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Abstract The cerebral cortex underlies many of our unique strengths and vulnerabilities, but 
efforts to understand human cortical organization are challenged by reliance on incompatible 
measurement methods at different spatial scales. Macroscale features such as cortical folding and 
functional activation are accessed through spatially dense neuroimaging maps, whereas microscale 
cellular and molecular features are typically measured with sparse postmortem sampling. Here, 
we integrate these distinct windows on brain organization by building upon existing postmortem 
data to impute, validate, and analyze a library of spatially dense neuroimaging- like maps of human 
cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with 
extreme transcriptional profiles or unusually rapid transcriptional change which index distinct micro-
structure and predict neuroimaging measures of cortical folding and functional activation. Modules 
of spatially coexpressed genes define a family of canonical expression maps that integrate diverse 
spatial scales and temporal epochs of human brain organization – ranging from protein–protein 
interactions to large- scale systems for cognitive processing. These module maps also parse neuro-
psychiatric risk genes into subsets which tag distinct cyto- laminar features and differentially predict 
the location of altered cortical anatomy and gene expression in patients. Taken together, the 
methods, resources, and findings described here advance our understanding of human cortical orga-
nization and offer flexible bridges to connect scientific fields operating at different spatial scales of 
human brain research.
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eLife assessment
This study provides continuous maps of human brain gene expression and explores their relation-
ship with a large variety of microscopic and macroscopic aspects of brain organisation. The authors 
provide convincing evidence for a relationship between gene expression maps with various aspects 
of the anatomy of adult brains, during development, and in the case of mental disorders. The data 
and methods introduced can be an important tool for neuroimaging research.

Introduction
The human cerebral cortex is an astoundingly complex structure that underpins many of our distinctive 
facilities and vulnerabilities (Geschwind and Rakic, 2013). Achieving a mechanistic understanding of 
cortical organization in health and disease requires integrating information across its many spatial 
scales: from macroscale cortical folds and functional networks (Glasser et  al., 2016) to the gene 
expression programs that reflect microscale cellular and laminar features (Hawrylycz et al., 2012; 
Kelley et al., 2018). However, a hard obstacle to this goal is that our measures of the human cortex at 
macro- and microscales are fundamentally mismatched in their spatial sampling. Macroscale measures 
from in vivo neuroimaging provide spatially dense estimates of structure and function, but microscale 
measures of gene expression are gathered from spatial discontinuous postmortem samples that have 
so far only been linked to macroscale features using methodologically imposed cortical parcellations 
(Hansen et al., 2021; Larivière et al., 2021; Seidlitz et al., 2020). Consequently, local transitions 
in human cortical gene expression remain uncharacterized and unintegrated with the spatially fine- 
grained topographies of human cortical structure and function that are revealed by in vivo neuroim-
aging (Gryglewski et al., 2018; Markello et al., 2021). Finding a way to bridge this gap would not 
only enrich both our micro- and macroscale models of human cortical organization, but also provide 
an essential framework for translation across traditionally siloed scales of neuroscientific research.

Here, we use spatially sparse postmortem data from the Allen Human Brain Atlas (AHBA; Hawry-
lycz et al., 2012) to generate spatially dense cortical expression maps (DEMs) for 20,781 genes in 
the adult brain, with accompanying DEM reproducibility scores to facilitate wider usage. These maps 
allow a fine- grained transcriptional cartography of the human cortex, which we integrate with diverse 
genomic, histological, and neuroimaging resources to shed new light on several fundamental aspects 
of human cortical organization in health and disease. First, we show that DEMs can recover canonical 
gene expression boundaries from in situ hybridization (ISH) data, predict previously unknown expres-
sion boundaries, and align with regional differences in cortical organization from several independent 
data modalities. Second, by focusing on the local transitions in gene expression which are captured 
by DEMs, we reveal a close spatial coordination between molecular and functional specializations of 
the cortex and establish that the spatial orientation of cortical folding and function at macroscale is 
aligned with local tangential transitions in cortical gene expression. Third, by defining and annotating 
gene co- expression modules across the cortex at multiple scales we systematically link macroscale 
measures of cortical structure and function in vivo to postmortem markers of cortical lamination, 
cellular composition, and development from early fetal to late adult life. Finally, as a proof of principle, 
we use this novel framework to secure a newly integrated multiscale understanding of atypical brain 
development in autism spectrum disorder (ASD).

The tools and results from this analysis of the human cortex, which we collectively call Multiscale 
Atlas of Gene expression for Integrative Cortical Cartography (MAGICC), open up an empirical bridge 
that can now be used to connect cortical models (and scientists) that have so far operated at segre-
gated spatial scales. To this end, we share (i) all gene- level DEMs and derived transcriptional land-
scapes in neuroimaging- compatible files for easy integration with in vivo macroscale measures of 
human cortical structure and function; and (ii) all gene sets defining spatial subcomponents of cortical 
transcription for easy integration with any desired genomic annotation (https://github.com/kwagstyl/ 
magicc).

https://doi.org/10.7554/eLife.86933
https://github.com/kwagstyl/magicc
https://github.com/kwagstyl/magicc
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Results
Creating and benchmarking spatially dense maps of human cortical 
gene expression
To create a dense transcriptomic atlas of the cortex, we used AHBA microarray measures of gene 
expression for 20,781 genes in each of 1304 cortical samples from six donor left cortical hemispheres 
(‘Materials and methods,’Table S1Supplementary file 1). We extracted a model of each donor’s cortical 
sheet by processing their brain MRI scan and identified the surface location (henceforth ‘vertex’) of 
each postmortem cortical sample in this sheet (‘Materials and methods,’ Figure 1a). For each gene, 
we then propagated measured expression values into neighboring vertices using nearest- neighbor 
interpolation followed by smoothing (‘Materials and methods,’ Figure 1b and c). Expression values 
were scaled across vertices and these vertex- level expression maps were averaged across donors 
to yield a single DEM for each gene, which provided estimates of expression at ~30,000 vertices 
across the cortical sheet (e.g., DEM for PVALB, upper panel of Figure 1d). These fine- grained vertex- 
level expression measures also enabled us to estimate the orientation and magnitude of expression 
change for each gene at every vertex (e.g., dense expression change map for PVALB, lower panel of 
Figure 1d).

We assessed the reproducibility of DEMs by repeating the above process (Figure 1) after repeat-
edly splitting the donors into non- overlapping groups of varying size and using learning curve analyses 
to estimate the DEM reproducibility achieved by our full set of six donors. For cortically expressed 
genes (‘Materials and methods,’ Supplementary file 2), the average reproducibility of gene expres-
sion maps was rgene = 0.58 (correlation of expression values for a gene across vertices), and the average 
reproducibility of ranked gene expression at each vertex was rvertex = 0.63 (correlation of expres-
sion values at a vertex across genes) (Figure  1—figure supplement 1c- d). These estimates were 
both substantially lower for genes not reported to be cortically expressed in the independent Human 
Protein Atlas (rgene = 0.34, t = 37.6, p<0.001 and rvertex = 0.39, t = 273.6, p<0.001, respectively, ‘Mate-
rials and methods,’ Supplementary file 2). Genes without recorded cortical expression were threefold 
enriched (p=0) among the 9647 genes with estimated DEM reproducibility values of r < 0.5. Regional 
differences in the density of postmortem sampling in the AHBA did not influence DEM reproducibility 
or the magnitude of local expression change captured by DEMs (‘Materials and methods,’ Figure 1—
figure supplement 1h). Thus, remedying the current lack of any spatially dense gene expression 
maps in the human cortex, we provide DEMs (and accompanying dense expression change maps) 
for 20,781 genes and establish that >11k of these DEMs show a spatial reproducibility score of rgene > 
0.5 between sets of unrelated individuals. Gene- level DEM reproducibility scores allow future users 
to filter on this feature as desired, and we establish that key analytic outputs from DEMs (see below) 
show good reproducibility between unrelated individuals and can be recovered at different DEM 
reproducibility filters.

Given that DEMs were generated by interpolating expression values between sampled regions, we 
assessed whether DEMs could recover sharp local microscale transitions in gene expression that could 
theoretically be obscured by interpolation. Of the very few such transitions that have been verified 
by ISH in humans, the best established occurs between occipital areas V1 and V2 (Zeng et al., 2012). 
All four genes known to show a sharp V1/V2 expression boundary across layers by ISH – SYT6, TLE4, 
PCP4, PENK – exhibited qualitatively and quantitatively sharp expression transitions at the V1/V2 
boundary in their DEMs (Figure 1e, Figure 1—figure supplement 2a- d). Motivated by this validation, 
we next asked whether DEMs could identify previously unknown expression boundary markers in the 
human cortex. To achieve this, we took advantage of extensive existing ISH data between parahippo-
campal (area PeEc) and fusiform gyri (area TF). We ranked genes by the magnitude of their expression 
gradient between these cortical regions in DEMs (‘Materials and methods’) and identified four genes 
with sharp expression transitions predicted by DEMs – NGB,HTR2A (TF > PeEc) and NTS, CHRNA3 
(PeEc > TF) – for which independent ISH data were available. Expression profiling in ISH slabs verified 
the existence of sharp expression transition for all four genes (Figure 1f, Figure 1—figure supple-
ment 2e- g). As the V1/V2 and the PeEc/TF boundaries both involve transitions between classical 
laminar types in cortical regions with highly conserved anatomical patterning (von Economo and 
Koskinas, 1925), we also tested whether DEMs could recover expression boundaries in more variable 
and uniformly laminated association cortex (Ronan and Fletcher, 2015). No such expression bound-
aries have been described in humans by ISH, but there are reports of sharp expression boundaries 

https://doi.org/10.7554/eLife.86933
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Figure 1. Creating and benchmarking spatial dense gene expression maps in the human cortex. (a) Spatially discontinuous Allen Human Brain Atlas 
(AHBA) microarray samples (red points) were aligned with MRI- derived cortical surface mesh reconstructions. (b) AHBA vertex expression values were 
propagated using nearest- neighbor interpolation and subsequently smoothed (c). (d) Subject- level maps were z- normalized and averaged to generate 
a single reference dense expression map (DEM) for each gene, as well as the associated expression gradient map (shown here for PVALB: top and 
bottom, respectively). (e) DEMs can recover known expression boundaries in in situ hybridization (ISH) data. Four canonical V1 area markers (Zeng et al., 
2012) show a significantly sharp DEM expression gradient at the V1/V2 boundary (inset cortical map and Figure 1—figure supplement 2a, b), which is 
also evident in all four individual gene DEMs and DEM gradients (SYT6, PENK, and Figure 1—figure supplement 2c). (f) DEMs can discover previously 
unknown expression boundaries. Genes with high DEM gradients across the PeEc (parahippocampal) and TF (fusiform) gyri (inset cortical map) were 
validated in ISH data, showing sharp expression changes in both directions at this boundary (CHRNA3, NGB, and Figure 1—figure supplement 2d- f). 
(g) Illustrative comparisons of selected DEMs against regional variation in microscale measures of cellular composition: scatterplot showing the global 
correlation of regional cellular proportions from single nucleus RNAseq (snRNAseq) across 16 cells and 6 regions (Lake et al., 2016) with DEM values 
for corresponding cell- type marker genes (R = 0.48, pspin<0.001, excluding Ex3- V1 and In8- BA10 outlier samples). (h) DEMs for markers of six neuronal 
subtypes (three excitatory: FEZF2, RORB, THEMIS; three inhibitory: PVALB, SST, VIP) based on recently validated subtype marker genes (Bakken et al., 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.86933
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between frontal areas 44 and 45b for several genes in non- human primates: SCN1B, KCNS1, TRIM55 
(Chen et al., 2022). These genes also exhibited high DEM gradients at the boundary between human 
frontal areas 44 and 45 (Figure  1—figure supplement 2h- g). Taken together, these observations 
demonstrate the capacity of DEMs to resolve sharp expression transitions and indicate that DEMs can 
be used to help target prospective postmortem validation of new expression boundaries in humans.

To benchmark and illustrate the use of DEMs to capture cortical features across contrasting spatial 
scales, we drew on selected micro- and macroscale cortical measures that DEMs should align with 
based on known biological processes (Figure 1g–j, ‘Materials and methods’). To assess whether DEMs 
could recover microscale differences in cellular patterning across the cortical sheet, we considered the 
ground truth of neuronal cell- type proportions as measured by single- nucleus RNAseq (snRNAseq) 
across six different cortical regions (Lake et  al., 2016). We observed a strong spatial correlation 
(r = 0.6, pspin<0.001) between regional marker gene expression in DEMs and regional proportions 
of their corresponding neuronal subtypes from snRNAseq (Figure  1g, ‘Materials and methods’). 
Figure 1h shows example marker gene DEMs for six canonical neuronal subtypes: three excitatory 
(FEZF2, RORB, THEMIS) and three inhibitory (PVAL, SST, VIP) (Bakken et al., 2021; Hodge et al., 
2019). Next, to assess whether DEMs could recover regional variation in the mesoscale feature of 
cortical layering, we tested and verified that regional variation in the average DEM for layer IV marker 
genes (He et al., 2017; Maynard et al., 2021; Zeng et al., 2012) was highly correlated with regional 
variation in layer IV thickness as determined from a 3D histological atlas of cortical layers (Wagstyl 
et al., 2020; Figure 1i). Finally, we asked whether DEMs could recover spatially dense measures of 
regional variation across the cortical sheet as provided by neuroimaging data and found that maps 
from diverse measurement modalities showed strong and statistically significant spatial correlations 
with their corresponding DEM(s) relative to a null distribution based on random ‘spinning’ of maps 
(Alexander- Bloch et al., 2018; Figure 1j, ‘Materials and methods,’ all pspin<0.01): (i) areas of cortex 
activated during motor fMRI tasks in humans (Glasser et al., 2016) vs. the average DEM for canon-
ical cell markers of large pyramidal neurons (Betz cells) found in layer V of the motor cortex that 
are the outflow for motor movements (Bakken et al., 2021), (ii) an in vivo neuroimaging marker of 
cortical myelination (T1/T2 ratio [Glasser and Van Essen, 2011]) vs. the Myelin Basic Protein DEM, 
which marks myelin, and (iii) the degree of in vivo regional cortical thinning by MRI in Alzheimer’s 
disease (AD) patients who have at least one APOE E4 variant (Gutiérrez- Galve et al., 2009; LaMon-
tagne et al., 2019) vs. the APOE DEM (thinning map generated from 119 APOE E4 patients and 633 
controls structural MRI [sMRI] scans as detailed in ‘Materials and methods’), testing the hypothesis 
that higher regional APOE expression will result in greater cortical atrophy in individuals with the 
APOE E4 risk allele. Collectively, the above tests of reproducibility (Figure 1—figure supplement 1) 
and convergent validity (Figure 1e–j) supported the use of DEMs for downstream analyses.

Defining and surveying the human cortex as a continuous 
transcriptional terrain
As an initial summary view of transcriptional patterning in the human cortex, we first averaged all 
20,781 DEMs to represent the cortex as a single continuous transcriptional terrain, where altitude 
encodes the transcriptional distinctiveness (TD) of each cortical point (vertex) relative to all others (TD 
= mean(abs(zexp)), Figure 2a, Video 1). This terrain view revealed six statistically significant TD peaks 
(‘Materials and methods,’ Figure 2a and b) which recover all major archetypal classes of the mamma-
lian cortex as defined by classical studies of laminar and myelo- architecture, connectivity, and func-
tional specialization (Mesulam, 1998) encompassing primary visual (V1), somatosensory (Brodmann 

2021; Hodge et al., 2019). (i) Illustrative comparison of layer IV marker DEMs with corresponding mesoscale cortical measure of layer IV thickness 
from a 20 μm 3D histological atlas of cortical layers. (j) Illustrative comparisons of selected DEMs with corresponding macroscale cortical measures from 
independent neuroimaging markers.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Reproducibility of Dense Expression Maps (DEMs) interpolated from spatially sparse postmortem measures of cortical gene 
expression.

Figure supplement 2. Validating and discovering area marker genes.

Figure 1 continued

https://doi.org/10.7554/eLife.86933
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area [BA] [Brodmann, 1909] 2), and motor cortex (BA 4), as well as limbic (temporal pole centered on 
dorsal temporal area G [TGd]; von Economo and Koskinas, 1925, ventral frontal centered in orbi-
tofrontal cortex [OFC]) and heteromodal association cortex (BA 9- 46d). Of note, our agnostic parcel-
lation of all TD peak vertices by their ranked gene lists (‘Materials and methods’) perfectly cleaved 
BA2 and BA4 along the central sulcus, despite there being no representation of this macroanatomical 

Figure 2. Mapping transcriptional distinctiveness (TD) in the human cortex and its alignment with macroscale structure and function. (a) Regional TD 
can be quantified as the mean absolute z- score of dense expression map (DEM) values at each vertex (top) and visualized as a continuous cortical map 
(middle, TD encoded by color) or in a relief map of the flattened cortical sheet (bottom, TD encoded by color and elevation, Video 1). Black lines on the 
inflated view identify cuts for the flattening procedure. The cortical relief map is annotated to show the central sulcus (CS), and peaks of TD overlying 
dorsal sensory and motor cortices (Brodmann areas, BA2, BA4), the primary visual cortex (V1), temporal pole (TGd), insula (Ins), and ventromedial 
prefrontal cortex (OFC). (b) Thresholding the TD map through spatial permutation of DEMs (tspin ; ‘Materials and methods’) and clustering significant 
vertices by their expression profile defined six TD peaks in the adult human cortex (depicted as colored regions on terrain and inflated cortical surfaces). 
(c) Cortical vertices projected into a 3D coordinate system defined by the first three principal components (PCs) of gene expression, colored by the 
continuous TD metric (left) and TD peaks (right). TD peaks are focal anchors of cortex- wide expression PCs. (d) TD peaks show statistically significant 
functional specializations in a meta- analysis of in vivo functional MRI data. (e) The average magnitude of local expression transitions across genes 
(color) and principal orientation of these transitions (white bars) varies across the cortex. (f) Cortical folds in Allen Human Brain Atlas (AHBA) donors (top 
surface maps and middle flat map) tend to be aligned with the principal orientation of TD change across cortical vertices (p<0.01, middle histogram, 
sulci running perpendicular to TD change), and the strength of this alignment varies between cortical regions. (g) Putative cortical areas defined by a 
multimodal in vivo MRI parcellation of the human cortex (Glasser et al., 2016) (top surface maps and middle flat map) also tend to be aligned with 
the principal direction of gene expression change across cortical vertices (p<0.01, middle histogram, sulci running perpendicular to long axis of area 
boundaries), and the strength of this alignment varies between cortical areas.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Characterizing bulk transcriptome.

https://doi.org/10.7554/eLife.86933
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landmark in DEMs. The TD map observed from 
the full DEMs library was highly stable between all 
disjoint triplets of donors (‘Materials and methods,’ 
Figure 2—figure supplement 1a, median cross- 
vertex correlation in TD scores between triplets 
r = 0.77) and across library subsets at all deciles 
of DEM reproducibility (‘Materials and methods,’ 
Figure  2—figure supplement 1b, cross- vertex 
correlation in TD scores r > 0.8 for the 3rd to 10th 
deciles), but was not recapitulated in spun null 
datasets (Figure 2—figure supplement 1c).

Integration with principal component analysis 
(PCA) of DEMs across vertices (‘Materials and 
methods,’ Figure 2—figure supplement 1d and 
e) showed that TD peaks constitute sharp poles 
of more recently recognized cortical expression 

gradients (Burt et al., 2018; Figure 2c). The ‘area- like’ nature of these TD peaks is reflected by the 
steep slopes of transcriptional change surrounding them (Figure 2a and e) and could be quantified 
as TD peaks being transcriptomically more distinctive than their physical distance from other cortical 
regions would predict (Figure  2—figure supplement 1f and g). In contrast, transitions in gene 
expression are more gradual and lack such sharp transitions in the cortical regions between TD peaks 
(Figure 2a, c and e, Figure 2—figure supplement 1j). Thus, because DEMs provide spatially fine- 
grained estimates of cortical expression and expression change, they offer an objective framework 
for arbitrating between area- based and gradient- based views of cortical organization in a regionally 
specific manner.

The TD peaks defined above exist as both discrete patches of cortex and the distinctive profile of 
gene expression which defines each peak, and this duality offers an initial bridge between macro- and 
microscale views of cortical organization. Specifically, we found that each TD peak overlapped with 
a functionally specialized cortical region based on meta- analysis of in vivo functional neuroimaging 
data (Yarkoni et al., 2011; ‘Materials and methods,’ Figure 2d, Supplementary file 3), and featured 
a gene expression signature that was preferentially enriched for a distinct set of biological processes, 
cell- type signatures, and cellular compartments (‘Materials and methods,’ Supplementary file 2). For 
example, the peaks overlapping area TGd and OFC were enriched for synapse- related terms, while 
BA2 and BA4 TD peaks were predominantly enriched for metabolic and mitochondrial terms. At a 
cellular level, V1 closely overlapped with DEMs for marker genes of the Ex3 neuronal subtype known 
to be localized to V1 (Lake et al., 2016), while BA4 closely overlapped Betz cell markers (Bakken 
et al., 2021; Figure 2—figure supplement 1h).

The expression profile of each TD peak was achieved through surrounding zones of rapid tran-
scriptional change (Figure 2a and e, Figure 2—figure supplement 1i and j). We noted that these 
transition zones tended to overlap with cortical folds, suggesting an alignment between spatial orien-
tations of gene expression and folding. To formally test this idea, we defined the dominant orientation 
of gene expression change at each vertex (‘Materials and methods,’ Figure 2e) and computed the 
angle between this and the orientation of folding (‘Materials and methods’). The observed distribution 
of these angles across vertices was significantly skewed relative to a null based on random alignment 
between angles (pspin<0.01, Figure  2f, ‘Materials and methods’), indicating that there is indeed a 
tendency for cortical sulci and the direction of fastest transcriptional change to run perpendicular to 
each other (pspin<0.01, Figure 2f). A similar alignment was seen when comparing gradients of transcrip-
tional change with the spatial orientation of putative cortical areas defined by multimodal functional 
and structural in vivo neuroimaging (Glasser et al., 2016) (expression change running perpendicular 
to area long axis, pspin<0.01, Figure 2g, ‘Materials and methods’). Visualizing these expression- folding 
and expression- areal alignments revealed greatest concordance over sensorimotor, medial occipital, 
cingulate, and posterior perisylvian cortices (with notable exceptions of transcription change running 
parallel to sulci and the long axis of putative cortical areas in lateral temporoparietal and tempo-
ropolar regions). As a preliminary probe for causality, we examined the developmental ordering of 
regional folding and regional transcriptional identity. Mapping the expression of high- ranking TD 

Video 1. Visualisation of Transcriptional Distinctiveness 
(TD) in the human cortex, encoded by both color and 
elevation.

https://elifesciences.org/articles/86933/figures#video1

https://doi.org/10.7554/eLife.86933
https://elifesciences.org/articles/86933/figures#video1
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genes in fetal cortical laser dissection microarray data (Miller et al., 2014) from 21 PCW (post concep-
tion weeks) (‘Materials and methods’) showed that the localized transcriptional identity of V1 and TGd 
regions in adulthood is apparent during the fetal periods that folding topology begins to emerge (Chi 
et al., 1977; Xu et al., 2022; Figure 2—figure supplement 1k). Thus, the unique capacity of DEMs 
to resolve local orientations of expression change reveals a close spatial alignment between regional 
transitions of cortical gene expression at microscale and regional transitions of cortical folding, struc-
ture, and function at macroscale.

Cortical gene co-expression integrates diverse spatial scales of human 
brain organization
To complement the TD analyses above (Figure 2), we next used weighted gene co- expression network 
analysis (WGCNA; Langfelder and Horvath, 2008, ‘Materials and methods’, Figure 3a) to achieve a 
more systematic integration of macro- and macroscale cortical features. Briefly, WGCNA constructs 
a connectivity matrix by quantifying pairwise co- expression between genes, raising the correlations 
to a power (here 6) to emphasize strong correlations while penalizing weaker ones, and creating a 
topological overlap matrix (TOM) to capture both pairwise similarities expression and connectivity. 
Modules of highly interconnected genes are identified through hierarchical clustering. The resultant 
WGCNA modules enable topographic and genetic integration because they each exist as both (i) a 
single expression map (eigenmap) for spatial comparison with neuroimaging data (Figure 3a and 
b, ‘Materials and methods’) and (ii) a unique gene set for enrichment analysis against marker genes 
systematically capturing multiple scales of cortical organization, namely cortical layers, cell types, cell 
compartments, protein–protein interactions (PPI), and GO terms (‘Materials and methods,’ Supple-
mentary files 2 and 4). Furthermore, whereas prior applications of WGCNA to AHBA data have 
revealed gene sets that covary in expression across many different compartments of the brain (Hartl 
et al., 2021; Hawrylycz et al., 2015; Kelley et al., 2018), using DEMs as input to WGCNA generates 
modules that are purely based on the fine- scale coordination of gene expression across the cortex. 
Using WGCNA, we identified 16 gene modules (M1–M16), which we then deeply annotated against 
independent measures of cortical organization at diverse spatial scales and developmental epochs 
(Figure 3c, ‘Materials and methods’). Module eigenmaps were primarily driven by highly reproducible 
genes (Figure 3—figure supplement 1a) as were enrichments for annotational gene sets (median 
reproducibility of enriching genes = 0.59, p<0.001 elevated vs. background).

Several WGCNA modules showed statistically significant alignments with structural and functional 
features of the adult cerebral cortex from in vivo imaging (‘Materials and methods,’ Figure 3c; Glasser 
and Van Essen, 2011; Yeo et al., 2011). For example, (i) the M6 eigenmap was significantly positively 
correlated with in vivo measures of cortical thickness from sMRI and enriched within a limbic func-
tional connectivity network defined by resting- state functional connectivity MRI, and (ii) the M8, M9, 
and M14 eigenmaps showed gradients of expression change that were significantly aligned with the 
orientation of cortical folding (especially around the central sulcus, medial prefrontal, and temporo- 
parietal cortices, Figure 3—figure supplement 1b). At microscale, several WGCNA module gene 
sets showed statistically significant enrichments for genes marking specific cortical layers (He et al., 
2017; Maynard et  al., 2021) and cell types (Darmanis et  al., 2015; Habib et  al., 2017; Hodge 
et al., 2019; Lake et al., 2018; Lake et al., 2016; Li et al., 2018; Ruzicka et al., 2021; Velmeshev 
et al., 2019; Zhang et al., 2016; ‘Materials and methods,’ Figure 3c, Supplementary file 4). These 
microscale enrichments were often congruent between cortical layers and cell classes annotations, and 
in keeping with the linked eigenmap (Figure 3c, Supplementary file 4). For example, M4, which was 
uniquely co- enriched for markers of endothelial cells and middle cortical layers, showed peak expres-
sion over dorsal motor cortices which are known to show expanded middle layers (Bakken et al., 
2021; Wagstyl et al., 2020) with rich vascularization (Pfeifer, 1940) relative to other cortical regions. 
Similarly, M6, which was enriched for markers of astrocytes, microglia, and excitatory neurons, as well 
as layers 1/2, showed peak expression over rostral frontal and temporal cortices which are known to 
possess relatively expanded supragranular layers (Wagstyl et al., 2020) that predominantly contain 
the apical dendrites of excitatory neurons and supporting glial cells (von Economo and Koskinas, 
1925). We also observed that modules with similar eigenmaps (Figure 3—figure supplement 1c), 
(including overlaps of multiple modules with the same TD peak) could show contrasting gene set 
enrichments. For example, M2 and M4 both showed peak expression of dorsal sensorimotor cortex 
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Figure 3. Cortex- wide gene co- expression patterns reflect multiple spatial scales and developmental epochs of brain organization. (a) Overview 
of weighted gene co- expression network analysis (WGCNA) pipeline applied to the full dense expression map (DEM) dataset. Starting top left: the 
pairwise DEM spatial correlation matrix is used to generate a topological overlap matrix between genes (middle top), which is then clustered. Of the 
23 WGCNA- defined modules, 7 were significantly enriched for non- cortical genes and removed, leaving 16 modules. Each module is defined by a set 

Figure 3 continued on next page
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(i.e., TD areas BA2 and BA4), but M2 captures a distinct architectonic signature of sensorimotor 
cortex from the mid- layer vascular signal of M4: expanded and heavily myelinated layer 6 (Bakken 
et al., 2021; Palomero- Gallagher and Zilles, 2019; Wagstyl et al., 2020; Figure 3c). The spatially 
co- expressed gene modules detected by WGCNA were not only congruently co- enriched for cortical 
layer and cell markers, but also for nanoscale features such as subcellular compartments (Binder 
et al., 2014; Supplementary files 2 and 4) (often aligning with the cellular enrichments) and PPIs 
(Szklarczyk et al., 2019; ‘Materials and methods,’ Figure 3c, Supplementary file 4). This demon-
strates the capacity of our resource to tease apart subtle subcomponents of neurobiology based on 
cortex- wide expression patterns.

To further assess the robustness of these multiscale relationships, we focused on two modules 
with contrasting multiscale signatures – M2 and M12 – and tested for reproducibility of our primary 
findings (Figure  3c) using orthogonal methods. Our primary analyses indicated that M2 has an 
expression eigenmap which overlaps with the canonical somatomotor network from resting- state 
functional neuroimaging (Yeo et al., 2011) and contains genes that are preferentially expressed in 
cortical layer 6 from layer- resolved transcriptomics (He et al., 2017; Maynard et  al., 2021), and 
in oligodendrocytes from snRNAseq (Darmanis et  al., 2015; Habib et  al., 2017; Hodge et  al., 
2019; Lake et al., 2018; Lake et al., 2016; Li et al., 2018; Ruzicka et al., 2021; Velmeshev et al., 
2019; Zhang et al., 2016; Figure 3c). We were able to verify each of these observations through 
independent validations including spatial overlap of M2 expression with meta- analytic functional 
activations relating to motor tasks (Yarkoni et al., 2011); immunohistochemistry localization of high- 
ranking M2 genes to deep cortical layers (Zeng et al., 2012; ‘Materials and methods’); and signif-
icant enrichment of M2 genes for myelin- related GO terms (Figure 3d, Supplementary file 4). By 
contrast, our primary analyses indicated that M12, which had peak expression over ventral frontal 
and temporal limbic cortices, was enriched for marker genes for layer 2, neurons and the synapse 
(Figure 3c). These multiscale enrichments were all supported by independent validation analyses, 
which showed that the M12 eigenmaps is enriched in a limbic network that is activated during social 
reasoning (Yarkoni et al., 2011) high- ranking M12 marker genes show elevated expression in upper 
cortical layers by immunohistochemistry (Zeng et al., 2012; ‘Materials and methods’); and there is a 
statistically significant over- representation of synapse compartment GO terms in the M12 gene set 
(Figure 3d, Supplementary file 4).

of spatially co- expressed genes, for which the principal component of expression can be computed and mapped at each cortical point (eigenmap). M6 
is shown as an example projected onto an inflated left hemisphere (M6 z- scored expression and M6 expression change), and the bulk transcriptional 
distinctiveness (TD) terrain view from Figure 2 (M6 expression). (b) The extremes of WGCNA eigenmaps highlight different peaks in the cortical terrain: 
the main TD terrain colored by TD value (center, from Figure 2), surrounded by TD terrain projections of selected WGCNA eigenmaps. (c) WGCNA 
modules (eigenmaps and gradient maps, rows) are enriched for multiscale aspects of cortical organization (columns). Cell color intensity indicates 
pairwise statistical significance (p<0.05), while black outlines show significance after correction for multiple comparisons across modules. Columns 
capture key levels of cortical organization at different spatial scales (arranged from macro- to microscale) and developmental epochs: spatial alignment 
between module eigenmaps and in vivo MRI maps of cortical folding orientation, cortical thickness and T1/T2 ratio, fMRI resting- state functional 
networks; enrichment for module gene sets for independent annotations (Supplementary file 2) marking: cortical layers (He et al., 2017; Maynard 
et al., 2021); cell types (Darmanis et al., 2015; Habib et al., 2017; Hodge et al., 2019; Lake et al., 2018; Lake et al., 2016; Li et al., 2018; Ruzicka 
et al., 2021; Velmeshev et al., 2019; Zhang et al., 2016); subcellular compartments (Binder et al., 2014); synapse- related genes (Koopmans et al., 
2019); protein–protein interactions between gene products (Szklarczyk et al., 2019); temporal epochs of peak expression (Werling et al., 2020) 
(‘fetal’: 8–24 21 post conception weeks [PCW]/’‘perinatal’' 24 PCW–6 mo/‘postnatal’ > 6 mo); transient layers of the mid- fetal human cortex at 21 PCW 
(Miller et al., 2014) (subpial granular zone [SG], marginal zone [MZ], cortical plate [CP], subplate [SP], intermediate zone [IZ], subventricular zone 
[SZ], and ventricular zone [VZ]); and fetal cell types at 17–18 PCW (Polioudakis et al., 2019). (d) Independent validation of multiscale enrichments for 
selected modules M2 and M12. M2 significantly overlaps the Neurosynth topic associated with the terms motor, cortex, and hand. Two high- ranking M2 
genes, MOG and TF, exhibit clear layer VI peaks on in situ hybridization (ISH) and GO enrichment analysis myelin- related annotations. M12, overlapping 
the limbic network most closely overlapped the Neurosynth topic associated with social reasoning. Two high- ranking M22 genes GABRA2 and 
GRIN2B showed layer II ISH peaks and GO enrichment analysis revealed synaptic annotations. (e) Network visualization of pairwise overlaps between 
annotational gene sets used in (c), including WGCNA module gene sets (inset expression eigenmaps).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Characterization of WGCNA spatial, developmental and gene- set relationships.

Figure 3 continued
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Linking spatial and developmental aspects of cortical organization
Given that adult cortical organization is a product of development, we next asked whether eigenmaps 
of adult cortical gene expression (Figure 3a and b) are related to the patterning of gene expres-
sion between fetal stages and adulthood. To achieve this, we tested WGCNA module gene sets for 
enrichment of developmental marker genes from three independent postmortem studies (rightmost 
columns, Figure 3c) capturing genes with differential expression between (i) three developmental 
epochs between 8 PCWs and adulthood (BrainVar dataset from prefrontal cortex [Werling et  al., 
2020]);(ii) seven histologically defined zones of mid- fetal (21 PCW) cortex (Miller et al., 2014; ‘Mate-
rials and methods,’ 2Supplementary files 1 and 2); and (iii) 16 mid- fetal (17–18 PCW) cell types 
(Polioudakis et al., 2019; ‘Materials and methods,’ Supplementary file 2).

Comparison with the BrainVar dataset revealed that most module eigenmaps (13 of all 16 cortical 
modules) were enriched for genes with dynamic, developmentally coordinated expression levels 
between early fetal and late adult stages (Figure 3c, Supplementary file 4). This finding was rein-
forced by supplementary analyses modeling developmental trajectories of eigenmap gene set expres-
sion between 12 PCW and 40 y in the BrainSpan dataset (Li et al., 2018; ‘Materials and methods,’ 
Figure  3—figure supplement 1d), and further qualified by the observation that several WGCNA 
modules were also differentially enriched for markers of mid- fetal cortical layers and cell types (Miller 
et al., 2014; Polioudakis et al., 2019; Figure 3c, Supplementary file 4). As observed for multiscale 
spatial enrichments (Figure 3c and d), the developmental enrichments of modules were often closely 
coordinated with one another, and eigenmaps with similar patterns of regional expression could 
possess different signatures of developmental enrichment. For example, the M6 and M12 eigenmaps 
shared a similar spatial expression pattern in the adult cortex (peak expression in medial prefrontal, 
anterior insula, and medioventral temporal pole), but captured different aspects of human brain devel-
opment that aligned with the cyto- laminar enrichments of M6 and M12 in adulthood. The M6 gene 
set, which was enriched for predominantly glial elements of layers 1 and 2 in adult cortex, was also 
enriched for markers of mid- fetal microglia (Polioudakis et al., 2019), the transient fetal layers that 
are known to be particularly rich in mid- fetal microglia (subpial granular, subplate, and ventricular zone 
[Monier et al., 2007]), and the mid- late fetal epoch when most microglial colonization of the cortex 
is thought to be achieved (Menassa and Gomez- Nicola, 2018; Figure 3c). In contrast, the M12 gene 
set, which was enriched for predominantly neuronal elements of layer 2 in adult cortex, also showed 
enrichment for marker genes of developing fetal excitatory neurons, the fetal cortical subplate, and 
windows of mid- late fetal development when developing neurons are known to be migrating into a 
maximally expanded subplate (Molnár et al., 2019).

The striking co- enrichment of WGCNA modules for features of both the fetal and adult cortex 
(Figure 3c) implied a patterned sharing of marker genes between cyto- laminar features of the adult 
and fetal cortex. To more directly test this idea and characterize potential biological themes reflected 
by these shared marker genes, we carried out pairwise enrichment analyses between all annotational 
gene sets from Figure 3c. These gene sets collectively draw from a diverse array of study designs 
encompassing bulk, laminar, and single- cell transcriptomics of the human cortex between 10 PCW 
and 60 y of life (‘Materials and methods’; Darmanis et al., 2015; Habib et al., 2017; He et al., 2017; 
Li et al., 2018; Maynard et al., 2021; Miller et al., 2014; Polioudakis et al., 2019; Ruzicka et al., 
2021; Velmeshev et al., 2019; Werling et al., 2020; Zhang et al., 2016). Network visualization and 
clustering of the resulting adjacency matrix (Figure 3—figure supplement 1e) revealed an integrated 
annotational space defined by five coherent clusters (Figure 3e). A mature neuron cluster encom-
passed markers of postmitotic neurons and the compartments that house them in both fetal and 
adult cortex (red, Figure 3e, Supplementary file 2, example core genes: NRXN1, SYT1, CACNG8). 
This cluster also included genes with peak expression between late fetal and early postnatal life, 
and those localizing to the plasma membrane and synapse. A small neighboring fetal ganglionic 
eminence cluster (fetal GE, yellow, Figure 3e, Supplementary file 2, example core genes: NPAS3, 
DSX, DCLK2) contained marker sets for migrating inhibitory neurons from the medial and caudal 
ganglionic eminence in mid- fetal life. These two neuronal clusters – mature neuron and fetal GE – 
were most strongly connected to the M12 gene set (‘Materials and methods’), which highlights medial 
prefrontal, and temporal cortices possessing a high ratio of neuropil:neuronal cell bodies (Collins 
et al., 2010; Spocter et al., 2012). A mitotic annotational cluster (blue, Figure 3e, Supplementary 
file 2, example core genes: CCND2, MEIS2, PHLDA1) was most distant from these two neuronal 
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clusters and included genes showing highest expression in early development as well as markers of 
cycling progenitor cells, radial glia, oligodendrocyte precursors, germinal zones of the fetal cortex, 
and the nucleus. This cluster was most strongly connected to the M15 gene set, which shows high 
expression over occipito- parietal cortices distinguished by a high cellular density and notably low 
expression in lateral prefrontal cortices, which possess low cellular density (Collins et al., 2016). The 
mature neuron and mitotic clusters were separated by two remaining annotational clusters for non- 
neuronal cell types and associated cortical layers. A myelin cluster (orange, Figure 3e, Supplemen-
tary file 2, example core genes: MOBP, CNP, ACER3) – which contained gene sets marking adult layer 
6, oligodendrocytes, and organelles supporting the distinctive biochemistry and morphology of oligo-
dendrocytes (the golgi apparatus, endoplasmic reticulum, and cytoskeleton) – was most connected to 
the M2 gene set highlighting heavily myelinated motor cortex (Nieuwenhuys and Broere, 2017). A 
non- neuronal cluster (yellow, Figure 3e, Supplementary file 2, example core genes: TGFBR2, GMFG, 
A2M) – which encompassed marker sets for microglia, astrocytes, endothelial cells, pericytes, and 
markers of superficial adult and fetal cortical layers that are relatively depleted of neurons – was most 
connected to the M6 gene set highlighting medial temporal and anterior cingulate cortices with 
notably high non- neuronal content (Collins et al., 2010).

These analyses show that the regional patterning of bulk gene expression captures the organi-
zation of the human cortex across multiple spatial scales and developmental stages such that (i) the 
summary expression maps of spatially co- expressed gene sets align with independent in vivo maps of 
macroscale structure and function from neuroimaging, while (ii) the spatially co- expressed gene sets 
defining these maps show congruent enrichments for specific adult cortical layers and cell types as 
well as developmental precursors of these features spanning back to mid- fetal life.

ASD risk genes follow two different spatial patterns of cortical 
expression, which capture distinct aspects of cortical organization and 
differentially predict cortical changes in ASD
The findings above establish that gene co- expression modules in the human cortex capture multiple 
levels of biological organization ranging from subcellular organelles to cell types, cortical layers, 
and macroscale patterns of brain structure and function. Given that genetic risks for atypical brain 
development presumably play out through such levels of biological organization, we hypothesized 
that disease- associated risk genes would be enriched within WGCNA module gene sets. Testing 
this hypothesis simultaneously offers a means of further validating our analytic framework, while 
also potentially advancing understanding of disease biology. To test for disease gene enrichment in 
WGCNA modules, we compiled lists of genes enriched for deleterious rare variants in ASD (Ruzzo 
et al., 2019; Satterstrom et al., 2020), schizophrenia (Scz; Singh et al., 2020), severe developmental 
disorders (DDD; Deciphering Developmental Disorders Study, 2017), and epilepsy (Heyne et al., 
2018; Supplementary file 2). We considered rare (as opposed to common) genetic variants to focus 
on high effect- size genetic associations and avoid ongoing uncertainties regarding the mapping of 
common variants to genes (Tam et al., 2019). We observed that disease- associated gene sets were 
significantly enriched in several WGCNA modules (Figure  4a), with two modules showing enrich-
ments for more than one disease: M15 (ASD, Scz, and DDD) and M12 (ASD and epilepsy). ASD was 
the only disorder to show a statistically significant enrichment of risk genes within both M12 and M15 
(Figure 4a), providing an ideal setting to ask if and how this partitioning of ASD risk genes maps onto 
(i) multiscale brain organization in health and (ii) altered brain organization in ASD.

The eigenmaps and gene set enrichments of M12 vs. M15 implicated two contrasting multiscale 
motifs in the biology of ASD (Figure 4b). ASD risk genes, including SCN2A, SYNGAP1, and SHANK2, 
resided within the M12 module (Figure 4c), which is most highly expressed within a distributed cortical 
system that is activated during social reasoning tasks (pspin<0.01, Figure 3c and d, Figure 4b). The M12 
gene set is also enriched for: genes with peak cortical expression in late- fetal and early postnatal life; 
marker genes for the fetal subplate and developing excitatory neurons; markers of layer 2 and mature 
neurons in adult cortex; and synaptic genes involved in neuronal communication (Figures 3c and d 
and 4b–e, Supplementary file 4). In contrast, ASD risk genes, including ADNP, KMT5B, and MED13L, 
resided within the M15 module (Figure 4c), which is most highly expressed in primary visual cortex 
and associated ventral temporal pathways for object recognition/interpretation (Kravitz et al., 2013) 
(pspin<0.05, Figures 3c and d and 4b, Supplementary file 4). The M15 module is also enriched for 
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genes showing peak cortical expression in early fetal development, marker genes for cycling progen-
itor cells in the fetal cortex; markers of layer 2, inhibitory neurons and oligodendrocyte precursors 
in the adult cortex (Figures 3c and d and 4b–e, Supplementary file 4). The alignment of ASD risk 
genes with M12 and M15 was reinforced when considering all 135 ASD risk genes: spatial co- expres-
sion analyses split these genes into two clear subsets with mean expression maps that most closely 
resembled M12 and M15 (Figure 4—figure supplement 1a, b). Thus, using only spatial patterns of 
cortical gene expression in adulthood, our analytic framework was able to recover the previous PPI 
and GO- based partitioning of ASD risk genes into synaptic vs. nuclear chromatin remodeling path-
ways (Parikshak et al., 2013; Satterstrom et al., 2020), and then place these pathways into a richer 
biological context based on the known multiscale associations of M12 and M15 (Figures 3c and 4a).

We next sought to address whether regional differences in M12 and M15 expression were related 
to regional cortical changes observed in ASD. To test this idea, we used two orthogonal indices of 
cortical change in ASD that capture different levels of biological analysis – the number of differen-
tially expressed genes (DEGs) postmortem (Haney et al., 2020), and the magnitude of changes in 
cortical thickness (CT) as measured by in vivo sMRI (Di Martino et al., 2017). Regional DEG counts 

Figure 4. Autism spectrum disorder (ASD) risk genes follow two different spatial patterns of cortical gene expression which differentially predict 
cortical changes in ASD. (a) Enrichment of weighted gene co- expression network analysis (WGCNA module gene sets for risk genes associated with 
atypical brain development through enrichment of rare deleterious variants in studies of ASD, schizophrenia (Scz), severe developmental disorders 
(DDD, deciphering developmental disorders study), and epilepsy. Cell color intensity indicates pairwise statistical significance (p<0.05)), while outlined 
matrix cells survived correction for multiple comparisons across modules. (b) Summary of multiscale and developmental annotations from Figure 3c 
for M12 and M15: the only two WGCNA modules enriched for risk genes of more than one neurodevelopmental disorder. (c) M12 and M15 genes 
clustered by the strength of their membership to each module. Color encodes module membership. Shape encodes annotations for two GO Biological 
Process annotations that differ between the module gene sets: neuronal communication and regulation of gene expression. Text denotes specific ASD 
risk genes. (d) Contrasting GO enrichment of M12 and M15 for neuronal communication and regulation of gene expression GO Biological Process 
annotations. (e) M12 and M15 differ in the developmental trajectory of their average cortical expression between early fetal and mid- adult life (Li et al., 
2018). (f) Regional differences in intrinsic expression of the M15 module (but not the M12 module) in adult cortex is correlated with regional variation 
in the severity of altered cortical gene expression (number of differentially expressed genes) in ASD (Haney et al., 2020). (g) Statistically significant 
regional alterations of cortical thickness (CT) in ASD compared to typically developing controls from in vivo neuroimaging (Di Martino et al., 2017) 
(top). Areas of cortical thickening show a statistically significant spatial overlap (Dice overlap = 0.68, pspin<0.01) with regions of peak intrinsic expression 
for M15 in adult cortex (bottom). (h) M15 eigenmap expression (but not M12 eigenmap) shows significant spatial correlation with relative CT change in 
ASD.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional characterisations of Autism Spectrum Disorder (ASD) risk genes and modules.
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were derived from a recent postmortem study of 725 cortical samples from 11 cortical regions in 112 
ASD cases and controls (Haney et al., 2020), and compared with mean M12 and M15 expression 
within matching areas of a multimodal MRI cortical parcellation (Glasser et al., 2016). The magni-
tude of regional transcriptomic disruption in ASD was statistically significantly positively correlated 
with region expression of the M15 module (r = 0.6, pspin<0.05), but not the M12 module (r = −0.3, 
pspin>0.05) (Figure 4f). This dissociation is notable because M15 (but not M12) is enriched for genes 
involved in the regulation of gene expression (Figure 4d). Thus the enrichment of regulatory ASD risk 
genes within M15, and the intrinsically high expression of M15 in occipital cortex may explain why the 
occipital cortex is a hotspot of altered gene expression in ASD.

To compare M12 and M15 expression with regional variation in cortical anatomy changes in ASD, 
we harnessed the multicenter ABIDE datasets containing brain sMRI scans from 751 participants with 
idiopathic ASD and 773 controls (Di Martino et al., 2017; Di Martino et al., 2013). We preprocessed 
all scans using well- validated tools for harmonized estimation of cortical thickness (CT) (Fischl, 2012) 
from multicenter data (‘Materials and methods’), and then modeled CT differences between ASD 
and control cohorts at 150,000 points (vertices) across the cortex (‘Materials and methods’). This 
procedure revealed two clusters of statistically significant CT change in ASD (‘Materials and methods,’ 
Figure  4g, upper panel) encompassing visual and parietal cortices (relative cortical thickening vs. 
controls) as well as superior frontal vertices (relative cortical thinning). The occipital cluster of cortical 
thickening in ASD showed a statistically significant spatial overlap with the cluster of peak M15 expres-
sion (Figure 4g, upper panel, ‘Materials and methods,’ Dice coefficient = 0.7, pspin<0.01), and relative 
cortical thickness change correlated with the M15 eigenmap (Figure 4h). In contrast, M12 expression 
was not significantly aligned with CT change in ASD (Figure 4g and h). Testing these relationships in 
the opposite direction, that is, asking whether regions of peak M12 and M15 expression are enriched 
for directional CT change in ASD relative to other cortical regions, recovered the M15- specific associ-
ation with regional cortical thickening in ASD (Figure 4—figure supplement 1c).

Taken together, the above findings reveal that an occipital hotspot of altered gene expression 
and cortical thickening in ASD overlaps with an occipital hotspot of high expression for a subset of 
ASD risk genes. These ASD risk genes are spatially co- expressed in a module enriched for several 
connected layers of biological organization (Figures 3c and 4b–d) spanning: nuclear pathways for 
chromatin modeling and regulation of gene expression; G2/M phase cycling progenitors and excit-
atory neurons in the mid- fetal cortex; oligodendrocytes and layer 2 cortical neurons in adult cortex; 
and occipital functional networks involved in visual processing. These multiscale aspects of cortical 
organization can now be prioritized as potential targets for a subset of genetic risk factors in ASD, and 
the logic of this analysis in ASD can now be generalized to any disease genes of interest.

Discussion
We build on the most anatomically comprehensive dataset of human cortex gene expression avail-
able to date (Hawrylycz et al., 2012), to generate, validate, characterize, apply, and share spatially 
dense measures of gene expression that capture the topographically continuous nature of the cortical 
mantle. By representing patterns of human cortical gene expression without the imposition of a priori 
boundaries (Burt et al., 2018; Hawrylycz et al., 2015), our library of DEMs allows anatomically unbi-
ased analyses of local gene expression levels as well as the magnitudes and directions of local gene 
expression change. This core spatial property of DEMs unlocks several methodological and biological 
advances. First, the unparcellated nature of DEMs allows us to agnostically define cortical zones with 
extreme transcriptional profiles or unusually rapid transcriptional change, which we show to capture 
microstructural cortical properties and align with folding and functional specializations at the macro-
scale (Figure 2). By establishing that some of these cortical zones are evident at the time of cortical 
folding, we lend support to a ‘protomap’ (O’Leary, 1989; O’Leary et al., 2007; Rakic, 1988; Rakic 
et  al., 2009)- like model where the placement of some cortical folds is setup by rapid tangential 
changes in cyto- laminar composition of the developing cortex (Ronan et al., 2014; Toro and Burnod, 
2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of 
the measured genetic- folding alignment might also be induced by mechanical distortion of the tissue 
during folding (Heuer and Toro, 2019; Llinares- Benadero and Borrell, 2019). However, no data 
currently exist to conclusively assess the directionality of this gene- folding relationship.
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We show that DEMs can recover sharp boundaries in gene expression despite being generated 
by interpolation algorithms that do not explicitly encode step changes in expression between cortical 
regions. This property of DEMs will help to target future studies of human cortical patterning (e.g., 
directing single- cell and spatial omics resources), and we illustrate this utility by applying DEMs to 
discover two new expression boundaries in the human cortex. Second, we use spatial correlations 
between DEMs to decompose the complex topography of cortical gene expression into a smaller set 
of cortex- wide transcriptional programs that capture distinct aspects of cortical biology – at multiple 
spatial scales and multiple developmental epochs (Figure 3). This effort provides an integrative model 
that links expression signatures of cell types and layers in prenatal life to the large- scale patterning 
of regional gene expression in the adult cortex, which can in turn, through DEMs, be compared to 
the full panoply of in vivo brain phenotypes provided by modern neuroimaging. Indeed, future work 
might find direct links between these module eigenvectors and similar low- frequency eigenvectors of 
cortical geometry have been used as basis functions to segment the cortex (Lefèvre et al., 2018) and 
explain complex functional activation patterns (Pang et al., 2023). Third, we find that some of these 
cortex- wide expression programs in adulthood are enriched for disease risk genes, which offers a new 
path to nominating candidate disease mechanisms across different levels of biological organization 
(Figure 4). For example, the M15 module defines a normative spatial pattern of cortical gene co- ex-
pression which not only captures a functionally enriched subset of ASD genes (Satterstrom et al., 
2020), but also shows multiscale enrichments and regionally specific expression patterns that tie 
together several independently reported aspects of ASD neurobiology. Specifically, M15 newly inte-
grates (i) the concentration of ASD risk genes and dysregulated gene expression in upper- layer excit-
atory neurons (Velmeshev et al., 2019), (ii) the accentuation of altered gene expression and thickness 
in occipital cortical regions, and (iii) the early emergence among children at heightened genetic risk 
for ASD of behaviorally relevant changes in cortical structure and function (Girault et al., 2022) within 
occipital systems important for the processing of visual information. Crucially, the strategy applied in 
our analysis of ASD risk genes can be generalized to risk genes for any brain disorder of interest to 
place known risk factors for disease into the rich context of multiscale cortical biology.

Finally, the collection of DEMs, annotational gene sets, and statistical tools used in this work is 
shared as a new resource to accelerate multiscale neuroscience by allowing flexible and spatially 
unbiased translation between genomic and neuroanatomical spaces. Of note, this resource can easily 
incorporate any future expansions of brain data in either neuroanatomical or genomic space. We 
anticipate that it will be particularly valuable to incorporate new data from the nascent, but rapidly 
expanding fields of high- throughput histology (Wagstyl et  al., 2020), single- cell omics (Bakken 
et al., 2021), and large- scale imaging- genetics studies (Smith et al., 2021). Taken together, MAGICC 
enables a new integrative capacity in the way we study the brain, and hopefully serves to spark new 
connections between previously distant datasets, ideas, and researchers.

Materials and methods
Creating spatially dense maps of human cortical gene expression 
(Figure 1a–d)
Cortical surfaces were reconstructed for each AHBA donor MRI using FreeSurfer (Fischl, 2012), and 
coregistered between donors using surface matching of individuals’ folding morphology (MSMSulc) 
(Robinson et al., 2018). An average donor cortical mesh was also created for analyses of cortical 
morphology by averaging the vertex coordinates of volumetrically aligned meshes for the six donors.

Probe- level data measures of gene expression for all samples in the AHBA adult brain microarray 
dataset were downloaded from https://human.brain-map.org/static/download, providing log2- 
transformed measures of gene expression for 58,692 probes in each of 3702 brain tissue samples from 
six donors (Supplementary file 1). Within- and across- brain normalization of these probe- level gene 
expression values was implemented as detailed by the Allen Institute for Brain Science White Paper 
(Allen Human Brain Atlas, 2013). Probes were reannotated using the updated manifest from Arnat-
keviciute et al., 2019, excluding genes lacking an Entrez, and probe- level expression values were 
averaged for each gene to yield a single gene * sample expression matrix for each donor. As only two 
donors had measurements from right hemispheres, samples were filtered by region to retain those 
originating from the cerebral cortex left hemisphere only. This decision was made given evidence 
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for potential asymmetries in gene expression within the human cortex (de Kovel et al., 2018), and 
known differences in cortical shape between the hemispheres that complicate the reflection of sample 
locations from left to right cortical sheets (Jo et al., 2012). The above steps resulted in a final set of 
six donor- level gene * sample matrices from the left cerebral cortex for downstream analyses. These 
matrices collectively contained scaled expression values for 20,781 genes in each of the 1304 cortical 
samples.

Native subject MRI coordinates were extracted for every cortical sample in each donor (Figure 1a). 
Nearest mid- surface cortical vertices were identified for each sample, excluding samples further than 
20 mm from a cortical coordinate. For cortical vertices with no directly sampled expression, expres-
sion values were interpolated from their nearest sampled neighbor vertex on the spherical surface 
(Moresi and Mather, 2019; Figure 1b). Sampling density ρ in each subject was calculated as the 
number of samples per mm2, from which average inter- sample distance, d, was estimated using the 
formula: 

 
d = 1√

 
 , giving a mean intersample distance of 17.7 mm ± 1.2 mm. Surface expression maps 

were smoothed using the Connectome Workbench toolbox (Glasser et al., 2013) with a 20 mm full- 
width at half maximum (FWHM) Gaussian kernel, selected to be consistent with this sampling density 
(Figure 1c). To align subjects’ expression, expression values were z- scored by the mean and standard 
deviation across vertices (given the known criticality of within- subject scaling of AHBA expression 
values; Markello et al., 2021) and then averaged across the six subjects (Figure 1d), yielding spatially 
dense estimates of expression at 29,696 vertices across the left cerebral cortex per gene. Vertex- 
wise, rather than sample- level, estimation of mean and standard deviation mitigates potential biases 
introduced by intersubject variability in the regional distribution and density of cortical samples. For 
Y- linked genes, DEMs were calculated from male donors only. For each of the resulting 20,781 gene- 
level expression maps, the orientation and magnitude of gene expression change at each vertex (i.e., 
the gradient) were calculated for folded, inflated, spherical, and flattened mesh representations of 
the cortical sheet using Connectome Workbench’s metric gradient command (Glasser et al., 2013).

Benchmarking DEMs
Spin tests for comparing two spatial maps
Cortical maps exhibit spatial autocorrelation that can inflate the false- positive rate, for which a number 
of methods have been proposed (Alexander- Bloch et  al., 2018; Burt et  al., 2020; Vos de Wael 
et al., 2020). At higher degrees of spatial smoothness, this high false- positive rate is most effectively 
mitigated using the spin test (Alexander- Bloch et al., 2018; Markello and Misic, 2021; Vos de Wael 
et al., 2020). In the following analyses when generating a test statistic comparing two spatial maps, 
to generate a null distribution, we computed 1000 independent spins of the cortical surface using 
https://netneurotools.readthedocs.io and applied it to the first map whilst keeping the second map 
unchanged. The test statistic was then recomputed 1000 times to generate a null distribution for 
values one might observe by chance if the maps shared no common organizational features. This is 
referred to throughout as the ‘spin test’ and the derived p- values as pspin.

An additional null dataset was generated to test whether intrinsic geometry of the cortical mesh 
and its impact on interpolation for benchmarking analyses of DEMs and gradients (Figure 1—figure 
supplements 1d and 2d, Figure 2—figure supplement 1c). In these analyses, the original samples 
were rotated on the spherical surface prior to subsequent interpolation, smoothing, and gradient 
calculation. Due to computational constraints, the full dataset was recreated only for 10 independent 
spins. These are referred to as the ‘spun + interpolated null.

Replicability and independence from cortical sampling density (Figure 1—
figure supplement 1)
We assessed the replicability of DEMs by applying the above steps for DEM generation to non- 
overlapping donor subsets and comparing DEMs between the resulting sub- atlases. We quantified 
DEM agreement between sub- atlases at both the gene level (correlation in expression across vertices 
for each gene, Figure 1—figure supplement 1c) and the vertex level (correlation in ranking of genes 
by their scaled expression values at each vertex, Figure 1—figure supplement 1d, e). These sub- 
atlas comparisons were done between all possible pairs of individuals, donor duos, and donor trip-
lets to give distributions and point estimates of reproducibility for atlases formed of one, two, and 
three donors. Learning curves were fitted to these data to estimate the projected gene- level and 
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vertex- level DEM reproducibility of our full six- subject sample atlas (Figueroa et al., 2012; Figure 1—
figure supplement 1c).

To assess the effect of data interpolation in DEM generation, we compared gene- level and vertex- 
level reproducibility of DEMs against a ‘ground truth’ estimate of these reproducibility metrics based 
on uninterpolated expression data. To achieve a strict comparison of gene expression values between 
different individuals at identical spatial locations, we focused these analyses on the subset of AHBA 
samples where a sample from one subject was within 3 mm geodesic distance of another. This resulted 
in 1097 instances (spatial locations) with measures of raw gene expression of one donor and predicted 
values from the second donor’s uninterpolated AHBA expression data and interpolated DEM. We 
computed gene- level and vertex- level reproducibility of expression using the paired donor data 
at each of these sample points – for both DEM and uninterpolated AHBA expression values. By 
comparing DEM reproducibility estimates with those for uninterpolated AHBA expression data, we 
were able to quantify the combined effect of interpolation and smoothing steps in DEM generation. 
We used gene- level reproducibility values from DEMs and uninterpolated AHBA expression data to 
compute a gene- level difference in reproducibility, and we then visualized the distribution of these 
difference values across genes (Figure 1—figure supplement 1a). We used gene–rank correlation to 
compare vertex- level reproducibility values between DEMs and uninterpolated AHBA expression data 
(Figure 1—figure supplement 1b).

Theoretically, regional gradients of expression change in DEMs could be biased by regional vari-
ations in the density of AHBA cortical sampling. To test for this, in each individual subject, we calcu-
lated the spatial relationship between the sampling density and mean gene gradient magnitude 
(Figure 1—figure supplement 1g). We additionally tested whether the regional variability of gene 
rank predictability in the atlas (shown in Figure 1—figure supplement 1f) was linked to the sampling 
density within the atlas.

Alignment with reference measures of cortical organization (Figure 1e–g)
We first determined whether our DEM library was able to differentiate between genes that are known 
to show cortical expression (CExp) and those without any prior evidence of cortical expression (NCExp) 
– motivated by the strong expectation that NCExp genes should lack a consistent spatial gradient in 
expression. For this test, we defined a set of 16,573 CExp genes by concatenating the genes coding 
for proteins found in the ‘cortex’ tissue class of the human protein atlas (Sjöstedt et al., 2020) genes 
identified as markers for cortical layers or cortical cells (see below; Darmanis et al., 2015; Habib 
et al., 2017; He et al., 2017; Hodge et al., 2019; Lake et al., 2018; Lake et al., 2016; Li et al., 
2018; Maynard et al., 2021; Ruzicka et al., 2021; Velmeshev et al., 2019; Zhang et al., 2016). The 
remaining 4208 genes in our DEM library were classified as NCExp. Fisher’s exact test was used to 
assess whether genes with lower gene reproducibility (r < 0.5) were enriched for NCExp genes. We 
projected vertex- level reproducibility values for CExp and NCExp genes onto the cortical surface for 
visual comparison and also computed the mean cross- vertex reproducibility for each of these maps 
(Figure 1—figure supplement 1f).

We next compiled data from independent studies for a range of macroscale and microscale cortical 
features that would be expected to align with specific DEM maps, and asked whether the spatial 
patterns of cortical gene expression from DEMs showed the expected alignment with these inde-
pendent data. These independent comparison studies were selected to span diverse measurement 
methods and data modalities representing a range of spatial scales.

We first sought to establish whether local changes in DEMs, that is, the gradient maps of gene 
expression, could be used to validate existing areal border genes and identify novel candidates. Using 
a parcellation of the cortex based on multimodal structural and functional neuroimaging (Glasser 
et al., 2016), we identified the vertices along the boundary between a pair of regions (e.g., V1 and 
V2). The mean DEM gradient at these vertices was quantified for each gene, enabling us to rank 
genes by their exhibited border- like features at this cortical location. We then assessed the ranking 
of known lists of areal marker genes for a given border against a randomly sampled null distribution. 
To validate known areal marker genes derived from previous ISH studies, we took examples from the 
human visual cortex (Zeng et al., 2012), macaque visual cortex, and macaque frontal regions 44 and 
45 (Chen et al., 2022). To test the capacity of our resource to identify novel putative areal border 
genes, we calculated average gradients of all genes across the boundary between mesial temporal 
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parahippocampal gyrus (perirhinal ectorhinal cortex, PeEc) and the fusiform gyrus (area TF) for which 
there is openly available ISH data (https://human.brain-map.org/ish/search). Limiting analyses to 
those genes for which ISH was available, the two genes exhibiting the largest gradient in either direc-
tion (four in total) were selected. The ISH was visually inspected for the presence of area- like features 
in gene expression. For quantitative support, the cortex in each ISH image was manually segmented 
over the area of interest. The pixel- wise transverse distance along the cortical segmentation from left 
to right was calculated and subdivided into 200 equally spaced columns, spanning from pial to white 
matter surface. Staining intensity was averaged across each column. For each column, we computed 
the t- statistic between columns to the right and left, and identified the column with the largest t- sta-
tistic as the location of the putative interareal boundary.

We used the spun + interpolated null to test whether peaks in gene gradient could be driven 
primarily by local folding morphology impacting non- uniform interpolation. We quantified the average 
gradient for all genes along the V1- V2 border in the atlas, as well as for 10 iterations of the atlas where 
the samples were spun prior to interpolation. We computed the median gradient magnitude for the 
20 top- ranked genes for each (Figure 1—figure supplement 2d).

We benchmarked DEMs against regional differences in cellular measures of cortical organization 
from single- nucleus RNA- sequencing studies (snRNAseq). Specifically, we correlated regional differ-
ences in the estimated proportion of 16 neuronal subtypes across six cortical regions (Lake et al., 
2016) with regional DEM estimates for the mean expression of provided markers for these cell types 
(Lake et al., 2016). The test statistic was tested against a null distribution generated through spin-
ning and resampling the cell marker DEM estimates (Table 1). Given the observed correspondence 
between regional cellular proportions and regional expression of cell marker sets, we used more 
recently generated reference cell markers from the Allen Institute for Brain Sciences (Bakken et al., 
2021; Hodge et al., 2019; Tasic et al., 2016) to generate DEMs for 11 of 14 major cell subclasses 
in the mammalian cortex (6 neuronal types shown in Figure 1h, all 11 used for TD peak enrichment 

Table 1. Statistical tests used to compare spatial maps and gene sets derived from the Allen Human Brain Atlas with independent 
multiscale neuroscientific resources.

Input data Test statistic Significance test

Comparison of two cortical maps, e.g., 
Figure 1e

Pearson’s R (e.g., Figure 1e and f), Spearman Rrank (Figure 3), 
delta Z for binary and continuous comparison (Figures 1e 
and 3c and d), Dice score for two binary maps (Figures 2d 
and 4g), skew in distribution of angles (Figures 2f and c and 
3cFigures 2f & g and 3c). Counts for peak expression locations 
overlapping ROIs (Figure 2—figure supplement 1h).

Spin test: generate null distribution for test 
statistic by independently spinning spherical 
projections of spatial maps and recalculating 
test statistic on spun maps (Alexander- Bloch 
et al., 2018).

Intrasubject alignment of multimodal 
maps Pearson’s R (e.g., Figure 1—figure supplement 1g).

Simple permutation- based intermodal 
correspondence (SPICE) test (Weinstein 
et al., 2021).

Comparison of gene–gene 
connectivity matrix, e.g., protein–
protein interaction vs. spatial 
correlation, gene–gene spatial 
correlation vs. developmental 
trajectory correlation

If continuous, threshold matrix at 95%. Fisher’s exact test for 
significant edge- level overlap.

Fisher’s exact test p- values corrected for 
multiple comparisons using the Holm–Sidak 
step down procedure (Holm, 1979).

Overlap of two gene lists, e.g., 
Figure 3e Fisher’s exact test.

Fisher’s exact p- value corrected for multiple 
comparisons.

Cortical thickness changes in 
pathology (in AD, Figure 1e, in ASD, 
Figure 4g)

Linear model:
Vertex cortical thickness ~ Age + sex + group + mean cortical 
thickness.

Cluster- wise correction. Calculate maximum 
size of significant clusters on 1000 randomly 
permuted cohorts, using the 95th centile size 
as a threshold on the test cohort (Hagler 
et al., 2006).

Intramodular trajectory correlation Pairwise intramodular median rank correlation.
Randomly sampled gene sets of comparable 
size.

Protein–protein interaction Intramodular connectivity.
Random resampling of gene sets with decile- 
matching for degree.

AD, Alzheimer’s disease; ASD, autism spectrum disorder; ROI, region of interest.
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analysis; Figure 2—figure supplement 1h). Three markers were excluded due to absence in the orig-
inal dataset or low gene predictability (r < 0.2, Figure 1—figure supplement 1c).

We benchmarked DEMs against orthogonal spatially dense measures of cortical through the 
following comparisons: (i) layer IV thickness values from the 3D BigBrain atlas of cortical layers 
(Wagstyl et al., 2020) vs. the average DEM for later IV marker genes (He et al., 2017; Maynard 
et al., 2021; Supplementary file 2); (ii) motor- associated areas of the cortex from multimodal in 
vivo MRI (Glasser et al., 2016) vs. the average DEM for two marker genes (ASGR2, CSN1S1) of 
Betz cells, which are giant pyramidal neurons that output from layer V of the human motor cortex 
(Bakken et al., 2021); (iii) an in vivo neuroimaging map of the T1/T2 ratio measuring of intracor-
tical myelination (Glasser and Van Essen, 2011) vs. the DEM for Myelin Basic Protein; and (iv) 
regional cortical thinning from in vivo sMRI data in AD patients with the APOE E4 (OASIS- 3 dataset 
[LaMontagne et al., 2019], see ‘MRI data processing’) vs. the APOE4 DEM. For all four of these 
comparisons, alignment between maps was quantified and test for statistical significance using a 
strict spin- based spatial permutation method that controls for spatial autocorrelation in cortical 
data (Alexander- Bloch et al., 2018) methods on statistical testing of pairwise cortical maps can be 
found in Table 1.

Characterizing the topography of DEMs
TD and PCA (Figure 2a–c)
TD of each cortical vertex was calculated as the mean of the absolute DEM value for all genes 
(Figure  2a). Statistically significant peaks in TD, driven by convergence of extreme values across 
multiple genes, were identified as follows. The DEM for each gene was independently spun and TD was 
recalculated at each vertex over 1000 sets of gene- level DEM permutations (Alexander- Bloch et al., 
2018). The maximum vertex TD value for each permuted TD map was recorded and the 95th percen-
tile value across the 1000 permutations was taken as a threshold value. This threshold represents the 
maximum TD one would expect in the absence of concentrated colocalisations of extreme expression 
signatures, and areas above this threshold were annotated as TD peaks. To disambiguate TD peaks 
that are spatially coalescent but potentially driven by extreme values of heterogeneous gene sets 
within different regions, we concatenated all suprathreshold TD vertices into a single vertex * gene 
matrix and vertices in this matrix were clustered based on their expression signatures.

Intervertex correlation of gene rankings was calculated and the matrix was clustered using a 
Gaussian mixture model. Bayesian information criterion was used to identify the optimum number of 
clusters (k = 6) from a range of 2–18. Automated labels to localize TD peaks were generated based 
on their intersection with a reference multimodal neuroimaging parcellation of the human cortex 
(Glasser et al., 2016). Each TD was given the label of the multimodal parcel that showed the greatest 
overlap (Figure 2b).

The TD map was assessed for reproducibility through three approaches. First, the six- subject 
cohort was subdivided into pairs of triplets, for which there are 10 unique combinations. For each 
combination, independent TD maps were computed for each triplet and compared between trip-
lets (Figure 2—figure supplement 1a). Second, for the full six- subject cohort genes were grouped 
into deciles according to the reproducibility of their spatial patterns in independent subcohorts 
(Figure 1—figure supplement 1c). For each decile of genes, a TD map was computed and compared 
to the TD map from the remaining 90% of genes (Figure 2—figure supplement 1b). Third, to assess 
whether the covariance in spatial patterning across genes could be a result of mesh- associated struc-
ture introduced through interpolation and smoothing, TD maps were recomputed for the spun  + 
interpolated null datasets and compared to the original TD map (Figure 2—figure supplement 1c).

The cortical regions defined by TD peaks were annotated according to their spatial overlap with 
the 24 cortical cell marker expression DEMs used in Figure 1g and h (Bakken et al., 2021; Hodge 
et al., 2019; Lake et al., 2016). To establish that cell maps were aligned with TD peaks, we first tested 
whether the vertex with the highest DEM value for each cell map overlapped with a TD peak and 
compared the number of overlapping cells to a null distribution created through spinning the TD peaks 
independently 1000 times. We then identified the cell types whose expression most closely aligned 
with each TD peak, comparing mean TD expression with a null distribution generated through spin-
ning the peaks 1000 times (Figure 2—figure supplement 1h). TD peaks were also annotated for their 
functional activations using the meta- analytic Neurosynth database (see ‘Map- based annotations’).
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Gene sets characterizing TD peaks were identified as follows. At the vertex with the highest TD 
value within a peak region, the 95th centile TD value across genes was selected as a threshold. Genes 
with z- scored expression values above this threshold or below its inverse were selected, allowing TD 
peaks to have asymmetric length gene lists for high- and low- expressed genes (Supplementary file 
3). These TD gene lists were submitted to a Gene Ontology (GO) enrichment analysis pipeline (see 
‘Gene set- based annotations’).

To contextualize the newly described TD peaks using previously reported principal components 
(PCs) of human cortical gene expression, we computed the first five PC of gene expression in our full 
DEM library. The percentage of variance explained by each PC was calculated and compared to a 
null threshold derived through fitting PCs to a permuted null given by 1000 random spatial rotations 
of gene- level DEMs (Figure 2—figure supplement 1d). Taking the gene- level loadings from the first 
three PCs (Figure 2—figure supplement 1e), each vertex could be positioned in a 3D PC space 
based on its expression signature and also be colored based on its membership of a TD peak, thereby 
visualizing the position of TD peaks relative to the dominant spatial gradients of transcriptomic varia-
tion across the cortex (Figure 2c).

The assignment of TD regions as ‘peaks’ implies a rapid emergence of the TD signature surrounding 
the peak boundaries, which we formally assessed by cortex- wide analysis of local tangential changes 
in gene expression (see ‘Local gradient analysis’), and a spatially fine- grained comparisons of the phys-
ical vs. transcriptional distance between cortical regions. In the latter of these two analytic approaches, 
a rapid ‘border- like’ onset of TD features would appear as (i) TD regions showing a greater tran-
scriptional distance from other cortical regions than would be expected from their physical distance 
from other cortical regions, and (ii) this disparity emerging sharply surrounding the peak. To achieve 
this test, we first quantified the geodesic physical distance and Euclidean transcriptomic distance 
between pairs of vertices. For computational tractability, we limited this analysis to a subsample of 
vertices, choosing central vertices from ROIs in a parcellation with 500 approximately evenly sized 
parcels (Schaefer et al., 2018). We fit a linear generalized additive model to the data – predicting 
transcriptomic distance from geodesic distance – and calculated the residuals for each inter- vertex 
edge (Figure 2—figure supplement 1f). For each sampled vertex, we averaged these residuals and 
mapped them back to the surface to visualize cortical areas that were transcriptomically more distinc-
tive than their physical distance to other areas would predict (Figure 2—figure supplement 1g).

Relating adult TD peaks to fetal gene expression (Figure 2—figure supple-
ment 1k)
We sought to establish whether the regional expression signatures characterizing TD peaks were 
present early in fetal development. This goal required measures of gene expression from multiple 
regions across the fetal cortical sheet, which are provided by the Allen Institute from Brain Sciences 
fetal laser micro- dissection microarray dataset (Miller et al., 2014). In each sample’s fetal brain, this 
dataset represents approximately 25 cortical brain regions tangentially, and radially 7 transient fetal 
layers/compartments: subpial granular zone (SG), marginal zone (MZ), outer and inner cortical plate 
(grouped together as CP), subplate zone (SP), intermediate zone (IZ), outer and inner subventricular 
zone (grouped together as SZ), and ventricular zone (VZ).

Probe- level data measures of gene expression for the two PCW21 donors in the AHBA fetal 
LMD microarray dataset were downloaded from https://www.brainspan.org/static/download.html, 
providing log2- transformed measures of gene expression for 58,692 probes in each of the 536 tissue 
samples across both donors (Supplementary file 1). Preprocessing and normalization of these probe- 
level gene expression values were implemented as detailed by the Allen Institute for Brain Science 
White Paper (https://help.brain-map.org/download/attachments/3506181/Prenatal_LMD_Microarray. 
pdf). Probe- level expression values were averaged for each gene to yield a single gene * sample 
expression matrix for each donor, which was filtered to include only cortical samples. Gene expres-
sion values were scaled across samples within each donor, and scaled gene expression values were 
compiled for the set of 235 cortical regions that was common to both donor datasets. We averaged 
scaled regional gene expression values between donors per gene and filtered for genes in the fetal 
LDM dataset that were also represented in the adult DEM dataset, yielding a single final 20,476 * 235 
gene- by- sample matrix of expression values for the human cortex at 21 PCW. Each TD peak region 
was then paired with the closest matching cortical label within the fetal regions. This matrix was then 
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used to test whether each TD expression signature discovered in the adult DEM dataset (Figure 2, 
Supplementary file 3) was already present in similar cortical regions at 21 PCW.

The analysis of fetal regional patterning of TD peak gene sets was carried out as follows (Figure 2—
figure supplement 1k). For a given TD peak, the significantly enriched genes for that peak (see above 
for definition of these gene sets) were identified in the fetal dataset and averaged at each fetal sample 
– capturing how highly expressed the TD signature was in each fetal sample. Next, we identified all 
samples in the fetal expression dataset that originated from regions underlying the TD peak and 
defined these as the ‘fetal target region set’ for that TD region (i.e., occipital samples in the fetal brain 
were the fetal target region set for analysis of gene enriched in the adult occipital TD region). We 
ranked all fetal samples by their mean expression of the TD marker set and normalized these ranks to 
between 0 (TD markers most highly expressed) and 1 (TD markers most lowly expressed). Normaliza-
tion was done to adjust for varying numbers of areas recorded per compartment. This ranking enabled 
us to compute the median rank of the fetal target region set and test whether this was significantly 
lower compared to a null distribution of ranks from random reassignment of the fetal target region 
set labels across all fetal samples. Within this analytic framework, a statistically significant test means 
that the adult TD signature is significantly localized to homologous cortical regions at 21 PCW fetal life 
(Figure 2—figure supplement 1k ). We repeated this procedure for each adult TD.

Local gradient analysis (Figure 2e–g)
Spatially DEMs enabled the calculation of a vector describing the first spatial derivative, that is, the 
local gradient, of each gene’s expression at each vertex. These vectors describe both the orientation 
and the magnitude of gene expression change.

Averaging these gene- level magnitude estimates across genes provided a vertex- level summary 
map of the magnitude of local expression changes in our full DEM library (Figure 2e). Regions with 
a significantly high average expression gradient were identified using a similar spatial permutation 
procedure as described for the identification of TD peaks. Briefly, the DEM gradient map for each 
gene was independently spun and an average expression gradient magnitude was recalculated at 
each vertex over 1000 sets of these spatial permutations (Alexander- Bloch et al., 2018). For each 
permutation, we recorded the maximum vertex- level average expression gradient value, and the 95th 
percentile value of these maximums across the 1000 permutations was taken as a threshold value. 
Vertices with observed average expression gradient values above this threshold represented cortical 
regions of significantly rapid transcriptional change (Figure 2—figure supplement 1j).

The principal orientation of gene expression change at each vertex was calculated considering 
the vectors describing gene expression gradients, thereby providing a single summary of local gene 
expression gradients that considers both direction and magnitude. PCA of gene gradient vectors was 
used to calculate the primary orientation of gene expression change at each vertex (Figure 2e) and 
the percentage of orientation variance accounted for by this PC (Figure 2e, Figure 2—figure supple-
ment 1i). Gene- level PC weights for each vertex were stored for subsequent analyses, including align-
ment with folds and functional ROIs (Figure 2f and g, see ‘Annotational analyses’).

The rich DEM expression gradient information described above was applied in three downstream 
analyses. First, we used these resources to detail the emergence of TD expression signatures within 
the cortical sheet, focusing on all vertices that had been identified to show a significantly elevated 
mean expression gradient. Specifically, we ranked genes at these vertices by their loadings onto the 
first PC of gene expression gradients at each vertex and correlated these rankings with the rankings of 
genes by the expression at each TD peak vertex. This vertex- level correlation score, which quantifies 
how closely the gene expression gradient at a given vertex resembles that expression signature of a 
given TD peak, was regenerated for each of the six TD peaks (colors, Figure 2—figure supplement 
1j). In each of these six maps, we were also able to plot the principal orientations of expression change 
at the vertex level (red lines, Figure 2—figure supplement 1i) to ask whether gradients of expression 
change for a given TD signature were spatially oriented towards the TD in question.

Second, we used the principal orientation of expression change at each vertex to assess whether 
local transcriptomic gradients were aligned with the orientation of cortical folding patterns. Orien-
tation of cortical folds was calculated using sulcal depth and cortical curvature (Xia et  al., 2018). 
Gradient vectors for sulcal depth describe the primary orientation of cortical folds on the walls of 
sulci, while gradient vectors of cortical curvature better describe the orientation at sulcal fundi and 
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gyral crowns. These two gradient vector fields were combined and smoothed with a 10 mm FWHM 
Gaussian kernel to propagate the vector field into plateaus, for example, at large gyral crowns where 
neither sulcal depth nor curvature exhibit reliable gradients. The folding orientation vectors were 
calculated with reference to a 2D flattened cortical representation for statistical comparison with 
the gradient vectors derived from gene expression maps (Figure 2f). At each vertex, the minimum 
angle was calculated between the folding orientation vector and gene expression gradient vector. 
Aligned vector maps exhibit positive skew, with angles tending toward zero. Therefore, the skewness 
of the distribution of angles across all vertices was calculated, and to test for significance, folding and 
expression vector maps were spun relative to one another 1000 times, generating a null distribution 
of skewness values against which the test statistic was compared (Table 1). A similar analysis was 
applied to test the association between module eigenmap gradient vectors and cortical folding (see 
‘Weighted gene co- expression network analysis (WGCNA)’).

Third, we sought to quantify the alignment between cortical expression gradients and cortical 
areas as defined by multimodal imaging. Orientation of each MRI multimodal parcel ROI from Glasser 
et al., 2016 was calculated taking the coordinates for all vertices within a given ROI. PCA of coordi-
nates was used to identify the short and long axis of the ROI object. The vector describing the short 
axis was taken for comparison with mean of expression gradient vectors for vertices in the same ROI. 
For each ROI, the minimum angle was calculated and the skewness of the angles across all ROIs was 
calculated and compared to a null distribution created through spinning maps independently 1000 
times, recalculating angles and their skewness (Figure 2g).

Weighted gene co-expression network analysis (WGCNA) (Figure 3a–c)
Genes were clustered into modules for further analysis using WGCNA (Langfelder and Horvath, 
2008). Briefly, gene–gene cortical spatial correlations were calculated across all vertices to generate a 
single square 20,781 * 20,781 signed co- expression matrix. This co- expression matrix underwent ‘soft- 
thresholding,’ raising the values to a soft power of 6, chosen as the smallest power where the resultant 
network satisfied the scale- free topology model fit of r2 > 0.8 (Zhang and Horvath, 2005). Next, a 
similarity matrix was created through calculating pairwise topological overlap, assessing the extent to 
which genes share neighbors in the network (Yip and Horvath, 2007). The inverse of the TOM was 
then clustered using average linkage hierarchical clustering, with a minimum cluster size of 30 genes. 
The eigengene for each module is the first PC of gene expression across vertices and provides a single 
measure of module expression at each vertex (hence, ‘eigenmap’). As per past implementation of 
WGCNA, pairs of modules with eigengene correlations above 0.9 were merged. These procedures 
defined a total of 23 gene co- expression modules ranging in size from 77 to 3725 genes, and a single 
set of unconnected genes (gray module 265 genes). We filtered the gray module from further anal-
ysis, as well as all six other modules that were also statistically significantly enriched for NCExp genes 
(Supplementary file 4, Fisher’s test, all p<0.0001), leaving a total of 16 modules for downstream anal-
ysis (Supplementary file 4). To assess the extent to which eigenmaps captured highly reproducible 
features of cortical organization, for each decile of genes, DEMs were correlated with their module 
eignmaps recomputed from the remaining 90% of genes (Figure 3—figure supplement 1a).

Each WGCNA module could be visualized as a cortical eigenmap, and eigenmap gradient – on the 
TD terrain, or inflated cortical (Figure 3a). The eigenmap gradient for each module provides a vertex- 
level measure for the magnitude of change in module expression at each vertex, as well as a vertex- 
level orientation of module expression change – calculated as described in ‘Local gradient analysis’. 
These anatomical representations of each WGCNA module are amenable to spatial comparison with 
any other cortical map through spatial permutations (Alexander- Bloch et al., 2018; see ‘Annotational 
analyses’). Each WGCNA module is also defined as a gene set, which is amenable to standard gene 
set- based enrichment analysis (see ‘Annotational analyses’). WGCNA modules can each also be repre-
sented as a ranked list of all genes – based on gene- level kME scores for each module, which are the 
cross- vertex correlation between a gene’s DEM map and a module’s eigenmap.

Multiscale annotation of WGCNA modules (Figure 3c and d)
We used multiple open neuroimaging and genomic datasets to systematically sample diverse levels 
of cortical organization and achieve a multiscale annotation of WGCNA modules. All gene sets used 
in enrichment analysis are detailed in Supplementary file 2.

https://doi.org/10.7554/eLife.86933
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Map-based annotations
MRI-derived maps of cortical function
Functional annotations of the cortex were carried out using two independent functional MRI (fMRI) 
resources – one based on state fMRI (rs- FMRI) (Yeo et al., 2011) and one using task- based fMRI (Rubin 
et al., 2017; Yarkoni et al., 2011). Resting- state functional connectivity networks were taken from 
Yeo et al., 2011, which divides the cortex into seven coherent functional networks through surface- 
based clustering of rs- fMRI as visual, somatomotor, dorsal attention, ventral attention, frontoparietal 
control, limbic, and default networks. We used spin- based spatial permutation testing to test for 
networks in which WGCNA eigenmap expression was significantly elevated (Figure 3c, see Table 1).

For task fMRI- driven functional annotation of the cortex, we drew on meta- analytic maps of cortical 
activation from Neurosynth (Rubin et al., 2017; Yarkoni et al., 2011). Briefly, over 11,000 functional 
neuroimaging studies were text- mined for papers containing specific terms and associated activa-
tion coordinates (Yarkoni et al., 2011). Secondary analyses generated activation maps for 30 topics 
spanning a range of cognitive domains (Rubin et al., 2017). Topic activation maps were intersected 
with cortical surface meshes and thresholded to identify vertices with an activation value above 
0. Example topics included ‘motor, cortex, hand’ and ‘social, reasoning, medial prefrontal cortex’ 
(Figure 3d). Topics were excluded if intersected cortical maps indicated activation in fewer than 1% 
of cortical vertices. Topic maps were used to annotate TD peaks (Figure 2d), identifying for each ROI 
the two topics with the highest Dice overlap. Topic maps also served as an independent validation 
of selected WGCNA eigenmaps (Figure 2d, Table 1). Topic maps from Neurosynth were also used 
to provide an orthogonal validation of observed resting- state network enrichments from Yeo et al 
(Figure 3c) for M2 and M12: mean eigenmap expression for module M2 and M12 was calculated 
for Neurosynth topic maps and assessed for statistical significance using spin- based permutations 
(Figure 3d, Table 1).

MRI-derived maps of cortical structure
Cortical thickness and T1/T2 ‘myelin’ maps were taken from the Human Connectome Project average 
(Glasser et  al., 2016). Spatial correlations were calculated across all vertices with each WGCNA 
module eigenmap and assessed for statistical significance using spin- based permutations (Figure 3c, 
see Table 1).

Orientation of cortical folds
We used the orientation of expression change at each vertex to assess whether local eigenmap gradi-
ents were aligned with the orientation of cortical folding patterns, mirroring the analysis described 
above (Figure 3—figure supplement 1b, see ‘Local gradient analysis’).

Inter-eigenmap correlations
We tested the pairwise spatial correlation between pairs of module eigenmaps. Statistical signifi-
cance was assessed using a null distribution of correlation matrices through independently spinning 
eigenmaps and recalculating correlations, and correcting for multiple comparisons (Figure 3—figure 
supplement 1c, see Table 1).

Gene set-based annotations
GO enrichment
GO enrichment analysis (see Table 1) were carried out on gene sets of interest, testing for enrichment 
of Biological Processes and Cellular Compartment, using the GOATOOLS Python package (Klop-
fenstein et al., 2018). Where multiple gene lists were assessed simultaneously (e.g., for TD peak 
gene lists or WGCNA gene sets), correction for multiple comparisons was carried out by dividing the 
p<0.05 threshold for statistical significance by the number of tests (i.e., for 16 module p<0.05/16). To 
facilitate summary descriptions of multiple significant GO terms, terms were hierarchically clustered 
based on semantic similarity (Resnik, 1995) and representative terms were selected based on biolog-
ical specificity (i.e., depth within the Gene Ontology tree) and magnitude of the enrichment statistic 
(Figure 3d, Supplementary file 2).

https://doi.org/10.7554/eLife.86933
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Layer marker gene sets and ISH validation
We sought to assess the extent to which convergent spatial patterns of gene expression indicate 
convergent laminar and cellular features. Marker genes for each cortical layer were defined as 
the union of layer- specific marker genes from two comprehensive transcriptomic studies of layer- 
dependent gene expression sampling prefrontal cortical regions (He et al., 2017; Maynard et al., 
2021). He et al. took human cortical samples from the prefrontal cortex, corresponding to areas 
BA 9, 10, and 46. Samples were sectioned into cortical depths and underwent RNAseq to identify 
4131 genes exhibiting layer- dependent expression. Maynard et al. took samples from the dorsolat-
eral prefrontal cortex and carried out spatial snRNAseq to identify 3785 genes enriched in specific 
cortical layers. These independent resources were combined for laminar enrichment analyses (i.e., 
we took each layer’s marker genes to be the union of layer genes defined in Maynard et al. and 
He et al.). WGCNA module genes were tested for laminar enrichment using Fisher’s exact test, 
correcting for multiple comparisons (Figure  3c, see Table  1). Independent validation of laminar 
associations of candidate genes identified through the above marker lists was carried out using ISH 
data from the Allen Institute (Zeng et al., 2012). For selected modules, we identified the highest 
kME genes represented within the ISH dataset. For each of these genes, the highest quality sections 
were downloaded, and the cortical ribbon was manually segmented. Equivolumetric estimates of 
cortical depth were generated and profiles of depth- dependent staining intensity were generated 
(Huber et  al., 2021). Accompanying approximate cytoarchitectonic layer thickness estimations 
were derived from BigBrain and used to describe the laminar location of ISH peaks (Wagstyl et al., 
2020; Figure 3d).

Adult cortical cell-type marker gene sets
Cell marker gene sets were compiled from multiple snRNAseq datasets, sampling a wide variety of 
cortical areas covering occipital, temporal, frontal, cingulate, and parietal lobes (Darmanis et  al., 
2015; Habib et al., 2017; Hodge et al., 2019; Lake et al., 2018; Lake et al., 2016; Li et al., 2018; 
Ruzicka et  al., 2021; Velmeshev et  al., 2019; Zhang et  al., 2016). To integrate across differing 
subcategories, cell subtype marker lists were grouped into the following cell classes according to their 
designated names: excitatory neurons, inhibitory neurons, oligodendrocytes, astrocyte, oligodendro-
cyte precursor cells, microglia, and endothelial cells. Marker lists for each of these cell classes repre-
sented the union of all subtypes assigned to the category. Cells not fitting into these categorizations 
were excluded. WGCNA module genes were tested for cell class marker enrichment using Fisher’s 
exact test, correcting for multiple comparisons (Figure 3c, see Table 1).

Fetal cortical cell-type marker gene sets
Fetal cell marker gene lists were taken from Polioudakis et al., 2019. WGCNA module genes were 
tested for cell class marker enrichment using Fisher’s exact test, correcting for multiple comparisons 
(Figure 3c, see Table 1).

Compartments and SynGO
Cellular compartment gene lists were taken from the COMPARTMENTS database (Binder et  al., 
2014), which identifies subcellular localisation of marker genes based on integrated information from 
the Human Protein Atlas, literature mining, and GO annotations. Examples of cellular compartments 
include nucleus, plasma membrane, and cytosol. An additional compartment list for neuronal synapse 
was generated by collapsing all genes in the manually curated SynGO dataset (Koopmans et al., 
2019). WGCNA module genes were tested for cell compartment gene set enrichment using Fisher’s 
exact test, correcting for multiple comparisons (Figure 3c, see Table 1).

PPI network
PPIs were derived from the STRING database (Szklarczyk et  al., 2019). Physical direct and indi-
rect PPIs were considered. We tested for enrichment of PPIs for proteins coded by genes within 
WGCNA modules. The median number of intramodular connections was compared to a null distri-
bution of median modular connectivity derived from 10,000 randomly resampled modules with the 
same number of genes. Gene resampling was restricted within deciles defined by the degree of 
protein–protein connectivity.

https://doi.org/10.7554/eLife.86933
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Developmental peak epoch
Peak developmental epochs for genes were extracted from Werling et al., 2020. Briefly, bulk tran-
scriptomic expression values were measured from DLPFC samples across development (6 PCW to 
20 y), fitting developmental trajectories to each gene. Genes were categorized according to develop-
mental epoch in which their expression peaked. For descriptive purposes, epochs were renamed as (1) 
‘early fetal’ (‘fetal,’ 8–24 PCW), (2) late fetal transition (‘perinatal,’ 24 PCW – 6 mo postnatal), and (3) 
‘postnatal’ (>6 mo). Genes associated with WGCNA modules were tested for enrichment correcting 
for multiple comparisons across 16 modules.

Developmental trajectories
Gene- specific developmental trajectories were generated for the cortical samples from Li et  al., 
2018. Briefly, in this study bulk transcriptomic expression values were measured from brain tissue 
samples taken from individuals aged between 5 PCW and 64 years old. In our analysis, samples were 
filtered for cortical ROIs and restricted to post 10 PCW due to lack of samples before this time point. 
Ages were log transformed and Generalized Additive Models were fit to each gene to generate an 
estimated developmental trajectory. To compute trajectory correlations between genes, we first resa-
mpled expression trajectories at 20 equally spaced time points (in log time), and then z- normalized 
these values per gene (using the mean and standard deviation of each trajectory). We then calculated 
expression trajectory Pearson correlations between each pair of genes in this dataset and used these 
to determine whether the spatially co- expressed genes defining each WGCNA module also showed 
significant temporal co- expression. To achieve this test, we calculated the median temporal co- ex-
pression (correlation in expression trajectories) for each WGCNA module gene set and compared 
this to null median co- expression values for 1000 randomly resampled gene sets matching module 
size. The mean trajectories of genes in each module were calculated to visualize the developmental 
expression pattern of each module (Figure 3—figure supplement 1d).

Fetal compartmental analysis
We used the 21 PCW fetal microarray data processed for analysis of TD peaks (see ‘Relating adult TD 
peaks to fetal gene expression,’ Figure 2—figure supplement 1k; Miller et al., 2014) to generated 
marker gene sets for each of the seven transient fetal cortical compartments: subpial granular zone 
(SG), marginal zone (MZ), outer and inner cortical plate (grouped together as CP), subplate zone (SP), 
intermediate zone (IZ), outer and inner subventricular zone (grouped together as SZ), and ventricular 
zone (VZ). We collapsed 21 PCW cortical expression data into compartments by averaging expression 
values across cortical regions for each compartment because compartment differences are known to 
explain the bulk of variation in cortical expression within this dataset (24% [Miller et al., 2014]). The 
top 5% expressed genes for each of the seven fetal compartments was taken as the compartment 
marker set and used for enrichment analysis of WGCNA modules with Fisher’s exact test, correcting 
for multiple comparisons (see Table 1, Figure 3c).

Reproducibility of genes driving enrichment analyses
We calculated gene- level spatial reproducibilities for the union of all genes contributing to significant 
neurobiological enrichments of WGCNA modules. This was compared to a null distribution, randomly 
resampling the same number of genes from all those considered in the enrichment analyses.

Combining gene set-based annotations of the cortical sheet (Figure 3e 
, Figure 2—figure supplement 1d)
Our observation that many WGCNA modules showed statistically significant enrichment for diverse 
gene sets that could span different spatial scales (e.g., layers and organelles) or temporal epochs 
(e.g., fetal and adult cortical features) (Figure 3c) suggested a potential sharing of marker gene across 
these diverse sets. To test this idea and characterize potential biological themes reflected by these 
shared marker genes, we carried out pairwise enrichment analyses between all annotational gene 
lists (Figure 3e). Gene lists used for enrichment analysis of WGCNA modules for cortical layers, adult 
cells, cellular compartments, fetal cells, developmental peak epochs, and fetal compartments were 
taken for further analysis. A genelist–genelist pairwise enrichment matrix was generated. p- Values 
above 0.1 were set to 1, to limit their contribution, and p- values were converted to -log10(p). To 
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remove isolated gene lists, all lists were ranked by their degree (edges defined as p<0.05) and the 
bottom 10% were excluded from further analysis. The matrix, excluding WGCNA modules, underwent 
Louvain clustering (Blondel et al., 2008), grouping together gene lists with similar properties. Clus-
ters were assigned descriptive names according to their salient common features (e.g., non- neuronal, 
mature neuron, mitotic, myelin, fetal GE) (Figure 3—figure supplement 1e). For visualization, the full 
matrix underwent UMAP embedding (McInnes et al., 2018), a nonlinear dimensionality reduction 
technique assigning 2D coordinates to each gene list (Figure 3e), coloring gene lists by their assigned 
cluster along with the top 20% of edges.

Disease enrichment and ASD-based analysis of WGCNA modules
The proposed analyses above link regionally patterned cortical gene expression with macroscale 
imaging maps of structure and function, and microscale gene sets exhibiting laminar, cellular, subcel-
lular, and developmental transcriptomic specificity. We sought to assess whether WGCNA module 
gene lists capturing shared spatial and temporal features were also enriched for genes implicated 
in atypical brain development. We included genes identified in exome sequencing studies in neuro-
developmental disorders: ASD (Ruzzo et al., 2019; Satterstrom et al., 2020) , schizophrenia (SCZ; 
Singh et al., 2020), severe developmental disorders (Deciphering Developmental Disorders Study 
[DDS]; Deciphering Developmental Disorders Study, 2017), and epilepsy (Heyne et al., 2018). 
WGCNA module gene sets were tested for enrichment of these genes using Fisher’s test and 
corrected for multiple comparisons (Table 1, Figure 4a). Two modules – M12 and M15 – showed 
enrichment for multiple disease sets, with the ASD gene set being unique for showing enrichment 
in both modules. We therefore focused downstream analysis on further characterizing the enrich-
ment of ASD genes in M12 and M15, and testing whether these enrichments could predict regional 
cortical changes in ASD.

Characterizing ASD gene enrichments in M12 and M15
kME analysis
To better characterize the spatially distinctive properties of genes within M12 and M15, we defined 
the union of genes in both modules and collated the WGCNA- defined kME scores for each gene to 
both M12 and M15. This provided a basis for plotting all genes by their relative membership to both 
modules to quantify the proximity of each gene to each module, assess the discreteness of gene 
assignment to modules, and provide a common space within which to project gene functions and 
associations with ASD (Figure 4c).

Enrichment of ASD-linked GO terms
Genes linked to two specific GO terms, ‘Neuronal communication’ and ‘Gene expression regulation,’ 
enriched among risk genes for ASD in Satterstrom et al., 2020, were separately tested for enrich-
ment within M12 and M15 (Figure 4d) using Fisher’s exact test.

Developmental trajectories of disease-linked modules
To characterize the distinctive temporal trajectories of M12 and M15 (see Figure 3c), we took gene- 
level trajectories (see ‘Developmental trajectories’) and calculated the mean gene- expression trajec-
tory of genes in each module (Figure 4e).

Independent characterization of ASD risk genes
To assess the extent to which modules M12 and M15 captured the underlying axes of spatial patterning 
across all 135 ASD risk genes, we took DEMs for all 135 risk genes and independently clustered 
them. Pairwise co- expression was calculated for all risk gene DEMs and the resultant matrix was clus-
tered using Gaussian mixture modeling into two clusters, C1 and C2 (Figure 4—figure supplement 
1a). kME values were calculated for each risk gene with all WGCNA modules and averaged within 
each cluster. For each cluster, we then identified the WGCNA module with the highest mean kME 
(Figure 4—figure supplement 1b).

https://doi.org/10.7554/eLife.86933
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Comparing M12 and M15 expression to regional changes of cortical 
gene expression in ASD (Figure 4f)
We mapped regional transcriptomic disruption in ASD measured from multiple cortical regions 
using RNAseq data (Haney et al., 2020). This study compared bulk transcriptomic expression in 
ASD and control samples across 11 cortical areas, quantifying the extent of transcriptomic disrup-
tion by identifying the number of significantly DEGs in each region. Cortical areas sampled in this 
study were mapped to their closest corresponding area in a multimodal MRI parcellation (Glasser 
et al., 2016). The mean expression of M12 and M15 eigenmaps was quantified in the same cortical 
areas (Figure 4f). The test statistic, correlating eigenmap expression with the number of DEGs, was 
tested against a null distribution generated through spinning and resampling the eigenmaps (see 
Table 1).

Comparing M12 and M15 expression to regional changes of cortical 
thickness in ASD (Figure 4g and h, Figure S5c)
To assess the extent to which WGCNA module eigenmaps pattern macroscale in vivo anatomical 
differences in ASD, we took the map of relative cortical thickness change in autism (see ‘Preprocessing 
and analysis of structural MRI data’) and compared this to eigenmap expression patterns. M12 and 
M15 eigenmaps were thresholded, identifying the 5% of vertices with the highest expression. Areas 
of high significant thickness change were tested for overlap with areas of significant cortical thickness 
change using the Dice overlap compared to a null distribution of Dice scores generated through spin-
ning the thresholded eigenmaps (see Table 1).

Preprocessing and analysis of structural MRI data
AHBA donors
Pial and white matter cortical T1 MRI scans of the six AHBA donor brains were reconstructed using 
FreeSurfer (v5.3) (Romero- Garcia et  al., 2018; see Supplementary file 1). Briefly, scans undergo 
tissue segmentation, cortical white and pial surface extraction. A mid- thickness surface between pial 
and white surfaces was also created. The locations of tissue samples taken for bulk transcriptomic 
profiling, provided in the coordinates of the subject’s MRI, were mapped to the mid- thickness surface 
as outlined above (see ‘Creating spatially dense maps of human cortical gene expression from the 
AHBA’). Individual subject cortical surfaces were co- registered to the fs_LR32k template surface brain 
using MSMSulc (Robinson et al., 2018) as part of the ciftify pipeline (Dickie et al., 2019), which warps 
subject meshes by nonlinear alignment their folding patterns to the MRI- derived template surface. A 
donor- specific template surface was created by averaging the coordinates of the aligned meshes and 
used for analysis of cortical folding patterns used in ‘Alignment with reference measures of cortical 
organization.’ Pial, inflated, and flattened representations of the fs_LR32k surface were used for the 
visualization of cortical maps throughout.

OASIS (Figure 1e)
To estimate relative cortical thickness change in AD patients with the APOE E4 variant, we utilized 
the openly available OASIS database (LaMontagne et al., 2019). T1w MRI data was collected using 
a Siemens Tim Trio 3T scanner and underwent cortical surface reconstruction using FreeSurfer v5.3 
as above. Reconstructions underwent manual quality control and correction, with poor quality data 
being removed. Output cortical thickness maps, smoothed at 20 mm FWHM and aligned to the 
fsaverage template surface, were downloaded via https://www.oasis-brains.org/, along with age, 
sex, and APOE genotype and cognitive status. Subjects were included in the analysis if they had 
been diagnosed with AD and had at least one APOE E4 allele (n = 119) or were a healthy control (n 
= 633) (see Supplementary file 1). Per- vertex coefficients for disease- associated cortical thinning 
and significance were calculated, adjusting for age, sex, and mean cortical thickness. We controlled 
for mean CT to identify local anatomical changes given our finding of generalized cortical thick-
ening in AD compared to controls in OASIS. The map of cortical thickness coefficients was then 
registered from fsaverage to fs_LR32k for comparison with the DEM of APOE (Figure 1e; Robinson 
et al., 2018).

https://doi.org/10.7554/eLife.86933
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ABIDE
To estimate relative cortical thickness change in ASD, MRI cortical thickness maps, generated through 
FreeSurfer processing of 3T T1 structural MRI scans, were downloaded from ABIDE, along with age, 
sex, and site information (Di Martino et al., 2017; Supplementary file 1). Multiple sites and scanners 
were used to acquire these data, which is known to introduce systematic biases in morphological 
measurements like cortical thickness. To mitigate this, we used neuroCombat, which estimates and 
removes unwanted scanner effects while retaining biological effects on variables such as age, sex, and 
diagnosis (Fortin et al., 2018). Subjects with poor quality FreeSurfer segmentations were excluded 
using a threshold Euler count of 100 (ref). Cortical thickness change in ASD relative to controls was 
calculated adjusting for age, sex, and mean cortical thickness. Neighbor- connected vertices exhib-
iting significant cortical thickness change (p<0.05) were grouped into clusters. A null distribution of 
cluster sizes was generated using 1000 random permutations of the cohort, storing the maximum 
significant cluster size for each permutation. The 95th percentile cluster size was used as a threshold 
for removing test clusters that could have arisen by chance (Hagler et al., 2006). Output coefficient 
and cluster maps were registered from fsaverage to fs_LR32k and compared with the M12 and M15 
eigenmaps as described above.
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Supplementary files
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Human Brain Atlas microarray data. (2) Demographics of fetal samples from Allen Institute’s fetal 
Laser Microarray Dataset. (3) Demographics of included participants for Alzheimer’s disease APOE 
analysis from the Open Access Series of Imaging Studies (OASIS). (4) Demographics of included 
participants for autism spectrum disorder analysis from the Autism Brain Imaging Data Exchange 
(ABIDE) I and II.

•  Supplementary file 2. Gene lists used in the study. (1) Gene list assignments for enrichment 
analyses including WGCNA modules. (2) Meta module assignments.

•  Supplementary file 3. Transcriptomically distinctive (TD) peaks. (1) TD genes, GO, cellular, fetal, 

https://doi.org/10.7554/eLife.86933
http://orcid.org/0000-0003-3439-5808
http://orcid.org/0000-0001-7072-9399
http://orcid.org/0000-0003-3661-6248
http://orcid.org/0000-0002-0992-3210
http://orcid.org/0000-0003-2896-3450
http://orcid.org/0000-0002-5622-1190
https://doi.org/10.7554/eLife.86933.3.sa1
https://doi.org/10.7554/eLife.86933.3.sa2
https://doi.org/10.7554/eLife.86933.3.sa3


 Research article      Genetics and Genomics | Neuroscience

Wagstyl et al. eLife 2023;12:RP86933. DOI: https://doi.org/10.7554/eLife.86933  30 of 35

and functional annotations. (2) Remaining sheets describe significant Biological Process and Cellular 
Compartment Gene Ontology annotations for TD peaks.

•  Supplementary file 4. WGCNA module enrichments. (1) WGCNA module spatial and gene set 
enrichment p- values. (2) Remaining sheets describe significant Biological Process and Cellular 
Compartment Gene Ontology annotations for WGCNA modules.

•  MDAR checklist 

Data availability
The cortical dense expression and gradient maps of 20,781 genes and ~30k vertices that support 
the findings of this study are available at https://rdr.ucl.ac.uk/articles/dataset/MAGICC_vertex-level_ 
gene_expression_data/22183891/1. Scripts to download, visualize, and analyze MAGICC are avail-
able at https://github.com/kwagstyl/MAGICC (copy archived at Wagstyl, 2024).
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