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Abstract This study investigates the goal/habit imbalance theory of compulsion in obsessive-
compulsive disorder (OCD), which postulates enhanced habit formation, increased automaticity, and 
impaired goal/habit arbitration. It directly tests these hypotheses using newly developed behavioral 
tasks. First, OCD patients and healthy participants were trained daily for a month using a smart-
phone app to perform chunked action sequences. Despite similar procedural learning and attain-
ment of habitual performance (measured by an objective automaticity criterion) by both groups, 
OCD patients self-reported higher subjective habitual tendencies via a recently developed ques-
tionnaire. Subsequently, in a re-evaluation task assessing choices between established automatic 
and novel goal-directed actions, both groups were sensitive to re-evaluation based on monetary 
feedback. However, OCD patients, especially those with higher compulsive symptoms and habitual 
tendencies, showed a clear preference for trained/habitual sequences when choices were based on 
physical effort, possibly due to their higher attributed intrinsic value. These patients also used the 
habit-training app more extensively and reported symptom relief post-study. The tendency to attri-
bute higher intrinsic value to familiar actions may be a potential mechanism leading to compulsions 
and an important addition to the goal/habit imbalance hypothesis in OCD. We also highlight the 
potential of smartphone app training as a habit reversal therapeutic tool.

eLife assessment
This study provides solid evidence for differences in habit-learning in obsessive-compulsive disorder 
versus controls. Contrary to previous studies that employed a single laboratory session to study 
habit-learning, here a smartphone app delivered motor-sequence tasks daily for a month. These 
results have important implications for our understanding of goal-directed versus habit learning in 
obsessive-compulsive disorder.

Introduction
Considerable evidence has supported the concept of imbalanced cortico-striatal pathways mediating 
compulsive behavior in obsessive-compulsive disorder (OCD). This imbalance has been suggested 
to reflect a weaker goal-directed control and an excessive habitual control (Gillan et  al., 2016). 
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Dysfunctional goal-directed control in OCD has been strongly supported both behaviorally (Gillan 
et  al., 2011; Vaghi et  al., 2019) and from a neurobiological perspective (Gillan et  al., 2015a). 
However, until now, enhanced (and potentially maladaptive) habit formation has largely been inferred 
by the absence of goal-directed control, although recent studies show increased self-reported habitual 
tendencies in OCD, as measured by the Self-Report Habit Index Scale (Ferreira et al., 2017). Prob-
lems with this ‘zero-sum’ hypothesis (Robbins and Costa, 2017) (i.e. diminished goal-directed control 
thus enhanced habitual control) have been reiterated by recent findings linking stimulus-response 
strength (Zwosta et al., 2018) and goal devaluation (Gillan et al., 2015b) exclusively to a dysfunc-
tional goal system. There is thus a need to focus specifically on the habit component of the associative 
dual-process (i.e. goal/habit) model of behavior and test more directly the hypothesis of enhanced 
habit formation in OCD.

We recently proposed that extensive training of sequential actions could be a means for rapidly 
engaging the ‘habit system’ in a laboratory setting (Robbins et al., 2019). The idea is that, in action 
sequences (like those seen in skilled routines), extensive training helps integrate separate motor actions 
into a coordinated and unified sequence, or ‘chunk’ (Graybiel, 1998; Sakai et al., 2003). Through 
consistent practice, the selection and execution of these component actions become more stream-
lined, stereotypical, and cognitively effortless. They are performed with minimal variation, achieving 
high efficiency. Moreover, there is now robust evidence that for highly trained sequences, actions are 
represented in parallel according to their serial order before execution (Kornysheva et al., 2019). 
Such features relate to the concept of automaticity, which captures many of the shared elements 
between habits and skills (Ashby et al., 2010). At a neural level, automaticity is associated with a shift 
in control from the anterior/associative (goal-directed) to the posterior/sensorimotor (habitual) striatal 
regions (Ashby et al., 2010; Graybiel and Grafton, 2015; Kupferschmidt et al., 2017), accompa-
nied by a disengagement of cognitive control hubs in frontal and cingulate cortices (Bassett et al., 
2015). In fact, within the skill learning literature, this progressive shift to posterior striatum has been 
linked to the gradually attained asymptotic performance of the skill (Bassett et al., 2015; Doyon 
et al., 2018; Doyon et al., 2015; Lehéricy et al., 2005). Hence, chunked action sequences provide 
an opportunity to target the brain’s goal-habit transition and study the relationships between auto-
maticity, skills, and habits (Dezfouli et al., 2014; Graybiel and Grafton, 2015; Robbins and Costa, 
2017). This approach is relevant for OCD research as it mimics the sequences of motor events and 
routines observed in typical compulsions, often performed in a ‘‘just right’’ manner (Hellriegel et al., 
2017), akin to skill learning. Chunked action sequences also enable investigation of the relationships 
between hypothesized procedural learning deficits in OCD (Rauch et al., 1997) and automaticity.

Following this reasoning, we developed a smartphone Motor Sequencing App with attractive 
sensory features in a game-like setting, to investigate automaticity and measure habit/skill forma-
tion within a naturalistic setting (at home). This task, akin to a piano-based app, allows subjects to 
learn and practice two sequences of finger movements. It was tailored to emphasize the positive 
aspects of habits, as advocated by Watson et al., 2022, and it satisfies central criteria that define 
habits proposed by Balleine and Dezfouli, 2019: swift execution, invariant response topography, and 
action chunking. We also aimed to investigate within the same experiment three facets of automa-
ticity which, according to Haith and Krakauer, 2018, have rarely been measured together: habit, skill, 
and cognitive load. Although there is no consensus on how exactly skills and habits interact (Robbins 
and Costa, 2017), it is generally agreed that both lead to automaticity with sufficient practice (Gray-
biel and Grafton, 2015) and that the autonomous nature of habits and the fluid proficiency of skills 
engage the same sensorimotor cortical-striatal ‘loops’ (the so-called ‘habit circuitry’) (Ashby et al., 
2010; Graybiel and Grafton, 2015). By focusing more on the automaticity of the response per se 
(as reflected by the speed and stereotypy of overtrained movement sequences), rather than on the 
autonomous nature of the behavior (an action that continues after a state change, e.g. devaluation 
of the goal), we do not solely rely on the devaluation criterion used in previous studies of compulsive 
behavior. This is important because outcome devaluation insensitivity as a test of habit in humans is 
controversial (Watson et al., 2022) and may indeed be a more sensitive indicator of failures of goal-
directed control rather than of habitual control per se (Balleine and Dezfouli, 2019; Robbins et al., 
2019; Robbins and Costa, 2017).

While designing our app, we additionally considered previous research emphasizing training 
frequency, context stability, and reward contingencies as important features for enhancing habit 
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strength (Wood and Rünger, 2016). To ensure effective consolidation required for habit/skill reten-
tion to occur, we implemented a 1-month training period. This aligns with studies showing that prac-
tice alone is insufficient for habit development as it also requires off-line consolidation over longer 
periods of time and sleep (Nusbaum et al., 2018; Walker et al., 2003). Finally, given the influence of 
reinforcer predictability on habit acquisition speed (Bouton, 2021), we employed two different rein-
forcement schedules (reward scores: continuous versus variable [probabilistic]) to assess their impact 
on habit formation among healthy volunteers (HV) and patients with OCD.

Outline
In this article, we applied, for the first time, app-based behavioral training (experiment 1) to a sample 
of patients with OCD. We compared 32  patients and 33 healthy participants, matched for age, 
gender, IQ, and years of education in measures of motivation and app engagement (see Materials 
and methods for participants’ demographics and clinical characteristics). We also assessed to what 
extent performing such repetitive actions in 1 month impacted OCD symptomatology. In an initial 
phase (30 days), two action sequences were trained daily to produce habits/automatic actions (exper-
iment 1). We collected data online continuously to monitor engagement and performance in real time. 
This approach ensured we acquired sufficient data for subsequent analysis of procedural learning and 
automaticity development.

In a second phase, we administered two follow-up behavioral tasks (experiments 2 and 3) addressing 
two important questions relevant to the habit theory of OCD. The first research question investigated 
whether repeated performance of motor sequences could develop implicit rewarding properties, 
hence gaining value, potentially leading to compulsive-like behaviors (experiment 2: explicit prefer-
ence task, conducted without feedback). The hypothesis postulates that the repeated performance, 
initially driven by the goal of proficiency, may eventually become motivated by its own implicit reward, 
tied to proprioceptive and kinesthetic feedback (e.g. offering anxiety relief alongside skillful execu-
tion). The second question explored whether manipulations of extrinsic feedback, based on monetary 
reward or on the physical effort required (by varying the length of the sequence) affected choice for 
the familiar trained action sequence (experiment 3: re-evaluation task, conducted with feedback).

Finally, we administered a comprehensive set of self-reported clinical questionnaires, including 
a recently developed questionnaire (Ersche et  al., 2017) on habit-related aspects. This aimed to 
investigate: (1) if OCD patients report more habits; (2) whether stronger subjective habitual tenden-
cies predict enhanced procedural learning, automaticity development, and an (in)ability to adjust to 
changing circumstances; and (3) if app-based habit reversal therapy yields therapeutic benefits or has 
any subjective sequelae in OCD.

Hypothesis
Anticipating implicit learning issues in OCD (Deckersbach et  al., 2002; Kathmann et  al., 2005; 
Rauch et al., 1997) and fine-motor difficulties (Bloch et al., 2011), we expected poorer procedural 
learning in patients compared to HV. However, once learned, we predicted OCD patients would 
reach automaticity faster, possibly due to a stronger tendency to form habitual/automatic actions 
(Gillan et al., 2016; Gillan et al., 2014). We also hypothesized differences in the learning rate and 
automaticity development between the two action sequences based on their associated (1) reward 
schedule (continuous versus variable), with faster automaticity in the continuous reward sequence, 
as suggested by past research (Bouton, 2021); and (2) sign of changes in reward scores, expecting 
enhanced performance improvements following a decrease in scores, particularly pronounced in OCD 
patients due to heightened sensitivity to negative feedback (Apergis-Schoute et al., 2024; Becker 
et  al., 2014; Kanen et  al., 2019). Additionally, we predicted that OCD patients would generally 
display stronger habits and assign greater intrinsic value to the familiar app sequences, evidenced by 
a marked preference for executing them even when presented with a simpler alternative sequences. 
Finally, we expected patients to show a greater tendency to perform the familiar/trained sequences, 
even though its extrinsic relative value was reduced and new, more valuable, options became available.

https://doi.org/10.7554/eLife.87346
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Results
Self-reported habit tendencies
Participants completed self-reported questionnaires measuring various psychological constructs (see 
Materials and methods). Highly relevant for the current topic is the Creature of Habit Scale (COHS) 
(Ersche et al., 2017), recently developed to measure individual differences in routine behavior and 
automatic responses in everyday life. As compared to healthy controls, OCD patients reported signifi-
cantly higher habitual tendencies in both the routine (t = –2.79, p = 0.01; HV: ‍COHSroutine‍ = 48.4, ‍σ‍ = 
9; OCD: ‍COHSroutine‍ = 55.7, ‍σ‍ = 11) and the automaticity (t = –3.15, p < 0.001; HV: ‍COHSautomaticity‍ 
= 26.3, ‍σ‍ = 8; OCD: ‍COHSautomaticity‍ = 32.9, ‍σ‍ = 9) subscales.

Phase A: Experiment 1
Motor sequence acquisition using the app
The task was a self-instructed and self-paced smartphone application (app) downloaded to partici-
pants’ iPhones. It consisted of a motor practice program that participants committed to pursue daily, 
for a period of 1 month. An exhaustive description of the method has been previously published 
(Banca et al., 2019) but a succinct description can be found below, in Figure 1 and in Video 1.

The training consisted of practicing two sequences of finger movements, composed of chords (two 
or three simultaneous finger presses) and single presses (one finger only). Each sequence comprised 
six moves and was performed using four fingers of the dominant hand (index, middle, ring, and 
little finger). Participants received feedback on each sequence performance (trial). Successful trials (to 
which we later refer as sequence trial number [n]) were followed by a positive ring tone and a posi-
tive visual effect (rewarding stars) and the unsuccessful ones by a negative ring tone and a negative 
visual effect (red lines on the screen). Every time a mistake occurred (irrespective of which move in the 
sequence it occurred), participants were prompted to restart the trial. Instructions were to respond 
swiftly and accurately. Participants were required to keep their fingers very close to the keys to mini-
mize movement amplitude variation and to facilitate fast performance. To promote sequence learning 
and memorization, we implemented three progressively challenging practice levels. Initially (first three 
practice sessions), subjects responded to visual and auditory cues, following lighted keys associated 
with musical notes (level 1). As practice advanced, to enable motor independence and automaticity, 
these external cues were gradually removed: level 2 included only auditory cues (practices 4 and 5), 
and level 3 had no cues (remaining practices). Successful performance at each difficulty level resulted 
in progression to the next one. Unsuccessful performance led to reverting to the prior stage.

Each sequence, identified by a specific abstract image, was associated with a particular reward 
schedule. Points were calculated as a function of the time taken to complete a sequence trial. Accord-
ingly, performance time was the instructed task-related dimension (i.e. associated with reward). In the 
continuous reward schedule, points were received for every successful trial whereas in the variable 
reward schedule, points were shown only on 37% of the trials. The rationale for having two distinct 
reward schedules was to assess their possible dissociable effect on the participants’ development of 
automatic actions. For each rewarded trial, participants could see their achieved points on the trial. 
To increase motivation, the total points achieved on each training session (i.e. practice) were also 
shown, so participants could see how well they improved across practice and days. The permanent 

accessibility of the app (given that most people 
carry their mobile phones everywhere) facilitated 
training frequency and enabled context stability.

Practice schedule
All participants were presented with a calendar 
schedule and were asked to practice both 
sequences daily. They were instructed to prac-
tice as many times as they wished, whenever they 
wanted during the day and with the sequence 
order they would prefer. However, a minimum 
of two practices (P) per sequence was required 
every day; each practice comprised 20 successful 

Video 1. Visual demonstration of the Motor 
Sequencing App for a better understanding of the task.

https://elifesciences.org/articles/87346/figures#video1
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sequence trials. Participants had to make up for missed training by completing both the current day’s 
session and the previous day’s if they skipped a day. If they missed training for over 2  days, the 
researcher gauged their motivation and incentivized their commitment. Participants were excluded if 
they missed training for more than 5 consecutive days.

At least 30 days of training was required, and all data were anonymously collected in real time, 
through an online server. On the 21st day of practice, the rewards were removed (extinction) to 
ensure that the action sequences were more dependent on proprioceptive and kinesthetic, rather 
than on external, feedback. Analysis of the reward removal (extinction) is presented in Appendix 1 and 
Appendix 1—figure 3. Other additional task components and analysis are also included in Appendix 
1 and Appendix 1—figures 1 and 2.

Training engagement
Participants reliably committed to their regular training schedule, practicing consistently both 
sequences every day. Unexpectedly, OCD patients completed significantly more practices as 
compared with HV (p = 0.005) (Figure 2a). Descriptive statistics are as follows (values provided as 
median number of practices and interquartile range): HV: ‍̃P‍ = 122, IQR = 7; OCD:  ‍̃P‍ = 130, IQR = 14. 
When visually inspecting the daily training pattern, we observed that HV tended to practice earlier 

Figure 1. Motor Sequencing App. (a) A trial starts with a static image depicting the abstract picture that identifies 
the sequence to be performed (or 'played') as well as the four keys that will need to be tapped. Participants 
use their dominant hand to play the required keys: excluding the thumb, the leftmost finger corresponds to the 
first circle and the rightmost finger corresponds to the last circle. (b) Screenshot examples of the task design: (1) 
sequence selection panel, each sequence is identified by an abstract picture; (2) panel exemplifying visual cues 
that initially guide the sequence learning; (3) panel exemplifying the removal of the visual cues, when sequence 
learning is only guided by auditory cues. (c) Example of a sequence performed with the right hand: 6-moves 
in length, each move can comprise multiple finger presses (2 or 3 simultaneous) or a single finger press. Each 
sequence comprises 3 single press moves, 2 two-finger moves, and 1 three-finger move. (d) Short description of 
the daily practice schedule. Each day, participants are required to play a minimum of two practices per sequence. 
Each practice comprised 20 successful trials. Participants could play more if they wished and the order of the 
training practices was self-determined.

https://doi.org/10.7554/eLife.87346
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than OCD. Circular statistics within each group demonstrated that HV practiced preferentially at a 
peak time of ~15:00 (mean resultant length 0.47, p = 0.000497, Rayleigh test for the uniformity of 
a circular distribution of points; Figure 2b). For OCD participants, the preferred practice time had a 
mean direction at ~18:00 (mean resultant length 0.58, p = 8.03 × 10–6, Rayleigh test; Figure 2c). There 
were, however, no significant differences between both samples (p = 0.19, Watson’s U2 test).

Learning
Learning was evaluated by the decrement in sequence duration throughout training. To follow the 
nomenclature of the motor control literature, we refer to sequence duration as movement time (MT, 
in s), which is defined as

	﻿‍ MT = t6 − t1,‍� (1)

where ‍t6‍ and ‍t1‍ are the time of the last (6th) and first key presses, respectively.
For each participant and sequence reward type (continuous and variable), we measured MT of 

a successful trial, as a function of the sequence trial number, n, across the whole training. Across 
trials, MT decreased exponentially (Figure 3a). The decrease in MT has been widely used to quantify 
learning in previous research (Crossman, 1959). A single exponential is viewed as the most statisti-
cally robust function to model such decrease (Heathcote et al., 2000). Accordingly, each participant’s 
learning profile was modeled as follows:

	﻿‍
MT

(
n
)

= MT0 + MTL exp
(
−n

n r

)
,
‍� (2)

where ‍nr‍ is the learning rate (measured in number of trials), which governs the rate of exponential 
decay. Parameter ‍MT0‍ is the movement time at asymptote (at the end of the training). Last, ‍MTL‍ is 
the speed-up achieved over the course of the training (referred to as amount of learning) (Figure 3a). 
The larger the value of ‍MTL‍ , the bigger the decline in the movement time and thus the larger the 
improvement in motor learning.

The individual fitting approach we used has the advantage of handling the different number of 
trials executed by each participant by modeling their behavior to a consolidated maximum value of n, 
nmax = 1200. We used a moving average of 20 trials to mitigate any effect of outlier trials. This analysis 
was conducted separately for continuous and variable reward schedules.

Figure 2. Training engagement. (a) Whole training overview. Obsessive-compulsive disorder (OCD, N = 32) 
patients engaged in significantly more training sessions than healthy volunteers (HV, N = 33) (*p = 0.005). The 
minimum required practices (P) were 120P. (b) Daily training pattern for HV (N = 33) and (c) daily training pattern 
for OCD (N = 32). Single dots on the unit circle denote the preferred practice times of individual participants within 
0–24 hr, obtained from the mean resultant vector of individual practice hours data (Rayleigh statistics). Group-level 
statistics were conducted in each group separately using the Rayleigh test to assess the uniformity of a circular 
distribution of points. The graphic displays the length of the mean resultant vector in each distribution, and the 
associated p-value. Regarding between-group statistical analysis, see main text.

https://doi.org/10.7554/eLife.87346
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To statistically assess between-group differences in learning behavior, we pooled the individual 
model parameters (‍MTL‍ , ‍nr‍ and ‍MT0‍), and conducted a Kruskal-Wallis H test to assess the effect of 
group (HV and OCD), reward type (continuous and variable), and their interaction on each parameter 
(Figure 3b).

There was a significant effect of group on the amount of learning (‍MTL‍) parameter, H = 16.5, p < 
0.001, but no reward (p = 0.06) or interaction effects (p = 0.34) (Figure 3c). Descriptive statistics are 
as follows (values provided as median and interquartile range): HV:  ‍M̃TL‍ = 3.1 s, IQR = 1.2 s and OCD: 

‍M̃TL‍ = 3.9 s, IQR = 2.3 s for the continuous reward sequence; HV: ‍M̃TL‍ = 2.3 s, IQR = 1.2 s and OCD:  

‍M̃TL‍ = 3.6 s, IQR = 2.5 s for the variable reward sequence.
Regarding the learning rate (‍nr‍) parameter, we found no significant main effects of group (p = 

0.79), reward (p = 0.47), or interaction effects (p = 0.46). Descriptive statistics: sequence trials needed 
to asymptote HV:  ‍̃nr‍ = 176, IQR = 99 and OCD: ‍̃nr‍ = 200, IQR = 114 for the continuous reward 
sequence; HV:  ‍̃nr‍ = 182, IQR = 123 and OCD:  ‍̃nr‍ = 162, IQR = 141 for the variable reward sequence. 
These non-significant effects on the learning rate were further assessed with Bayes factors (BF) for 
factorial designs (see Materials and methods). This approach estimates the ratio between the full 
model, including main and interaction effects, and a restricted model that excludes a specific effect. 
The evidence for the lack of main effect of group was associated with a BF of 0.38, which is anecdotal 
evidence. We additionally obtained moderate evidence supporting the absence of a main effect of 
reward or a reward × group interaction (BF = 0.16 and 0.17, respectively).

In analyzing the asymptote (‍MT0‍) parameter, we found no significant main or interaction effects 
(group effect: p = 0.17; reward effect: p = 0.65 and interaction effect: p = 0.64). Descriptive statistics 

Figure 3. Learning. Upper panel: Model fitting procedure conducted for the continuous reward sequence. Lower 
panel: Model fitting procedure conducted for the variable reward sequence. (a) Individual plots exemplifying 
the time-course of MT (in s) as training progresses (lighter color) as well as the exponential decay fit modeling 
the learning profile of a single participant (darker color). Left panels depict data in an healthy volunteers (HV) 
individual, right panels display data in a patient with obsessive-compulsive disorder (OCD). (b) Group comparison 
resulting from all individual exponential decays modeling the learning profile of each participant. A significant 
group difference was observed on the amount of learning, ‍MTL‍ , in both reward schedule conditions (continuous: 
p = 0.009; variable: p < 0.001). Solid lines: median; transparent regions: median ± 1.57 × interquartile range/sqrt(n); 
purple: HV (N = 33); blue: patients with OCD (N = 32).

https://doi.org/10.7554/eLife.87346
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are as follows: HV: ‍M̃T0‍ = 1.7 s, IQR = 0.4 s and OCD:  ‍M̃T0‍ = 1.8 s, IQR = 0.5 s for the continuous 
reward sequence; HV:  ‍M̃T0‍ = 1.8 s, IQR = 0.5 s and OCD:  ‍M̃T0‍ = 1.8 s, IQR = 0.5 s for the variable 
reward sequence. BF analysis indicated anecdotal evidence against a main group effect (BF = 0.53). 
Meanwhile, there was moderate evidence suggesting neither reward nor reward × interaction factors 
significantly influenced performance time (BF = 0.12 and 0.17, respectively).

The results indicate that OCD patients do not exhibit learning deficits. While they initially performed 
action sequences slower than the HV group, their learning rates ultimately matched those of HV. Both 
groups showed comparable movement durations at the asymptote. This suggests that, though OCD 
patients began at a lower baseline level of performance, they enhanced their motor learning to a 
degree that reached the same asymptotic performance as the controls.

Automaticity
To assess automaticity, the ability to perform actions with low-level cognitive engagement, we exam-
ined the decline over time in the consistency of inter-keystroke interval (IKI) patterns trial to trial. We 
mathematically defined IKI consistency as the sum of the absolute value of the time lapses between 
finger presses from one sequence to the previous one.

	﻿‍
C =

5∑
k=1

��tk,n+1 − tk,n
�� ,

‍�
(3)

where ‍n‍ is the sequence trial number and ‍k‍ is the inter-keystroke response interval (Figure 4a). In 
other words, C quantifies how consistent/reproducible the press pattern is from trial to trial. The 
assumption here is that the more reproducible the sequences are over time, the more automatic the 
person’s motor performance becomes.

For each participant and sequence reward type (continuous and variable), automaticity was assessed 
based on the decrement in C, as a function of n, across the entire training period. Since C decreased 
in an exponential fashion, we fitted the C data with an exponential decay function (following the same 
reasoning and procedure as MT) to model the automaticity profile of each participant,

	﻿‍
C
(
n
)

= C0 + CL exp
(
− n

nC

)
,
‍�

(4)

where ‍nC‍ is the automaticity rate (measured in number of trials), ‍C0‍ is the sequence consistency at 
asymptote (by the end of the training), and ‍CL‍ is the change in automaticity over the course of the 
training (which we refer to amount of automation gain). The model fitting procedure was conducted 
separately for continuous and variable reward schedules.

A Kruskal-Wallis H test was then conducted to assess the effect of group (OCD and HV) and reward 
type (continuous and variable) on each parameter resulting from the individual exponential fits (‍CL‍, 
‍nC‍ and ‍C0‍ ).

There was a significant effect of group on the amount of automation gain  (‍CL‍) parameter: H = 
11.1, p < 0.001 but no reward (p = 0.12) or interaction effects (p = 0.5) (Figure 4b). Descriptive statis-
tics are as follows: HV:  ‍C̃L‍ = 1.4 s, IQR = 0.7 s and OCD:  ‍C̃L‍ = 1.9 s, IQR = 1.0 s for the continuous 
reward sequence; HV:  ‍C̃L‍ = 1.1 s, IQR = 0.8 s and OCD:  ‍C̃L‍ = 1.5 s, IQR = 1.1 s for the variable reward 
sequence.

There was also a significant group effect on the automaticity rate (‍nC‍) parameter: H = 4.61, p < 0.03 
but no reward (p = 0.42) or interaction (p = 0.12) effects. Descriptive statistics: sequence trials needed 
to asymptote HV:  ‍ñC‍ = 142, IQR = 122 and OCD:  ‍ñC‍ = 198, IQR = 162 for the continuous reward 
sequence; HV:  ‍ñC‍ = 161, IQR = 104 and OCD:  ‍ñC‍ = 191, IQR = 138 for the variable reward sequence.

At asymptote (‍C0‍), no group (p = 0.1), reward (p = 0.9), or interaction (p = 0.45) effects were found. 
We found anecdotal evidence against a main group effect (BF = 0.65). In addition, there was moderate 
evidence in favor of no main effects of reward or interaction (BF = 0.12 and 0.18, respectively).

Of note is the median consistency in consecutive sequences achieved at asymptote: HV:  ‍C̃0‍ = 287 
ms, IQR = 127 ms, OCD: ‍C̃0‍ 301 ms, IQR = 186 ms for the continuous reward sequence and HV: ‍C̃0‍ 
= 288 ms, IQR = 110 ms, OCD: ‍C̃0‍ = 300 ms, IQR = 114 ms for the variable reward sequence. These 
values of the C at asymptote are generally shorter than the normal reaction time for motor perfor-
mance (Kosinski, 2008), reinforcing the idea that automaticity was reached by the end of the training.

https://doi.org/10.7554/eLife.87346
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In conclusion, compared to HV, patients took significantly longer to achieve a similar level of 
automaticity in both reward schedules. They began at a slower pace, exhibited more variability, and 
progressed to automaticity at a slower rate.

Sensitivity of sequence duration to reward
Our next goal was to investigate the sensitivity of performance improvements over time in our partic-
ipant groups to changes in scores, whether they increased or decreased. To do this, we quantified the 
trial-by-trial behavioral changes in response to a decrement or increase in reward from the previous 
trial using the sequence duration (in ms), labeled as MT (movement time). Note that in our experi-
mental design, MT was negatively correlated with the scores received. Following Pekny et al., 2015, 
we represented the change from trial n to n+1 in MT simply as:

	﻿‍ ∆MT(n+1) = MT(n+1) − MT(n)‍� (5)

Reward (R) change at trial n was computed as:

	﻿‍ ∆R(n) = R(n) − R(n−1)‍� (6)

We next aimed to analyze separately ∆MT values that followed an increase in reward from trial n − 
1 to n, ∆R+, denoting a positive sign in ∆R; and those that followed a drop in reward, ∆R−, indicating 
a negative sign in ∆R. An issue arises with poor performance trials (those with a slower duration, or 
a large MT(n)). These could inherently result in a systematic link between ∆R− and smaller (negative) 
∆MT(n+1) values due to the statistical effect known as ‘regression to the mean’. Essentially, a trial that 
is poorly performed, marked by a large MT(n), is likely to be followed by a smaller MT(n+1) just because 
extreme values tend to be followed by values closer to the mean. As training progresses and MT 
reduces overall, the potential for significant changes relative to reward increments or decrements may 

Figure 4. Automaticity. (a) We mathematically defined trial-to-trial inter-keystroke-interval consistency (IKI 
consistency), denoted as C (in s), as the sum of the absolute values of the time lapses between finger presses 
across consecutive sequences. The variable n represents the sequence trial and k denotes the IKI. We evaluated 
automaticity by analyzing the decline in C over time, as it approached asymptotic levels. (b) Group comparison 
resulting from all individual exponential decays modeling the automaticity profile (drop in C) of each participant. 
A significant group effect was found on the amount of automaticity gain, ‍CL‍ (Kruskal-Wallis H = 11.1, p < 0.001) 
and on the automaticity constant, ‍nC‍ (Kruskal-Wallis H = 4.61, p < 0.03). Solid and dashed lines are median values 
(M). Light purple: healthy volunteers (HV); dark purple: patients with obsessive-compulsive-disorder (OCD); solid 
lines: continuous reward condition; dashed lines: variable reward condition. Sample size (N): HV = 33, OCD = 32.

https://doi.org/10.7554/eLife.87346


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Banca et al. eLife 2023;12:RP87346. DOI: https://doi.org/10.7554/eLife.87346 � 10 of 39

diminish. To account for and counteract this statistical artifact, we normalized the ∆MT(n+1) index using 
the baseline MT(n):

	﻿‍ ∆MT(n+1) = (MT(n+1) − MT(n))/MT(n)
‍� (7)

We used this normalized measure of ∆MT(n+1) (adimensional) for further analyses. It reflects the 
behavioral change from trial n to n+1 relative to the baseline performance on trial n. Following Pekny 
et al., 2015, we estimated for each participant the conditional probability distributions p(∆T|∆R+) and 
p(∆T|∆R−) (where T denotes a behavioral measure, MT in this section or IKI consistency in the next 
section) by fitting a Gaussian distribution to the histogram of each data sample (Appendix 1—figure 
5). The standard deviation (σ) and the center μ of the resulting distributions were used for statistical 
analyses (Appendix 1—figure 5). Similar analyses were carried out on a normalized version of index C 
(Equation 3), which already reflected changes between consecutive trials. See next section.

As a general result, we expected that healthy participants would introduce larger behavioral 
changes (more pronounced reduction in MT, more negative ∆MT) following a decrease in scores, as 
shown previously (Chen et al., 2017; van Mastrigt et al., 2020). Accordingly, we predicted that the 
p(∆T|∆R−) distribution would be centered at more negative values than p(∆T|∆R+), corresponding 
to greater speeding following negative reward changes. Given previous suggestions of enhanced 
sensitivity to negative feedback in patients with OCD (Apergis-Schoute et al., 2024, Becker et al., 
2014; Kanen et al., 2019), we predicted that the OCD group, as compared to the control group, 
would demonstrate greater trial-to-trial changes in movement time and a more negative center 
of the p(∆T|∆R−) distribution. Additionally, we examined whether OCD participants would exhibit 
more irregular changes to ∆R− and ∆R+ values, as reflected in a larger spread of the p(∆T|∆R+) and 
p(∆T|∆R−) distributions, compared to the control group.

The conditional probability distributions were separately fitted to subsamples of the data across 
continuous reward practices, splitting the total number of correct sequences into four bins. This 
analysis allowed us to assess changes in reward sensitivity and behavioral changes across bins of 
sequences (bins 1–4 by partitioning the total number of sequences, from the whole training, into four). 
We focused the analysis on the continuous reward schedule for two reasons: (1) changes in scores on 
this schedule are more obvious to the participants and (2) a larger number of trials in each subsample 
were available to fit the Gaussian distributions, due to performance-related reward feedback being 
provided on all trials.

We observed that participants speeded up their sequence duration more (negative changes in 
trial-wise MT) following a drop in scores, as expected (Figure 5a). Conducting a three-way analysis 
of variance (ANOVA) with reward change (increase, decrease) and bin (1:4, each bin denoting ~110 
sequences) as within-subject factors, and group as between-subject factor, we found a significant main 
effect of reward (F (504,1) = 319.383, p = 2.0 × 10–16). This outcome indicated that, in both groups, 
participants reduced MT differently as a function of the change in reward. There was also a significant 
main effect of bin (F (504,3) = 19.583, p = 5.06 × 10–12), such that participants sped up their sequence 
performance over practices. The main effects are illustrated in Figure 5b. There was no significant 
main group effect (F (504,1) = 1.099, p = 0.2951) and omitting the group factor from the full model 
using a BF ANOVA improved the model moderately (BF = 6.08, moderate evidence in support of the 
model with the main group effect removed relative to the full model). Thus, both OCD and HV indi-
viduals introduced comparable changes in MT overall during training.

In addition, there was a significant interaction between reward and bin in predicting the trial-to-trial 
changes in movement time (F (504,3) = 3.652, p = 0.0126). This outcome suggested that the relative 
improvement in MT over sequences depended on whether the reward increased or decreased from 
the previous trial. To explore this interaction effect further, we conducted a dependent-sample pair-
wise t-test on MT, after collapsing the data across groups. In each sequence bin, participants speeded 
up MT more following a drop in scores than following an increment, as expected (corrected pFDR = 
2 × 10–16).

On the other hand, assessing the effect of bins separately for each level of reward, we observed 
that the large sensitivity of normalized MT changes to reward decrements was attenuated from the 
first to the second bin of practice (corrected pFDR = 0.00034, significant attenuation for pairs 1–2; 
dependent-sample t-tests between consecutive pairs of bins). No further changes over practice bins 
were observed (p > 0.53, no change for pairs 2–3, 3–4). Similarly, the sensitivity of MT changes to 

https://doi.org/10.7554/eLife.87346
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reward increments – consistently smaller – did only change from bin 1 to bin 2 (pFDR = 0.01092; no 
significant changes for pairs 2–3 and 3–4, p > 0.31670).

Overall, these findings indicate that both OCD and HV participants exhibited an acceleration 
in sequence performance following a decrease in scores (main effect). Furthermore, the sensitivity 
to score decrements or increments was reduced as participants approached automaticity through 

Figure 5. Sensitivity of movement time to changes in reward in the continuous reward schedule. (a) Mean 
normalized change in movement time (MT, ms) from trial n to n+1 following an increment (∆R+, in purple) 
or decrement (∆R–, in green) in scores at n. The change in movement time trial to trial was normalized with 
the baseline value on the initial trial n: ∆MT(n+1) = (MT(n+1) – MT(n))/MT(n). This relative change index is therefore 
adimensional. The dots represent mean MT changes (error bars denote SEM) in each bin of correctly performed 
sequences, after partitioning all correct sequences into four subsets, and separately for obsessive-compulsive 
disorder (OCD, N = 32) (dark colors) and healthy volunteers (HV, N = 33) (light colors). (b) Both groups of 
participants speeded up their sequence performance more following a drop in scores (main effect of reward, p = 
2 × 10–16; 2×4: reward × bin analyses of variance [ANOVA]); yet this acceleration was reduced over the course of 
practiced sequences (main bin effect, p = 5.06 × 10–12). (c) Same as (a) but for the spread (std) of the MT change 
distribution (adimensional). (d–e) Illustration of the main effect of group (d) p = 9.93 × 10–6 and reward (e) p = 
4.13 × 10–5 on std. Each bin depicted in the plots (x-axis) contains around 110 correct sequences on average 
(further details in Appendix 1: Sample size for the reward sensitivity analysis).

https://doi.org/10.7554/eLife.87346
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repeated practice. Crucially, however, the increased sensitivity to reward decrements relative to incre-
ments persisted throughout the practice sessions in both groups.

Assessment of the std (σ) of the Gaussian distributions p(∆T|∆R−) and p(∆T|∆R+) in the continuous 
reward condition (Figure 5c) with a similar three-way ANOVA revealed a significant main effect of 
group (F (504,1) = 19.928, p = 9.93 × 10–6). As shown in Figure 5d, the std (σ) of the distribution of 
trial-to-trial MT changes was smaller in HV than in OCD. In addition, we observed a significant change 
over bins of sequences in σ, and independently of the group or reward factors (main effect of bin, F 
(504,3) = 39.078, p = 2 × 10–16). This outcome reflected that over the course of training, both groups 
exhibited less variable changes in MT in response to both reward increments and decrements, in line 
with improvements in skill learning (Wolpert et al., 2011). Reward also modulated σ, with ∆R− being 
associated with a more variable distribution of behavioral changes than ∆R+(main effect of reward, 
F (504,1) = 17.110, p = 4.13  × 10–05). No interaction effects were found (there was moderate to 
strong evidence that removing any of the possible interaction effects improved the model: BF ranged 
from 5.67 to 41.3). Control analyses demonstrated that the group, reward, or bin effects were not 
confounded by differences in the size of the subsamples used for the Gaussian distribution fits (not 
shown; Appendix 1 -Sample size for the reward sensitivity analysis).

Sensitivity of IKI consistency (C) to reward
To further explore the potential impact of reward changes on the previously reported group effects on 
automaticity, we quantified the trial-by-trial behavioral changes in IKI consistency (represented by C) 
in response to changes in reward scores relative to the previous trial. Note that a smaller C indicates a 
more reproducible IKI pattern trial to trial. As for ∆MT, we normalized the index C (termed normC to 
avoid confusion with the main analysis on C) with the baseline IKI values on the previous trial n

	﻿‍
normC =

5∑
k=1

��(tk,n+1 − tk,n)/tk,n
��,

‍�
(8)

where ‍k‍ is the inter-keystroke response interval and ‍n‍ is the sequence trial number. During continuous 
reward practices, both patients and healthy controls exhibited an increased consistency of IKI patterns 
trial to trial across bins of correct sequences (decreased normC, Equation 8, Figure 6a; main effect 
of bin on the center of the Gaussian distribution, F (497, 3) = 4.188, p = 0.00607; three-way ANOVA). 
Performance in OCD and HV, however, differed with regard to how reproducible their timing patterns 
were (main effect of group, F (497, 1) = 8.130, p = 0.00454). The timing patterns were less consistent 
trial to trial in OCD, relative to HV (Figure 6b, left panel). Moreover, the IKI consistency improved 
more (smaller normC) following reward increments than after decrements, as shown in Figure 6b 
(right panel; main reward effect, F (497, 1) = 23.283, p = 1.86  × 10–6). No significant interaction 
effects between factors were found (BF analysis demonstrated that when any of the interaction effects 
among factors was removed from the ANOVA design, there was moderate to strong evidence that the 
model improved: BF in range from 6.83 to 14.1). Accordingly, although OCD participants exhibited an 
attenuated IKI consistency in their performance relative to HV, the main effects of reward and bins of 
sequences were independent of the group.

Regarding the spread of the p(∆T|∆R) distributions, we found a significant main effect of bin factor 
(F (504,3) = 23.350, p = 3.63 × 10–14; Figure 6c and d). These outcomes suggest that the σ of the 
Gaussian distribution for normC values was reduced across bins of practiced sequences. There was 
only a trend for a significant main effect of group (F (504,1) = 3.412, p = 0.0653) and no main effect 
of reward (F (504,1) = 2.327, p = 0.1278). These non-significant effects were explored further using 
BF. This analysis provided anecdotal and moderate evidence that omitting either the group or reward 
effects was beneficial to the model (BF = 1.98 for removing group, BF = 3.20 for removing reward). 
We did not observe any interaction effect either (BF values increased moderately to strongly when any 
of the interaction effects among factors was removed from the ANOVA design: BF ranged from 4.89 
to 43.3). The results highlight that over the course of training participants’ normalized IKI consistency 
values stabilized, and this effect was not observed to be modulated by group or reward factors. Simi-
larly to the MT analyses, the sensitivity analyses of normC were not influenced by differences in the 
size of the subsamples used for the ∆R+ and ∆R– Gaussian distribution fits (Appendix 1 - Sample size 
for the reward sensitivity analysis).

https://doi.org/10.7554/eLife.87346
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Phase B: Tests of action sequence preference and re-evaluation
Once the month-long app training was completed, participants attended a laboratory session to 
conduct additional behavioral tests aimed at assessing preference for familiar versus novel sequences 
(experiments 2 and 3) including a re-evaluation test to assess ability to adapt to environmental changes 
(experiment 3 only). Below we briefly describe these two experiments and report the results. See 
Materials and methods and Table 3 for a more detailed description of the tasks. Since these follow-up 
tests required observing additional stimuli while performing the action sequences, it was impractical 
to use participant’s individual iPhones to simultaneously present the task stimuli and be an interface 

Figure 6. Sensitivity of normalized inter-keystroke interval (IKI) consistency (normC) to reward changes in the 
continuous schedule. (a) The mean normalized change in trial-to-trial IKI consistency (normC, Equation 8 
adimensional) across bins of correct sequences is shown, separately for each group (obsessive-compulsive 
disorder [OCD, N = 32]: dark colors; healthy volunteers [HV, N = 33]: light colors) and for reward increments (∆R+, 
purple) and decrements (∆R–, green). The dots represent the mean value, while the vertical bars denote SEM. (b) 
Illustration of the main effect of group (left panel; p = 0.00454) and type of reward change (right panel; p = 1.86 × 
10–6). (c) Same as (a) but for the std of the distribution of IKI consistency changes, normC, adimensional. (d) The 
panel displays the main effect of bin (p = 3.63 × 10–14) on the std. Black denotes the average (SEM) across reward 
and group levels. Each bin depicted in the plots (x-axis) contains 110 correct sequences on average (see Appendix 
1: Sample size for the reward sensitivity analysis).

https://doi.org/10.7554/eLife.87346
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to play the action sequences. We therefore used a ‘Makey-Makey’ device to connect the testing 
laptop (presenting the task stimuli) to four playdough keys arranged on a table (used as an interface 
for action sequence input). This device ensured precise key registration and timing. The playdough 
keys matched the size of those on the participants’ iPhones used for the 1-month training. Participants 
practiced the action sequences in this new setup until they were comfortable. Hence, the transition 
to a non-mobile/laboratory context was conducted with great care. These tasks were conducted in a 
new context, which has been shown to promote re-engagement of the goal system (Bouton, 2021).

Experiment 2: Preference for familiar versus novel action sequences
This experiment tests the hypothesis stated in the outline, that the trained action sequence gains 
intrinsic/rewarding properties or value. We used an explicit preference task, assessing participants’ 
preferences for familiar (hypothetically habitual) sequences over goal-seeking sequences. We assume 
that if the trained sequences have acquired rewarding properties (e.g. anxiety relief, or the inherent 
gratification of skilled performance or routine), participants would express a greater preference to 
‘play’ them, even when alternative easier sequences are offered (i.e. goal-seeking sequences).

After reporting which app sequence was their preferred, participants started the explicit pref-
erence task. On each trial, they were required to select and play one of two sequences. The two 
possible sequences were presented and identified using a corresponding image. Participants had to 
choose which one to play. There were three conditions, each comprising a specific sequence pair: (1) 
app preferred sequence versus app non-preferred sequence (control condition); (2) app preferred 
sequence versus any 6-move sequence (experimental condition 1); (3) app preferred sequence versus 
any 3-move sequence (experimental condition 2). The app preferred sequence was their preferred 
putative habitual sequence while the ‘any 6’- or ‘any 3’-move sequences were the goal-seeking 
sequences. These were considered less effortful for two reasons: (1) they could comprise any key 
press of participant’s choice, even repeated presses of the same key (six or three times, respectively), 
and (2) they allowed for variations in key combinations each time the ‘any-sequence’ was input, rather 
than a fixed sequence on every trial. The conditions (15 trials each) were presented sequentially but 
counterbalanced among participants. See Materials and methods and Figure 7a for further details.

A Kruskal-Wallis H test indicated a main effect of condition (H = 23.2, p < 0.001) but no group (p 
= 0.36) or interaction effects (p = 0.72) (Figure 7b). Dunn’s post hoc pairwise comparisons revealed 
that experimental condition 2 (app sequence versus any three sequence) was significantly different 
from control condition (pFDR < 0.001) and from experimental condition 1 (app sequence versus any six 
sequence) (pFDR = 0.006). No differences were found between the latter two conditions (p = 0.086). 
Bayesian analysis further provided moderate evidence in support of the absence of main effects of 
group (BF = 0.129) and interaction (BF = 0.054). These results denote that both groups evaluate the 
trained app sequences as being equally attractive as the alternative novel-but-easier sequence when 
of the same length (Figure 7b, middle plot). However, when given the option to play an easier-but-
shorter sequence (in experimental condition 2), both groups significantly preferred it over the app 
familiar sequence (Figure 7b, right plot). A positive correlation between COHS and the app sequence 
choice (Pearson r = 0.36, p = 0.005) showed that those participants with greater habitual tendencies 
had a greater propensity to prefer the trained app sequence under this condition.

Given the high variance of participants’ choices on this preference task, particularly in the experi-
mental conditions, and the findings reported below related to the mobile-app performance effect on 
symptomatology, we further conducted an exploratory Dunn’s post hoc test splitting the OCD group 
into two subgroups based on their Yale-Brown Obsessive-Compulsive Scale (YBOCS) score changes 
after the app training: 14 patients with improved symptomatology (reduction in YBOCS scores) and 
18 patients who remained stable or felt worse (i.e. respectively, same or increase in YBOCS scores). 
Patients with lowered YBOCS scores after the app training had significantly greater preference for 
the app trained sequence in both experimental conditions as compared to patients with same or 
increased YBOCS scores after the app training: experimental condition 1 (pFDR = 0.015, Figure 7c, 
left) and experimental condition 2 (pFDR = 0.011, Figure 7c, right). In addition to this subgrouping 
analysis, we conducted a correlation analysis between changes in YBOCS scores and patient prefer-
ences for the app sequences. This helped us determine whether patients who experienced greater 
changes in YBOCS scores tended to prefer the learned sequences, and vice versa. We observed a 
positive correlation, meaning that the higher the symptom improvement after the month training, 

https://doi.org/10.7554/eLife.87346
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Figure 7. Preference for familiar versus novel action sequences. (a) Explicit preference task. Participants had 
to choose and play one of two given sequences. Once the choice was made, the image correspondent to the 
selected sequence was highlighted in blue. Participants then played the sequence. While playing it, the bar 
on top registered each move progressively lighting up in green. There were three conditions, each comprising 
a specific sequence pair: (1) app preferred sequence versus app non-preferred sequence (control condition); 
(2) app preferred sequence versus any 6-move sequence of participant’s choice (experimental condition 1); (3) 
app preferred sequence versus any 3-move sequence of participant’s choice (experimental condition 2). (b) No 
evidence for enhanced preference for the app sequence in either HV or OCD patients (HV: N = 33, OCD: N = 32). 
In fact, when an easier and shorter sequence is pitted against the app familiar sequence (right raincloud plot), both 
groups significantly preferred it (Kruskal-Wallis main effect of condition H = 23.2, p < 0.001). Left raincloud plot: 
control condition; middle raincloud plot: experimental condition 1; right raincloud plot: experimental condition 
2. Y-axis depicts the number of app sequence choices (15 choice trials maximum). Connected lines depict mean 
values. (c) Exploratory analysis of the preference task following up unexpected findings on the mobile-app effect 
on symptomatology: re-analysis of the data conducting a Dunn’s post hoc test splitting the OCD group into two 
subgroups based on their YBOCS change after the app training (14 patients with improved symptomatology 
[reduced YBOCS scores] and 18 patients who remained stable or felt worse [i.e. respectively unchanged or 
increased YBOCS scores]). Patients with reduced YBOCS scores after the app training had significantly higher 
preference to play the app sequence in both experimental conditions (left panel: pFDR = 0.015*; right panel: pFDR 
= 0.011*). The bar plots represent the sample mean and the vertical lines the confidence interval. Individual data 
points are included to show dispersion in the sample. Abbreviations: YBOCS = Yale-Brown Obsessive-Compulsive 
Scale, HV = healthy volunteers, OCD = patients with obsessive-compulsive disorder.
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the greater the preference for the familiar/learned sequence. This is particularly the case for the 
experimental condition 2, when subjects are required to choose between the trained app sequence 
and any 3-move sequence (rs = 0.35, p = 0.04). A trend was observed for the correlation between 
the YBOCS score change and the preference for the app sequences in experimental condition 1 (rs 
= 0.30, p = 0.09). In conclusion, most participants preferred to play shorter and easier alternative 
sequences, thus not showing a bias toward the trained/familiar app sequences. Contradicting our 
hypothesis, OCD patients followed the same behavioral pattern. However, some participants still 
preferred the app sequence, specifically those with greater habitual tendencies, including patients 
who improved their symptoms during the month training and considered the app training beneficial 
(see also below exploratory analyses of ‘Mobile-app performance effect on symptomatology’). Such 
preference presumably arose because some intrinsic value may have been attributed to the trained 
action sequence.

Experiment 3: Re-evaluation of the learned action sequence
In experiment 3, we employed a two-choice appetitive learning task. We modified the conditions by 
manipulating extrinsic feedback to assess participants’ capacity to adopt a different response choice, 
after re-evaluating their options. By providing more value to alternative action sequences (as opposed 
to the previously automatized ones), participants were thus encouraged to reassess their choices and 
respond appropriately. Of note, we did not use a conventional goal devaluation procedure here, as 
this could possibly have disrupted the behavioral control of the sequences and thus invalidated the 
test.

On each trial, participants were required to choose between two ‘chests’ based on their associated 
reward value. Each chest depicted an image identifying the sequence that needed to be completed 
to be opened. After choosing which chest they wanted, participants had to play the specific correct 
sequence to open it. Their task was to learn by trial and error which chest would give them more 
rewards (gems), which by the end of the experiment would be converted into real monetary reward. 
There was no penalty for incorrectly keyed sequences because behavior was assessed based on 
participants’ choice regardless of the sequence accuracy.

Four chest-pairs (conditions, 40 trials each) were tested (see Figure 8a and Materials and methods 
for detailed description of each condition): three conditions pitted the trained/familiar app sequence 
against alternative sequences of higher monetary outcomes (given by variable amount of reward 
that did not overlap [deterministic]). The fourth condition kept the monetary value equivalent for the 
two options (maintaining a probabilistic rather than deterministic contingency) but offered a signifi-
cantly easier/shorter alternative sequence. This set up a comparison between the intrinsic value of the 
familiar sequence and a motor-wise less effortful sequence. The conditions were presented sequen-
tially but counterbalanced among participants.

Both groups were highly sensitive to the re-evaluation procedure based on monetary feedback, 
choosing more often the non-app sequence, irrespective of the novelty of that sequence (Figure 8b, 
no group effects; p = 0.210 and BF = 0.742, anecdotal evidence supporting no main effect of group). 
However, when re-evaluation required motor effort (condition 4), participants were less inclined to 
choose the ‘any 3’ alternative, which is the sequence demanding less motor effort (Kruskal-Wallis main 
effect of condition: H = 151.1, p < 0.001). Moreover, OCD patients significantly favored the trained 
app sequence over HV (post hoc group × condition 4 comparison: p = 0.04). In conclusion, following 
the month of training, both groups exhibited the ability to update their behavior based on monetary 
re-evaluation. Yet, OCD patients more frequently selected the familiar sequence, even when a less 
effortful and shorter alternative was available.

Mobile-app performance effect on symptomatology: exploratory 
analyses
In a debriefing questionnaire, participants were asked to give feedback about their app training expe-
rience and how it interfered with their routine: (1) how stressful/relaxing the training was (rated on a 
scale from –100% highly stressful to 100% very relaxing); (2) how much it impacted their life quality 
(Q) (rated on a scale from –100% maximum decrease to 100% maximum increase in life quality). 
Appendix 1—table 1 and Appendix 1—figure 4 depict participants’ qualitative and quantitative 
feedback. Of the 33 HV, 30 reported the app was neutral and did not impact their lives, neither 
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positively nor negatively. The remaining 3 reported it as being a positive experience, with an improve-
ment in their life quality (rating their life quality increase as 10%, 15%, and 60%). Of the 32 patients 
assessed, 14 unexpectedly showed improvement (I) in their OCD symptoms during the month as 
measured by the YBOCS difference, in percentage terms, pre-post training (‍̄I ‍ = 20 ± 9%), 5 felt worse 
(‍̄I ‍ = –19 ± 9%) and 13 remained stable during the month (all errors are standard deviations). Of the 14 
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Figure 8. Re-evaluation procedure: two-choice appetitive learning task. (a) shows the task design. We tested four 
conditions, with chest-pairs corresponding to the following motor sequences: (1) app preferred sequence versus 
any 6-move sequence; (2) app preferred sequence versus novel (difficult) sequence; (3) app preferred sequence 
versus app non-preferred sequence; (4) app preferred sequence versus any 3-move sequence. The ‘any 6-move’ or 
‘any 3-move’ sequences could comprise any key press of the participant’s choice and could be played by different 
key press combinations on each trial. The ‘novel sequence’ (in 2) was a 6-move sequence of similar complexity and 
difficulty as the app sequences, but only learned on the test day (therefore, not overtrained). In conditions 1, 2, and 
3, the preferred app sequence was pitted against alternative sequences of higher monetary value. In condition 
4, the intrinsic value of the preferred app sequence was pitted against a motor-wise less effortful sequence (i.e. 
a shorter/easier sequence). Each condition addressed specific research questions, which are detailed in the right 
column of the table. (b) demonstrates the task performance per group and over the four conditions (HV: N = 33, 
OCD: N = 32). Both groups were able to adjust to the new contingencies and choose the sequences associated 
with higher monetary reward. When re-evaluation involved a motor effort manipulation, obsessive-compulsive 
disorder (OCD) patients chose the app sequence significantly more than healthy volunteers (HV) (* = p < 0.05) 
(condition 4). Y-axis depicts the number of app sequence chests chosen (40 trials maximum) and connected lines 
depict mean values.
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who felt better, 10 directly related their OCD improvement to the app training (life quality increase: 

‍̄Q‍ = 43 ± 24%). Nobody rated the app negatively. Of note, the symptom improvement was positively 
correlated with patients’ habitual tendencies reported in the Creature of Habit questionnaire, particu-
larly with the routine subscale (Pearson r = 0.45, p = 0.01) (Figure 9a, left). A three-way ANOVA test 
showed that patients who reported less obsessions and compulsions after the month training were 
the ones with more pronounced habit routines (group effect: F = 13.7, p < 0.001, Figure 9a, right). A 
strong positive correlation was also found between the OCD improvement reported subjectively as 
direct consequence of the app training and the OCI scores and reported habit tendencies (Pearson r = 
0.8, p = 0.008; Pearson r = 0.77, p < 0.01, respectively) (Figure 9b): i.e., patients who considered the 
app somewhat beneficial were the ones with higher compulsivity scores and higher habitual tenden-
cies. In HV, participants who also had greater tendency for automatic behaviors, regarded the app as 
more relaxing (Pearson r = 0.44, p < 0.01). However, such correlation between the self-reported relax-
ation measure attributed to the app and the COHS automaticity subscale was not observed in OCD 

Figure 9. Mobile-app effect on symptomatology. (a) Left: Positive correlation between patients’ routine tendencies 
reported in the COHS questionnaire and the symptom improvement (Pearson r = 0.45, p = 0.01), OCD sample size: 
N = 32. Symptom improvement was measured by the difference in YBOCS before and after app training. Right: 
Patients with greater improvement in their symptoms after the 1-month app training (N = 14) had greater habitual 
tendencies as compared to HV (N = 33) (p < 0.001) and to patients who did not improve post-app training (N = 18) 
(p = 0.002). The bar plot represents the sample means and the vertical lines the confidence interval. Individual data 
points are included to show dispersion in the sample. (b) OCD patients who related their symptom improvement 
directly to the app training (N = 9) were the ones with higher compulsivity scores on the OCI (Pearson r = 0.8, p 
= 0.008) (left) and higher habitual tendencies on the COHS (Pearson r = 0.77, p < 0.01) (right). Note that (b) has 
one missing patient because he did not complete the OCI scale and COHS. Abbreviations: OCI = Obsessive-
Compulsive Inventory, COHS = Creature of Habit Scale, YBOCS = Yale-Brown Obsessive-Compulsive Scale, HV = 
healthy volunteers, OCD = patients with obsessive-compulsive disorder.
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(p = 0.1). Finally, patients’ symptom improvement did not correlate with how relaxing they considered 
the app training (p = 0.1) nor with the number of total practices performed during the month training 
period (p = 0.2).

We also checked whether the preferred app sequence, chosen by participants at the beginning 
of Phase B, was consistently the one that had yielded more reward during the app training (i.e. the 
continuously rewarded sequence). We found no evidence for this case: 54.5% of HV and 29% of 
the OCD sample considered the continuous sequence to be their preferred one, a non-statistically 
significant difference. This result suggests that participants’ preference may not solely be linked to 
programmed reward. Other factors, such as the aesthetic appeal of, or ease of performing specific 
combinations of finger movements, may also influence overall preference.

Other self-reported symptoms
In addition to the Creature of Habit findings, of the remaining self-reported questionnaires assessed 
(see Materials and methods), OCD patients also reported enhanced intolerance of uncertainty, 
elevated motivation to avoid aversive outcomes and higher perfectionism, worries and perceived 
stress, as compared to healthy controls (see Table 1 for statistical results and Figure 10 for overall 
summary).

Table 1. Self-reported measures on various scales measuring impulsiveness, compulsiveness, 
habitual tendencies, self-control, behavioral inhibition and activation, intolerance of uncertainty, 
perfectionism, stress, and the trait of worry.

HV OCD Statistics

(n = 33) (n = 32) t df p

CPAS 5.9 (4.0) 14.2 (5.0) –7.37 62 <0.001†

COHS routine 48.4 (9.4) 55.7 (11.1) –2.79 62 0.01*

COHS automaticity 26.3 (8.2) 32.9 (8.5) –3.15 62 <0.001†

COHS total 74.8 (14.4) 88.7 (16.7) –3.56 62 <0.001†

HSCQ 50.7 (7.3) 42.5 (8.5) 4.17 62 <0.001†

BIS 17.5 (3.5) 24.4 (2.7) –8.81 61 <0.001†

BAS reward responsibility 15.9 (2.2) 15.1 (2.5) 1.25 61 0.22

BAS drive 10.0 (2.4) 9.6 (2.6) 0.66 61 0.51

BAS fun seeking 11.1 (1.9) 9.7 (2.4) 2.60 61 0.01*

Barratt total 58.8 (8.4) 65.0 (10.1) –2.68 61 0.01*

Barratt attentional 14.6 (4.1) 19.8 (4.7) –4.74 61 <0.001†

Barratt motor 21.2 (2.6) 21.4 (3.2) –0.23 61 0.82

Barratt non-planning 23.7 (3.3) 24.6 (4.5) –0.96 61 0.34

IUS 41.9 (10.0) 87.3 (20.2) –11.23 61 <0.001†

SCS 118.5 (21.4) 118.3 (17.2) 0.04 62 0.97

FMPS 70.3 (21.0) 95.4 (21.4) –4.73 62 <0.001†

PSS 13.7 (4.7) 22.9 (5.1) –7.51 62 <0.001†

PSWQ 37.9 (11.7) 64.0 (11.0) –9.20 62 <0.001†

HV, healthy volunteers; OCD, patients with obsessive-compulsive disorder; CPAS, Compulsive Personality 
Assessment Scale; COHS, Creature of Habit Scale; HSCQ, Habitual Self-Control Questionnaire; BIS, Behavioral 
Inhibition System; BAS, Behavioral Activation System; Barratt, Barratt Impulsiveness Scale; IUS, Intolerance of 
Uncertainty Scale; SCS, Self-Control Scale; FMPS, Frost Multidimensional Perfectionism Scale; PSS, Perceived 
Stress Scale; PSWQ, Penn State Worry Questionnaire. Standard deviations are in parentheses: mean (std). One 
patient and one healthy control missed a few questionnaires.
*= p < 0.05 level.
†= p < 0.001 level (two-tailed).
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Discussion
This study investigated the roles of habits, their automaticity, and potential adjustments to envi-
ronmental changes underlying compulsive OCD symptoms. We specifically focused on the habitual 
component of the associative dual-process model of behavior as applied to OCD and described in 
the Introduction. Using a self-report questionnaire (Ersche et al., 2017), we observed heightened 
subjective habitual tendencies in OCD patients across both the ‘routine’ and ‘automaticity’ domains, 
in comparison to controls.

Leveraging a novel smartphone tool, we real-time monitored the acquisition of two putative ‘proce-
dural’ habits (six-element action sequences) in OCD patients and healthy participants over 30 days 
in their daily environments. Our analyses revealed heightened engagement with the app training 
among OCD patients; they enjoyed and practiced the sequences more than healthy participants 
without any explicit directive to do so. Initially, these patients performed the sequences more slowly 
and irregularly, yet they eventually achieved the same asymptotic level of automaticity and exhibited 
comparable ‘chunking’ (Smith and Graybiel, 2016) to controls. There were no discernible procedural 
learning deficits in patients, although their progression to automaticity was significantly slower than 
in healthy participants.

In a subsequent testing phase in a novel context, both groups adeptly transferred both trained 
action sequences to corresponding discriminative stimuli (visual icons). Furthermore, both cohorts 
were sensitive to re-evaluation when it pertained to monetary reward, demonstrating their ability to 
adapt behavior when facing environmental changes. However, when re-evaluation involved physical 
effort, OCD patients did not demonstrate the same adaptability and instead displayed a distinct 
inclination toward the already trained/familiar action sequence, presumably due to its inherent value. 
This effect was more pronounced in patients with higher habitual inclinations and compulsivity scores. 
Exploratory analysis revealed that patients with pronounced habitual inclinations and compulsivity 
scores were more likely to choose the familiar sequence. Moreover, when faced with a choice between 
the familiar and a new, less effort-demanding sequence, the OCD group leaned toward the former, 
likely due to its inherent value. These insights align with the theory of goal direction/habit imbal-
ance in OCD (Gillan et al., 2016), underscoring the dominance of habits in particular settings where 
they might hold intrinsic value. This inherent value could hypothetically be associated with symptom 
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Figure 10. Participants’ demographics, clinical characteristics and results from the self-reported questionnaires. 
(a) Participants’ demographics and clinical characteristics (HV: N = 33, OCD: N = 32). (b) Between-group results 
from the self-reported questionnaires. Abbreviations: HV, healthy Volunteers; OCD, patients with obsessive-
compulsive disorder; YBOCS, Yale-Brown Obsessive-Compulsive Scale; MADRS, Montgomery-Asberg Depression 
Rating Scale; STAI, The State-Trait Anxiety Inventory; BDI, Beck Depression Inventory; OCI, Obsessive-Compulsive 
Inventory; CPAS, Compulsive Personality Assessment Scale; COHS, Creature of Habit Scale; HSCQ, Habitual 
Self-Control Questionnaire; BIS, Behavioral Inhibition System; BAS, Behavioral Activation System; Barratt, Barratt 
Impulsiveness Scale; IUS, Intolerance of Uncertainty Scale; SCS, Self-Control Scale; FMPS, Frost Multidimensional 
Perfectionism Scale; PSS, Perceived Stress Scale; PSWQ, Penn State Worry Questionnaire. ** = p < 0.01, *** = p < 
0.001.
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alleviation. Corroborating this, post-training feedback and a measured difference in the YBOCS scale 
pre- and post-training suggest many patients found the app therapeutically beneficial.

Implications for the dual associative theory of habitual and goal-
directed control
Rapid execution, invariant response topography, action chunking, and low cognitive load have all 
been considered essential criteria for the definition of habits (Balleine and Dezfouli, 2019; Haith and 
Krakauer, 2018). We have successfully achieved all these elements with our app using the criteria of 
extensive training and context stability, both previously shown to be essential to enhance formation 
and strengthening of habits (Haith and Krakauer, 2018; Verplanken and Wood, 2006). Context 
stability was provided by the tactile, visual, and auditory stimulation associated with the phone itself, 
which establishes a strong and similar context for all participants, regardless of their concurrent 
circumstances. Overtraining has been one of the most important criteria for habit development, and 
used by many as an operational definition on how to form a habit (Dickinson et al., 1995; Haith and 
Krakauer, 2018; Tricomi et  al., 2009) (for a review, see Balleine and O’Doherty, 2010), despite 
current controversies raised by de Wit et al., 2018, on its use as an objective test of habits. A recent 
study has demonstrated though that even short overtraining (1 day) is effective at producing habitual 
behavior in participants high in affective stress (Pool et al., 2022), confirming previous suggestions for 
the key role of anxiety and stress on the behavioral expression of habits (Dias-Ferreira et al., 2009; 
Hartogsveld et al., 2020; Schwabe and Wolf, 2009). Here, we have trained a clinical population with 
moderately high baseline levels of stress and anxiety, with training sessions of a higher order of magni-
tude than in previous studies (de Wit et al., 2018; Gera et al., 2022). By all accounts our overtraining 
is valid: to our knowledge the longest overtraining in human studies achieved so far. All participants 
attained automaticity, exhibiting similar and stable asymptotic performance, both in terms of speed 
and the invariance in the kinematics of the motor movement.

We succeeded in achieving automaticity – which at a neural level is known to reliably engage the 
brain’s habitual circuitry (Ashby et  al., 2010; Bassett et  al., 2015; Graybiel and Grafton, 2015; 
Lehéricy et al., 2005) – and fulfilled three of the four criteria for the definition of habits according to 
Balleine and Dezfouli, 2019 (rapid execution, invariant topography, and chunked action sequences). 
However, we were not able to test the fourth criterion of resistance to devaluation. Therefore, we are 
unable to firmly conclude that the action sequences are habits rather than, for example, goal-directed 
skills. According to a very recent study, also employing an app to study habitual behavior, the criterion 
of devaluation resistance was shown to apply to a three-element sequence with less training (Gera 
et al., 2022). Thus, overtraining of our six-element sequence might also have achieved behavioral 
autonomy from the goal in addition to behavioral automaticity. While we did not employ the conven-
tional goal devaluation test, it is possible that some experts may interpret our follow-up experiment 
3 (the re-evaluation test) as a measure of Balleine and Dezfouli, 2019, fourth criterion, which defines 
habits as ‘insensitive to changes in their relationship to their individual consequences and the value 
of those consequences’. Consequently, they may conclude that the app-trained sequences exhibited 
some features of goal-directed behavior. While this interpretation holds merit, the logical conclusion is 
that the app-trained sequences encompass both habitual and goal-directed qualities. This aligns with 
contemporary perspectives on skilled/habitual sequences (Du and Haith, 2023).

Regardless of whether the trained action sequences are labeled as procedural habits or goal-
directed motor skills, one must question why OCD patients preferred familiar sequences in specific 
situations, even when it seemed counterproductive (e.g. in the effort condition). This observation 
leads to the hypothesis that motivation for action sequences might include other factors besides 
explicit goals, such as monetary rewards. The apparent (intrinsic) therapeutic value of performing 
these sequences further blurs the attribution of a singular goal such as monetary reward to human 
action sequences. One implication of this analysis may be to consider that behavior in general is ‘goal-
directed’ but may vary in the balance of control by external and internal goals. This perspective aligns 
with motor control theories that classify the successful completion of a motor action, in the spatio-
temporal sense, as ‘goal-related’. Hence, underlying any action sequence is possibly a hierarchy of 
objectives, ranging from overt rewards like money to intrinsic relief from an endogenous state (e.g. 
anxiety or boredom). In light of these insights, the dual associative process framework of behavioral 
control might be better understood in terms of the relative importance of extrinsic versus intrinsic 
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outcomes. Another possible formulation is that habits, which depend initially on cached or historically 
acquired rewarding action values, may not necessarily lose current value, but instead acquire alter-
native sources of value (Hommel and Wiers, 2017; Kruglanski and Szumowska, 2020; O’Doherty, 
2014).

Implications for understanding OCD symptoms
We observed a slower and more irregular performance in patients with OCD as compared to healthy 
participants at the beginning of training. This was expected given previous reports of visuospatial 
and fine-motor skill difficulties in patients with OCD (Bloch et al., 2011). However, despite this initial 
slowness, no procedural learning deficits were found in our patient sample. This finding is inconsistent 
with other implicit learning deficits previously reported in OCD using the serial reaction time (SRT) 
paradigm (Deckersbach et al., 2002; Joel et al., 2005; Kathmann et al., 2005; Rauch et al., 2001; 
Rauch et  al., 1997). Nevertheless, this result aligns with recent studies demonstrating successful 
learning both in patients with OCD (Soref et al., 2018) and in healthy individuals with subclinical OCD 
symptoms (Barzilay et al., 2022) when instructions are given explicitly, and participants intentionally 
search for the underlying sequence structure. In fact, our task does not tap into memory processes 
as strongly as SRT tasks because we explicitly demonstrate the sequence to participants before they 
begin their 30-day training, which likely decreases demands on procedural learning.

Quantifying trial-to-trial behavioral changes in response to a decrease or increase in reward 
suggested that the slower progression toward automaticity observed in OCD patients might be related 
to their more inconsistent response to changes in feedback scores compared to healthy participants. 
The adjustments that OCD participants made to sequence duration after a score change were more 
variable (with a larger σ) than those made by healthy individuals. Additionally, the normalized consis-
tency index was higher for the OCD group than for HV, indicating more fluctuating changes from trial 
to trial in IKI. Despite these group differences, we observed that in both samples the consistency of 
IKI patterns improved after reward increments. This observation contrasts with the more pronounced 
MT acceleration in both groups when faced with negative reward changes.

A heightened sensitivity to negative feedback within the motor domain has been documented in 
the general population, influencing initial motor improvements, while an increase in reward primarily 
boosts motor retention (Abe et al., 2011; Galea et al., 2015; Pekny et al., 2015; van Mastrigt et al., 
2020). OCD individuals have also been shown to have an amplified sensitivity to negative feedback 
(Becker et al., 2014). Our findings indicate that decreased feedback scores affect sequence duration 
and IKI consistency in distinct ways. Specifically, reduced score feedback hampered automatization 
(reducing the IKI consistency, increasing normC), even though it generally had a positive effect on 
movement speed. This heightened responsiveness of MT (the rewarded variable) to decreased feed-
back scores is consistent with recent studies (Abe et al., 2011; Galea et al., 2015; Pekny et al., 2015; 
van Mastrigt et al., 2020). Our results, however, do not support differences in OCD and healthy 
individuals with regard to sensitivity to negative score changes, unlike previous work highlighting 
increased response switching after negative feedback, hyperactive monitoring systems, and amplified 
prediction errors in OCD (Hauser et al., 2017; Marzuki et al., 2021). One possible interpretation 
of these divergent results relates to the type of feedback. Previous work in OCD employed explicit 
negative feedback. In contrast, our participants received positive reward feedback, which increased 
or decreased trial by trial in the continuous reward schedule. The implicit nature of a reduced posi-
tive score, which is fundamentally different from overt negative feedback, might not elicit the same 
heightened sensitivity in OCD patients. They may primarily respond to explicit indications of failure 
or error, as opposed to subtle reductions in positive feedback. Another possibility is that the salient 
responses to negative feedback in OCD could be specific to the early stages of learning and may not 
persist after training for more than 1 hr or on subsequent days. Follow-up work will address these 
questions explicitly.

Considering the hypothetically greater tendency in OCD to form habitual/automatic actions 
described earlier (Gillan et al., 2014; Voon et al., 2015), we predicted that OCD patients would 
attain automaticity faster than healthy controls. This was not the case. In fact, the opposite was found. 
Since this was the first study to our knowledge assessing action sequence automatization in OCD, 
our contrary findings may confirm recent suggestions that previous studies were tapping into goal-
directed behavior rather than habitual control per se (Gillan et al., 2015b; Vaghi et al., 2019; Zwosta 
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et al., 2018) and may therefore have inferred enhanced habit formation in OCD as a defaulting conse-
quence of impaired goal-directed responding. On the other hand, we are describing here two poten-
tial sources of evidence in favor of enhanced habit formation in OCD. First, OCD patients show a bias 
toward the previously trained, apparently disadvantageous, action sequences. In terms of the discus-
sion above, this could possibly be reinterpreted as a narrowing of goals in OCD (Robbins et al., 2019) 
underlying compulsive behavior, in favor of its intrinsic outcomes. Second, OCD patients self-reported 
greater habitual tendencies in both the ‘routine’ and ‘automaticity’ subscales. Previous studies have 
reported that subjective habitual tendencies are associated with compulsive traits (Ersche et al., 2019; 
Wuensch et al., 2022) and act, in addition to cognitive inflexibility, as a predictor of subclinical OCD 
symptomatology in healthy populations (Ramakrishnan et al., 2022). There is an apparent discrep-
ancy between self-reported ‘automaticity’ and the objective measure of automaticity we provided. 
This may result from a possible mis-labeling of this factor in the Creature of Habit questionnaire, where 
many of the relevant items indicate automatic S-R elicitation by situational triggering stimuli rather 
than motor topographic features of the behavior (e.g. ‘when walking past a plate of sweets or biscuits, 
I can’t resist taking one’).

Finally, we also expected that OCD patients would show a greater resistance than controls in 
adjusting their behavior when the extrinsic relative value of the trained familiar sequences is dimin-
ished, in the re-evaluation procedure. Our findings show that this is partially the case, depending on 
the type of reward considered. Although we showed that all participants, including OCD patients, 
were apparently goal-directed in terms of gaining money this was not so clear when goal re-evaluation 
involved the physical effort expended. In this latter manipulation, participants were less goal-oriented 
and OCD patients preferred to perform the longer, familiar, to the shorter, novel sequence, thus 
exhibiting significantly greater habitual tendencies, as compared to controls. Such group differences 
may be driven hypothetically by the intrinsic value associated with the automatic sequences.

Possible beneficial effect of action sequence training on OCD 
symptoms as habit reversal therapy
OCD patients engaged significantly more with the Motor Sequencing App and enjoyed it more 
than HV. Additionally, the patients more prone to routine habits (COHS), with higher OCI scores, 
and who additionally showed a preference for familiar sequences (possibly by attributing to them 
intrinsic value), found the use of the app beneficial, exhibiting symptomatic improvement based on 
the YBOCS. One hypothesis for the therapeutic potential of this motor sequencing training is that 
the trained action sequences may disrupt OCD compulsions, either via ‘distraction’ or habit ‘replace-
ment’, by engaging the same neural ‘habit circuitry’. This habit ‘replacement’ hypothesis is in line with 
successful interventions in Tourette syndrome (Hwang et al., 2012), tic disorders (Bate et al., 2011), 
and trichotillomania (Morris et al., 2013).

Limitations
As mentioned above, we were unable to employ the often-mooted ‘gold standard’ criterion of resis-
tance to devaluation because it would have invalidated the subsequent tests. This meant that we 
were unable to conclusively define the trained action sequences as habitual according to the full 
set of Balleine and Dezfouli, 2019 criteria, although they satisfied other important criteria such as 
automatic execution, invariant response topography, action chunking and low cognitive load. Never-
theless, the utility of the devaluation criterion has been questioned especially when applied to human 
studies of habit learning. This is because achieving devaluation can be difficult given that human 
behavior has multiple goals, some of which may be implicit, and thus difficult to control experimen-
tally, as well as being subject to great individual variation. In fact recent analyses of habitual behavior 
have not employed devaluation or revaluation as a criterion (Du and Haith, 2023). That study ascer-
tains habits using different criteria and provides supporting evidence for trained action sequences 
being understood as skills, with both goal-directed and habitual components.

Although we found a significant preference for the trained action sequence in OCD patients in the 
condition where it was pitted against a simpler and shorter motor sequence, as compared to the mone-
tary discounting condition, the reason for this difference is not immediately obvious. However, it may 
have arisen because of the nature of the contingencies inherent in these choice tests. Specifically, the 
‘monetary discounting’ condition involved a simple deterministic choice between the two alternatives, 
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which should readily be resolved in favor of the option associated with the greater, non-overlapping, 
range of rewards provided (e.g. 1–7 versus 8–15 gems). In contrast, in the ‘effort discounting’ condi-
tion, the reward ranges for the two options were equivalent (e.g. 1–7 gems), which raised uncertainty 
concerning which of the chosen sequences was optimal. The probabilistic constraint over this choice 
may therefore account for the greater sensitivity of the task in highlighting preference in OCD, given 
the greater susceptibility of such patients to uncertainty (Pushkarskaya et al., 2015).

Finally, some of the conclusions relating to the effects of OCD severity on sequence preference 
without feedback were based only on a post hoc exploratory analysis. Specifically, only those patients 
with higher compulsivity (OCI) and COHS scores exhibited this preference, therefore consistent with 
the hypothesis described above of the importance of intrinsic value of the habitual sequence to the 
development of compulsions. Evidence of this intrinsic value was provided by the greater engage-
ment with, and therapeutic findings for, the app training in these patients. However, the latter effect 
needs to be confirmed in a registered clinical trial in a controlled manner, which is ongoing.

Conclusion
We employed a battery of behavioral tasks designed to investigate two key hypotheses of the goal/
habit imbalance theory of compulsion, specifically pertaining to enhanced habit formation and 
automaticity and impaired goal re-evaluation in individuals with OCD. Our findings did not support 
greater habit formation nor heightened automaticity in patients with OCD. Moreover, evidence for 
patients’ ability to adapt behavior when facing environmental changes was mixed. In certain contexts, 
OCD patients were able to behaviorally re-adjust (e.g. when reward is monetary) but in others (e.g. 
when involving motor effort) patients demonstrated a distinct augmented inclination to perform 
their trained/familiar action sequences, attributing higher intrinsic value to them. Interestingly, this 
preference was more pronounced in patients with higher compulsivity and habitual tendencies, who 
engaged significantly more with the motor habit-training app, reporting symptom relief after the 
experiment. This suggests a promising avenue for investigating the therapeutic potential of this appli-
cation as a tool for habit reversal in the context of OCD.

Materials and methods
Participants
We recruited 33 OCD patients and 34 healthy individuals, matched for age, gender, IQ, and years of 
education. Two participants (one HV and one OCD) were excluded because they did not perform the 
minimum required training (i.e. two daily practices for a period of 30 days). Therefore, a total of 32 
OCD patients (19 females) and 33 healthy participants (19 females) were included in the analysis. Most 
participants were right-handed (left-handed: four OCD and six HV). Participants’ demographics and 
clinical characteristics are presented in Table 2 and Figure 10.

Healthy individuals were recruited from the community, were all in good health, unmedicated, and 
had no history of neurological or psychiatric conditions. Patients with OCD were recruited through 
an approved advertisement on the OCD action website (https://ocdaction.org.uk/) and local support 
groups and via clinicians in East Anglia. All patients were screened by a qualified psychiatrist of our 
team, using the Mini International Neuropsychiatric Inventory (MINI) to confirm the OCD diagnosis and 
the absence of any comorbid psychiatric conditions. Patients with hoarding symptoms were excluded. 
Our patient sample comprised 6 unmedicated patients, 20 taking selective serotonin reuptake inhibi-
tors (SSRIs), and 6 on a combined therapy (SSRIs+antipsychotic). OCD symptom severity and charac-
teristics were measured using the YBOCS scale (Goodman et al., 1989), mood status was assessed 
using the Montgomery-Asberg Depression Rating Scale (MADRS) (Montgomery and Asberg, 1979) 
and Beck Depression Inventory (BDI) (Beck et  al., 1961), anxiety levels were evaluated using the 
State-Trait Anxiety Inventory (STAI) (Spielberger et al., 1983), and verbal IQ was quantified using the 
National Adult Reading Test (NART) (Nelson and Willison, 1982). All patients included suffered from 
OCD and scored >16 on the YBOCS, indicating at least moderate severity. They were also free from 
any additional axis I disorders. General exclusion criteria for both groups were substance dependence, 
current depression indexed by scores exceeding 16 on the MADRS, serious neurological or medical 
illnesses, or head injury. All participants completed additional self-report questionnaires measuring:

a.	 Impulsiveness: Barratt Impulsiveness Scale (Barratt, 1994)

https://doi.org/10.7554/eLife.87346
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b.	 Compulsiveness: Obsessive Compulsive Inventory (Foa et al., 1998) and Compulsive Person-
ality Assessment Scale (Fineberg et al., 2007)

c.	 Habitual tendencies: Creature of Habit Scale (Ersche et al., 2017)
d.	 Self-control: Habitual Self-Control Questionnaire (Schroder et al., 2013) and Self-Control Scale 

(Tangney et al., 2004)
e.	 Behavioral inhibition and activation: BIS/BAS Scale (Carver and White, 1994)
f.	 Intolerance of uncertainty (Buhr and Dugas, 2002)
g.	 Perfectionism: Frost Multidimensional Perfectionism Scale (Frost and Marten, 1990)
h.	 Stress: Perceived Stress Scale (Cohen et al., 1983)
i.	 Trait of worry: Penn State Worry Questionnaire (Meyer et al., 1990).

All participants gave written informed consent prior to participation, in accordance with the Decla-
ration of Helsinki, and were financially compensated for their participation. This study was approved 
by the East of England – Cambridge South Research Ethics Committee (16/EE/0465).

Phase B: Tests of action sequence preference and re-evaluation
Experiment 2: Explicit preference task
Participants observed, on each trial, two sequences identified by a corresponding image, and were 
asked to choose which one they wanted to play. Once the choice was made, the image correspondent 

Table 2. Demographic and clinical characteristics of OCD patients and matched healthy controls.

HV OCD Statistics

(n = 33) (n = 32) t df p

Gender ratio (male/female) 14/19 13/19

Age 40.2 (11.7) 39.3 (12.5) 0.29 63 0.77

Years of education 16.8 (3.4) 15.6 (3.5) 1.33 63 0.19

Predicted verbal IQ 117.8 (5.6) 118.4 (4.6) –0.43 63 0.67

YBOCS session 1 0.0 24.3 (5.7) – – –

YBOCS Obsessions session1 0.0 12.2 (3.0) – – –

YBOCS Compulsions session1 0.0 11.8 (3.7) – – –

YBOCS session 2 0.0 22.9 (6.6) – – –

YBOCS Obsessions session2 0.0 11.6 (3.1) – – –

YBOCS Compulsions session2 0.0 11.1 (4.2) – – –

Trait Anxiety (STAI-T) 28.6 (5.9) 56.4 (8.6) –15.11 63 <0.001***

State Anxiety (STAI-S) 28.6 (5.9) 56.4 (8.6) –15.2 63 <0.001***

BDI 1.7 (2.3) 16.5 (9.4) –8.72 62 <0.001***

MADRS 0.9 (1.5) 11.8 (6.2) –9.88 63 <0.001***

OCI 7.3 (9.1) 68.4 (30.9) –10.83 62 <0.001***

Checking 0.9 (1.9) 11.7 (9.4) –6.5 62 <0.001***

Ordering 0.7 (1.6) 5.8 (3.3) –7.92 62 <0.001***

Washing 7.3 (9.2) 66.0 (28.6) –11.18 62 <0.001***

Doubting 1.9 (2.7) 13.6 (7.5) –8.37 62 <0.001***

Obsessing 1.1 (1.8) 7.9 (4.0) –8.82 62 <0.001***

Abbreviations: OCD, patients with obsessive-compulsive disorder; HV, healthy volunteers; YBOCS, Yale-Brown 
Obsessive-Compulsive Scale; MADRS, Montgomery-Asberg Depression Rating Scale; STAI, The State-Trait 
Anxiety Inventory; BDI, Beck Depression Inventory; OCI, Obsessive-Compulsive Inventory. Standard deviations are 
in parentheses: mean (std). One patient missed the BDI and the OCI questionnaires. *** = p < 0.001 level (two-
tailed).

https://doi.org/10.7554/eLife.87346
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to the selected sequence was highlighted in blue. Participants then played the sequence. The task 
included 3 conditions (15 trials each). Each condition comprised a specific sequence pair: 2 experi-
mental conditions pairing the app preferred sequence (putative procedural habit) with a goal-seeking 
sequence and 1 control condition pairing both app sequences trained at home. The conditions were 
as follows: (1) app preferred sequence versus app non-preferred sequence (control condition); (2) 
app preferred sequence versus any 6-move sequence (experimental condition 1); (3) app preferred 
sequence versus any 3-move sequence (experimental condition 2). The app preferred sequence was 
the putative habitual sequence and the ‘any 6’- or ‘any 3’-move sequences were the goal-seeking 
sequences because they are supposedly easier: they could comprise any key press of participant’s 
choice (e.g. the same single key press repeatedly six or three times, respectively) and they could have 
same or different key press combinations every time the ‘any-sequence’ needed to be input. The 
conditions (15 trials each) were presented sequentially but counterbalanced among participants. See 
Figure 7a for illustration of the task.

Experiment 3: Two-choice appetitive learning task
On each trial, participants were presented with two ‘chests’, each containing an image identifying 
the sequence that needed to be completed to be able to open the chest. Participants had to choose 
which chest to open and play the correct sequence to open it. Their task was to learn by trial and 
error which chest would give them more rewards ‘gems’, which by the end of the experiment would 
be converted into real monetary reward. If mistakes were made inputting the sequences, participants 
could simply repeat the moves until they were correct, without any penalty. Behavior was assessed 
based on participants’ choice, regardless of the accuracy of the sequence. The task included 4 condi-
tions (40 trials each), with chest-pairs correspondent to the following motor sequences (see also 
Figure 8 for illustration of each condition):

•	 condition 1: app preferred sequence versus any 6-move sequence
•	 condition 2: app preferred sequence versus a novel (difficult) sequence
•	 condition 3: app preferred sequence versus app non-preferred sequence
•	 condition 4: app preferred sequence versus any 3-move sequence

As in the preference task described above, the ‘any 6-move’ or ‘any 3-move’ sequences could 
comprise any key press of participant’s choice (e.g. the same single key press repeatedly six or three 
times, respectively) and could be played by different key press combinations on each trial. The novel 
sequence (in condition 2) was a 6-move sequence of similar complexity and difficulty as the app 
sequences, but only learned on the day, before starting this task (therefore, not overtrained). The 
training of this novel sequence comprised 40 trials only: sufficient to learn the sequence without 
overtraining. Initially lighted keys guided the learning (similarly to the app training). After the initial 
five trials, the lighted cues were removed, and participants were required to input the previously 
well-learned correct 6-move sequence. When an error occurred, the correct input key(s) lighted up on 
the following trial (a few milliseconds before participants made key presses), to remind participants 
of the correct sequence and help them consolidate learning of the novel sequence. In conditions 1, 
2, and 3, higher monetary outcomes were given to the alternative sequences. To remove the uncer-
tainty confound commonly linked to probabilistic tasks, conditions 1, 2, and 3 followed a deterministic 
nature: in all trials, the choice for the preferred app sequence was rewarded with smaller mone-
tary outcomes (sampled from a random distribution between 1 and 7 gems) whereas the alternative 

Table 3. Follow-up task instructions.

Explicit preference task

You will be given two sequences to choose from.
You can play either of them and switch as you go.
Select the sequences using the left and right pads and then play it

Two-choice appetitive instrumental task

In the following task, you will need to choose between two chests. Pick a chest using the left and right pads and 
play the matching sequence to open it. Open any chest you want. One of the chests may reward you more than 
the other. The more gems you get, the more money you will earn at the end of the task. Try to win as much as you 
can! You will receive your winnings at the end of the study.

https://doi.org/10.7554/eLife.87346
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option always provided higher monetary outcomes (sampled from a random distribution between 8 
and 15 gems). Therefore, variable amount of reward that did not overlap was given (deterministic). 
Condition 4, on the other hand, kept the monetary value equivalent for the two options (maintaining 
a probabilistic rather than deterministic contingency) but offered a significantly easier/shorter alter-
native sequence. This set up a comparison between the intrinsic value of the familiar sequence and a 
motor-wise less effortful sequence. To prevent excessive memory load, which could introduce poten-
tial confounds, conditions were presented sequentially rather than intermixed, but the order was 
counterbalanced among participants (Table 3).

Statistical analyses
Participant’s characteristics and self-reported questionnaires were analyzed with χ2 and independent 
t-tests, respectively. The Motor Sequencing App automatically uploaded the data to a cloud-based 
database. This task enabled us to compare patients with OCD and HV in the following measures: 
training engagement (which included as primary output measures of the total number of practices 
completed and app engagement as defined as the number of sequences attempted, including both 
correct and incorrect sequences); procedural learning, automaticity development, sensitivity to reward 
(see definitions and description of data analyses in Results section); and training effects on symptom-
atology as measured by the YBOCS difference pre-post training. The Phase B experiments enabled 
further investigation of preference and re-evaluation strategies. The primary outcome was the number 
of choices.

Between-group analyses were conducted using Kruskal-Wallis H tests when the normality assump-
tion was violated. Parametric factorial analyses were carried out with ANOVA. Our alpha level of 
significance was 0.05. On the descriptive statistics, main values are represented as median, and errors 
are reported as interquartile range unless otherwise stated, due to the non-Gaussian distribution of 
the datasets. When conducting several tests related to the same hypothesis, or when running several 
post-hoc tests following factorial effects, we controlled the FDR at level p = 0.05. Significant values 
after FDR control are denoted by pFDR. Analyses were performed using Python version 3.7.6 and JASP 
version 0.14.1.0.

In the case of non-significant effects in the factorial analyses, we assessed the evidence in favor or 
against the full factorial model relative to the reduced model with BF (ratio BFfull/BFrestricted) using 
the bayesFactor toolbox (https://github.com/klabhub/bayesFactor, copy archived at Klabhu, 2020) 
in MATLAB. This toolbox implements tests that are based on multivariate generalizations of Cauchy 
priors on standardized effects (Rouder et al., 2012). As recommended by Rouder et al., 2012, we 
defined the restricted models as the full factorial model without one specific main or interaction effect. 
The ratio BFfull/BFrestricted represents the ratio between the probability of the data being observed 
under the full model and the probability of the same data under the restricted model. BF values were 
interpreted following Andraszewicz et al., 2015. The relationship between primary outcomes and 
clinical measures was calculated using a Pearson correlation.

The diurnal patterns of app use (Figure  2b and c) were assessed in each group using circular 
statistics (Mardia, 1975), with the ‘circular’ package in R (R version 4.3.1; 2023-06-16). This provided 
the group-level mean vector length and direction. To assess on the group level whether the daily 
practice data were uniformly distributed or, alternatively, oriented toward a specific time, we used a 
Rayleigh test (Landler et al., 2021; Mardia, 1975). We adapted code from Galvez-Pol et al., 2022. To 
test differences between two circular distributions (OCD, HV), we followed the recommendations of 
Landler et al., 2021, and employed the high-powered Watson’s U2 test, a non-parametric rank-based 
test (function ​watson.​two.​test in R).

Code availability
The code for the main analyses is provided with this paper. It is available in the Open Science Frame-
work, in the following link: https://osf.io/9xrdz/.
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Appendix 1

Motor Sequencing App: additional task components and analysis
The Motor Sequencing App comprised additional components and analysis, which we describe 
and report below respectively. Once the minimum daily practice sessions were completed, we 
additionally asked participants to further conduct a short retention speed test, to assess that day’s 
performance, and a switching practice session. In the five-trial retention speed session, participants 
were instructed to repeatedly tap a sequence as rapidly as possible while making as few errors as 
possible. The 10-trial switch session required switching between the two sequences in a pseudo-
random order. The sequence to be played was cued by the respective associated picture. Speed and 
switch tests never received reward feedback (only the practice sessions). Finally, participants were 
asked to rate daily, on a percentage scale, the following two questions: (1) How much did you enjoy 
playing this sequence? and (2) How confident are you that you know this sequence by heart? This 
sequence of events (practice, speed, switch sessions, and ratings) happened every day.

Confidence and enjoyment ratings
We conducted a mixed-design repeated measures ANOVA to investigate potential group differences 
(OCD versus HV) on ratings of confidence (C) and enjoyment (E) over time (4 weeks of app practice). 
We observed a main effect of time on confidence (F (3, 177) = 92.45, p < 0.001, ηp

2 = 0.19) but no 
Group (p = 0.61) or interaction (p = 0.95) effects (Appendix 1—figure 1a). This means that both 
groups significantly increased their confidence on their sequence knowledge over the course of 
the training. A Greenhouse-Geisser (ε) correction was applied given that sphericity was violated. 
Descriptive statistics are as follows (values provided as mean and standard deviation): HV: ‍Cweek1‍ = 
64.03 ± 16.09%, ‍Cweek2‍ = 74.90 ± 17.52%, ‍Cweek3‍ = 80.14 ± 14.58%, ‍Cweek4‍ = 85.60 ± 12.90% and 
OCD: ‍Cweek1‍ = 61.66 ± 20.62%, ‍Cweek2‍ = 72.89 ± 18.40%, ‍Cweek3‍ = 78.55 ± 15.48%, ‍Cweek4‍ = 83.68 ± 
14.23%. Regarding the enjoyment ratings, we found no significant main effects of group (p = 0.16), 
reward (p = 0.45), nor interaction effects (p = 0.25) (Appendix 1—figure 1b). Descriptive statistics 
are as follows (values provided as mean and standard deviation): HV: ‍Eweek1‍ = 56.98 ± 18.06%, ‍Eweek2‍ 
= 53.15 ± 24.72%, ‍Eweek3‍ = 51.61 ± 26.24%, ‍Eweek4‍ = 53.70 ± 30.28% and OCD : ‍Eweek1‍ = 59.23 ± 
15.77, ‍Eweek2‍ = 61.19 ± 17.78%, ‍Eweek3‍ = 60.49 ± 22.93%, ‍Eweek4‍ = 64.41 ± 26.37%.

Appendix 1—figure 1. Confidence and enjoyment results. The plots depict the average participants' ratings 
on confidence (a) and enjoyment (b) across the 4 weeks of app training. Solid lines: mean; transparent regions: 
confidence interval. Light purple: healthy volunteers; dark purple: patients with obsessive-compulsive disorder 
(OCD). The insert plots show the results for the two subgroups of the OCD sample, when split based on their 
Yale-Brown Obsessive-Compulsive Scale (YBOCS) change after the app training (14 patients with improved 
symptomatology [reduced YBOCS scores] and 18 patients who remained stable or felt worse [i.e. respectively, 
unchanged or increased YBOCS scores]).

 

https://doi.org/10.7554/eLife.87346
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Switch session
Similarly to the learning analysis of the practice sessions, we conducted an individual exponential 
fitting approach to the switch sessions and assessed between-group differences on performance, 
both on sequence duration (or movement time [MT]) and reaction time (RT, i.e. time taken to initiate 
the sequence, latency). No significant group differences were found in any of the three estimated 
fitting parameters for MT: amount of learning (‍MTL‍): U = 395, p = 0.082; learning constant (‍nr‍): U 
= 575, p = 0.544 and asymptote (‍MT0‍): U = 450, p = 0.311 (Appendix 1—figure 2, a). Descriptive 
statistics are the following (values provided as median and interquartile range): HV: ‍M̃TL‍ = 1.72 s, 
IQR = 0.66 s; ‍̃nr‍ = 57, IQR = 50; ‍M̃T0‍ = 1.56 s, IQR = 0.41 s and OCD: ‍M̃TL‍ = 2.16 s, IQR = 1.24 s; 
‍̃nr‍ = 49, IQR = 53; ‍M̃T0‍ = 1.67 s, IQR = 0.45 s. Similarly, no significant group differences were found 
in the three estimated fitting parameters for RT (Appendix 1—figure 2b): reaction time speed-up 
achieved over the course of the switch sessions (‍RL‍): U = 470, p = 0.45; reaction rate (‍nR‍): U = 450, p 
= 0.31 and reaction time at asymptote (‍R0‍): U = 552, p = 0.75 (Appendix 1—figure 2b). Descriptive 
statistics are the following (values provided as median and interquartile range): HV: ‍R̃L‍ = 1.12 s, IQR 
= 0.72 s; ‍ñR‍ = 100, IQR = 168; ‍R̃0‍ = 0.57 s, IQR = 0.50 s and OCD: ‍R̃L‍ = 1.08 s, IQR = 0.70 s; ‍ñR‍ = 
125, IQR = 129; ‍R̃0‍ = 0.56 s, IQR = 0.32 s. Since the switching between the two sequences was done 
in a pseudo-randomised order, we have also assessed RT restricting our analysis to the specific trials 
where the switch occurred (i.e. when sequence 1 was followed by sequence 2 and vice versa). No 
group differences in the switching performance were found, meaning that patients with OCD could 
switch between the two sequences without any difficulties or slowness.

Appendix 1—figure 2. Model fitting procedure conducted for the switch sessions. Group comparison resulting 
from all individual exponential fits modeling the movement time (a), reaction time (b), and accuracy (c) profiles 
of each participant. No group differences were found. For (a) and (b) plots: solid lines represent median (M) and 
transparent regions the interquartile range (IQR); for plot (c): solid lines represent the mean and transparent 
regions for the confidence interval. Purple: healthy volunteers (HV); blue: patients with obsessive-compulsive 
disorder (OCD).

We also investigated potential group differences in accuracy during the switch sessions. After 
a similar individual exponential fitting approach, statistical analysis of the three estimated fitting 
parameters for accuracy indicated no group differences (Appendix 1—figure 2c): amount of learning 
as measured by accuracy achieved over the course of the switch sessions (AccL): U = 538, p = 0.56; 
learning rate: U = 517, p = 0.77 and asymptote (Acc0): U = 419, p = 0.29.

We did not analyze the short retention speed sessions because no new components were 
introduced here, as compared to the practice sessions. Therefore, we did not expect any differences 
between the practice and the speed sessions.

Extinction
With the goal of promoting habitual actions, the app was designed to remove the explicit reward 
feedback (points) on the 21st day of practice (extinction procedure). We analyzed the effects of 
extinction on accuracy, sequence duration (MT), and reaction time (RT) by comparing the two blocks 
of practice pre- and post-removal of the rewarding feedback. We analyzed both the practice and 
switch conditions. While the latter had not previously received reward feedback, it could potentially 
have been influenced by extinction as a factor. A 2×2 ANOVA with extinction (pre- and post-
extinction) as a within-subject factor and group as a between-subject factor indicated no group, 

https://doi.org/10.7554/eLife.87346
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extinction, or interaction effects on accuracy, RT, or MT (Appendix 1—figure 3). Statistical results 
are as follows: (1) practice sessions; variable reward: no effect of group (p = 0.31), extinction (p = 
0.28) or interaction (p = 0.57) on accuracy; no effect of group (p = 0.07), extinction (p = 0.99) or 
interaction (p = 0.61) on MT; no effect of group (p = 0.06), extinction (p = 0.53) or interaction (p 
= 0.44) on reaction time; continuous reward: no effect of group (p = 0.74), extinction (p = 0.16) or 
interaction (p = 0.82) on accuracy; no effect of group (p = 0.56), extinction (p = 0.78) or interaction 
(p = 0.31) on MT; no effect of group (p = 0.55), extinction (p = 0.67) or interaction (p = 0.47) on 
reaction time; (2) Switch sessions; no effect of group (p = 0.19), extinction (p = 0.17), or interaction 
(p = 0.74) on accuracy; no effect of group (p = 0.47), extinction (p = 0.89), or interaction (p = 0.27) 
on MT; no effect of group (p = 0.46), extinction (p = 0.78), or interaction (p = 0.42) on reaction time.

Appendix 1—figure 3. Extinction results. (a) Effects of extinction on the number of successful trials (accuracy) 
(left plots) and MT (middle plots) across the practice sessions only, separately for the variable (upper panel) and 
continuous (lower panel) reward conditions. (b) Effects of extinction on the number of successful trials (accuracy) 
(top plot) and MT (bottom plot) across the switch sessions. Note that for these analyses we used the two blocks of 
practice pre- and post-removal of the rewarding feedback (both on the practice and switch conditions).

https://doi.org/10.7554/eLife.87346
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Appendix 1—figure 4. Relaxation ratings. Participant’s ratings on how stressful/relaxing the app training was 
rated in a scale from –100% highly stressful to 100% very relaxing. No group differences (U = 351, p = 0.1).

Sample size for the reward sensitivity analysis
The conditional probability distributions p(∆T|∆R+) and p(∆T |∆R−) were separately fitted to 
subsamples of the data across continuous reward practices (Appendix 1—figure 5). One practice 
corresponded to 20 correctly performed sequences. The p(∆T|∆R) distributions for MT (Equation 7) 
and the normalized consistency index normC were fitted with a non-significantly different number 
of correct sequences in OCD and in the HV sample (mean 127 [SEM 12] sequences in OCD; 109 [9] 
sequences in HV; BF < 1/3, moderate evidence against group differences in the number of correct 
sequences available for this analysis). However, more sequences were available to fit the p(∆T|∆R+) 
distribution (mean 107 [SEM 10]) than the p(∆T|∆R–) distribution (98 [8]). This outcome reflected 
that participants overall observed more increases than decrements in feedback scores, as expected. 
Importantly, matching both reward and group samples in the number of sequences yielded the same 
ANOVA results as reported in the main manuscript for the center and spread of the normalized ∆MT 
distribution and normC distribution.

https://doi.org/10.7554/eLife.87346
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Appendix 1—figure 5. Fitting of performance data to conditional probability distributions p(∆T|∆R+) and 
p(∆T|∆R−). (a) Histogram of the changes in non-normalized movement time (MT, in ms, denoted by T in the 
graphic) following a decrease in scores relative to the previous trial, ∆R−. Data from one representative subject. (b) 
Same as (a) but for changes in MT following a reward increment, ∆R+. (c) Example of fitted Gaussian distributions 
to the histogram data in (a) and (b). The Gaussian fit was estimated in MATLAB using the Curve Fitting Toolbox 
[function fit, fit(x,y,'gauss1')] on a 20-bin histogram distribution of the data. This example illustrates the Gaussian 
fits to the total number of sequences and using non-normalized changes in MT (in ms). The full p(∆T|∆R+) and p(∆T 
|∆R−) distributions are denoted by the purple and green lines, respectively. (d–e) In our analyses, we split the total 
sample of correct sequences that each participant completed over the course of their training into four bins. We 
then fitted the Gaussian probability distributions to the subsample of sequences in each bin (~110 on average). 
The first bin is represented in (d), while the fourth bin is represented in (e). The y-axis limits are identical to those 
used in panel (c). (f and g) From the fitted Gaussian distributions we obtained the standard deviation, σ, to assess 
the spread of the distribution, and the mean, μ. Panel (f) displays the std across bins of sequences separately for 
p(∆T|∆R+) and p(∆T|∆R−). Panel (g) shows the shift in the center of the Gaussian distribution over the course of 
practiced sequences.

Our analysis protocol was designed to ensure that incorrect trials do not contaminate or confound 
the results. To estimate the trial-to-trial difference in the normalized ∆MT (or normC) and ∆R, we 
exclusively included pairs of contiguous trials where participants achieved correct performance and 

https://doi.org/10.7554/eLife.87346
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received feedback scores for both trials. For example, if a participant made a performance error on 
trial 23, we did not include ∆R or ∆MT estimates for the pairs of trials 23-22 and 24-23. Instead of 
excluding incorrect trials from our analyses, we retained them in our time series but assigned them 
an NaN (not a number) value in MATLAB. As a result, ∆R and ∆MT were not defined for those two 
pairs of trials. We followed the same protocol for normC. This approach ensured that our analyses 
are not confounded by incremental or decremental feedback scores between non-contiguous 
trials. In our previous work, when assessing the timing of correct actions during skilled sequence 
performance, we also considered events that were preceded and followed by correct actions. This 
excluded effects such as post-error slowing from contaminating our results (Ruiz et al., 2009; Bury 
et al., 2019).

Appendix 1—table 1. Participant’s qualitative and quantitative feedback on the impact of the app-
training in their life quality.

Population N Qualitative feedback
Quantitative 
feedback (%)

HV

28 It was a very neutral game so it did not interfere positively or negatively with my 
life

0

2 It did not impact my routines but it was very boring to do this every day 0

1 I could see the progress and this was fulfilling 10

1 It kept my brain active in the morning 15

1

This was a month full of changes (I changed job, moved house, …) so the app 
was probably the only thing that remain constant throughout the month. I think 
it probably worked as some kind of mindfulness. 60

OCD

16 It was neutral, it did not interfere with my life in any way 0

4
The app gave me a goal, some kind of structure to work towards. It was quite 
relaxing to do it. I enjoyed and repetition was not boring.

2, 60, 70 and 
70

1

It took my mind off the obsessions and rituals. Moreover, playing the app was 
a challenge to me. Seeing that I was getting better at it gave me a sense of 
achievement. This increased my confidence, which has spilled over into other 
areas of my life. 80

1 I found it quite relaxing and a diversion at times. 23

1 It was gratifying because I was finally able to complete something 30

1 It kept me occupied 10

1 The app made me use my brain and became part of my everyday routine 60

1

It was definitely a stress relief. I was familiar enough with the app and this was 
very relaxing. I felt more confident throughout and then this makes me feel 
really good. I could switch off my obsessions. It was a focus although repetitive. 
The repetitiveness is relaxing because it is familiar. 70

1 It took my mind off of other checking rituals for a short time. 25

1
The app training made me sit and relax and because I had to concentrate I did 
not worry with other things. 10

1 It was sometimes a bit of fun while having a difficult day 30

1

While I was doing I was so focused on doing it that the thoughts were not 
coming so often. I just don't rate higher because in the last couple of weeks 
there were some other things in my life that upset me and the old came 
stronger 50

1 It gave me sense of achievement 40

1
Definitely not improved my life. A bit of the opposite as it was an extra thing I 
needed to do every day –30

Quantitative feedback was given in a scale from –100% to 100%, in which 0 was no change in life quality, –100% 
was the maximum decrease in life quality and 100% was the maximum increase in life quality.
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