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Abstract Systems genetics has begun to tackle the complexity of insulin resistance by capitalising 
on computational advances to study high-diversity populations. ‘Diversity Outbred in Australia (DOz)’ 
is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged 
this variance to explore skeletal muscle’s contribution to whole-body insulin action through meta-
bolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 
proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of 
endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on 
negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin 
resistance. We sought to perturb this network and restore insulin action with small molecules by inte-
grating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the 
Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as 
an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle 
and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, 
potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric frame-
work to validate systems-level analysis by identifying potential therapeutics for insulin resistance.

eLife assessment
This fundamental study leverages natural genetic diversity in mice to discover candidate genes 
for insulin sensitivity, followed by experimental identification of compounds that can modulate 
insulin sensitivity, and finally initial mechanistic investigation of the mode of action. The general-
ized approach presented here, - the integration of systems genetics data with drug discovery -, 
supported by compelling evidence, will be an important guide for others that seek to translate 
insights from mammalian genetics to drug discovery.

Introduction
Skeletal muscle is a key determinant of whole-body glycaemic control. Under optimal conditions, 
insulin secreted from the pancreas initiates a signalling program in muscle and other tissues, culmi-
nating in translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane 
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(Bryant et al., 2002). Increased plasma membrane GLUT4 lowers circulating glucose by increasing 
cellular influx for either storage as glycogen or subsequent metabolism via the glycolytic pathway. 
Insulin resistance is the progressive failure of these processes and often precedes a number of meta-
bolic disorders, including type 2 diabetes (James et al., 2021). Advances in genomics and computa-
tional biology have begun to shed new light on molecular drivers of insulin resistance. A recent study 
in humans undertook a GWAS of 188,577 individuals unveiling 53 genetic loci associated with a surro-
gate insulin resistance signature (Lotta et al., 2017). Such studies are important as they point towards 
genetic lesions in metabolic tissues like skeletal muscle and adipose tissue as playing a key causal role 
in the development of insulin resistance. This emphasises the importance of focusing on genetics and 
peripheral tissues for new therapeutic targets and strategies to overcome insulin resistance. Recent 
developments in systems biology provides unique opportunities for discovering ways of reversing 
and/or preventing insulin resistance. This will have enormous clinical benefits since insulin resistance 
is a gateway to an expanding family of diseases.

Over the past decade, genetically diverse mouse panels have been used to study metabolic 
diseases (Nelson et al., 2022; Parks et al., 2015; Williams et al., 2016; Yang et al., 2020). This is 
a major step forward because these panels combine control of the environment and access to any 
biological tissue, with a vast phenotypic and range which can be leveraged towards understanding 
complex diseases. Three specific resources are the hybrid mouse diversity panel (HMDP), and the BXD 
(C57BL/6J × DBA) and Collaborative Cross (CC) mouse strains (Yang et al., 2020; Ghazalpour et al., 
2012; Ashbrook et al., 2021; Peirce et al., 2004; Collaborative Cross Consortium, 2012). These 
panels comprise large selections of inbred mice spanning vast phenotypic and genetic landscapes. CC 
mice were first generated by interbreeding five commonly used laboratory mouse strains (C57BL/6J, 
A/J, 129S1/SvlmJ, NZO/HILtJ, NOD/ShiLtJ) and three wild-derived strains (WSB/EiJ, CAST/EiJ, PWK/
PhJ) in a ‘funnel’ design. The resulting CC strains were then outbred to generate Diversity Outbred 
mice at Jackson Laboratories (Svenson et al., 2012) which have increased phenotypic diversity and 
resolution for genetic mapping. An independent Diversity Outbred colony was established in Western 
Australia using CC mice from Geniad (Ferguson et al., 2019). This colony has since relocated to our 
group at the University of Sydney, termed Diversity Outbred mice from Australia (Oz) or DOz.

The use of such rodent models for studying complex traits has given rise to the field of systems 
genetics. System genetics uses global quantification of ‘intermediate phenotypes’, that is, gene tran-
scripts, proteins, and metabolites, to provide mechanistic links between genetic variation and complex 
traits/diseases (Baliga et al., 2017; Seldin et al., 2019). Unlike traditional genetic studies that iden-
tify single or multiple loci of interest, systems genetics often identifies entire biological pathways or 
networks that are inherently more difficult to empirically test. In an attempt to streamline interrogation 
of molecular pathways, several large-scale perturbation screens/projects have been undertaken. One 
such example is the Broad Institute’s Connectivity Map (CMAP) that integrated mRNA expression 
levels from 1.5 million combinations of different cell lines and perturbations (small-molecule inhibi-
tors, receptor ligands, genetic manipulations) into a searchable database (Subramanian et al., 2017; 
Uva et al., 2021; Lamb et al., 2006; Lamb, 2007). These kinds of tools provide invaluable resources 
for testing hypotheses generated from systems genetics experiments and broadly linking molecular 
networks to phenotypic outcomes.

Here we have utilised DOz mice to interrogate insulin resistance. By combining metabolic pheno-
typing and skeletal muscle proteomics, we have identified an insulin resistance fingerprint of 76 
proteins. We then used CMAP to identify small molecules that give rise to an overlapping transcrip-
tional signature across a number of cell lines, and therefore have the potential to affect insulin action. 
Strikingly, one of these compounds, the antibiotic thiostrepton, was also identified by us in an inde-
pendent small-molecule screen for effectors of insulin action in myotubes. Subsequent validation of 
thiostrepton uncovered profound beneficial effects on insulin resistance in vitro and ex vivo, poten-
tially via modulation of mitochondrial function and glycolysis.

Results
DOz metabolic and proteomic variation
DOz mice were metabolically phenotyped by oral glucose tolerance test (GTT) and echoMRI to deter-
mine body composition (Figure 1A–C). We integrated glucose and insulin levels during the GTT into 
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Figure 1. Metabolic and proteomic diversity of Diversity Outbred in Oz (DOz) mice. (A) Schematic of metabolic phenotyping and quadricep proteomics 
in chow-fed DOz mice. (B) Blood glucose and insulin levels during a glucose tolerance test (GTT). (C) Whole-body insulin sensitivity (Matsuda Index, 
formula shown above) and adiposity of DOz mice (n = 215). (D) Comparison of coefficient of variation (CV) of insulin of Matsuda Index across inbred 
strains and diets versus chow-fed DOz mice. (E) Relative enrichment of mitochondrial (Mito) proteins in mitochondrial fraction and post-mitochondrial 

Figure 1 continued on next page
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a surrogate measure of whole-body insulin sensitivity referred to as the Matsuda Index (Matsuda and 
DeFronzo, 1999). Similar to HOMA-IR, the Matsuda Index uses blood glucose and insulin values to 
predict whole-body insulin sensitivity. However, an advantage of the Matsuda Index over HOMA-IR 
is that it includes values over a range of GTT timepoints, which better incorporates the dynamics 
of glycaemic control. Furthermore, the Matsuda Index is better correlated to the euglycemic-
hyperinsulinaemic clamp, the gold standard measurement for insulin sensitivity, in humans (Matsuda 
and DeFronzo, 1999). Consistent with studies in other DO mouse populations (Svenson et al., 2012; 
Churchill et al., 2012), we observed profound phenotypic diversity in DOz mice with 20- to 400-fold 
differences in insulin sensitivity, adiposity, and fasting insulin levels across all DOz animals (Figure 1C). 
Notably, the metabolic variation we observed in DOz mice is markedly greater than the variation 
typically observed in similar studies using inbred mouse strains (Figure 1D). Since skeletal muscle 
and mitochondrial function are major contributors to whole-body insulin sensitivity in mammals 
(Nelson et al., 2022; DeFronzo, 1987; Anderson et al., 2009), we performed proteomic analysis 
on quadriceps muscles that were fractionated into mitochondrial and post-mitochondrial fractions 
(PMF; Figure 1A). We identified a total of 2073 proteins (444 mitochondrial and 1629 PMF) present 
in at least 50% of mice. Mitochondrial proteins were defined based on their presence in MitoCarta 
3.0 (Rath et al., 2021) and consistent with previous work (Williams et al., 2018) were approximately 
twofold enriched in the mitochondrial fraction relative to the PMF (Figure 1E).

As with glycaemic control, muscle proteomes exhibited profound variation, with approximately 
200-fold differences in coefficient of variation (CV) across both fractions (Figure 1F). Interestingly, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the often-reported western blot loading 
control, was the 11th most variable protein in our dataset. Amongst the other highly variable proteins 
were the histone subunit H4F16, the mitochondrial iron-sulphur cluster assembly regulator ISCU, and 
the metalloendopeptidase OMA1. Among proteins with low variability between mice was the mito-
chondrial respiratory complex II subunit SDHA and the 14-3-3 zeta isoform YWHAZ. To uncover how 
variation differed across biological processes, Gene Ontology (GO) enrichment analysis was performed 
on proteins ranked by CV. Among the low-variance processes were the electron transport chain (mito-
chondrial fraction) and regulation of chromosome organisation (PMF), while lipid metabolic pathways 
were highly variable across both mitochondrial and post-mitochondrial fractions (Figure 1G). As a 
control experiment, we also performed enrichment analysis on proteins ranked by LFQ relative abun-
dance. High CV pathways (enriched for high CV proteins) tended to be lower in relative abundance 
(enriched for low relative abundance proteins) (Figure 1—figure supplement 1A and B). However, 
many high-variability pathways, lipid metabolism, for example, were not enriched in either direction 
based on relative abundance suggesting that differences in relative abundance do not fully explain 
pathway variability differences.

Role of skeletal muscle in whole-body insulin sensitivity
To leverage genetic and metabolic diversity towards uncovering new regulators of insulin action, we 
constructed linear models comparing insulin sensitivity (Matsuda Index) against protein abundance. 
Our initial analysis identified 37 mitochondrial and 40 PMF proteins that significantly associated with 
the Matsuda Index. Many of these appeared to be involved with adiposity rather than insulin action 
including adiponectin (ADIPOQ), adipsin (CFD), and the mitochondrial β-oxidation proteins ETFA and 
ETFB (Figure 2—figure supplement 1A and B). Because we were mainly interested in identifying 
muscle-specific factors that regulate insulin sensitivity, we next constructed a model that included 
adiposity (the percentage of body mass which is adipose tissue) as a covariate. Using this approach, 
we identified 120 mitochondrial (Figure  2A and B) and 433 PMF proteins that significantly asso-
ciated with whole-body insulin sensitivity. A comparison of the results from each model (with and 
without adiposity as a covariate) revealed consensus proteins that associated with insulin sensitivity 

fraction (PMF) of quadricep proteomes. (F) Relative protein CV across mitochondrial and post-mitochondrial quadricep fractions. (G) Biological pathways 
enriched in mitochondrial and post-mitochondrial quadricep fractions, running enrichment score for a given pathway (ES) on y-axis and proteins ranked 
by CV on x-axis. Significance testing was performed by chi-square test. * indicates a significant difference p<0.01.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Assessment of variation-based enrichment analysis Diversity Outbred in Oz (DOz) muscle proteomics.

Figure 1 continued
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Figure 2. Linear modelling of quadricep proteome and whole-body insulin sensitivity. (A, B) Volcano plot with Matsuda Index effect sizes (x-axis) and 
significance (y-axis) for mitochondrial (A) and post-mitochondrial (B) quadricep proteins using a linear model with adiposity as a covariate. Significant 
proteins with positive and negative effect sizes are indicated in red and blue, respectively. (C) Comparison of positively and negatively associated 
proteins between fractions. (D) Number of proteins identified in each fraction with known roles in insulin or AMPK signalling. (E, F) Volcano plot shown 
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independently of model design (Figure 2—figure supplement 1C). These included the glycolytic 
enzymes PFKFB1 and PKM, which have previously been identified as regulating muscle insulin action 
(Nelson et al., 2022). Using adiposity as a covariate not only increased the number of proteins iden-
tified but also uncovered relationships between Matsuda Index and the GLUT4 trafficking regulators 
RAB10 (Su et al., 2018; Chen and Lippincott-Schwartz, 2013), SNAP23 (Kawanishi et al., 2000), 
and IQGAP1 (Chawla et al., 2017) which were not seen in the original model. A comparison of the 
mitochondrial and PMF proteomes revealed a mitochondrial enrichment for proteins that positively 
associate with insulin sensitivity, highlighting the broadly positive role mitochondria play in muscle’s 
contribution to metabolic health (Figure 2C).

To gain further insight into the biology of skeletal muscle glycaemic control, we annotated candi-
date proteins with PhosphoSite Plus data to test whether any protein of interest had documented 
roles in metabolic signalling (Figure 2D–F). We observed no relationship between insulin signalling 
substrates and regulation of whole-body insulin sensitivity (Figure 2D). However, there was a trend 
(p=0.08) for AMPK substrates in the PMF to be positively associated with insulin sensitivity. Interest-
ingly, the most positively (Canopy2; CNYP2) and most negatively (Rho GDP dissociation inhibitor 
alpha; ARHGDIA) associated proteins were both annotated as being insulin responsive (Figure 2F). We 
also preformed GO gene set enrichment analysis (GSEA) on proteins ranked by Matsuda Index effect 
sizes (Figure 2G). In the PMF, ‘response to topologically incorrect protein: GO:0051788’ was posi-
tively associated with insulin sensitivity while the ‘proteasome complex: GO:0005839’ and ‘clathrin-
coated pit: GO:0005905’ were negatively associated. Together the unfolded protein response and 
proteasome are indicative of the role of proteostasis in insulin sensitivity (Díaz-Ruiz et  al., 2015; 
Minard et al., 2016). Conversely, clathrin-coated pits play an important role in the internalisation of 
the insulin-sensitive glucose transporter GLUT4 from the cell surface, a process negatively regulated 
by insulin (Antonescu et al., 2008; Robinson et al., 1992; Fazakerley et al., 2010). Consistent with 
our observation that the majority of the mitochondrial proteome is positively associated with insulin 
sensitivity, GSEA did not produce any negative results but did uncover a positive relationship between 
the mitochondrial respiratory complex I and Matsuda Index.

Integration of genetic linkage analysis and linear modelling with 
Connectivity Map
Changes in protein levels may be either cause or consequence of changes in insulin sensitivity. In an 
attempt to select for proteins with a potentially causal relationship, we performed genetic mapping 
analysis of both the mitochondrial and PMF proteomes (Figure  3A). Across both proteomes, we 
identified 624 protein quantitative trait loci (pQTL). These were distributed across the genome and 
were predominately cis-acting (Figure  3A), indicating that a significant proportion of variation in 
these proteins can be explained by their local genetic architecture. Next, we filtered proteins that 
were negatively associated with Matsuda Index by cis-pQTL presence to generate a molecular finger-
print of insulin resistance (Figure 3B). We focussed on negatively associated proteins based on the 
assumption that inhibiting deleterious proteins is easier than promoting the activity of beneficial ones. 
Filtering based on cis-pQTL presence was based on the rationale that if genetic variation can explain 
protein abundance differences between mice, then we can be confident that phenotype (Matsuda 
Index) is not driving the observed differences and therefore the protein-to-phenotype associations 
are likely causal. Importantly, this assumption can only be made for cis-acting pQTLs. Our analysis 
yielded a list of 76 (69 PMF and 7 mitochondrial) proteins that encompassed a wide range of biolog-
ical processes (Supplementary file 1). Low mitochondrial representation in the fingerprint is the result 
of selecting negatively associating proteins, and as seen (Figure 2C) previously, the mitochondrial 

in (A) with mitochondrial (E) and post-mitochondrial fraction (F) proteins shown in black that have documented roles in indicated signalling pathways. 
Adjusted p-value threshold is indicated (red dotted line). (G) Pathways enriched for proteins which positively and negative associate with Matsuda Index. 
Effect sizes of proteins within a given pathway and running enrichment score (ES) for a that pathway on y-axis, and proteins ranked by CV on x-axis. 
Proteins ranked by Matsuda Index effect size on x-axis. Linear modelling was performed using a Gaussian distribution with q-value adjustment of p-
values. Enrichment tests between fractions were performed by chi-square test. * indicates a significant difference p<0.01.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of linear modelling approaches for insulin sensitivity and muscle proteomics.

Figure 2 continued
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Figure 3. Integration of proteomic data via Connectivity Map (CMAP). (A, B) Workflow includes filtering for proteins with cis-pQTL (A) and negative 
association with Matsuda Index (B) prior to CMAP query. (A) Distribution of cis- and trans-pQTL across mitochondrial and post-mitochondrial fraction 
(PMF) proteome. (B) Left side of volcano plots from Figure 2A and B (proteins negatively associated with Matsuda Index) is shown with proteins 
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interest indicated. Significance testing was performed by chi-square test. * indicates a significant difference p<0.001. pQTL, protein quantitative trait 
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Figure 3 continued on next page
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proteome is enriched for positive contributors to insulin resistance. Similar approaches to identify 
molecular phenotypes of insulin resistance have previously been conducted using collated human 
transcriptomic datasets (Sears et al., 2009; Gallagher et al., 2010; Leng et al., 2010; Josse et al., 
2011; Phillips et al., 2013; Sood et al., 2015; Barberio et al., 2016; Espah Borujeni et al., 2016; 
Hangelbroek et al., 2016; Nakhuda et al., 2016; Phillips et al., 2017). Using a compiled list from 
Timmons et al., 2018, we searched for orthologues of proteins from our fingerprint that associate 
with human insulin resistance. We identified four such genes (Figure 3B): MTPN (myotrophin), LGALS1 
(galectin 1), PHKB (phosphorylase b kinase), and ADPRHL1 (ADP-ribosylhydrolase Like 1), which may 
warrant further investigation.

To assess the tissue specificity of our fingerprint, we searched for the same proteins in metaboli-
cally important adipose and liver tissues. Despite detecting 94 and 82% of muscle fingerprint proteins 
across each tissue, respectively, both adipose and liver were depleted for pQTL presence (Figure 3C), 
suggesting that regulation of our candidate protein abundance is somewhat specific to skeletal 
muscle. Finally, we queried our fingerprint for any biological pathways that could represent novel 
drivers of insulin resistance by performing KEGG pathway enrichment (Figure 3C). Both ‘endocytosis: 
mmu04144’ (clathrin light chain A, clathrin light chain C, epidermal growth factor receptor [EGFR] 
pathway substrate 15) and ‘insulin signalling pathway; mmu04910’ (phosphorylase kinase regulatory 
subunit beta) featured in the top 10, providing further supportive evidence for the biological rele-
vance of our fingerprint in the context of insulin sensitivity.

Next, we utilised CMAP to convert our fingerprint into a list of small molecules and ligands that 
promote or oppose our muscle insulin resistance fingerprint. To test our assumption that pQTL 
filtering would improve our fingerprint, we also queried CMAP with a list of the top 150 most strongly 
negatively associated proteins independent of pQTL presence. Intriguingly, on average CMAP scores 
for compounds and ligands were significantly higher when captured using a pQTL-filtered fingerprint 
compared to the non-pQTL filtered group, supporting the utility of this method (Figure 3—figure 
supplement 1). Encouragingly, the two highest scoring compounds identified using our fingerprint 
were Broad Institute glycogen synthase kinase (GSK3) and EGFR inhibitors. Both of these kinases 
have been independently identified as drug targets that reverse insulin resistance (Leng et al., 2010; 
Timmons et al., 2022; Fazakerley et al., 2023). Many compounds listed in the CMAP database are 
proprietary Broad Institute inhibitors that are only identified by their Broad ID and cannot be easily 
procured for follow-up experiments. Therefore, we excluded all Broad Institute compounds from 
further analysis. After this filtering, 856 small molecules and 91 ligands generated gene expression 
signatures matching our query. As whole-body insulin sensitivity decreased with increased finger-
print protein abundance, we focused on molecules whose CMAP score suggested a reversal of our 
insulin resistance fingerprint (Figure 3D). Ranking these candidates based on CMAP score revealed a 
number of well-known potentiators of insulin sensitivity including the antioxidant resveratrol (Timmers 
et  al., 2011), the diabetes medication metformin (Knowler et  al., 2002), and the growth factor 
FGF21 (Geng et al., 2020). We also identified the antibiotic thiostrepton (Bailly, 2022), a documented 
proteasome inhibitor, consistent with our enrichment analysis which identified the proteasome as 
negatively contributing to insulin sensitivity.

Cross-validation of thiostrepton by Prestwick library screen of GLUT4 
translocation
To obtain independent validation of some of the candidates revealed from CMAP, we performed a 
screen for compounds that affect GLUT4 translocation to the cell surface in L6 myotubes expressing 
HA-tagged GLUT4 (GLUT4-HA-L6), a readout of insulin action that is defective in insulin resistance. 
For this we used our established high-sensitivity, high-throughput 96-well plate format screen that is 
amenable to physiological models of insulin resistance (Stöckli et al., 2008; Govers et al., 2004), 
combined with the Prestwick library of U.S. Food and Drug Administration (FDA)-approved drugs. In 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Assessment of protein quantitative trait loci (pQTL) filtration as a method to improve Connectivity Map (CMAP) compound 
identification.

Figure 3 continued

https://doi.org/10.7554/eLife.86961
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total, 420 compounds were found across both platforms, and these consensus compounds captured a 
significant proportion of highly scoring CMAP compounds (Figure 4—figure supplement 1A and B).

We performed three separate screens (Figure 4A) to capture the different mechanisms by which 
compounds modulate glucose uptake: (1) insulin-independent activation of GLUT4 translocation to 
the plasma membrane (basal activators), (2) potentiation of submaximal insulin action (insulin sensi-
tisers), and (3) rescue of palmitate-induced insulin resistance (insulin resistance reversers). We identi-
fied 22 basal agonists (Figure 4B), 7 insulin sensitisers (Figure 4C), and 16 insulin resistance reversers 
(Figure 4D). Five compounds both stimulated GLUT4 translocation and reversed insulin resistance, 
four were both basal agonists and insulin sensitisers while none met all three criteria (Figure 4E). 
Overall, we found that compounds that were identified by CMAP score (Figure 3D) performed better 
as both basal activators and as insulin resistance reversers than those that did not (Figure 4—figure 
supplement 1C).

To cross-reference our CMAP data with the Prestwick screen in an unbiased way, we constructed a 
scoring matrix to rank compounds found by both our CMAP query and in the Prestwick library. First, 
we z-scored the values for each category (basal agonists, insulin sensitisers, insulin resistance reversal, 
CMAP score). Next, we averaged the three in vitro assays z-scores and added it to the CMAP score. 
This overall score represents how each compound modulates GLUT4 translocation and potentially 
reverses our insulin resistance fingerprint, relative to the rest of the compound library. Using this final 
value, we ranked each compound and displayed the top 20 in a heat map (Figure 5A). Based on this 
metric, thiostrepton was identified as the highest-ranking compound and was selected for subsequent 
validation by further GLUT4 translocation (Figure 5B) and 2-deoxyglucose uptake (Figure 5C) experi-
ments in GLUT4-HA-L6 myotubes. We observed a consistent reversal of insulin resistance across both 
assays.

Next, we assessed the efficacy of thiostrepton to reverse insulin resistance in diet-induced obese 
mice. We decided to study it in isolated muscles as this circumvents potentially confounding micro-
biome effects due to thiostrepton’s antibiotic activity and allows direct interrogation of muscle insulin 
action. We selected two strains of inbred mice, C57BL/6J and BXH9/TyJ, based on our previous 
observations that these strains are particularly amenable to developing muscle insulin resistance 
following high-fat, high-sugar (Western diet [WD]) diet feeding (Nelson et al., 2022). Consistent with 
diet-induced perturbations in metabolic health, both C57BL/6J and BXH9 BXH9/TyJ mice fed a WD 
had increased body weight and adiposity, fasting hyperglycaemia, fasting hyperinsulinemia, glucose 
intolerance, and lower systemic insulin sensitivity (Matsuda Index) relative to chow-fed controls 
(Figure  5—figure supplement 1A–E). WD feeding also resulted in  ~40% reduction in C57BL/6J 
soleus insulin-stimulated 2-deoxyglucose uptake, a 75% reduction in BXH9 extensor digitorum longus 
insulin-stimulated 2-deoxyglucose uptake and 65% reduction in BXH9 soleus insulin-stimulated 
2-deoxyglucose uptake. Strikingly, 1 hr of thiostrepton treatment prior to insulin addition was suffi-
cient to reverse 80% of WD-induced insulin resistance in C57Bl/6J EDL muscle and 50% in BXH9 EDL 
muscle but did not restore BXH9 soleus 2-deoxyglucose uptake (Figure 5D).

Thiostrepton does not affect insulin signalling
Next, we attempted to identify the potential mechanisms by which thiostrepton relieved insulin 
resistance. Canonically, insulin-stimulated GLUT4 translocation is facilitated by a signalling cascade 
comprising PI3K/Akt and dysfunction in this pathway has been implicated in insulin resistance (Cho 
et al., 2001), although this is controversial (James et al., 2021). To assess insulin signalling, we treated 
control and palmitate-treated GLUT4-HA-L6 myotubes with either thiostrepton or vehicle for 1 hr 
prior to insulin stimulation. Unlike GLUT4 translocation or 2-deoxyglucose uptake, palmitate did not 
perturb proximal insulin signalling. We detected no effect of palmitate treatment or thiostrepton 
on the phosphorylation of Akt-T308, Akt-S473, or the Akt-substrates GSK3-S21/9 and PRAS40-T246 
(Figure 6A–E). These findings are consistent with the view that insulin resistance occurs independently 
of canonical insulin signalling (Hoehn et al., 2008; Hoy et al., 2009) and suggests that thiostrepton 
is acting independently of signalling to reverse insulin resistance.

https://doi.org/10.7554/eLife.86961
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Figure 4. Prestwick library of U.S. Food and Drug Administration (FDA)-approved drugs that modulate GLUT4 translocation in L6 myotubes. 
(A) Schematic representation of the three assays performed. (B) Small molecules that promote GLUT4 exocytosis to the plasma membrane (PM) 
independently of insulin with controls (basal, insulin) on the left. (C) Small molecules that potentiate a submaximal dose of insulin (1 nM) with controls 
(basal, 1 nM and 100 nM insulin) on the left. Compounds were added in combination with 1 nM insulin. (D) Small molecules that reverse palmitate 

Figure 4 continued on next page
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Thiostrepton partially inhibits mitochondria and restores palmitate 
induced glycolysis suppression
Many insulin-sensitising agents act via mitochondrial inhibition or uncoupling (Cameron et al., 2018; 
Madiraju et  al., 2014; Alexopoulos et  al., 2020) and thiostrepton has been reported to inhibit 
mitochondrial translation (Zhang et al., 2005) and respiration (Weinhaeuser et al., 2022; Cunniff 
et al., 2015). To test whether thiostrepton’s ability to restore optimal insulin action occurs via mito-
chondria, palmitate-treated and control GLUT4-HA-L6 myotubes were incubated with thiostrepton as 
above. Consistent with the mitochondrial dysfunction that has been reported during insulin resistance 
(Anderson et al., 2009; Hoehn et al., 2009), we observed substantial suppression of maximal mito-
chondrial respiration and mitochondrial reserve capacity following palmitate treatment (Figure 7A). 
Furthermore, thiostrepton alone appeared to blunt maximal respiration, albeit to a lesser extent than 
palmitate. When combined, thiostrepton and palmitate did not produce an additive suppression, nor 
did thiostrepton reverse any of the palmitate-induced defects. This suggests that this suppression of 
maximal respiration does not contribute to insulin resistance in this model.

We also assessed glycolysis by way of extracellular acidification rate (ECAR). Like mitochondrial 
respiration, palmitate suppressed maximal glycolytic capacity; however, unlike respiration this was 
potently reversed by co-treatment with thiostrepton (Figure  7B). To test whether this increase in 
glycolytic flux could be explained by changes in cellular energy status due to mitochondrial inhibition, 
we investigated the energy sensor AMP-dependent kinase (AMPK). AMPK can promote glycolysis 
(Herzig and Shaw, 2018), GLUT4 translocation (Richter and Hargreaves, 2013; Jensen et al., 2008), 
and glucose uptake in skeletal muscle independently of insulin. However, unlike the AMPK activator 
A-769662, we observed no effect of thiostrepton on the phosphorylation of AMPK or its substrate 
acetyl-CoA carboxylase in either control cells or cells treated overnight with palmitate (Figure 7C–E). 
Although A-769662 potently increases AMPK substrate phosphorylation in muscle cells, AMPK phos-
phorylation itself is not observed, consistent with a previous study (Göransson et al., 2007). These 
data suggest that if thiostrepton activates glycolysis via mitochondrial inhibition, it occurs inde-
pendently of AMPK.

Discussion
By leveraging genetic and phenotypic diversity of DOz mice, we have explored skeletal muscle’s 
contribution to whole-body insulin action at the molecular level. Our approach was validated by the 
identification of various ‘positive controls’ at each level of analysis. Firstly, utilising adiposity as a 
covariate during linear modelling uncovered relationships between whole-body insulin sensitivity 
and muscle GLUT4 trafficking proteins; secondly, pathway enrichment revealed proteostasis (Díaz-
Ruiz et al., 2015; Guo et al., 2022) and endocytosis (Antonescu et al., 2008; Hall et al., 2020) as 
key contributors to whole-body insulin sensitivity; and thirdly, querying CMAP with our fingerprint 
of insulin resistance returned metformin, GSK3 (Leng et al., 2010; Lee and Kim, 2007) and EGFR 
(Timmons et al., 2022) inhibitors as potential insulin resistance therapeutics (Knowler et al., 2002). 
The identification of these proteins, pathways, and drugs by our strategy gives us confidence in our 
approach and the novel players identified.

Systems-based approaches often identify networks as being drivers of disease. Empirical validation 
of these is difficult due to the complex interactions in biological systems. Here we took a drug-centric 
approach to validate our findings; this allowed targeting of entire pathways rather than singular nodes. 
We identified several compounds across both in silico and in vitro analyses which may restore muscle 
insulin action; indeed, several of these have previously been investigated. Disulfiram, sold under the 
brand name Antabuse, is used as an alcohol-dependency medication. Two studies have described 

induced insulin resistance with controls (basal, insulin, insulin + palmitate) on the left. Compounds were added in combination with 100 nM insulin 
following palmitate treatment. (E) Venn diagram of compound overlap between assays. Biological significance for each assay was defined as 50% of 
corresponding control, see methods for details.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Validation of Connectivity Map (CMAP) results against Prestwick library of small molecules.

Figure 4 continued
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GLUT4 translocation to the plasma membrane (PM) (B) and 2-deoxyglucose uptake (C) in control and insulin resistant L6 myotubes (palmitate) treated 
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and Western diet (WD)-fed C57BL/6J and BXH9/TyJ following ex vivo treatment with thiostrepton or vehicle control. Data are mean with individual 
data points shown, n = 3–4 (B, C), n = 3–5 (BXH9); n = 11–14 (C57BL/6J). Significance was determined by one-way ANOVA with Student’s post hoc test. 
** indicates significant difference from control (basal or chow-fed C57BL6/J) group (p<0.01), * indicates significant difference from control (p<0.05). # 
indicates significant difference from palmitate-treated or WD-fed control group (p<0.05).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect of Western diet (WD) feeding on C57BL/6J and BxH9/TyJ mice body composition and insulin sensitivity.
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The online version of this article includes the following source data for figure 6:

Figure 6 continued on next page
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disulfiram’s ability to reverse diet-induced hepatic insulin resistance and reduce adiposity (Bernier 
et al., 2020a; Bernier et al., 2020b). Resveratrol, a component found in red wine, is a popular antioxi-
dant and has been demonstrated to reverse insulin resistance via reduction of reactive oxygen species 
(Timmers et al., 2011; Gong et al., 2020; Shu et al., 2020). Fibroblast growth factor 21 (FGF21) was 
also identified amongst the ligand dataset as reversing our insulin resistance fingerprint. FGF21 has 
previously been reported to promote insulin-stimulated glucose uptake in muscle fibres (Rosales-Soto 
et al., 2020) and can modulate mitophagy and proteostasis in muscle (Oost et al., 2019). Antivirals, 

Source data 1. Uncropped immunoblots with indicated antibodies of control and palmitate treated GLUT4-HA-L6 myotubes following treatment with 
thiostrepton or vehicle control and stimulation with 0, 1, or 10 nM insulin.
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several classes of antibiotics, antipsychotics, and cancer drugs were all identified by our analyses. 
Perhaps this diversity reflects the divergent and pleiotropic biology of insulin resistance.

Key to our approach is the insulin resistance muscle proteomic fingerprint. This was generated by 
filtering proteins that associated with whole-body insulin sensitivity and that possessed significant cis-
pQTLs. The latter was particularly important as we postulated that this would select for proteins that 
were likely to be causal drivers of insulin resistance. We hypothesised that a protein whose expression 
is post-translationally regulated in response to insulin resistance would not show a genetic signal and 
therefore be excluded from our fingerprint. Filtering on this basis improved the overall CMAP score 
and ultimately identified thiostrepton. One reason for this could be the discordance between mRNA 
and protein (Maier et al., 2009; de Sousa Abreu et al., 2009). CMAP uses mRNA expression data, 
whereas our fingerprint uses protein. By restricting our fingerprint to proteins with significant cis-
pQTLs, we may have inadvertently selected for genes whose mRNA expression closely matches their 
protein, thereby increasing the overlap between fingerprint and perturbagen signatures. Moreover, 
our approach has the major advantage that it requires far fewer mice to obtain meaningful outcomes 
(222 mice in this study) compared to that required for genetic mapping of complex traits like Matsuda 
Index (Gatti et al., 2014). Furthermore, because we have used genetically diverse datasets (DOz mice 
and multiple cell lines in CMAP), our findings are likely robust across diverse target backgrounds.

A major question is what biological functions are represented by our fingerprint? One of the top 
pathways identified was endocytosis. This pathway featured two components of the clathrin coat and 
the adaptor protein EPS15. This is very exciting as endocytosis has been suggested to play a major 
role in stress signalling (Cavalli et al., 2001), and in the context of insulin sensitivity this may involve 
internalisation of key proteins including the insulin receptor and glucose or amino acid transporters 
(Antonescu et al., 2008; Hall et al., 2020). The concept that variation in this process is genetically 
determined, and this plays a major role in governing essential processes like insulin action, adds a new 
dimension to the role of this pathway. A second intriguing member of the fingerprint is phosphory-
lase kinase which, along with glycogen synthase kinase, regulates the key glycogen storage enzymes 
glycogen phosphorylase and glycogen synthase (Thompson and Carlson, 2017; Polishchuk et al., 
1995; Ding et al., 2000; Skurat et al., 2006). High levels of glycogen phosphorylase kinase may 
promote glycogen breakdown through activation of glycogen phosphorylase, thereby altering GSK3 
signalling, a process implicated in insulin resistance.

Neither AMPK nor Akt signalling account for the profound effect of thiostrepton on insulin action. 
This is exciting as it suggests both a novel mechanism of action and a novel insulin resistance defect. 
So far, the most enticing potential mechanism is restoration of glycolysis. Thiostrepton restores normal 
glycolytic function in palmitate-treated cells, and we have previously reported links between glycolysis 
and insulin action in skeletal muscle (Nelson et al., 2022; Trefely et al., 2015). Mechanistically, thiost-
repton could promote glycolysis via attenuation of mitochondrial oxidative phosphorylation, and this 
has previously been demonstrated in acute myeloid leukaemia and malignant mesothelioma cell lines 
(Weinhaeuser et al., 2022; Newick et al., 2012). Our data supports this work and identifies a similar, 
albeit mild, effect on myotube respiration. Thiostrepton can also increase cellular exposure to mito-
chondrial reactive oxygen species (ROS) as it inhibits peroxiredoxin-3 (Cunniff et al., 2015; Newick 
et al., 2012), a key antioxidant enzyme. Perhaps, as seen during the Warburg effect (Liu et al., 2015; 
Kulisz et al., 2002; Wang et al., 2020), increased mitochondrial ROS can act as a signal to promote 
glycolysis and relieve mitochondrial energetic demands. Aside from glycolysis, other pathways may 
be involved in enhancing insulin sensitivity. For example, the negatively associated protein ARHGDIA 
(Figure 2F) is a potent negative regulator of insulin sensitivity, and our fingerprint of insulin resistance 
contained its homologue ARHGDIB. Both ARHGDIA and ARHGDIB have been reported to inhibit the 
insulin-action regulator RAC1 (Liu et al., 2021; Gee et al., 2013; Sylow et al., 2013), and thus may 
lower GLUT4 translocation and glucose uptake. Further investigations may uncover a role for thiost-
repton in modulating the RAC1 signalling pathway via ARHGDIB.

Integration of physiological, proteomic, genomic, and pharmaceutical data has uncovered a potent 
reverser of insulin resistance. By integrating proteomic diversity with the underlying genetic architec-
ture, we believe we were able to focus on potentially causal proteins, and the use of CMAP allowed 
us to combine these proteins into a single fingerprint to find potential modulators of insulin resistance. 
Our findings also build on recent reports linking glycolysis to insulin action and uncover a number of 
potential contributors to insulin action worthy of future study.

https://doi.org/10.7554/eLife.86961
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Methods
Mouse breeding and phenotyping
Male DOz mice (Mus musculus) were bred and housed at the Charles Perkins Centre, University of 
Sydney, NSW, Australia. They were originally established at Geniad, Western Australia, Australia, and 
then relocated to the University of Sydney. The DOz population comprises 46 breeding pairs and the 
breeding strategy avoids mating’s between siblings or first cousins. Breeders are selected based on 
the genotype of the R2d2 locus to limit the meiotic drive favouring the WSB allele on chromosome 2 
(Chesler et al., 2016). The DOz mice used in the current study were outbred for 27–33 generations and 
comprised a total of 250 male DOz mice that were studied as 5 separate cohorts. Genomic DNA was 
isolated from each mouse and subjected to SNP genotyping (Morgan et al., 2015), followed by geno-
typing diagnostics and cleaning as described (Broman et al., 2019b). Experiments were performed 
in accordance with NHMRC guidelines and under approval of the University of Sydney Animal Ethics 
Committee, approval numbers #1274 and #1988. To delineate genetic from cage effects, mice were 
randomised into cages of 3–5 at weaning. All mice were maintained at 23°C on a 12 hr light/dark cycle 
(0600–1800) and given ad libitum access to a standard laboratory chow diet containing 16% calories 
from fat, 61% calories from carbohydrates, and 23% calories from protein or a high-fat high-sugar diet 
(WD) containing 45% calories from fat, 36% calories from carbohydrate, and 19% calories from protein 
(3.5% g cellulose, 4.5% g bran, 13% g cornstarch, 21% g sucrose, 16.5% g casein, 3.4% g gelatine, 
2.6% g safflower oil, 18.6% g lard, 1.2% g AIN-93 vitamin mix [MP Biomedicals], 4.95% g AIN-93 
mineral mix [MP Biomedicals], 0.36% g choline and 0.3% g L-cysteine). Fat and lean mass measures 
were acquired via EchoMRI-900 (EchoMRI Corporation Pte Ltd, Singapore) at 14 wk of age. Glucose 
tolerance was determined by GTT at 14 wk of age by fasting mice for 6 hr (0700–1300 hr) before oral 
gavage of 20% glucose solution in water at 2 mg/kg lean mass. Blood glucose concentrations was 
measured directly by handheld glucometer (Accu-Chek, Roche Diabetes Care, NSW, Australia) from 
tail blood 0, 15, 30, 45, 60, and 90 min after oral gavage of glucose. Blood insulin levels at the 0 and 
15 min timepoints were measured by mouse insulin ELISA Crystal Chem USA (Elk Grove Village, IL) 
according to the manufacturer’s instructions. Blood glucose and insulin levels were integrated into a 
surrogate measure of whole-body insulin sensitivity using the Matsuda Index:

	﻿‍

MatsudaIndex = 10, 000√(
Glucose0 × Insulin0

)
×

(
GlucoseGTTmean × InsulinGTTmean

)
‍�

Muscle proteomic sample preparation
Whole quadriceps muscle samples were prepared as previously described with modification 
(Frezza et al., 2007; Acin-Perez et al., 2020). First, tissue was snap frozen with liquid nitrogen 
and pulverised before resuspension in 100  µl of trypsin buffer (phosphate-buffered saline [PBS] 
containing 10 mM EDTA and 0.01 ug/ul mass-spectrometry grade trypsin). Samples were incubated 
for 30 min at 37°C before being pelleted by centrifugation (10,000 × g, 5 min at 4°C). Samples were 
then resuspended in 1.4 ml mitochondrial isolation buffer (70 mM sucrose, 220 mM mannitol, 1 mM 
EGTA, 2 mM HEPES. pH at 7.4) and homogenised on ice in a glass Dounce homogeniser. Samples 
were then twice pelleted by centrifugation, first at 1000 × g × 10 min to remove insoluble debris 
and second at 10,000 × g × 10 min to extract the crude mitochondrial fraction, both centrifugation 
steps were performed at 4°C and the supernatant of the second step was collected as the post-
mitochondrial fraction (PMF). The mitochondrial pellet was re-solubilised in 1 ml of isolation buffer 
by repeated pipetting on ice prior to centrifugation (10.000 × g × 10 min at 4°C) and resuspension 
in 50 µl of isolation buffer. Protein concentration of both mitochondrial and PMF was determined 
by BCA assay, 10 µg of protein was then prepared as previously described (Nelson et al., 2022). 
Reduction/alkylation (10 mM tris 2-carboxyethyl phosphine [TCEP], 40 mM CAA) buffer was added 
to each sample before incubation for 20 min at 60°C. Once cooled to room temperature, 0.4 mg 
trypsin and 0.4 mg LysC was added to each sample and incubated overnight (18 hr) at 37°C with 
gentle agitation. 30 µl water and 50 µl 1% TFA in ethyl acetate were added to stop digestion and 
dissolve any precipitated SDC. Samples were prepared for mass spectrometry analysis by StageTips 
clean up using SDB-RPS solid-phase extraction material (Rappsilber et al., 2007). Briefly, two layers 
of SDB-RPS material were packed into 200 µl tips and washed by centrifugation at 1000 × g for 

https://doi.org/10.7554/eLife.86961
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2 min with 50 µl acetonitrile followed by 0.2% TFA in 30% methanol and then 0.2% TFA in water. 
50 µl of samples were loaded to StageTips by centrifugation at 1000 × g for 3 min. Stage tips were 
washed with subsequent spins at 1000 × g for 3 min with 50 µl 1% TFA in ethyl acetate, then 1% 
TFA in isopropanol, and 0.2% TFA in 5% ACN. Samples were eluted by addition of 60 µl 60% ACN 
with 5% NH4OH4. Samples were dried by vacuum centrifugation and reconstituted in 30 µl 0.1% 
TFA in 2% ACN.

Mass spectrometry analysis
Proteomic sample analysis was conducted using a Dionex UltiMate 3000 RSLCnano LC coupled to 
an Exploris Orbitrap mass spectrometer. Then, 2 µl of sample was injected on to an in-house packed 
150 µm × 15 cm column (1.9 mm particle size, ReproSilPurC18-AQ) and separated using a gradient 
elution and with column temperature of 60°C, with Buffer A consisting of 0.1% formic acid in water 
and Buffer B consisting of 0.1% formic acid in 80% ACN. Samples were loaded to the column at a flow 
rate 3 µl/min at 3% B for 3 min, before dropping to 1.2 µL/min over 1 min for the gradient elution. The 
gradient was increased to 32% B over 50 min, then to 60% B over 0.5 min and 98% B over 0.5 min 
and held for 1.5  min, before returning to a flow rate of 3 µl/min at 3% B. Eluting peptides were 
ionised by electrospray with a spray voltage of 2.3 kV and a transfer capillary temperature of 300°C. 
Mass spectra were collected using a DIA method with varying isolation width windows (widths of m/z 
22–589) between 350–1650 according to Supplementary file 1. MS1 spectra were collected between 
m/z 350 and 1650 at a resolution of 60,000 and an AGC target of 4e5 with a 50 ms maximum injection 
time. Ions were fragmented with stepped HCD collision energy at 27.5% and MS2 spectra collected 
between m/z 300 and 2000 at resolution of 30,000, with an AGC target of 3e5 and the maximum 
injection time of 54 ms.

Proteomics raw data files were searched using DIA-NN using a library-free FASTA search against the 
reviewed UniProt mouse proteome (downloaded May 2020) with deep learning enabled (Rappsilber 
et al., 2007; Demichev et al., 2020). The protease was set to Trypsin/P with one missed cleavage, 
N-term M excision, carbamidomethylation, and M oxidation options on. Peptide length was set to 
7–30, precursor range 350–1650, and fragment range 300–2000, and false discovery rate (FDR) set to 
1%. Both the PMF and mitochondrial fractions were filtered for mitochondrial proteins using based 
on MitoCarta 3.0 and presence in 50% in mice. Across both fractions we quantified 2073 proteins 
(1629 proteins in the PMF and 444 in the mitochondrial fraction). Proteomic intensities were log2 
transformed and median normalised prior to analysis to achieve normal distributions and account for 
technical variation in total protein. The mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner repository with 
the dataset identifier PXD042277.

Data analysis
All data analysis and visualisation were performed in either the R programming environment (R Devel-
opment Core Team, 2013) or GraphPad Prism (GraphPad Software, San Diego, CA). For protein-
trait analysis, the Matsuda Index was calculated using glucose tolerance data before being log2 
transformed. Linear models were generated using the lm() function in R where Matsuda Index = α + 
proteinX + covariate + ɛ (α = intercept and ɛ = error) using a Gaussian distribution (Lehallier et al., 
2019). To correct for multiple testing, p-values were adjusted using the q-value method in the R 
package qvalue (Dabney and Storey, 2010). Chi-square tests for distribution differences within the 
data and two-/one-way ANOVA tests for group differences were performed in GraphPad Prism.

Gene set enrichment
Gene set enrichment analysis for each mitochondrial and post-mitochondrial fraction was conducted 
using Matsuda Index effect sizes for each protein and performed in R using the gseGO() function 
within the clusterprofiler package (Yu et al., 2012). Over-representation analysis of protein–protein 
interaction clusters and KEGG pathway analysis of insulin resistance fingerprint proteins were 
performed in WebGestalt (Liao et al., 2019). All enrichment tests were performed using all quantified 
proteins within a given fraction as a background gene set. p-value correction was performed using 
FDR correction.

https://doi.org/10.7554/eLife.86961
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Genetic mapping analysis
Genetic mapping analysis was performed in R using the QTL2 package (Broman et al., 2019a). The 
GIGA-MUGA single-nucleotide polymorphism array was used as genomic inputs for mapping (Morgan 
et al., 2015). pQTL analysis was performed by linear mixed modelling on z-scored protein abundance 
data with probabilistic estimation of expression residuals (PEER) factor adjustment, a covariate, and a 
kinship matrix to account for genetic relatedness amongst the DOz animals. PEER factor adjustment 
was performed using the top 10 calculated PEER factors, as described (Stegle et al., 2012). Signifi-
cance thresholds were established by performing 1000 permutations and set at p<0.1 for cis-acting 
pQTL and p<0.05 for trans-acting pQTL. The cis-pQTL window was set as ±2 Mbp.

CMAP and scoring matrix
Insulin resistance ‘fingerprint’ proteins were queried in CMAP using the CLUE software platform 
(Subramanian et al., 2017; Lamb, 2007). The list of 76 ‘fingerprint proteins’ were queried against 
the L1000 gene expression dataset in the ‘Query’ function of CLUE, and results for small molecules 
(trt_cp) and ligands (trt_lig) were extracted using the CLUE ‘Morpheus’ platform. Raw connectivity 
score values were used to rank perturbagens. Connectivity scores were averaged across all cell lines in 
the L1000 dataset. The Broad Institute small-molecule inhibitors denoted by the prefix were removed 
from our resulting dataset as they are not commercially available. CMAP scores were combined with 
the results from our GLUT4 translocation screen to rank consensus compounds. This was done by first 
z-scoring each value (% GLUT4 at the plasma membrane for each assay and raw connectivity score). 
This produced a value which indicates how well each compound performs in a given test relative to 
the rest of the dataset. Then the average of all three GLUT4 assays (basal agonism, insulin sensiti-
sation, and insulin resistance reversal) was added to the z-scored connectivity score to produce an 
overall score for each compound. z-score adjustment for each assay and CMAP score was performed 
as follows:

	﻿‍
Zscore = x − mean

SD ‍�

where Zscore is the adjusted value for a given compound, x is the observed score for given 
compound, mean is the average score across all compounds, and SD is the standard deviation of all 
compounds.

Overall score for each compound was calculated as follows:

	﻿‍
z-scored (bas) + z-scored (ins.sens) + z-scored

(
ins.res.rev

)
3

+ z-scored (CMAP) = Overall score
‍�

Cell culture
GLUT4-HA-L6 myoblasts (Carey et al., 2006) were grown in α-MEM supplemented with 10% fetal 
bovine serum. Differentiation was induced by changing media to α-MEM supplemented with 2% 
horse serum for 5 d.

GLUT4 translocation assays
GLUT4 exocytosis was determined as previously reported (Stöckli et al., 2008). Briefly, GLUT4-HA-L6 
myotubes were serum-starved overnight in α-MEM containing 0.2% BSA before being washed 3× with 
Krebs Ringer phosphate buffer supplemented with 0.2% BSA. Cells were stimulated with either 1 nM 
or 100 nM insulin for 20 min before being washed with ice-cold PBS and placed on ice. Cells were then 
fixed for 30 min in 3% paraformaldehyde and washed with PBS. The remaining paraformaldehyde was 
quenched with 50 mM glycine. Cells were then blocked for 20 min in either 5% normal swine serum 
(NSS) or 5% NSS with 0.1% saponin (for measurement of total GLUT4 levels). After blocking, cells were 
washed and incubated with anti-HA antibody (Convance, 1:200 in 5% NSS) for 45 min before incuba-
tion with secondary antibody for 20 min. Total and plasma membrane GLUT4-HA were determined 
by fluorescence plate reader at 485/520 nm. GLUT4 translocation was calculated as the percentage 
of total GLUT4 at the plasma membrane. For palmitate-induced insulin resistance assays, myotubes 
were incubated in α-MEM overnight supplemented with either 125 µM palmitic acid conjugated to 
BSA or equivalent BSA as a vehicle control before performing assay as above. For the assessment of 

https://doi.org/10.7554/eLife.86961
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the Prestwick library of compounds, each compound was dissolved in DMSO and added for 1 hr at a 
final concentration of 10 µM (0.2% DMSO) prior to experimentation. Biological significance for each 
assay was defined as 50% of control. For basal agonists, this was >50% of 100 nM insulin; for insulin 
sensitisers, this was >50% of the difference between 1 and 100 nM insulin; and for insulin resistance 
reversers, this was >50% of the difference between 100 nM insulin and 100 nM insulin + palmitate.

2-Deoxyglucose uptake
2-Deoxyglucose uptake into GLUT4-HA-L6 cells was performed as previously described with modifi-
cations (Carey et al., 2006; Masson et al., 2020). Cells were incubated overnight in either α-MEM 
supplemented with either BSA-coupled 125 µM palmitic acid or BSA vehicle control before being 
washed 3× with HEPES buffered saline (HBS). Cells were then incubated in HBS supplemented with 
10 µM unlabelled 2-deoxyglucose and 0.5 µCi/ml [3H]-2-deoxyglucose at 37°C for 5 min. Cells were 
then washed 5× with ice-cold PBS and lysed in 1  M NaOH. For non-specific background uptake, 
one well per condition was pre-treated with cytochalasin B. Counts were determined by Perkin-
Elmer Quantulus GCT Liquid Scintillation Counter (PerkinElmer, Waltham, MA). Glucose uptake was 
expressed relatively to protein concentration as determined by bicinchoninic acid (BCA) assay after 
subtraction of non-specific uptake.

Ex vivo glucose uptake
Ex vivo glucose uptake was performed as previously described (Nelson et  al., 2022). Mice were 
euthanised by cervical dislocation prior to rapid dissection of soleus (C57Bl/6J and BXH9/TyJ) and 
extensor digitorum longus (EDL) muscle (BXH9/TyJ only). Muscle selection was based on our prior 
observations that only soleus muscles in C57Bl/6J mice develop diet-induced insulin resistance. 
Both the soleus and EDL muscles were mounted and then incubated for 1  hr in Krebs Henseleit 
buffer (KHB; 5.5 mM glucose, 2 mM pyruvate, and 0.1% BSA) that had been gassed with carbogen 
(95% O2/5% CO2) supplemented with either 10 µM thiostrepton or a DMSO vehicle control. Glucose 
uptake was assessed by then switching the muscle into KHB supplemented with 0.375 mCi/ml [3H]-2-
deoxyglucose, 0.05 mCi/ml [14C]-mannitol, 100 nM insulin, and either thiostrepton (10 µM) or DMSO 
vehicle control for 20 min at 30°C followed by washing in ice-cold PBS and then snap-frozen in liquid 
nitrogen. Samples were lysed in 250 mM NaOH at 70°C. Tracer in the muscle tissue lysates was quanti-
fied by liquid scintillation counting and [3H]-2-deoxyglucose was corrected for extracellular [14C]-man-
nitol then normalised to wet weight of the tissue.

Immunoblotting
Glut4-HA-L6 myotubes were incubated overnight in 125 µM palmitate or BSA control prior to treat-
ment with drugs/insulin as indicated. Cells were then washed in ice-cold PBS and lysed by scraping 
directly into 55°C Laemmli sample buffer with 10% TCEP. Samples were then sonicated for 24 s 
(3 s on/3 s off) and heated at 65°C for 5 min. SDS-PAGE was performed. Samples were resolved by 
SDS-PAGE as previously described (Nelson et al., 2022), transferred onto PVDF membranes and 
blocked in TBS-T (0.1% Tween in Tris-buffered saline) containing 5% skim milk for 1 hr. Membranes 
were then washed 3 × 10  min in TBS-T and incubated overnight in primary antibodies against 
phosphorylated Akt T308 (Cell Signaling Technologies #2965; diluted 1:1000), phosphorylated 
Akt S473 (Cell Signaling Technologies #9271; diluted 1:1000), pan-Akt (Cell Signaling Technolo-
gies #9272; diluted 1:1000), phosphorylated GSK-3α/β S21/9 (Cell Signaling Technologies #9327; 
diluted 1:1000), GSK3α/β (Cell Signaling Technologies #5676; diluted 1:1000), phosphorylated 
PRAS40 T246 (Cell Signaling Technologies #13175; diluted 1:1000), PRAS40 (Cell Signaling Tech-
nologies #2691; diluted 1:1000), phosphorylated AMPK (Cell Signaling Technologies, #2531; 
diluted 1:1000), α-tubulin (Cell Signalling Technologies #2125; diluted 1:1000), and 14-3-3 (Santa 
Cruz #sc-1657; diluted 1:5000). The following day membranes were washed 3 × 10 min in TBS-T 
and incubated for 1 hr in species-appropriate fluorescent or HRP secondary antibodies. Imaging 
and densitometry were performed using LI-COR Image Studio or a Bio-Rad ChemiDoc Imaging 
System (Bio-Rad, Hercules, CA) and ImageJ (Schneider et  al., 2012). Phosphorylated proteins 
were normalised against their relevant controls, and data was normalised based on average band 
intensity.

https://doi.org/10.7554/eLife.86961
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Mitochondrial stress test
Cellular respirometry (oxygen consumption rate [OCR]) was performed using Seahorse XFp miniplates 
and a Seahorse XF HS Mini Analyzer (Seahorse Bioscience, Copenhagen, Denmark) as previously 
described (Yau et al., 2021). GLUT4-HA-L6 myotubes were incubated overnight in either palmitate or 
BSA control αMEM before treatment with either thiostrepton (10 µM) or DMSO vehicle control. Cells 
were washed twice with KRBH and incubated in KRBH supplemented with 2.8 mM glucose, thiost-
repton, or vehicle control without BSA (150 μl/well) at 37°C for 1 hr in non-CO2 incubator. Cells were 
then assayed in XFp Analyzer. The OCR was measured after a 12 min equilibration period followed by 
3/0/3 min of mix/wait/read cycles. Following stabilisation of baseline rates, compounds were injected 
sequentially to reach a final concentration of: 20 mM glucose, oligomycin (5 μg/ml), FCCP (1 μM), 
and rotenone/antimycin A (5 μM) to assess glucose-dependent respiration (calculated by baseline – 
glucose OCR), ATP-linked respiration (determined by glucose – oligomycin OCR), maximal respiration 
(calculated by FCCP – AntA/Rot OCR), and non-mitochondrial respiration, respectively (equal to AntA/
Rot OCR). Data were normalised against protein concentration and presented as baseline adjusted.
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