TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves

  1. Matthew Grove
  2. Hyukmin Kim
  3. Shuhuan Pang
  4. Jose Paz Amaya
  5. Guoqing Hu
  6. Jiliang Zhou
  7. Michel A Lemay
  8. Young-Jin Son  Is a corresponding author
  1. Temple University, United States
  2. Augusta University, United States

Abstract

Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all the figures.

Article and author information

Author details

  1. Matthew Grove

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyukmin Kim

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3270-4681
  3. Shuhuan Pang

    Department of Neural Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jose Paz Amaya

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guoqing Hu

    Department of Pharmacology and Toxicology, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiliang Zhou

    Department of Pharmacology and Toxicology, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel A Lemay

    Department of Bioengineering, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5636-0297
  8. Young-Jin Son

    Department of Neural Sciences, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS105796)

  • Young-Jin Son

Shriners Hospitals for Children (84050)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Klaus-Armin Nave, Max Planck Institute for Multidisciplinary Sciences, Germany

Ethics

Animal experimentation: All surgical procedures and animal maintenance complied with the National Institute of Health guidelines regarding the care and use of experimental animals and were approved by the Institutional Animal Care and Use Committee (Protocol# 4920) of Temple University, Philadelphia, PA, USA.

Version history

  1. Preprint posted: February 28, 2023 (view preprint)
  2. Received: March 15, 2023
  3. Accepted: March 6, 2024
  4. Accepted Manuscript published: March 8, 2024 (version 1)
  5. Version of Record published: March 22, 2024 (version 2)

Copyright

© 2024, Grove et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 349
    views
  • 87
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Grove
  2. Hyukmin Kim
  3. Shuhuan Pang
  4. Jose Paz Amaya
  5. Guoqing Hu
  6. Jiliang Zhou
  7. Michel A Lemay
  8. Young-Jin Son
(2024)
TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves
eLife 13:e87394.
https://doi.org/10.7554/eLife.87394

Share this article

https://doi.org/10.7554/eLife.87394

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan D Barense
    Research Article Updated

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations – the crossmodal binding problem – remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.