TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves

  1. Matthew Grove
  2. Hyukmin Kim
  3. Shuhuan Pang
  4. Jose Paz Amaya
  5. Guoqing Hu
  6. Jiliang Zhou
  7. Michel A Lemay
  8. Young-Jin Son  Is a corresponding author
  1. Temple University, United States
  2. Augusta University, United States

Abstract

Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all the figures.

Article and author information

Author details

  1. Matthew Grove

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyukmin Kim

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3270-4681
  3. Shuhuan Pang

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jose Paz Amaya

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guoqing Hu

    Department of Pharmacology and Toxicology, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiliang Zhou

    Department of Pharmacology and Toxicology, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel A Lemay

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5636-0297
  8. Young-Jin Son

    Department of Neural Sciences, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS105796)

  • Young-Jin Son

Shriners Hospitals for Children (84050)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical procedures and animal maintenance complied with the National Institute of Health guidelines regarding the care and use of experimental animals and were approved by the Institutional Animal Care and Use Committee (Protocol# 4920) of Temple University, Philadelphia, PA, USA.

Copyright

© 2024, Grove et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 598
    views
  • 118
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Grove
  2. Hyukmin Kim
  3. Shuhuan Pang
  4. Jose Paz Amaya
  5. Guoqing Hu
  6. Jiliang Zhou
  7. Michel A Lemay
  8. Young-Jin Son
(2024)
TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves
eLife 13:e87394.
https://doi.org/10.7554/eLife.87394

Share this article

https://doi.org/10.7554/eLife.87394

Further reading

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.