (Stangl et al., 2021). The effects of saccade- evoked responses on this theta were 
not described but saccades were associated wtih increases in reported theta power, thus, it remains 
unclear what effect saccadic responses may have had on the reported theta gamma coupling. In the 
third study, using microwires, the most applicable measures to our study produced generally consis-
tent results, including decreased theta and increased gamma power associated with successful asso-
ciative memory, and no difference in low- frequency spike- field coherence for locally measured fields 
and spikes (Roux et al., 2022). Here, unlike the first study (Axmacher et al., 2010), the modulation of 
gamma power by peak 5–11 Hz phase was greater with successful memory (hits vs. misses). This might 
suggest a theta or alpha oscillation is regulating gamma magnitude; however, the MI measure of 
phase- amplitude coupling does not require strong or periodic phase- granting signal to cluster gamma 
(Tort et al., 2010). Future studies may help to disentangle the role of periodic theta in contrast to 
saccadic or other evoked response waves, in clustering active gamma oscillations during active behav-
iors. At present, we suggest that gamma oscillations – across species – can nevertheless work as a 
standalone rhythmic activity to select among inputs by virtue of laminar specificity, including activity of 
other hippocampal fields (e.g. CA3- dentate gyrus) or extrahippocampal areas (e.g. entorhinal cortex).

Our findings offer a hypothesis- generating framework for future analysis in (human and non- 
human) primate hippocampal physiology. The present results suggest that theta oscillations were 
not prevalent during search in primates and did not consistently modulate single unit activity, but 
rather form the strongest oscillatory marker of offline or quiescent states. Instead, beta2/slow gamma 
oscillations constitute the chief, self- contained oscillation that arises during active exploration in the 
primate hippocampus and stands as the most likely oscillation for organizing local dynamics during 
exploration. Aside from understanding the nature of these cross- species differences, future work may 
focus on the better- conserved aspects of CA1 activity, including gamma synchrony during exploration, 
locking of spiking to exploratory movements, and aperiodic spike timing measures that don’t require 
autocoherent oscillations. Despite several surface differences in hippocampal- behavioral coupling 
across phylogenetic orders, the underlying neural circuit activity giving rise to these oscillations may 
yet reveal fundamentally conserved mechanisms.

Methods
Subjects and task
Two adult female macaques (Macaca mulatta, ‘M1, M2’) were used in the main, visuospatial search 
experiments whose results are shown in all figures except those of the control task/recordings from 
Figure 1—figure supplement 3. Data from M1 and M2 have been reported previously (Hussin et al., 
2020; Leonard and Hoffman, 2017; Leonard et al., 2015). The apparatus, training procedure, and 
task have been described previously (Leonard and Hoffman, 2017; Leonard et al., 2015), and are 
summarized briefly here. During search, animals performed a hippocampally dependent visual target 
detection task. In the task, seated, head- fixed monkeys were placed in front of a monitor and were 
required to identify a target object from nontargets in unique visual scenes presented on a monitor 
positioned in front of them, and report their selection of scene- unique target objects by holding 
their gaze on the target region for a prolonged (≥800 ms) duration. Target objects were defined as a 
changing item in a natural scene image, where the original and changed images were presented in 
alternation, each lasting 500 ms, with a brief gray screen (50 ms) shown between image presentations. 
An ITI of 2–20 s followed each trial. The daily sessions began and ended with a period of at least 
10 min when no stimulus was presented within the darkened booth and animals could sleep or sit 
quietly (‘rest’). All procedures associated with this task were conducted with approval from the local 
ethics and animal care authorities (Animal Care Committee, Canadian Council on Animal Care). Two 
adult female monkeys (M. mulatta, ‘M2’ and ‘M3’) were used in a separate experiment to extend the 
analysis to include freely behaving conditions. The search epochs of M2 were observational (identi-
fied post hoc) and of M3 were experimentally controlled. M2 was placed in an enriched environment 
where she could actively forage, play with toys (manipulanda), walk, climb, self- groom, and groom 
another animal. Blind raters denoted the times of foraging, walking, and exploratory ‘search’ behav-
iors. M3 was placed in a testing enclosure equipped with multiple touchscreens around the periphery 
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that presented spatially distributed arrays of objects. To obtain fluid reward the monkey was required 
to locate and select (touch) designated objects in a global spatial sequence across the enclosure, 
thereby requiring visual search, reaches, and walking/climbing during a trial. For M3 search data anal-
ysis, we extracted the trial sequence duration+2 s beyond the first/last touches of the sequence which 
included goal- directed walking, but excluded the ITI containing reward consumption or idle time prior 
to the animal’s approach and trial initiation. For both M2 and M3, rest epochs consisted of 40 min of 
recordings in the housing area during the start of the ‘night’ cycle of the room’s automatic lighting 
system. A total of 18 sessions (M3: 15, M2: 3) were analyzed for both task and rest epochs. All proce-
dures for M3 were conducted in accordance with the approved protocols and authorized procedures 
under the local animal care authorities (Institutional Animal Care and Use Committee).

Electrophysiological and movement recordings
For monkeys M1 and M2, indwelling bundles of movable platinum/tungsten multicore tetrodes 
(96 μm outer diameter; Thomas Recordings) were implanted into the anterior half of hippocampus 
and lowered into CA1. In M3 we recorded from an indwelling active multichannel probe on an adjust-
able microdrive (‘Deep Array’ probe, beta- test design, Diagnostic Biochips, Inc). Recording sites were 
verified with postoperative CT coregistered to pre- operative MRI and using functional landmarks that 
changed with lowering depth, including the emergence of depth- specific SWRs in a unit- dense layer, 
as described in the previous studies (Figure 1—figure supplement 1, Figure 2—figure supplement 
1). Post- explant MRI verified the electrode locations in M1 (Leonard et al., 2015). For the current 
study, we detected channels within the pyramidal layer based on the strongest amplitude of ripples 
during SWRs and single unit activity, and only used these channels for all analyses. LFPs were digitally 
sampled at 32 kHz using a Digital Lynx acquisition system (Neuralynx, Inc) and filtered between 0.5 Hz 
and 2 kHz for M1 and M2. LFPs for M2 and M3 that were used for results shown in Figure 1—figure 
supplement 2 were sampled at 30 kHz using the active headstage and recorded using a Cube/Free-
lynx wireless recording system (Neuralynx, Inc) to SD card (for rest) or using wireless transmission 
to the Cheetah acquisition system (for task). Single- unit activity was filtered between 600  Hz and 
6  kHz, recording the waveform for 1 ms around a threshold- triggered spike events. Spike sorting 
was performed semi- automatically using KlustaKwik based on wave shape, principal components, 
energy, and peak/valley across channels. This was followed by manual curation of clusters in MClust 
(A.D. Redish). We used 3D accelerometer in Freelynx data acquisition system to record the movement 
of freely behaving animal subjects during active search and rest. Angular velocity (AV) traces were 
recorded at 3 kHz and samples were synchronized with the neural recording. For movement detec-
tion, we first calculated the vector norm of the three AV axes using vecnorm function in MATLAB. 
Then, we thresholded the vector norm to find periods of time when animal was moving. Threshold was 
calculated based on the vector norm of AV recordings when Freelynx was placed statically on a flat 
surface. In addition to the accelerometer data, we used recorded videos to detect animal behavioral 
state (e.g. sleep).

SWR detection
SWR detection was performed on the tetrode channels of M1 and M2 with the most visibly apparent 
ripple activity using the previously described method (Leonard et  al., 2015). Raw LFPs recorded 
from the tetrode channel were filtered between 100 Hz and 250 Hz. To determine the SWR envelope, 
filtered LFPs were transformed into z- scores and rectified and subjected to a secondary bandpass filter 
between 1 Hz and 20 Hz. Events with a minimum amplitude exceeding 3 SDs above the mean with 
a minimum duration of 50 ms, beginning and ending at 1 SD were designated as potential ripples. 
High- frequency energy is present for non- SWR events such as EMG and other non- biological noise, 
though these artifacts are distinct from ripples because the latter are restricted to the regions near the 
pyramidal layer. For artifact (non- ripple- event) rejection, a distant tetrode channel was selected as a 
‘noise detecting’ channel (Talakoub et al., 2016). Events that were concurrently detected on the noise 
channel and the ‘ripple- layer’ channel were removed from the ripple pool. High gamma (80–120 Hz) 
and HFO (110–160 Hz) events were similarly identified, but with the filter criterion set at 80–120 Hz 
and 110–160 Hz, respectively, and in both cases identifying peaks as those >1 SD. Duplicate high 
gamma/HFO and SWR events were labeled as SWRs. Events with a repetition rate <125 ms were 
considered a single event.
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Power spectral parametrization and fitting
To compare the spectral content during search and rest, we selected successfully completed trials 
lasting longer than 1  s. For rest segments in the stationary (tethered) recordings M1 and M2, we 
extracted the LFP signals that were recorded before the start of the task and after the end of the 
task when the animal was in a dark environment in a quiescent or inactive state. For rest segments 
of wireless recordings in M2 and M3, we extracted LFP signals recorded during the evening after the 
task, during the dark cycle of the housing area. We used Welch’s method with a 50%-overlapping 
1024- sample sliding Hanning window to estimate power spectra for the frequency range of 1–150 Hz 
with a frequency resolution of 0.25 Hz.

To identify spectral peaks and compare between search and rest states, we parameterized power 
spectra using the method described by Donoghue et al., 2020. This method models power spectra 
as a combination of the 1/f frequency components (aperiodic) in addition to a series of Gaussians 
that capture the presence of peaks (periodic components). The model was fit to a frequency range 
between 1 Hz and 200 Hz with a frequency resolution of 0.5 Hz. Settings for the algorithm were set as: 
peak width limits: (0.5, 12); max number of peaks: infinite; minimum peak height: 0; peak threshold: 
2.0; and aperiodic mode: ‘Fixed’.

To assess statistical significance for the difference in parametrized spectra at each frequency, we 
used Wilcoxon signed rank test at p<0.05 with FDR correction for multiple comparisons.

Twenty to 30 Hz sorted spectral density map
We estimated the power spectral density using Welch’s method described in the previous section to 
obtain (frequency * PSD segments) matrix. We then sorted the PSD segments based on the mean 
power in 20–30 Hz frequency range and normalized each segment by dividing it by its median. We 
clustered all sorted segments into 50 total segments of equal size (frequency * 50 segments) by 
averaging original PSD sorted segments. We repeated this procedure across sessions and animals 
separately.

Cross-frequency power correlation
On continuous LFP time- series data, Welch’s method with a 50%-overlapping 1024- sample sliding 
Hanning window was used to estimate the spectrogram for the frequency range of 1–150 Hz with a 
frequency resolution of 0.25 Hz.

We computed the pairwise correlation between cross- frequency power using the following formula 
(Masimore et al., 2004):

 
corrij =

∑
k
(
Sk(fi) − S(fi)

) (
Sk(fj) − S(fj)

)
σiσj   

where  Sk(fi)  is the PSD at the frequency  fi  in time window  k ,  S(fi)  the averaged PSD at the frequency 

 fi  over all sliding windows,  σi  the standard deviation of the PSD at the frequency  fi  , and  k  ranges over 
all sliding windows. In the wireless recordings in M2 and M3 this procedure was applied to the data 
segments extracted during task performance.

To test the null hypothesis that the power spectral time series of two different frequencies,  fi  
and  fj  , are not coupled, we performed a non- parametric surrogate data method with cluster- based 
multiple comparison correction (Thammasan and Miyakoshi, 2020). This method preserves the 
original data’s statistical properties while generating time series that are randomized such that any 
possible nonlinear coupling is removed. In this method, we randomized time window  k  differently for 
each frequency bin to build surrogate time- frequency time series and computed the surrogate cross- 
frequency power correlation. This process was repeated 5000 times to produce distributions for the 
dataset in which the null hypothesis holds. The original, non- permuted data are then compared to the 
surrogate distribution to obtain uncorrected p- values. The significance threshold was selected to be 
0.05. For cluster- based multiple comparison correction, all samples were selected whose p- value was 
smaller than 0.05. Selected samples were then clustered in connected sets based on their adjacency 
and the cluster size was calculated. This procedure was performed 5000 times to produce the distri-
bution of cluster sizes. If cluster sizes in the original correlation matrix were larger than the cluster 
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threshold at 95th quantile, they were reported as significant. We performed this statistical procedure 
at the level of single channels per animal. We consider as robust significance those areas that were 
significant for at least 80% of all samples.

Hilbert amplitude envelope correlation
We applied a third- order Butterworth filter at each frequency of the LFP with a 2 Hz bandwidth. We 
then Hilbert transformed the bandpass- filtered LFP and estimated the continuous amplitude enve-
lope. We computed the pairwise correlation between cross- frequency amplitude envelope using 
previously described correlation method.

Bicoherence
For bicoherence, we used the HOSA toolbox. Bicoherence was estimated for frequencies  f1 (1–75 Hz) 
and  f2 (1–150 Hz) in steps of 1 Hz according to the following formula (Bullock et al., 1997):

 
B(f1, f2) =

��⟨Ft(f1)Ft(f2)F∗
t (f1 + f2)⟩t

��
⟨��Ft(f1)Ft(f2)F∗

t (f1 + f2)
��⟩

t   

where  Ft(f)  is the signal’s time- frequency transformation at time t, || represents the absolute value, 
and  ⟨⟩  is the average over time. We set the segment length to 1024 samples for this analysis.

Bicoherence has a higher spectral resolution for disentangling harmonic from non- harmonic cross- 
frequency coupling. Additionally, bicoherence relaxes the artificial spectral constraints introduced by 
conventional PAC, corrects for its poor biases, and accounts for asymmetry in the rhythms (Giehl 
et al., 2021; Kovach et al., 2018; Sheremet et al., 2016).

Theoretically, the bispectrum is statistically zero for linear systems with mutually independent 
Fourier coefficients. For nonlinear systems, the bispectrum will exhibit peaks at triads ( fn, fm, fn+m ) 
that are phase correlated, measuring the degree of three- wave coupling (Sheremet et al., 2016). 
In practice, however, bicoherence has a positive bias. The background activity of LFP signals can be 
estimated by properties of red noise which can then be used for significance testing (Bédard and 
Destexhe, 2009; Torrence and Compo, 1998). To calculate the statistical significance of the local 
autobicoherence, we generated red noise with the same length of our original signals and computed 
bicoherence for the red noise sample. We repeated this procedure 5000 times to obtain the null distri-
bution. We then compared the original data to the null distribution to obtain uncorrected p- values, 
thresholded for significance at 0.05. We then performed cluster- based multiple comparison correction 
as described in the Cross- frequency power correlation section.

Detection and prevalence of transient oscillatory events
We used the BOSC algorithm (Caplan et al., 2001; Hughes et al., 2012) to detect transient bouts of 
heightened frequency- specific power using a joint amplitude and duration thresholding procedure. A 
specific concern we wished to address was that the 1 s windowed power spectral method may result 
in false negatives (i.e. missing brief theta epochs), therefore we set a maximally permissive duration 
threshold of 3 cycles, and an amplitude threshold using sixth- order wavelets passing the 95th percen-
tile of model fit distributions. From these detected events, we computed occupancy rate using the 
formula:

 
Occupancy rate

(
%
)

= Total duration of detected events
Duration of the original signal

× 100
  

Occupancy rate is a measure of prevalence, showing the percentage of time spent in an oscillatory 
event of a specific frequency, also referred to as Pepisode(f).

BOSC algorithm provides logical matrix of the form [number of frequencies * timepoint] where 
values are 1 when an event was detected and 0 otherwise. For bout duration distributions we summed 
values across frequency ranges of interest and then performed the logical operation larger than 1, 
thus in MATLAB it will be, where detected is the BOSC output:

thresholded = sum(detected(ThetaRange,:)) ≥ 1;
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We found start (thresholded switches from 0 to 1) and stop (thresholded switches from 1 to 0) of 
events and removed events that were incomplete, only had start or stop, and computed duration. We 
then fitted a kernel probability distribution to the duration values using fitdist function in MATLAB. We 
used bandwidth of 50 and 10 for theta and gamma oscillations, respectively.

Spike-field synchronization
To quantify spike- field synchronization, we used fieldtrip toolbox (MATLAB) to compute PPC which 
is unbiased by the number of spikes (Vinck et al., 2010). Raw continuous recordings were resam-
pled with a 1000 Hz sampling rate. The spectral content was estimated with a frequency- dependent 
Hanning window with 5 cycles per frequency and frequency resolution of 1 Hz. All detected spikes of 
a unit during the session were included. To assess the statistical significance of spike- field synchroni-
zation, we first used a non- parametric permutation test with minimal assumptions. In this procedure, 
the distribution of PPC values was estimated from 1000 iterations of shuffled spike times of each 
cell. We used the PPC distribution of shuffles to compute the PPC threshold for significance at each 
frequency. We applied a threshold of uncorrected p<0.05 to determine the significant synchronization 
at each frequency. Only PPC values that exceeded the statistical threshold and had a Rayleigh test 
p<0.05 and a minimum peak and peak prominence of 0.005 were reported as significant. To obtain 
the probability distribution of observing significant PPC values at a frequency, we fitted a kernel 
probability distribution to significant frequency values using fitdist function in MATLAB. We used a 
bandwidth of 4.

To compare spike- field synchronization during SWRs, we extracted spikes inside a 600 ms window 
centered around the SWR events and computed PPC [PPCSWR]. These spikes were then excluded 
from the unit spike timestamps and PPC was calculated for the remaining ‘residual’ spikes [PPCre-

sidual]. PPCSWR was then compared with PPCresidual. Only cells with at least 20 spikes during ripple time 
windows were included in this analysis (N = 185).

To test the significance of differences in spike- field coupling within SWR epochs or excluding them, 
on a per- unit basis, spikes were randomly selected and assigned to SWR and residual conditions. 
In this random selection, spike counts were controlled to correspond to the original condition. We 
performed the random selection 1000 times and measured the difference between PPC in each iter-
ation to obtain the null distribution. Then, we grouped frequencies into six bands 2–3, 4–10, 11–20, 
21–40, 41–100, 101–200 Hz. In each frequency band, we found the peak frequency at which the abso-
lute PPC difference was largest and only tested these for significance. If the p- value of PPC difference 
was less than 0.05 (two- tailed) after FDR correction, it was labeled as significant.

Theta modulation index estimation
We used the method described by Royer et al., 2010, to quantify the degree of theta modulation 
in single units. For all units, we first computed the autocorrelogram of the cell, in 10 ms bins from 
–500 ms to +500 ms, normalized to the maximum value between 100 ms and 150 ms (corresponding 
to theta modulation), and clipped all values above 1. We only included autocorrelograms with at 
least 100 counts for further steps (N=240 units). We then fit each autocorrelogram with the following 
function:

 y(t) =
[
a
(
sin(ωt) + 1

)
+ b

]
∗ e−|t|/τ1 + c ∗ e−t2/τ 2

2
  

where  t  is the autocorrelogram time lag from –700 ms to 700 ms, and  a − c ,  ω , and  τ1−2  were fit 
using the  fminsearch  optimization function in MATLAB. The theta indexes were defined as the ratio of 
the fit parameters  a/b . For best- fitting performance, we restricted possible values for  ω  to (4, 10), for 
 a  and  b  to non- negative values, for  c  to (0, 0.2), and for  τ2  to (0, 0.05).

Additional single-unit datasets
To generate example plots of theta rhythmic cells (Figure 3), recordings from the Buzsáki laboratory 
were included (https://buzsakilab.nyumc.org/datasets/).
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