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Abstract The temporal activity of many physical and biological systems, from complex networks 
to neural circuits, exhibits fluctuations simultaneously varying over a large range of timescales. 
Long- tailed distributions of intrinsic timescales have been observed across neurons simultaneously 
recorded within the same cortical circuit. The mechanisms leading to this striking temporal hetero-
geneity are yet unknown. Here, we show that neural circuits, endowed with heterogeneous neural 
assemblies of different sizes, naturally generate multiple timescales of activity spanning several 
orders of magnitude. We develop an analytical theory using rate networks, supported by simulations 
of spiking networks with cell- type specific connectivity, to explain how neural timescales depend on 
assembly size and show that our model can naturally explain the long- tailed timescale distribution 
observed in the awake primate cortex. When driving recurrent networks of heterogeneous neural 
assemblies by a time- dependent broadband input, we found that large and small assemblies pref-
erentially entrain slow and fast spectral components of the input, respectively. Our results suggest 
that heterogeneous assemblies can provide a biologically plausible mechanism for neural circuits 
to demix complex temporal input signals by transforming temporal into spatial neural codes via 
frequency- selective neural assemblies.

Editor's evaluation
This fundamental work uses computational network models to suggest a possible origin of the wide 
range of time scales observed in cortical activity. This claim is supported by convincing evidence 
based on comparisons between mathematical theory, simulations of spiking network models, and 
analysis of recordings from the orbitofrontal cortex. This manuscript will be of interest to the broad 
community of systems and computational neuroscience.

Introduction
Experimental evidence shows that the temporal activity of many physical and biological systems 
exhibits fluctuations simultaneously varying over a large range of timescales. In condensed matter 
physics, spin glasses typically exhibit aging and relaxation effects whose timescales span several 
orders of magnitude (Bouchaud, 1992). In biological systems, metabolic networks of E. coli generate 
fluxes with a power- law distribution of rates (Almaas et  al., 2004; Emmerling et  al., 2002). Gas 
release in yeast cultures exhibits frequency distributions spanning many orders of magnitude (Roussel 
and Lloyd, 2007), endowing them with robust and flexible responses to the environment (Aon et al., 
2008). In the mammalian brain, a hierarchy of timescales in the activity of single neurons is observed 
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across different cortical areas from occipital to frontal regions (Murray et al., 2014; Siegle et al., 
2019; Gao et al., 2020). Moreover, neurons within the same local circuit exhibit a large range of 
timescales from milliseconds to minutes (Bernacchia et al., 2011; Cavanagh et al., 2016; Miri et al., 
2011). This heterogeneity of neuronal timescales was observed in awake animals during periods of 
ongoing activity in the absence of external stimuli or behavioral tasks, suggesting that long- tailed 
distributions of intrinsic timescales may be an intrinsic property of recurrent cortical circuits. Recent 
studies highlighted the benefits of leveraging computations on multiple timescales when performing 
complex tasks in primates (Iigaya et al., 2019) as well as in artificial neural networks (Perez- Nieves 
et al., 2021). However, the neural mechanisms underlying the emergence of multiple timescales are 
not yet understood.

Here, we present a simple and robust neural mechanism generating heterogeneous timescales of 
activity in recurrent circuits. The central feature of our model is a heterogeneous distribution of cell 
assemblies, a common ingredient observed in cortical architecture (Perin et al., 2011; Marshel et al., 
2019; Figure 1a). We first demonstrate that rate networks, whose rate units represent cell- assemblies, 
can generate long- tailed distributions of timescales when endowed with heterogeneous assemblies 
(Figure 1b). We then show that the heterogeneity of timescales, observed in electrophysiological 
recordings from awake primate cortex (Cavanagh et al., 2016), can be explained by the presence 
of heterogeneous cell assemblies (Figure 1b). Using methods from statistical physics, we develop 
an analytical framework explaining how an assembly’s intrinsic timescale depends on size, revealing 
the emergence of a new chaotic regime where activity is bistable. We show that our theory applies 
to biologically plausible models of cortical circuits based on spiking networks with cell- type specific 
clustered architectures.

We then study the stimulus- response properties of networks with heterogeneous assemblies. In 
networks with homogeneous assemblies, chaotic activity is suppressed at a single resonant frequency 
(Rajan et  al., 2010). However, when we drive heterogeneous networks with a time- dependent 
broadband input featuring a superposition of multiple frequencies, we find that the chaotic activity 
is suppressed across multiple frequencies which depend on the assembly own size. Large and small 
assemblies are preferentially entrained by the low and high- frequency components of the input, 
respectively (Figure  1c). This spectral specificity suggests that a reservoir of timescales may be a 
natural mechanism for cortical circuits to flexibly demix different spectral features of complex time- 
varying inputs. This mechanism may endow neural circuits with the ability to transform temporal neural 
codes into spatial neural codes via frequency- selective neural assemblies.

Results
To develop a theory of heterogeneous timescales, we first focus on random neuronal networks 
whose rate units are recurrently connected, with couplings that are chosen randomly. In this model, 
we will be able to leverage analytical methods from statistical field theory (Sompolinsky et  al., 
1988; Buice and Chow, 2013; Helias and Dahmen, 2020) to link analytical model parameters to 
circuit dynamics. In our rate network model, each network unit represents a functional assembly of 
cortical neurons with similar response properties. We interpret the unit’s self- coupling as the size 
of the corresponding neural assembly (if recurrent couplings across the population vary signifi-
cantly, we also interpret the self- coupling as representing the average coupling strength within an 
assembly). In the case where the self- couplings are zero or weak (order  1/

√
N  , with  N   being the size 

of the network), random networks are known to undergo a phase transition from silence to chaos 
when the variance of the random couplings exceeds a critical value (Sompolinsky et al., 1988). 
When the self- couplings are strong (order 1) and are all equal, a third phase appears, featuring 
multiple stable fixed points accompanied by long transient activity (Stern et al., 2014). In all these 
cases, all network units exhibit the same intrinsic timescale, estimated from their autocorrelation 
function. Here, we demonstrate a novel class of recurrent networks, capable of generating tempo-
rally heterogeneous activity whose multiple timescales span several orders of magnitude. We show 
that when the self- couplings are heterogeneous, a reservoir of multiple timescales emerges, where 
each unit’s intrinsic timescale depends both on its own self- coupling and the network’s self- coupling 
distribution.

https://doi.org/10.7554/eLife.86552
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Figure 1. Summary of the main results. (a) Left: Microscopic model based on a recurrent network of spiking neurons with excitatory and inhibitory 
cell types, arranged in neural assemblies of heterogeneous sizes. Right: Phenomenological model based on a recurrent network of rate units. Each 
unit corresponds to an E/I neural assembly, whose size is represented by the unit’s self- couplings  si . (b) A lognormal distribution of self- couplings 
(representing assemblies of different sizes) generates time- varying activity whose heterogeneous distribution of timescale fits population activity 

Figure 1 continued on next page
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Random networks with heterogeneous self-couplings
We start by considering a recurrent network of  N   rate units obeying the dynamical equations

 

dxi
dt

= −xi + siϕ(xi) + g
N∑

j=1
Jijϕ(xj)

  
(1)

where the random couplings  Jij  from unit  j  to unit  i  are drawn independently from a Gaussian distri-
bution with mean 0 and variance  1/N  ;  g  represents the network gain and we chose a transfer function 

 ϕ(x) ≡ tanh(x) . The self- couplings  si  are drawn from a distribution  P(s) . The special case of equal self- 
couplings ( si = s ) was studied by Stern et al., 2014 and a summary of the results can be found in 
Appendix 1 for convenience. Here, we study the network properties in relation to both discrete and 
continuous distributions  P(s) .

Using standard methods of statistical field theory (Buice and Chow, 2013; Helias and Dahmen, 
2020, see Methods: 'Dynamic mean- field theory with multiple self- coupling' for details), in the limit 
of large  N   we can average over realizations of the disordered couplings  Jij  to derive a set of self- 
consistent dynamic mean- field equations for each population of units  xα  with self- coupling strengths 
 sα ∈ S 

 
dxα
dt

= −xα + sα tanh(xα) + η(t) .
  

(2)

In our notation,  S  denotes the set of different values of self- couplings  sα , indexed by  α ∈ A , and we 
denote by  Nα  the number of units with the same self- coupling  sα , and accordingly by  nα = Nα/N   their 
fraction. The mean- field  η(t)  is the same Gaussian process for all units and has zero mean  ⟨η(t)⟩ = 0  
and autocorrelation

recorded from awake monkey orbitofrontal cortex (data from Cavanagh et al., 2016). (c) When driving our heterogeneous network with broadband 
time- varying input, comprising a superposition of sine waves of different frequencies, large and small assemblies preferentially entrain with low and high 
spectral components of the input, respectively, thus demixing frequencies into responses of different populations.

Figure 1 continued

Figure 2. Dynamical and fixed point properties of networks with two self- couplings. (a) Ratio of autocorrelation timescales  τ2/τ1  of units with self- 
couplings  s2  and  s1 , respectively ( τi  is estimated as the half width at half max of a unit’s autocorrelation function, see panels iii, iv), in a network with 

 n1 = n2 = 0.5  and  g = 2  and varying  s1, s2 . A central chaotic phase separates four different stable fixed point regions with or without transient activity. 
Black curves represent the transition from chaotic to stable fixed point regimes, which can be found by solving consistently Equation 15, Equation 16, 
and Equation 18 (using equal to 1 in the latter), see Methods ('Fixed points and transition to chaos' and 'Stability conditions') for details. (i, ii) Activity 
across time during the initial transient epoch (left) and distributions of unit values at their stable fixed points (right), for networks with  N = 1000  and 
(i)  s1 = 3.2, s2 = −1.5 , (ii)  s1 = 3.2, s2 = 1.2 . (iii, iv) Activity across time (left) and normalized autocorrelation functions  C(τ )/C(0) , (right) of units with 
(iii)  s1 = 0.8, s2 = −1.5 , (iv)  s1 = 0.8, s2 = 3.2 . (b) Timescales  τ2, τ1  (left) and their ratio  τ2/τ1  (right) for fixed  s1 = 1  and varying  s2 , as a function of the 
relative size of the two populations  n1 = N1/N, n2 = N2/N   (at  g = 2 ,  N = 2000 ; average over 20 network realizations). All points in b. were verified to 
be within the chaotic region using Equation 18.

https://doi.org/10.7554/eLife.86552
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⟨η(t)η(t + τ )⟩ = g2C(τ )

C(τ ) =
∑
α∈A

nα⟨ϕ[xα(t)]ϕ[xα(t + τ )]⟩ ,
  

(3)

where  ⟨·⟩  denotes an average over the mean- field.
We found that networks with heterogeneous self- couplings exhibit a complex landscape of fixed 

points  x
∗
α , obtained as the self- consistent solutions to the static version of Equation 2 and Equation 3, 

subject to stability conditions (see Methods: 'Fixed points and transition to chaos' and 'Stability condi-
tions'). For fixed values of the network gain  g , these fixed points can be destabilized by varying the 
self- couplings of different assemblies, inducing a transition to time- varying chaotic activity (Figure 2). 
The fixed points landscape exhibits remarkable features inherited directly from the single value self- 
coupling case, as was extensively researched in Stern et al., 2014. Here, we focus on the dynam-
ical properties of the time- varying chaotic activity, which constitute new features resulting from the 
heterogeneity of the self- couplings. We illustrate the network’s dynamical features in the case of a 
network with two sub- populations with  n1  and  n2 = 1 − n1  portions of the units with self- couplings  s1  
and  s2 , respectively. In the  (s1, s2)  plane, this model gives rise to a phase diagram with a single chaotic 
region separating four disconnected stable fixed- point regions (Figure 2a). In the case of a Gaussian 
distribution of self- couplings in the stable fixed point regime, a complex landscape of stable fixed 
points emerges. The unit values at the stable fixed points continuously interpolate between around 
zero (for units with  si < 1 ) and a bi- modal distribution (for units with  si > 1 ) within the same network 
(Figure 3a).

A reservoir of heterogeneous timescales explains cortical recordings
In the chaotic phase, we can estimate the intrinsic timescale  τi  of a unit  xi  from its autocorrelation func-
tion  C(τ ) = ⟨ϕ[xi(t)]ϕ[xi(t + τ )]⟩t  as the half- width at its autocorrelation half maximum (Figure 2a- iv,  τ1 , 
and  τ2 ). The chaotic phase in the network, Equation 1, is characterized by a large range of timescales 
that can be simultaneously realized across the units with different self- couplings. In a network with two 
self- couplings  s1  and  s2  in the chaotic regime, we found that the ratio of the timescales  τ2/τ1  increases 
as we increase the self- couplings ratio  s2/s1  (Figure 2b). The separation of timescales depends on the 
relative fractions  n1  and  n2 = 1 − n1  of the fast and slow populations, respectively. When the fraction 
of  n2  approaches zero, (with  n1 → 1 ), the log of the timescale ratio exhibits a supralinear dependence 
on the self- couplings ratio, as described analytically in Methods ('Universal colored- noise approxima-
tion to the Fokker- Planck theory'), with a simplified estimation given in Equation 4, leading to a vast 
separation of timescales. Other self- couplings ratios  s2/s1  approach the timescale supralinear separa-
tion as the fraction of  n1  increases. We note that all uses of ‘log’ to evaluate the timescale growth and 
otherwise assume the base e.

In the case of a lognormal distribution of self- couplings, in the chaotic regime the network gener-
ates a reservoir of multiple timescales  τi ’s of chaotic activity across network units, spanning across 
several orders of magnitude (Figure 3b). For long- tailed distributions such as the lognormal, mean- 
field theory can generate predictions for rare units with large self- couplings from the tail end of the 
distribution by solving Equation 2 and the continuous version of Equation 3, see Methods ('Dynamic 
mean- field theory with multiple self- couplings') Equation 13. The solution highlights the exponential 
relation between a unit’s self- coupling and its autocorrelation decay time (Figure 3aii, purple dashed 
line).

During periods of ongoing activity, the distribution of single- cell autocorrelation timescales in 
primate cortex was found to be right- skewed and approximately lognormal, ranging from 10 ms 
to a few seconds (Cavanagh et al., 2016; Figure 3bi). Can the reservoir of timescales generated 
in our heterogeneous network model explain the distribution of timescales observed in primate 
cortex? We found that a model with a lognormal distribution of self- couplings can generate a long- 
tailed distribution of timescales which fits the distribution observed in awake primate orbitofrontal 
cortex (Figure 3bi). This result shows that neural circuits with heterogeneous assemblies can naturally 
generate the heterogeneity in intrinsic timescales observed in cortical circuits from awake primates.

Separation of timescales in the bistable chaotic regime
To gain an analytical understanding of the parametric separation of timescales in networks with 
heterogeneous self- couplings, we consider the special case of a network with two self- couplings 

https://doi.org/10.7554/eLife.86552
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Figure 3. Continuous distributions of self- couplings. (a–i) In a network with a Gaussian distribution of self- couplings (mean  µ = 1  and variance  σ2 = 9 ), 

and  g = 2.5 , the stable fixed point regime exhibits a distribution of fixed point values interpolating between around the zero fixed point (for units 
with  si ≤ 1 ) and the multi- modal case (for units with  si > 1 ). The purple curve represents solutions to  x = s tanh(x) . (a,b–ii) A network with a lognormal 
distribution of self- couplings (parameters for (a,b)  µ = 0.2, 0.5  and  σ2 = 1, 0.62 , and  g = 2.5  ;autocorrelation timescales  τi  in units of ms) in the chaotic 
phase, span several orders of magnitude as functions of the units’ self- couplings  si . (a- ii) Mean- field predictions for the autocorrelation functions and 
their timescales (purple curve) were generated from Equation 13 and Equation 14 via an iterative procedure, see Methods: 'Dynamic mean- field 
theory with multiple self- couplings' , 'An iterative solution'. (b) Populations of neurons recorded from orbitofrontal cortex of awake monkeys exhibit 
a lognormal distribution of intrinsic timescales (data from Cavanagh et al., 2016) (panel b- i, red), consistent with neural activity generated by a rate 
network with a lognormal distribution of self- couplings (panel b- i, blue; panel b- ii). ; We note that Cavanagh et al., 2016 use fitted exponential decay 
time constants of the autocorrelation functions as neurons’ timescales, while we use the half widths at half max of the autocorrelation functions as the 
timescales. To bridge these two definitions, we multiplied (Cavanagh et al., 2016) data by a factor of ln(2) before comparing it with our model and 
presenting it in this figure. The model membrane time constant was assumed to be 3 ms in this example.

https://doi.org/10.7554/eLife.86552
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where a large sub- population ( N1 = N − 1 ) with  s1 = 1  comprises all but one slow probe unit,  x2 , with 
large self- coupling  s2 ≫ s1  (see Methods:'Universal colored- noise approximation to the Fokker- Planck 
theory' for details). In the large  N   limit, we can neglect the backreaction of the probe unit on the 
mean- field and approximate the latter as an external Gaussian colored noise  η(t)  with autocorrela-
tion  g

2C(τ ) = g2⟨ϕ[x1(t)]ϕ[x1(t + τ )]⟩ , independent of  x2 . The noise  η(t)  then represents the effect on 
the probe unit  x2  of all other units in the network and can be parameterized by the noise strength 
 D  and its timescale (color)  τ1 . For large  s2 , the dynamics of the probe unit  x2  leads to the emer-
gence of a bi- stable chaotic phase whereby its activity is localized around the critical points  x

± ≃ ±s2  
(Figure 4a–i) and switches between them at random times. In the regime of colored noise (as we have 
here, with  τ1 ≃ 7.9 ≫ 1 ), the stationary probability distribution  p(x2)  (Figure 4a–ii and b) satisfies the 
unified colored noise approximation to the Fokker Planck equation (see Methods:'Universal colored- 
noise approximation to the Fokker- Planck theory', Hänggi and Jung, 1995; Jung and Hänggi, 1987), 
based on an analytical expression for its effective potential  Ueff(x)  as a function of the self- coupling 

 s2  and the noise color ( τ1 ). The distribution  p(x2)  is concentrated around the two minima  x
± ≃ ±s2  of 

 Ueff  . The main effect of the strong color  τ1 ≫ 1  is to sharply decrease the variance of the distribution 
around the minima  x± , compared to the white noise case ( τ1 = 0 ). This is evident from comparing the 
colored noise with white noise (Figure 4a- iv,v,vi).

In our network with colored noise, the probe unit’s temporal dynamics are captured by the mean 
first passage time  ⟨T⟩  for the escape out of the potential well defined by the effective potential  Ueff  , 
yielding good agreement with simulations at increasing  s2 , as expected on theoretical ground (Hänggi 
and Jung, 1995; Jung and Hänggi, 1987; Figure 4c). The asymptotic scaling of the mean first passage 
time for large  s2  is

 
log(⟨T⟩) ∼ τ1+1

2D

[
s2

2 − s2 log(s2)
]

.
  (4)

Figure 4. Separation of timescales and metastable regime. (a) Examples of bistable activity. (i, iv,i) - time courses; (ii, v) - histograms of unit’s value 
across time; (iii, vi) - histograms of dwell times. (a–i, ii, iii) An example of a probe unit  x2  with  s2 = 5 , embedded in a neural network with  N = 1000  
units,  N1 = N − 1  units with  s1 = 1  and  g = 1.5 . (a–iv, v, vi) An example of a probe unit driven by white noise. Note the differences in the x- axis 
scalings of the timecourses (a–i vs. a–iv and a–iii vs. a–vi).(b) The unified colored noise approximation stationary probability distribution (dark blue curve, 
Equation 19, its support excludes the shaded gray area) from the effective potential  Ueff   (dashed blue curve) captures well the activity histogram (light 
blue area; same as (a–ii)); whereas the white noise distribution (dark green curve, obtained from the naive potential  U  , dashed green curve) captures 
the probe unit’s activity (light green area; same as (a–v)) when driven by white noise, and deviates significantly from the activity distribution when the 
probe is embedded in our network. (c) Average dwell times, ⟨T⟩ , in the bistable states. Simulation results, mean, and 95%CI (blue curve and light blue 
background, respectively; An example of the full distribution of the dwell times is given in (a- iii)). Mean- field predictions (purple curve) were generated 
by calculating the average dwell times from a trace of  x2 , which was produced by solving the mean- field equations; Equation 2 simultaneously and 
consistently with Equation 3 with  n1 = 1  and  n2 = 0 . The mean first passage time from the unified colored noise approximation (Equation 22, black 
curve), and for a simplified estimate thereof (Equation 4, gray dashed line) capture well  ⟨T⟩ . When driven by white noise (green curve and light green 
curve are simulation results and simplified estimate using Equation 4, respectively), the probe’s average dwell times are orders of magnitude shorter 
than with colored noise, exhibiting substantial support of the probe distribution in the region where the crossing between wells happens (allowing 
frequent crossing,(a- iv) green line at  x = 0 ) and, equivalently, the low value of the potential around its maxima ((b) green dashed line at  x = 0 ). 
Comparison of white and colored noise demonstrates the central role of the self- consistent colored noise to achieve long dwell times.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Validation of universal colored noise approximation (UCNA) approach to estimate escape times.

https://doi.org/10.7554/eLife.86552
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In this slow probe regime, we thus achieved a parametric separation of timescales between the 
population  x1 , with its intrinsic timescale  τ1 , and the probe unit  x2  whose activity fluctuations exhibit 
two separate timescales: the slow timescale  < T >  of the dwelling in each of the bistable states and 
the fast timescale  τ1  of the fluctuations around the metastable states (obtained by expanding the 
dynamical equation around the meta- stable values  x

± = ±s2 ). One can generalize this metastable 
regime to a network with  N − p  units which belong to a group with  s1 = 1  and  p ≪ N   slow probe 
units  xα , for  α = 2, . . . , p + 1 , with large self- couplings  sα . The slow dynamics of each probe unit  xα  is 
captured by its own mean first passage time (between the bistable states)  < T >α  in (Equation 22) 
and all slow units are driven by a shared external colored noise  η(t)  with timescale  τ1 . In summary, in 
our model multiple timescales can be robustly generated with specific values, varying over several 
orders of magnitude.

Is the relationship between the unit’s self- coupling and its timescale relying on single- unit proper-
ties, or does it rely on network effects? To answer this question, we compare the dynamics of a unit 
when driven by a white noise input vs. the self- consistent input generated by the rest of the recurrent 
network (i.e. the mean- field). If the neural mechanism underlying the timescale separation was a prop-
erty of the single- cell itself, we would observe the same effect regardless of the details of the input 
noise. We found that the increase in the unit’s timescale as a function of  s2  is absent when driving the 
unit with white noise, and it only emerges when the unit is driven by the self- consistent mean- field 
(Figure 4c). We thus concluded that this neural mechanism is not an intrinsic property of a single unit 
but requires the unit to be part of a recurrently connected network.

A reservoir of timescales in E-I spiking networks
We next investigated whether the neural mechanism endowing the rate network (1) with a reservoir 
of timescales could be implemented in a biologically plausible model based on spiking activity and 
excitatory/inhibitory cell- type specific connectivity. To this end, we modeled the local cortical circuit as 
a recurrent network of excitatory (E) and inhibitory (I) current- based leaky integrated- and- fire neurons 
(see Methods:'Spiking network model'  for details), where both E and I populations were arranged 
in neural assemblies (Figure 5a; Amit and Brunel, 1997; Litwin- Kumar and Doiron, 2012; Wyrick 
and Mazzucato, 2021). Synaptic couplings between neurons in the same assembly were potentiated 
compared to those between neurons in different assemblies. Using mean- field theory, we found that 
the recurrent interactions of cell- type specific neurons belonging to the same assembly can be inter-
preted as a self- coupling, expressed in terms of the underlying network parameters as  s

E
i = J̄(in)

EE CE
i  , 

where  C
E
i   is the assembly size and  J̄

(in)
EE   is the average synaptic coupling between E neurons within 

the assembly (see Methods: 'Spiking network model' for details). The spiking network time- varying 
activity unfolds through sequences of metastable attractors (Litwin- Kumar and Doiron, 2012; Wyrick 
and Mazzucato, 2021), characterized by the co- activation of different subsets of neural assemblies 
(Figure 5a). These dynamics rely on the bistable activity of each assembly, switching between high and 
low firing rate states. The dwell time of an assembly in a high- activity state increases with larger sizes 
and with stronger intra- assembly coupling strength (Figure 5b). This metastable regime in spiking 
networks is similar to the bi- stable, heterogeneous timescales activity observed in the random neural 
networks endowed with heterogeneous self- couplings. We further examined the features of the meta-
stable regime in spiking networks in order to compare the mechanism underlying the heterogeneous 
timescale distributions in the rate and spiking models. The two models exhibit clear differences in 
their “building blocks”. In the rate network, the transfer function is odd ( tanh ) leading to bistable 
states with values localized around  x± ≃ ±s . In the spiking model, the single neuron current- to- rate 
transfer function is strictly positive so that the bistable states can have both high and low firing rate 
values. As a result, in the spiking network, unlike in the rate network, a variety of firing rate levels can 
be attained during the high activity epochs, depending on both the assembly size and the the number 
of other simultaneously active assemblies. In other words, the rate level depends on the specific 
network attractor visited within the realization of the complex attractor landscape (Mazzucato et al., 
2015; Wyrick and Mazzucato, 2021).

Despite these differences, we found crucial similarities between the time- varying activity in 
the two models related to the underlying neural mechanism. The characteristic timescale  T   of the 
assembly metastable dynamics can be estimated from its average activation time (Figure 5a and 
b). We tested whether the heterogeneity in the assembly self- coupling distribution could lead to a 

https://doi.org/10.7554/eLife.86552
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Figure 5. Heterogeneity of timescales in E- I spiking networks. (a) Top: Schematic of a spiking network with excitatory (black) and inhibitory populations 
(red) arranged in assemblies with heterogeneous distribution of sizes. Bottom: In a representative trial, neural assemblies activate and deactivate 
at random times generating metastable activity (one representative E neuron per assembly; larger assemblies on top; representative network of 

 N = 10, 000  neurons), where larger assemblies tend to activate for longer intervals. (b) The average activation times <T> of individual assemblies 
(blue dots; the average was calculated across 100s simulation and across all neurons within the same assembly for all assemblies in 20 different 
network realizations; self- coupling units are in [mV], see Methods section). Fit of  log(T) = a2s2

E + a1sE + a0  with  a2 = 0.14, a1 = 1.97, a0 = 5.51  (pink 
curve). Inset: cross- validated model selection for polynomial fit. As the assembly strength (i.e. the product of its size and average recurrent coupling) 
increases, <T> increases, leading to a large distribution of timescales ranging from 20 ms to 100s. (c) Eigenvalue distribution of the full weight matrix  J   
(brown) and the mean- field- reduced weight matrix  JMF   (pink). (d) The Schur eigenvectors of the weight matrix  JMF   show that the slow (gapped) Schur 
eigenvalues (top) are associated with eigenvectors corresponding to E/I cluster pairs (bottom). See Appendix (e) Spiking network model for more details 
and for the scaling to larger networks.

https://doi.org/10.7554/eLife.86552
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heterogeneous distribution of timescales. We endowed the network with a heterogeneous distri-
bution of assembly sizes (an additional source of heterogeneity originates from the Erdos- Renyi 
connectivity), yielding a heterogeneous distribution of self- couplings (Figure 5b). We found that the 
assembly activation timescales  T   grew as the assembly’s self- coupling increased, spanning overall 
a large range of timescales from 20 ms to 100  s i.e. the whole range of our simulation epochs 
(Figure 5b). In particular, the functional dependence of  log(T)  vs. self- coupling  sE  was best fit by 
a quadratic polynomial (Figure  5b inset, see Methods: 'Spiking network model'  for details), in 
agreement with the functional dependence obtained from the analytical calculation in the rate 
model (4). We thus concluded that a reservoir of timescales can naturally emerge in biologically 
plausible spiking models of cortical circuits from a heterogeneous distribution of assembly sizes. 
Both the range of timescales (20 ms- 100 s) (Cavanagh et al., 2016) and the distribution of assembly 
sizes (50–100 neurons) (Perin et al., 2011; Marshel et al., 2019) are consistent with experimental 
observations.

What is the relationship between the distribution of timescales in the E/I spiking model and the 
chaotic rate network? We can obtain crucial insights by combining analysis of the synaptic weight 
matrix together with a mean- field approach in a linear approximation, following the approach of 
Murphy and Miller, 2009; Schaub et  al., 2015. In the spiking network, the non- normal weight 
matrix  J   exhibits the typical E/I structure with the four submatrices representing E/I cell- type specific 
connectivity; within each of the four E/I submatrices, diagonal blocks highlight the paired E/I clus-
tered architecture (the heterogeneous distribution of cluster sizes is manifest in the increasing size 
of the diagonal blocks, Appendix 2—figure 1a). To interpret the dynamical features emerging from 
this weight matrix, we examined a mean- field reduction of the  N  - dimensional network to a set of 

 2p + 2  mean- field variables, representing the  2p  E and I clusters plus the two unclustered background 
E and I populations (see Appendix 2). The  2p + 2  eigenvalues of the mean- field- reduced weight 
matrix  JMF  comprise a subset of the full weight matrix  J  , capturing the salient features of the spiking 
network dynamics in a linear approximation (Figure 5c; see Appendix 2 and Murphy and Miller, 
2009; Schaub et al., 2015). The weights matrix  JMF  exhibits a spectral gap, beyond which a distri-
bution of  p − 1  eigenvalues with real parts larger than one correspond to slow dynamical modes. 
To identify these slow modes, we examined the Schur eigenvectors of  JMF , which represent inde-
pendent dynamical modes in the linearized theory (i.e. an orthonormal basis; see Appendix 2 and 
Appendix 2—figure 2).

We found that the Schur eigenvectors associated with those large positive eigenvalues can be 
approximately mapped onto E/I cluster pairs. More specifically, eigenvalues with increasingly larger 
values correspond to assemblies of increasingly larger sizes (Figure 5c), which, in turn, are associated 
with slower timescales (Figure  5b). We conclude that the slow switching dynamics in the spiking 
network is linked to large positive eigenvalues of the synaptic weight matrix, and the different times-
cales emerge from a heterogeneous distribution of these eigenvalues. For comparison, in the chaotic 
rate network, the eigenvalue distribution of the weight matrix exhibits a set of eigenvalues with large 
positive real parts as well, Appendix 2—figure 3a. The relation between the value of an eigenvalue 
and the slow dynamics holds in the rate networks as well: increasingly larger eigenvalues correspond 
to increasingly larger cluster self- couplings (Appendix 2—figure 3) which are associated with slower 
dynamics (Figure 3aii). Therefore, the dynamical structure in the rate networks qualitatively matches 
the structure uncovered in the mean- field- reduced spiking network weight matrix  JMF  (Figure 5C). 
In summary, our analysis shows that in both spiking and rate networks the reservoir of timescales is 
associated with the emergence of a heterogeneous distribution of large positive eigenvalues in the 
weight matrix. This analysis suggests that the correspondence between rate networks and spiking 
networks should be performed at the level of dynamical modes associated with these large positive 
eigenvalues in the Schur basis, where rate units in the rate network can be related to E/I cluster pairs 
(Schur eigenvectors) in the spiking network. A potential difference between the two models may be 
related to the nature of the transitions between bistable states in the rate network vs the transitions 
between low and high activity states in the spiking network. In the rate network, transitions are driven 
by the self- consistent colored noise, the hallmark of the chaotic activity arising from the disorder in 
the synaptic couplings. In the spiking network, although the disorder in the inter- assembly effective 
couplings may contribute to the state transitions, there might be finite size effects at play, due to the 
small assembly size.

https://doi.org/10.7554/eLife.86552
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Spatial de-mixing of time-varying broadband input
What are the computational benefits of having multiple timescales simultaneously operating in the 
same circuit? Previous work in random networks with no self- couplings ( si = 0  in Equation 1) showed 
that stimulus- driven suppression of chaos is enhanced at a particular input frequency, related to the 
network’s intrinsic timescale (Rajan et  al., 2010). The phenomenon was preserved when a single 
rate of adaptation was added to all units (Muscinelli et al., 2019). We investigated whether, in our 
network with two different self- couplings  s1 < s2  (in the chaotic regime), the stimulus- dependent 
suppression of chaos exhibited different features across the two sub- populations, depending on 
their different intrinsic timescale. We drove each network unit  xi  with an external broadband stimulus 

 
Ii(t) = A

L∑
l=1

sin(2πflt + θi)
 
 consisting of the superposition of  L  sinusoidal inputs of different frequencies 

 fl  in the range  1 − 200  Hz, with an equal amplitude  A = 0.5  and random phases  θi . We found that the 
sub- population with a slow, or fast, intrinsic timescale preferentially entrained its activity with slower, 
or faster, spectral components of the broadband stimulus, respectively (Figure 6a). We quantified this 
effect using a spectral modulation index  m(f) = [(P2(f) − P1(f))/(P2(f) + P1(f))] , where  Pα(f)  is the power- 
spectrum peak of sub- population  α  at the frequency  f   (Figure 6b). A positive, or negative, value of 

 m(f)  reveals a stronger, or weaker, respectively, entrainment at frequency  f   in the sub- population  s2  
compared to  s1  exhibited a crossover behavior whereby the low frequency component of the input 
predominantly entrained the slow population  s2 , while the fast component of the input predomi-
nantly entrained the fast population  s1 . When fixing  s1 = 1  and varying  s2 , we found that the depen-
dence of the crossover frequency  fc  on  s2  was strong at low input amplitudes and was progressively 
tamed at larger input amplitudes (Figure 6c). This is consistent with the fact that the input amplitude 
completely suppresses chaos beyond a certain critical value, as previously reported in network’s with 
no self- couplings (Rajan et al., 2010) and with adaptation (Muscinelli et al., 2019).

Discussion
We demonstrated a new robust and biologically plausible network mechanism whereby multiple 
timescales emerge across units with heterogeneous self- couplings. In our model, units are interpreted 
as neural assemblies consistent with experimental evidence from cortical circuits (Perin et al., 2011; 
Lee et al., 2016; Kiani et al., 2015; Miller et al., 2014; Marshel et al., 2019), and previous theoret-
ical modeling (Litwin- Kumar and Doiron, 2012; Wyrick and Mazzucato, 2021). We found that the 
neural mechanism underlying the large range of timescales is the heterogeneity in the distribution of 
self- couplings (representing neural assembly size). We showed that this mechanism can be naturally 
implemented in a biologically plausible model of a neural circuit based on spiking neurons with excit-
atory/inhibitory cell- type specific connectivity. This spiking network represents a microscopic realiza-
tion of our mechanism where neurons are arranged in assemblies, and an assembly’s self- coupling 
represents the strength of the recurrent interactions between neurons belonging to that assembly, 
proportional to its size. A heterogeneous distribution of assembly sizes, in turn, generates a reservoir 

Figure 6. Network response to broadband input. (a) Power spectrum density of a network driven by time- dependent input comprising a superposition 
of 11 sinusoidal frequencies (see main text for details). Maroon and navy curves represent average power spectrum density in  s1  and  s2  populations, 
respectively; circles indicate the peak in the power spectrum density amplitudes at each frequency; amplitude A = 0.5,  g = 3.0 ,  s1 = 1 , and  s2 = 4 . (b) 
Modulation index of the power spectrum density amplitudes as a function of frequency in networks with  s1 = 1  and various  s2 . The blue circles mark the 
cutoff frequency  fc  where the modulation index changes sign. (c) Cutoff period,  2πω

−1
c  , as a function of self- coupling  s2  for different input amplitudes. 

An inversely proportional relation between the cutoff period and the amplitude of the broadband signal is present.

https://doi.org/10.7554/eLife.86552
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of timescales. Crucially, our model captured the distribution of intrinsic timescales observed across 
neurons recorded within the same area in primate cortex (Cavanagh et al., 2016).

Several experimental studies uncovered heterogeneity of timescales of neural activity across brain 
areas and species. Comparison of the population- averaged autocorrelations across cortical areas 
revealed a hierarchical structure, varying from 50 ms to 350 ms along the occipital- to- frontal axis 
(Murray et al., 2014). Neurons within the same area exhibit a wide distribution of timescales as well. 
A heterogeneous distribution of timescales (from 0.5 s to 50 s) was found across neurons in the oculo-
motor system of the fish (Miri et al., 2011) and primate brainstem (Joshua et al., 2013), suggesting 
that timescale heterogeneity is conserved across phylogeny. During periods of ongoing activity, the 
distribution of single- cell autocorrelation timescales in primates was found to be right- skewed and 
approximately lognormal, ranging from 10 ms to a few seconds (Cavanagh et al., 2016 and Figure 3). 
Single neuron activity was found to encode long reward memory traces in primate frontal areas over 
a wide range of timescales up to 10 consecutive trials (Bernacchia et al., 2011). In these studies, 
autocorrelation timescales were estimated using parametric fits, which may be affected by statistical 
biases, although Bayesian generative approaches might overcome this issue (Zeraati et al., 2020). 
In our model, we estimated timescales nonparametrically as the half- width at half- maximum of the 
autocorrelation function. In our biologically plausible model based on a spiking network with cell- type 
specific connectivity, the distribution of timescales was in the range between 20 ms and 100 s, similar 
to the range of timescales observed in experiments (Miri et al., 2011; Joshua et al., 2013; Cavanagh 
et al., 2016). Moreover, the distribution of assembly sizes in our model is within the range of 50–100 
neurons, consistent with the size of functional assemblies experimentally observed in cortical circuits 
(Perin et al., 2011; Marshel et al., 2019). A fundamental new prediction of our model, to be tested 
in future experiments, is the direct relationship between assembly size and its timescale.

Previous neural mechanisms for generating multiple timescales of neural activity relied on single- 
cell bio- physical properties, such as membrane or synaptic time constants (Gjorgjieva et al., 2016). In 
feedforward networks, developmental changes in single- cell conductance can modulate the timescale 
of information transmission, explaining the transition from slow waves to rapid fluctuations observed 
in the developing cortex (Gjorgjieva et al., 2014). However, the extent to which this single- cell mech-
anism might persist in the presence of strong recurrent dynamics was not assessed. To elucidate this 
issue, we examined whether a heterogeneous distribution of single- unit integration time constants 
could lead to a separation of timescales in a random neural network (see Appendix 3 for details). 
In this model, half of the units were endowed with a fixed fast time constant and the other half with 
a slow time constant, whose value varied across networks. We found that, although the average 
network timescale increased proportionally to the value of the slower time constants, the difference 
in autocorrelation time between the two populations remained negligible. These results suggest that, 
although the heterogeneity in single- cell time constants may affect the dynamics of single neurons 
in isolation or within feedforward circuits (Gjorgjieva et  al., 2014), the presence of strong recur-
rent dynamics fundamentally alters these single- cell properties in a counterintuitive way. Our results 
suggest that a heterogeneity in single- cell time constants may not lead to a diversity of timescales in 
the presence of recurrent dynamics.

Our results further clarified that the relationship between an assembly’s self- coupling and its times-
cale relies on the strong recurrent dynamics. This relationship is absent when driving an isolated 
assembly with white noise external input (Figure 4). Indeed, the mechanism linking the self- coupling to 
the timescale only emerged when driving the unit with a mean- field whose color was self- consistently 
obtained from an underlying recurrent network of self- coupled units.

Previous models showed that a heterogeneity of timescales may emerge from circuit dynamics 
through a combination of structural heterogeneities and heterogeneous long- range connections 
arranged along a spatial feedforward gradient (Chaudhuri et  al., 2014; Chaudhuri et  al., 2015). 
These networks can reproduce the population- averaged hierarchy of timescales observed across the 
cortex in the range of 50–350 ms (Murray et al., 2014; Chaudhuri et al., 2015). A similar network 
architecture can also reproduce the heterogeneous relaxation time after a saccade, found in the brain-
stem oculomotor circuit (Miri et al., 2011; Joshua et al., 2013), in a range between 10–50 s (Inagaki 
et al., 2019; Recanatesi et al., 2022). This class of models can explain a timescale separation within 
a factor of 10, but it is not known whether they can be extended to several orders of magnitude, as 
observed between neurons in the same cortical area (Cavanagh et al., 2016). Moreover, while the 
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feedforward spatial structure underlying these two models is a known feature of the cortical hierarchy 
and of the brainstem circuit, respectively, it is not known whether such a feedforward structure is 
present within a local cortical circuit. Our model, on the other hand, relies on strong recurrent connec-
tivity and local functional assemblies, two hallmarks of the architecture of local cortical circuits (Perin 
et al., 2011; Lee et al., 2016; Kiani et al., 2015; Miller et al., 2014; Marshel et al., 2019). Other 
network models generating multiple timescales of activity fluctuations were proposed based on self- 
tuned criticality with anti- hebbian plasticity (Magnasco et  al., 2009), or multiple block- structured 
connectivity (Aljadeff et al., 2015).

In our model, the dynamics of units with large self- couplings, exhibiting slow switching between 
bistable states, can be captured analytically using the universal colored noise approximation (UCNA) 
to the Fokker- Planck equation (Hänggi and Jung, 1995; Jung and Hänggi, 1987). This is a classic tool 
from the theory of stochastic processes, which we successfully applied to investigate neural network 
dynamics for the first time. This slow- switching regime may underlie the emergence of metastable 
activity, ubiquitously observed in the population spiking activity of behaving mammals (Abeles et al., 
1995; Jones et al., 2007; Mazzucato et al., 2015; Mazzucato et al., 2019; Recanatesi et al., 2022; 
Engel et al., 2016; Kadmon Harpaz et al., 2019). In these spiking networks, it is not known how 
to estimate the timescales of metastable activity from network parameters, and we anticipate that 
our UCNA may provide a powerful new tool for investigating network dynamics in these biologically 
plausible models.

What is the functional relevance of neural circuits exhibiting a reservoir of multiple timescales? The 
presence of long timescales deeply in the chaotic regime is a new feature of our model which may be 
beneficial for memory capacity away from the edge of chaos (Toyoizumi and Abbott, 2011). More-
over, we found that, in our model, time- dependent broadband inputs suppress chaos in a population- 
specific way, whereby populations of large (small) assemblies preferentially entrain slow (fast) spectral 
components of the input. Previously studied spiking models suggested that preferential entrainment 
of input is possible by cellular mechanisms (Lindner, 2016) or finite- size fluctuations in a feedfor-
ward network structure (Deger et al., 2014). Here, we presented a recurrent network mechanism for 
population- specific chaos suppression, independent of the network size. This mechanism may thus 
grant recurrent networks with a natural and robust tool to spatially demix complex temporal inputs 
(Perez- Nieves et al., 2021) as observed in visual cortex (Mazzoni et al., 2008). Third, the presence 
of multiple timescales may be beneficial for performing flexible computations involving simultane-
ously fast and slow timescales, such as in role- switching tasks (Iigaya et al., 2019) or as observed in 
time cells in the hippocampus (Kraus et al., 2013; Howard et al., 2014). A promising direction for 
future investigation is the exploration of the computational properties of our model in the context of 
reservoir computing (Sussillo and Abbott, 2009) or recurrent networks trained to perform complex 
cognitive tasks (Yang et al., 2019).

Methods
Dynamic mean-field theory with multiple self-couplings
We derive the dynamic mean- field theory in the limit  N → ∞  by using the moment generating func-
tional (Sompolinsky and Zippelius, 1982; Crisanti and Sompolinsky, 1987). For the derivation we 
follow the Martin- Siggia- Rose- De Dominicis- Janssen path integral approach formalism (Martin et al., 
1973) as appears extensively in Helias and Dahmen, 2020; we borrow their notations as well.

The model includes two sets of random variables, the connectivity couplings   Jij  for  1 ≤ i, j ≤ N; i ̸= j , 

are drawn independently from a Gaussian distribution with variance 
 
1
N  

 and mean 0; and the self- couplings 

 si  for  1 ≤ i ≤ N  , whose values are of order 1. When we examine the dynamics governing each unit in 
Equation 1, the sum over the random couplings  Jij  contributes  N   terms which, in the limit  N → ∞ , 
ensure that the net contribution (mean and variance) from this sum remains of order 1. Hence, in 
our model, as in previous models,  J   is the quenched disorder parameter, whose sum gives rise to 
the mean- field. The self- couplings (one for each unit) contribute an additional term to the moment 
generating functional. Each unit’s activity strongly depends on the value of its own self- coupling, and 
hence can’t be averaged over when we study a unit’s dynamics. After averaging over  J  , we can study 
all units with the same self- coupling together, as they obey the same mean- filed equation, Equation 2. 
Moreover we show that all units, regardless of their self- coupling, obey a single mean- field due to the 
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structure of  J  . We note that the results of this Methods section, including Equation 5 and Equation 
6, will not be affected by diagonal elements in J which are not zero but rather drawn from the same 
distribution as the off- diagonal elements (as in the main text) since the contribution of such non- zero 
elements is negligible overall. To maintain the clarity of the text, and since the results are not affected 
by it, we left out the differentiation between including and excluding diagonal elements of J of order 
1/sqrt(N) in the main text.

For our model, Equation 1, the moment generating functional is, therefore, given by:

 

Z =
ˆ

Dx̃Dx exp
[ ´

dt
∑N

i=1 x̃i(t)
[
(∂t + 1)xi(t) − siϕ(xi(t))

]

+
N∑

i=1
λi(t)xi(t) −

∑
j ̸=i x̃i(t)Jijϕ(xj(t))

]
,

  

(5)

where 
 
Dx =

∏
i
Dxi

 
 and 

 
Dx̃ =

∏
i
Dx̃i/2πi

 
. To start, we calculate  ⟨Z(J)⟩J  . We take advantage of the 

self- averaging nature of our model, particularly by averaging over the quenched disorder,  J  . The 
couplings,  Jij , are i.i.d. variables extracted from a normal distribution and appear only in the last term 
in (Equation 5). We, hence, focus our current calculation step on that term, and we derive the result 
to the leading term in  N  , yielding:

 

´ ∏
i̸=j dJij

√
N

2πg2 exp

[
−

J2
ijN

2g2

]
exp

[
−
´

dt x̃i(t)Jijϕ(xj(t))
]

= exp

[
1
2
´

dtdt′
(∑

i x̃i(t)x̃i(t′)
)(g2

N
∑

j ϕ(xj(t))ϕ(xj(t′))

)]
.
  

(6)

The result above suggests that all the units in our network are coupled to one another equivalently 
(by being coupled only to sums that depend on all units’ activity). To further decouple the network, 
we define the quantity

 
Q1(t, t′) ≡ g2

N
∑

j
ϕ(xj(t))ϕ(xj(t′)).

  

We enforce this definition by multiplying the disordered averaged moment generating functional 
with the appropriate Dirac delta function,  δ , in its integral form:

 

1 =
´ g2

N
dQ1δ

[
− N

g2 Q1 +
∑

j ϕ(xj(t))ϕ(xj(t′))
]

=
´ g2

N
dQ1dQ2 exp Q2

[
− N

g2 Q1 +
∑

j ϕ(xj(t))ϕ(xj(t′))
]
,
  

where  dQ2  is an integral over the imaginary axis (including its  1/(2πi)  factor). We can now rewrite the 
disordered averaged moment generating functional, using (Equation 6) to replace its last term, the 
definition of  Q1 , and with multiplying the functional by the  δ  function above. All together we get:

 

⟨Z(J)⟩J =
´ g2

N
dQ1dQ2 exp

[
− N

g2
´

dtdt′Q1Q2 + N
∑

α∈A nα ln[Zα]
]
,

Zα =
´
Dx̃αDxα exp

[ ´
dtx̃α(t)

(
(∂t + 1)xα(t) − sαϕ(xα(t))

)

+ 1
2
´

dtdt′x̃α(t)Q1(t, t′)x̃α(t′) +
´

dtdt′ϕ(xα(t))Q2(t, t′)ϕ(xα(t′))
]

,
  

(7)

with  nα = Nα/N   the fraction of units with self- couplings  sα  across the population, for  α ∈ A . In the 
expression above we made use of the fact that  Q1  and  Q2 , now in a role of auxiliary fields, couple to 
sums of the fields  x

2
i   and  ϕ

2
i   and hence the generating functional for  xi  and  ̃xi  can be factorized with 

identical multiplications of  Zα . Note that in our network, due to the dependency on  si ,  xi - s are equiv-
alent as long as  si - s are equivalent. Hence, the factorization is for  Zα  for all  xi  with  si = sα . Now each 
factor  Zα  includes the functional integrals  Dxα  and  Dx̃α  for a single unit with self- coupling  sα .
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In the large  N   limit we evaluate the auxiliary fields in (Equation 7) by the saddle point approach.e 
note variable valued at the saddle point by ( ∗ ), obtaining:

 
0 = δ

δQ1,2

[
− 1

g2

ˆ
dtdt′Q1Q2 +

∑
α∈A

nα ln[Zα]

]
,
  

and yielding the saddle point values  (Q
∗
1 , Q∗

2 ) :

 

0 = − 1
g2 Q∗

1 (t, t′) +
∑

α∈A
nα
Zα

∂Zα

∂Q2(t, t′)

����
Q∗

⇔ Q∗
1 (t, t′) = g2 ∑

α∈A nα⟨ϕ(xα(t))ϕ(xα(t′))⟩ ≡ g2C(τ ),  

(8)

 

0 = − 1
g2 Q∗

2 (t, t′) +
∑

α∈A
nα
Zα

∂Zα

∂Q1(t, t′)

����
Q∗

⇔ Q∗
2 (t, t′) = g2

2
∑

α∈A nα⟨x̃α(t)x̃α(t′)⟩ = 0,
  

(9)

where  C(τ ) , with  τ = t′ − t , represents the average autocorrelation function of the network (as was 
defined in the main text, Equation 3). The second saddle point  Q

∗
2 = 0  vanishes due to  ⟨x̃α(t)x̃α(t′)⟩ = 0  

as can be immediately extended from Helias and Dahmen, 2020; Sompolinsky and Zippelius, 1982. 
The action at the saddle point reduces to the sum of actions for individual, non- interacting units with 
self- coupling  sα . All units are coupled to a common external field  Q

∗
1 . Inserting the saddle point values 

back into Equation 7, we obtain 
 
Z∗ =

∏
α

(Z∗
α)Nα

 
 where

 

Z∗
α ∼

´
Dx̃αDxα exp

∑
α∈A

( ´
dtx̃α(t)

(
(∂t + 1)xα(t)

−sαϕ(xα(t))
)

+ g2

2
´

dtdt′x̃α(t)C(τ )x̃α(t′)
)

.
  

(10)

Thus in the large  N   limit the network dynamics are reduced to those of a number of  A  units  xα(t) , 
each represents the sub- population with self- couplings  sα  and follows dynamics governed by

 
d
dt

xα(t) = −xα(t) + sαϕ[xα(t)] + η(t)
  

(11)

for all  α ∈ A  and where  η(t)  is a Gaussian mean- field with autocorrelation

 
⟨η(t)η(t′)⟩ = g2 ∑

α∈A
nα⟨ϕ(xα(t))ϕ(xα(t′))⟩.

  
(12)

The results above can be immediately extended for the continuous case of self- coupling distribu-
tion  P(s)  yielding:

 
⟨η(t)η(t′)⟩ = g2

ˆ
p(s)ϕ(x(s, t))ϕ(x(s, t′))ds

  
(13)

with  p(s)  the density function of the self- couplings distribution in the network and the units dynamics 
dependent on their respective self- couplings:

 
d
dt

x(s, t) = −x(s, t) + sϕ[x(s, t)] + η(t) .
  

(14)

An iterative solution
We use an iterative approach to solving the mean- field equations, Equation 11 and Equation 12 for a 
discrete distribution of self- couplings, or Equation 13 and Equation 14 for a continuous distribution 
of self couplings. The approach is adopted from Stern et al., 2014 and adapted to allow for a consid-
eration of multiple self- couplings. We briefly describe it in what follows. We start by making an initial 
guess for the mean- field autocorrelation function  C(τ ) , as defined in Equation 3. In its Fourier space, 
we multiply it by a random angle and  g  and transform it back to generate an instance of the mean- 
field  η(t)  (see Stern et al., 2014 for more details). We create additional  η(t)  instances by repeating the 
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procedure described above. At least one instance is created per each value  sα  drawn from a discrete 
distribution  P(s)  of self- couplings with support set  S , or per each value  sα  drawn from  P(s)  in a case 
of a continuous distribution. We then solve Equation 11 (or equivalently Equation 14 in the case 
of a continuous distribution) to obtain solutions for  xα , one solution for each value of  sα . The set of 
solutions allows us to calculate the set  cα(t, t′) = ⟨ϕ(xα(t))ϕ(xα(t′))⟩ . For a discrete distribution, we then 
multiply each  cα  by its relative weight  nα  to compute  C(τ ) , Equation 12. For a continuous distribution, 
we sum all  cα , multiplied by  1/n , with  n  their amount, to estimate  C(τ ) , Equation 13 (since  sα  values 
were drawn from  P(s)  each  cα  captures approximately  1/n  of the distribution). We use these sampled 
mean- field autocorrelations  C(τ )  instead of our initial guess to repeat the entire procedure. This leads 
to obtaining another  C(τ ) . We iterate until the average across iterations of  C(τ )  converges. We note 
that for the continuous distribution case, we increase the number of drawn  sα  values as the iterations 
progress (starting from very few and ending with many). This allows us to maintain a rapid iterative 
process and yet receive an accurate solution thanks to the refining of the process with each iteration.

Fixed points and transition to chaos
Networks with heterogeneous self- couplings exhibit a complex landscape of fixed points  x

∗
α , obtained 

as the self- consistent solutions to the static version of Equation 2 and Equation 3, namely

 xα − sα tanh(xα) = η ,  (15)

where the mean- field  η  is a Gaussian random variable with zero mean and its variance is given by

 ⟨η2⟩ = g2C , C =
∑

α∈A nα⟨ϕ[xα]2⟩ .  (16)

The solution for each unit depends on its respective  sα  (Appendix 1- Figure 1). If  sα < 1  a single 
interval around zero is available. For  sα > 1 , for a range of values of  η ,  x

∗
α  can take values in 1 of 3 

possible intervals. Let us consider a network with two sub- populations with  n1  and  n2 = 1 − n1  portions 
of the units with self- couplings  s1  and  s2 , respectively. In the  (s1, s2)  plane, this model gives rise to a 
phase diagram with a single chaotic region separating four disconnected stable fixed- point regions 
(Figure 2a). We will first discuss the stable fixed points, which present qualitatively different structures 
depending on the values of the self- couplings. Within the region of both self- couplings  s1, s2 < 1 , 
the only possibility for a stable fixed point is the trivial solution, with all  xi = 0  (Figure 2a), where the 
network activity quickly decays to zero. When at least one self- coupling is greater than one, there are 
three stable fixed point regions (Figure 2a); in these three regions, the network activity starting from 
random initial conditions unfolds via a long- lived transient period, and then it eventually settles into a 
stable fixed point. This transient activity with late fixed points is a generalization of the network phase 
found in Stern et al., 2014. When both self- couplings are greater than one ( s1, s2 > 1 ) the fixed point 
distribution in each sub- population is bi- modal (Figure 2a–ii). When  s1 > 1  and  s2 < 1 , the solutions for 
the respective sub- populations are localized around bi- modal fixed points and around zero, respec-
tively (Figure 2a–i).

However, the available solutions in the latter case are further restricted by stability conditions. In 
the next Methods section we derive the stability condition by expanding the dynamical Equation 1 
around the fixed point and requiring that all eigenvalues of the corresponding stability matrix are 
negative. Briefly, the  nα  fraction of units with  sα > 1  at a stable fixed point are restricted to have 
support on two disjoint intervals  [x

∗
α(sα) < x−α (sα)] ∪ [x∗α(sα) > x+

α(sα)] . We refer to this regime as multi- 
modal, a direct generalization of the stable fixed points regime found in Stern et al., 2014 for a single 
self- coupling  s > 1 , characterized by transient dynamics leading to an exponentially large number of 
stable fixed points. For the  nα  portion of units with  sα < 1 , the stable fixed point is supported by a 
single interval around zero.

Stability conditions
To determine the onset of instability, we look for conditions such that at least one eigenvalue develops 
a positive real part. An eigenvalue of the stability matrix exists at a point  z  in the complex plane if 
Stern et al., 2014; Ahmadian et al., 2015
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g2 ∑
α∈A

nα

⟨ [
1 − tanh2(xα)

]2

[
z + 1 − sα

(
1 − tanh2(xα)

)]2

⟩
> 1.

  

(17)

The denominator of the expression above is  z  plus the slope of the curve in Appendix 1—figure 
1 ai and aii. Hence, a solution whose value  x

∗
α  gives a negative slope (available when  sα > 1 ) leads to 

a vanishing value of the denominator at some positive  z  and to a positive eigenvalue and instability. 
Therefore, the  nα  fraction of units with  sα > 1  at a stable fixed point are restricted to have support 
on two disjoint intervals  [x

∗
α(sα) < x−α (sα)] ∪ [x∗α(sα) > x+

α(sα)] . We refer to this regime as multi- modal, 
a direct generalization of the stable fixed points regime found in Stern et al., 2014 for a single self- 
coupling  s > 1 , characterized by transient dynamics leading to an exponentially large number of stable 
fixed points. For the  nα  portion of units with  sα < 1 , the stable fixed point is supported by a single 
interval around zero.

A fixed point solution becomes unstable as soon as an eigenvalue occurs at  z = 0 , obtaining from 
Equation 17 the stability condition

 
g2 ∑

α∈A
nα⟨q−1

α ⟩ ≤ 1 ,
  

(18)

where 
 
qα =

[
sα − cosh2(xα)

]2

 
. For  sα > 1  the two possible consistent solutions to (Equation 15) 

that may result in a stable fixed point (from the two disjoint intervals in Appendix 1—figure 1a- i), 
contribute differently to  qα . Larger  |x

∗
α|  decreases  q

−1
α   (Appendix  1—figure 1b–i), thus improving 

stability. Choices for distributions of  x
∗
α  along the two intervals become more restricted as  g  increases 

or  sα  decreases, since both render higher values for the stability condition, Equation 18, forcing more 
solutions of  xi  to decrease  q

−1
α  . This restricts a larger fraction of  x

∗
α  at the fixed points to the one 

solution with a higher absolute value. At the transition to chaos, a single last and most stable solution 
exists with all  xi  values chosen with their higher absolute value  x

∗
α  (Appendix 1—figure 1b–i, light 

green segments). For those with  sα < 1  only one solution is available, obtained by the distribution of 

 η  through consistency (Equation 15) at the fixed point. In this configuration, the most stable solution 
is exactly transitioning from stability to instability where (Equation 18) reaches unity. Hence, the tran-
sition from stable fixed points to chaos occurs for a choice of  g  and  P(s)  such that solving consistently 
(Equation 15) and (Equation 16) leads to saturation of the stability condition (Equation 18) at one.

Universal colored-noise approximation to the Fokker-Planck theory
We consider the special case of a network with two self- couplings where a large sub- population 
( N1 = N − 1 ) with  s1 = 1  comprises all but one slow probe unit,  x2 , with large self- coupling  s2 ≫ s1 . The 
probe unit obeys the dynamical equation  dx2/dt = f(x2) + η(t) , with  f(x) = −x + s2ϕ(x) . In the large  N   
limit, we can neglect the backreaction of the probe unit on the mean- field and approximate the latter 
as an external Gaussian colored noise  η(t)  with autocorrelation  g

2C(τ ) = g2⟨ϕ[x1(t)]ϕ[x1(t + τ )]⟩ , inde-

pendent of  x2 . The noise  η(t)  can be parameterized by its strength, defined as 
 
D =
ˆ ∞

0
dτ C(τ )

 
 and 

its timescale (color)  τ1 . For large  s2 , the dynamics of the probe unit  x2  can be captured by a bi- stable 
chaotic phase whereby its activity is localized around the critical points  x2 = x± ≃ ±s2  (Figure 4a–i) 
and switches between them at random times. In the regime of colored noise (as we have here, with 

 τ1 ≃ 7.9 ≫ 1 ), the stationary probability distribution  p(x)  (for  x ≡ x2 , Figure 4a–ii and b) satisfies the 
unified colored noise approximation to the Fokker Planck equation (Hänggi and Jung, 1995; Jung 
and Hänggi, 1987):

 p(x) = Z−1|h(x)| exp
[
−Ueff(x)/D

]
,  (19)

where  Z   is a normalization constant,  h(x) ≡ 1 − τ1f ′(x) , and the effective potential 
 
Ueff(x) = −

ˆ x
f(y)h(y)dy

 
 

is therefore:

 
Ueff = x2

2
− s2 log cosh(x) + τ1

2
f(x)2 − Umin .

  
(20)
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The distribution  p(x)  has support in the region  h(x) > 0  comprising two disjoint intervals  |x| > xc  

where 
 
tanh(xc)2 = 1 − 1 + τ1

τ1s2  
 (Figure  4b). Moreover, the probability distribution is concentrated 

around the two minima  x
± ≃ ±s2  of  Ueff  . The new UCNA- based term 

 
τ1
2

f ′(x)2
 
 dominates the effective 

potential. The main effect of the strong color  τ1 ≫ 1  is to sharply decrease the variance of the distribu-
tion around the minima  x± . This is evident from comparing the colored noise with white noise, when 
the latter is driving the same bi- stable probe  dx2/dt = −x2 + s2ϕ(x2) + ξ(t) , where  ξ(t)  is a white noise 
with an equivalent strength to the colored noise, Figure 4iv- vi. The naive potential for the white noise 
case  U = x2/2 − s2 log cosh(x)  is obtained from Equation 19 by sending  τ1 → 0  in the prefactor  h  and 
in potential  Ueff  . It results in wider activity distribution compared to our network generated colored 
noise, in agreement with the simulations, Figure 4b.

In our colored- noise network, the probe unit’s temporal dynamics are captured by the mean first 
passage time  ⟨T⟩  for the escape out of the potential well:

 
⟨T⟩ =

ˆ −xc

−s2

dx
D

h(x)2

p(x)

ˆ x

−∞
p(y)dy ,

  
(21)

where the upper limit  xc  in the outer integral is the edge of the support of  p(x) . In the small  D  approx-
imation, we can evaluate the integrals by steepest descent. The inner integrand  p(x)  is peaked at the 
minimum  x

− = −s2  of the effective potential, yielding

 

ˆ x

−∞
p(y)dy = Z−1

√
2π
D

U′′
eff(x−) exp

(
−Ueff(x

−)/D
)

.
  

The outer integrand can be rewritten as 
 
ψ(x) = exp ρ(x)

D  
, where  ρ(x) = Ueff(x) + D ln |h(x)|  peaks at 

 −xf   with  tanh(xf)
2 ≃ 1 − 1/2s2 . The mean first passage time can thus be estimated as

 
⟨T⟩ ≃ 2π

√
U′′

eff(x−)ρ′′(xf) exp
(
∆

D

)
,
  

(22)

where  ∆ = ρ(xf) − Ueff(x
−)  and its asymptotic scaling for large  s2  leads to Equation 4. We validated 

the UCNA approach to calculate the mean first passage time by estimating the distribution of escape 
points  xesc  from one well to the other well, which was found to lie predominantly within the support 
 x > |xc|  of the stationary probability distribution  p(x) . Only a fraction of activity in the simulations 
(1.8+/-0.4) * 10-3 (mean±SD over 10 probe units run with parameters as in Figure 4b) entered the 
forbidden region (see Figure 4—figure supplement 1 for details ).

A comparison with white noise
To test the impact of the input generated by the network (or equivalently as mimicked by the colored 
noise), we replaced this input (Equation 1, most rhs term) with white noise. The probe unit  x  in the 
white noise case is, therefore, following the dynamical equation:

 
dx
dt

= −x + sϕ(x) + g
√

Dη(t)
  

(23)

with  η(t)  taken from a normal distribution,  ϕ ≡ tanh  and  s , g , and  D  are constants receiving their 
values according to the probe unit dynamics driven by the network case; specifically these constants 
are the probe unit self- coupling strength, the original network gain, and strength (the integral under 
the autocorrelation function of the network input to the probe). Simulation results of the probe 
dynamics are in Figure 4aii, along with its distribution, Figure 4b (light green area, parameters’ 
values for  s , g , and  D  are specified in the caption). To estimate the probability (Equation 19) and 
the potential (Equation 20) in this case, and since  η  here is white noise, we substitute  τ1 = 0  as no 
correlation in the input exists. Similarly, we calculate the probe’s approximated mean first passage 
time when driven by white noise (Equation 4). The result (Figure 4c light green dashed line) esti-
mates the simulations well (Figure 4c green line). Note that since  log < T >  depends on  τ1  linearly, its 
exponent, the mean first passage time, depends on  τ1  exponentially. Hence, the importance of the 
‘color’ (correlations) in the network input in generating long timescales and the failure of these long 
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timescales to materialize when the ‘color’ is removed (as in this particular white noise- driven probe 
case, which replicates the assemblies endowed network model except for its generated correlated 
input drive).

Spiking network model
Network architecture
We simulated a recurrent network of  N   excitatory (E) and inhibitory (I) spiking neurons (for 

 N = 2000, 5000, 10000 ) with relative fractions  nE = 80%  and  nI = 20%  and connection probabilities 

 pEE = 0.2  and  pEI = pIE = pII = 0.5  (Figure 5). Non- zero synaptic weights from pre- synaptic neuron  j  
to post- synaptic neuron  i  were  Jij , whose values only depended on the two neurons types  i, j ∈ {α,β}  
for  α,β = E, I  . Neurons were arranged in  p  cell- type specific assemblies. E assemblies had hetero-
geneous sizes drawn from a uniform distribution with a mean of  N

clust
E = 60 + N/100  E- neurons and 

30% standard deviation. The number of assemblies was determined as  p = round(nEN(1 − nbgr)/N
clust
E ) , 

where  nbgr = 0.1  is the fraction of background neurons in each population, i.e., not belonging to any 
assembly. I assemblies were paired with E assemblies and the size of each I assembly was matched 
to the corresponding E assembly with a proportionality factor  nI/nE = 1/4 . Neurons belonging 
to the same assembly had potentiated intra- assembly weights by a factor  J

+
αβ , while those 

belonging to different assemblies had depressed inter- assembly weights by a factor  J
−
αβ , where: 

 J
+
EI = p/(1 + (p − 1)/gEI) ,  J

+
IE = p/(1 + (p − 1)/gIE) ,  J

−
EI = J+

EI/gEI  ,  J
−
IE = J+

IE/gIE  and  J
−
αα = 1 − γ(J+

αα − 1)  
for  α = E, I  , with  γ = f(2 − f(p + 1))−1

 .  f = (1 − nbgr)/p  is the fraction of E neurons in each assembly. 
Parameter values are in Table 1.

Table 1. Parameters for the clustered network used in the simulations.

Model parameters for clustered network simulations

Parameter Description Value

 JEE E- to- E synaptic weights  0.9/
√

N   [mV]

 JIE E- to- I synaptic weights  0.9/
√

N   [mV]

 JEI  I- to- E synaptic weights  2.7/
√

N   [mV]

 JII  I- to- I synaptic weights  5.4/
√

N   [mV]

 JE0 E- to- E synaptic weights  3.7/
√

N   [mV]

 JI0 I- to- I synaptic weights  3.3/
√

N   [mV]

 J
+
EE Potentiated intra- assembly E- to- E weight factor  14

√
N/2000 

 J
+
II  Potentiated intra- assembly I- to- I weight factor  5

√
N/2000 

 gEI  Potentiation parameter for intra- assembly I- to- E weights
 
 10
√

N/2000 

 gIE Potentiation parameter for intra- assembly E- to- I weights  8
√

N/2000 

 rext Average baseline afferent rate to E and I neurons 5 [spks/s]

 V
thr
E  E- neuron threshold potential 1.43 [mV]

 V
thr
I  I- neuron threshold potential 0.74 [mV]

 Vreset E- and I- neuron reset potential 0 [mV]

 τm E- and I- neuron membrane time constant 20 [ms]

 τrefr E- and I- neuron absolute refractory period 5 [ms]

 τs E- and I- neuron synaptic time constant 5 [ms]
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Single neuron dynamics
Single neuron dynamics. We simulated current- based leaky- integrate- and- fire (LIF) neurons, with 
membrane potential  V   and dynamical equation

 
dV
dt = − V

τm
+ Irec + Iext ,  

where  τm  is the membrane time constant. Input currents included a contribution  Irec  from the other 
recurrently connected neurons and a constant external current  Iext = NextJα0rext  (units of mV s-1), for 
 α = E, I  , representing afferent inputs from other brain areas and  Next = nENpEE . When the membrane 
potential  V   hits the threshold  V

thr
α   (for  α = E, I  ), a spike is emitted and  V   is held at the reset value  Vreset  

for a refractory period  τrefr . We chose the thresholds so that the homogeneous network (i.e. where all 

 J
±
αβ = 1 ) was in a balanced state with average spiking activity at rates  (rE, rI) = (2, 5)  spks/s. The post- 

synaptic currents evolved according to

 
τsyn

dIrec
dt

= −Irec +
N∑

j=1
Jij

∑
k

δ(t − tk) ,
  

where  τs  is the synaptic time constant,  Jij  are the recurrent couplings and  tk  is the time of the k- th spike 
from the j- th presynaptic neuron. Parameter values are in Table 1.

Self-couplings from mean-field theory
We can estimate the E- assembly self- couplings in this model using mean- field methods (Amit and 
Brunel, 1997; Wyrick and Mazzucato, 2021). This method allows obtaining, self- consistently, the 
fixed point values of the firing rates  r

E
l , rI

l   in the l- th assembly ( l = 1, . . . , p ) via the equation

 rαl = Fα[µα
l (r),σα

l (r)] ,  (24)

where  r = (rE
1 , . . . , rE

p , rI
1, . . . , rI

p)  is the leaky- integrate- and- fire current- to- rate transfer function for each 
 α = E, I   population

 
Fα(µα

l ,σα
l ) =

(
τrefr + ταm

√
π

ˆ Θ

H
dueu2

[1 + erf(u)]

)−1

,
  

(25)

where  Hl = (Vreset − µα
l )/σαl + ak  and  Θ = (Vthr

l − µα
l )/σα

l + ak  and  a = |ζ(1/2)|/
√

2  are terms accounting 
for the synaptic dynamics (Fourcaud and Brunel, 2002). The infinitesimal means  µ

E
l ,µI

l   and variances 

 (σ
E
l )2, (σI

l )
2
  of the network populations comprising E and I assemblies (for  l = 1, . . . , p  assemblies) are 

themselves functions of the firing rates, thus leading to self- consistent equations for the fixed points 
(for more details see Wyrick and Mazzucato, 2021). The infinitesimal mean  µ

E
1   of the postsynaptic 

input to a neuron in a representative E assembly in focus is

 

τ−1
E µE

1 = NnEpEEJEE

[
J+

EEf E
1 rE

1

+J−EE
∑p

l=2 f E
l rE

l + nbgrE
bg

]
+ NextJE0rext

−NnIpEIJEI

[
fI1J+

EIr
I
1 + J−EI

∑p
l=2 f I

l r
I
l + nbgrI

bg

]
,
  

(26)

where  r
E
1   is the firing rate of the E assembly in focus and  r

I
1  is the firing rate of its paired I assembly; 

 r
E
l , rI

l  , for  l = 2, . . . , p  are the firing rates of the other E and I assemblies;  r
E
bg, rI

bg  are the firing rates of 
the background (unclustered) populations.  f

E
i , f I

i   represent the fraction of E and I neurons in each 
assembly, which are drawn from a uniform distribution (see above). The first line in Equation 26 
represents the contribution to the input current coming from neurons within the same E assembly, 
or, in other words, the self- coupling of the assembly in focus. We can thus recast the first term in the 
input current as  s1rE

1   where  s1 = NnEpEEJEEJ+
EEf E

1  . The number of neurons in the assembly is given 
by  N1 = NnEfE1  , and the average E- to- E synaptic coupling is  ̄J

(in) = pEEJEEJ+
EE , from which we obtain 

 s1 = N1J̄(in)
EE  , which is the expression we used in Figure 5. We can thus recast Equation 26 as

https://doi.org/10.7554/eLife.86552


 Research article Neuroscience

Stern, Istrate et al. eLife 2023;12:e86552. DOI: https:// doi. org/ 10. 7554/ eLife. 86552  21 of 32

 

τ−1
E µE

1 = sE
1 rE

1 − sI
1rI

1 +
∑p

l=2(ĴEE
1l rE

l − ĴEI
1l rI

l)

+Ĵbg,ErE
bg − Ĵbg,IrI

bg + Ĵextrext ,   
(27)

where  ̂J   represent effective synaptic couplings which depend on the underlying spiking network 
parameters in Equation 26. In the spiking model, the self- couplings have units of [mV]. The first line 
in Equation 27 exhibits the same functional form as the rate model in Equation 1, if we identify 
each rate unit as a functional assembly with a corresponding self- coupling. A crucial simplification 
occurring in the rate model Equation 1 is the absence of cell- type specific connectivity and the corre-
sponding difference in the statistics of the distribution of the effective couplings  ̂J  , whose mean is 
zero in Equation 1 but non- zero in Equation 27. If we interpret the current  x  in the rate model as a 
membrane potential with units of [mV] (see Miller and Fumarola, 2012), and the current- to- rate func-
tion  ϕ(x) = tanh(x)  as a normalized (min- maxed) firing rate fluctuation around baseline (see Ahmadian 
et al., 2015), then the self- coupling in the rate model exhibits units of [mV] as in the spiking model. 
However, direct numerical comparison of the self- couplings between the two models is hampered 
by the fact that the spiking model is a balanced network, where E and I contributions to the total 
input current are large and cancel to leading order (Wyrick and Mazzucato, 2021), whereas the rate 
network does not operate in the balanced regime.

Model selection for timescale fit
Model selection for timescale fit The degree of the polynomial that best fits the dependence of 
the logarithm of the assembly timescales on the assembly self- couplings was estimated using cross- 
validation (inset in Figure 5b), according to the following steps. (1) The dataset was split into a training 
set and a test set of the same size. (2) Polynomial functions with increasing degrees were fit to the 
training set. (3) The mean- squared error of the test set was obtained from the corresponding fit. (4). A 
minimum was achieved for a polynomial of degree 2. All logarithms, abbreviated as ‘log’ in the main 
text, is in the natural base  e .
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Appendix 1
Dynamical regions of networks with identical self-couplings

Appendix 1—figure 1. Transition to chaos with multiple self- couplings: Fixed point solutions and stability. 
(a–i) The fixed point curve  xα − sα tanh xα , from Equation 15, for  sα > 1 . Stable solutions are allowed within the 

dark green region. (b–i) The shape of a unit’s contribution to stability  q
−1 = (sα − cosh xα2)−2

 , from Equation 
18. Stable solutions of  xα − sα tanh xα = η , filled blue circles in (a–i), with different  |x|  values contribute differently 
to stability. At the edge of chaos only a fixed point configuration with all units contributing most to stability 

(minimal  q
−1

 ) is stable, light green region in (a–i).(a–ii) The curve  xα − sα tanh xα  for  sα < 1 . (a- iii) A possible 
distribution of the Gaussian mean- field  η . A representative fixed point solution is illustrated by the dashed blue 
line: for  sα < 1  a single solution exists for all values of  η , (filled blue circle in a- ii); For  sα > 1  multiple solutions 
exist (a–i) for some values of  η ; some of them lead to instability (empty blue circle in a- i). The other two solutions 
may lead to stability (filled blue circles in a- ii), although only one of them will remain stable at the edge of chaos 
(encircled with green line in a- i).

It is constructive to quickly survey the results of Stern et al., 2014 who studied the special case 
of including a single value self- coupling  s  for all assemblies in the network,  P(si) = δs,si . In this case, 
the dynamics of all units in the network follow:

 

dxi
dt

= −xi + s tanh(xi) + g
N∑

i=1
Jϕ(xj),

  
(28)

Two variables determine the network dynamics, the network gain  g  and the self- coupling value 
 s . The network gain  g  defines the strength of the network impact on its units. It brings the network 
into chaotic activity, without self- coupling ( s = 0 ), for values  g > 1  (Sompolinsky et al., 1988). The 
self- coupling  s  generates bi- stability. Without network impact ( g = 0 ) the dynamical Equation 28 for 
each unit becomes

 
dxi
dt

= −xi + s tanh(xi),  (29)

https://doi.org/10.7554/eLife.86552
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Appendix 1—figure 2 continued on next page

which has two stable solutions for  s > 1  (Appendix  1—figure 2a), both at  x ̸= 0 . For  s < 1  
(Appendix 1—figure 2b), a single stable solution exists at  x = 0 .

When small values of network gain  g  are introduced to the network dynamics, Equation 28, with 
identical bi- stable units ( s > 1 ), each unit solution jitters around one of its two possible fixed points. 
After an irregular activity, the network settles into a stable fixed point. This generates a region of 
transient irregular activity with stable fixed points (Appendix 1—figure 2c). As  g  increases and  s  
decreases, different possible fixed point configurations lose their stability (as a result, the typical 
time spent in the transient activity increases). When the critical line  sc ≈ 1 + 0.157 ln (0.443g + 1)  is 
crossed, no fixed point remains stable and the network activity becomes chaotic (Stern et al., 2014). 
The ‘last’ stable fixed point at the transition line has a unique configuration with all unit values 
located farthest from  x = 0  (Appendix 1—figure2a, light green lines). Additional decrease of  s  and 

 g  leads to a region where any initial activity of the network decays and the trivial solution ( xi = 0  for 
all  i ) is stable (Appendix 1—figure 2c)

Appendix 1—figure 2. Network dynamics with identical self- couplings, adopted from Stern et al., 2014. 
(a,b) Graphical solutions to Equation 29. (a) For  s > 1  there are two stable non- zero solutions (full black circles) 
and an unstable solution at zero (open black circle). The green background over the  x  axis denotes the regions of 
allowed activity values at the stable fixed point on the transition line to chaos (solid red curve in (c)).(b) For  s < 1  
there is a single stable solution (full black circle) at zero. (c) Regions of the network dynamics over a range of  s  and 

 g  values. Below the long dashed blue line, any initial activity in the network decays to zero. Above the solid red 
curve, the network exhibits transient irregular activity that eventually settles into one out of a number of possible 
nonzero stable fixed points. In the region between these two curves, the network activity is chaotic. Colored circles 
denote, according to their locations on the phase diagram and with respect to their colors, the values of  s  (ranging 

https://doi.org/10.7554/eLife.86552
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Appendix 1—figure 2 continued

from 1.6 and decreasing with steps of 0.2) and  g = 1.5 , used for the autocorrelation functions  C(τ )  in (d; corrected 
version of Figure 4a in Stern et al., 2014). (e) Widths at half peak (values of  τ  ’s in the main text notation) of the 
autocorrelation functions in (d).

https://doi.org/10.7554/eLife.86552
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Appendix 2
Metastable dynamics in the spiking network model
The spiking network model with E/I clusters is based on a weight matrix  W   with four E/I submatrices, 
each one exhibiting diagonal blocks representing potentiated intra- cluster synaptic weights (see 
Appendix 2—figure 1a, b). We can approximate the full  N × N   weight matrix with a mean- field 
reduction to a set of  2(p + 1)  mean- field variables  r

MF
i  , representing the  p  E and I clusters and the 

two unclustered background E and I populations. In order to gain an intuitive understanding of the 
population dynamics encoded by  JMF , we follow the approach in Murphy and Miller, 2009; Schaub 
et al., 2015 and can consider an auxiliary linear system

 
τm

drMF
i
dt

= −rMF
i +

2p+2∑
j=1

JMF
ij rMF

j ,
  

(30)

which was shown to capture the transition from asynchronous irregular activity to metastable 
attractor dynamics in Schaub et al., 2015. A Schur decomposition of  JMF = VTVT   gives an upper 
triangular matrix  T  , whose Schur eigenvectors (columns of  V  ) represent independent dynamical 
modes (i.e. an orthonormal basis; Appendix 2—figure 1b). The Schur eigenvalues (diagonal values 
in the Schur matrix) correspond to the real part of the eigenvalues of the original matrix  JMF . The 
Schur eigenvectors associated with the large positive eigenvalues approximately correspond to E/I 
cluster pairs; larger eigenvalues correspond to clusters of increasingly larger size (Appendix 2—
figure 1b).

https://doi.org/10.7554/eLife.86552
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Appendix 2—figure 1. Synaptic weight matrices of clustered spiking networks. Synaptic weight matrices of 
a clustered spiking networks. (a) Left: Synaptic weight matrix  J   of a clustered spiking network with  N = 2000  
neurons, exhibiting the E/I four submatrices, where diagonal blocks within each submatrix reveal the E/I clustered 
structure (larger to smaller clusters, top to bottom in each submatrix). Right:  2(p + 1) - dimensional mean- field- 
reduced synaptic weight matrix  JMF   corresponding to the full matrix on the left. Populations are ordered as 
follows:  p + 1  excitatory clusters (larger to smaller, top to bottom), background excitatory population,  p + 1  
inhibitory clusters, background inhibitory population. For each pair of populations, the value in  JMF   is obtained 
from the corresponding block in  J   by summing its column values (presynaptic inputs) and averaging over the rows 
(postsynaptic neurons belonging to the population). (b) Right: Schur decomposition of  JMF = VTVT   into an upper 
triangular matrix  T  . Left: Schur eigenvectors (columns of  V  , bottom) sorted from larger to smaller Schur eigenvalue 
(top). Larger Schur eigenvalues are associated with eigenvectors whose loadings are on larger E/I cluster pairs.

Clustered networks generate metastable attractor dynamics where coupled E/I cluster pairs 
switch between periods of low and high firing rate activity, yielding a bimodal firing rate distribution 
(Appendix  2—figure 2a, b, see Litwin- Kumar and Doiron, 2012; Deco and Hugues, 2012; 
Mazzucato et al., 2015; Mazzucato et al., 2019; Mazzucato et al., 2016; Wyrick and Mazzucato, 
2021; Schaub et al., 2015). A more detailed analysis revealed that the network activity explores 
metastable attractors with varying number of simultaneously active clusters (from one to four in 
the representative network with  N = 2000  neurons in Appendix 2—figure 2c), yielding a complex 
attractor landscape (Mazzucato et  al., 2015; Wyrick and Mazzucato, 2021). The firing rate of 
neurons in active clusters is inversely proportional to the number of simultaneously active clusters. 
Therefore, the activity of single neurons is not simply bistable, but rather multistable, with several 
levels of firing rates attainable depending on which attractor the network is expressing at any given 
time (one inactive and four active levels in this representative case). This single- neuron multistability 

https://doi.org/10.7554/eLife.86552
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property is a biologically plausible effect observed in cortical activity (Mazzucato et  al., 2015; 
Recanatesi et  al., 2022), however, it is not present in the rate network, where neurons are just 
bistable (Figure 4). In the spiking model, clusters are uncorrelated (0.01±0.12, mean±S.D. across 20 
networks; Appendix 2—figure 2c), similarly to neurons in the rate network.

Appendix 2—figure 2. Metastable attractor dynamics in clustered spiking networks. Metastable attractor 
dynamics in clustered spiking networks. (a) Metastable activity from all clustered neurons in a representative trial 
of a network with  N = 2000  neurons (larger to smaller clusters, top to bottom; action potentials from excitatory 
and inhibitory neurons, black and red, respectively). (b) Firing rate distributions of four representative neurons from 
the network in (a) exhibit bimodal distributions (colors represent clusters with different self- couplings; spike counts 
estimated in 100ms bins over 20 trials of 200 seconds duration). (c) Left: Metastable attractor dynamics unfolds 
through different network configurations with a range of simultaneously active clusters from one to four (average 
occurrence of each configuration across 20 networks as fraction of total simulation time). Inset: Metastable 
dynamics are uncorrelated across clusters (distribution of pairwise Pearson correlations between clusters’ firing 
rates, 0.01±0.12, mean±SD; 20 networks). Right: The firing rate of neurons in active clusters depend on how many 
clusters are simultaneously active, with higher firing rates in configurations with less co- active clusters (mean and 
SD across 20 networks).

Appendix 2—figure 3 continued on next page

https://doi.org/10.7554/eLife.86552
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Appendix 2—figure 3. Metastable activity and timescale distribution in networks of  N = 2000, 5000  neurons 
(top and bottom rows, respectively). Panels (a) and (b) have the same notations as Figure 5b, and Figure 5d, 
respectively. The fits of average activation time  T   vs. self- coupling  log(T) = a2s2

E + a1sE + a0  yielded 

 a2 = 0.44, a1 = 2.06, a0 = 1.04  for  N = 2000 ; and  a2 = 0.093, a1 = −0.88, a0 = 0.45  for  N = 5000 .

Appendix 2—figure 4. Chaotic rate network of  N = 200  units (self- couplings drawn from a lognormal distribution 
with parameters  µ = 0.2,σ = 2 ). (a) Eigenvalue distribution (brown) and Schur eigenvalues (pink) of the synaptic 
weight matrix  J  . (b) The Schur eigenvectors of  J   corresponding to large positive Schur eigenvalues have loadings 
localized on units with larger self- couplings, with a similar structure to the Schur eigenvectors in the spiking 
networks in Appendix 2- figure 3 .

https://doi.org/10.7554/eLife.86552
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Appendix 3
RNN with heterogeneous time constants
Our recurrent neural network model in Equation 1, assumes that all units share the same time 
constant,  θ = 1  ms, which measures the rate of change of a neuron’s membrane potential. We 
examined whether a network of units with heterogeneous time constants could give rise to multiple 
timescales of dynamics. We simulated the model from Equation 1 with no self- coupling term,  si = 0 , 
with neuron- specific time constant  θi :

 
θi

d
dt

xi(t) = −xi(t) + g
∑

j
Jijϕ

[
xj(t)

]
.
  

(31)

Following the same strategy as in Figure 2, we consider the scenario when our network contains 
two equal- size populations of neurons ( N1 = N2 ) with different time constants  θ1 ̸= θ2 . We quantified 
each unit’s timescales,  τi , as the width of the autocorrelation function at the mid height. When keeping 

 θ1  fixed and increasing  θ2 , we found that both populations increased their timescale Figure 1a(i- v), 
and the ratio between the timescales of the two populations,  τ2/τ1  did not appreciably change over 
a large range of time constant ratios  θ2/θ1 , Figure 1b. Hence, we conclude that heterogeneity in 
single- cell time constants does not lead to large separation of timescales in networks with strong 
recurrent dynamics.

Appendix 3—figure 1. Timescale analysis for an RNN with two- time constants  θi , Equation 31, governing 
equal populations of neurons ( N1 = N2 = 1000 ) and gain  g = 2.5 . (a) Average autocorrelation function for each 
population. The insert shows the dynamics of individual neurons from each population: blue for neurons with 
timeconstant  θ1  and green for neurons with timeconstant  θ2 . In the networks considered here,  θ1 = 0.1  ms is 
kept constant while:  θ2 = 0.1  ms (i),  θ2 = 1.0  ms (ii),  θ2 = 10.0  ms (iii),  θ2 = 100.0  ms (iv),  θ2 = 1000.0  ms (v). 
(b) Population timescale ratio  τ2/τ1  for fixed timeconstant  θ1 = 0.1  ms and varying  θ2 .

https://doi.org/10.7554/eLife.86552
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