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Abstract Metabolic capacity can vary substantially within a bacterial species, leading to ecolog-
ical niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-
scale metabolic models are useful tools for studying the metabolic potential of individuals, and 
with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for 
comparative analysis. However, there exist few tools to construct strain-specific metabolic models at 
scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific 
metabolic models and growth phenotype predictions. We describe a pan reference model for the 
priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for 
using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneu-
moniae reference strain KPPR1 performed comparatively or better than currently available auto-
mated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth 
predictions. Novel draft genomes passing our systematically defined quality control criteria resulted 
in models with a high degree of completeness (≥99% genes and reactions captured compared to 
models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We antic-
ipate the tools and framework described herein will facilitate large-scale metabolic modelling anal-
yses that broaden our understanding of diversity within bacterial species and inform novel control 
strategies for priority pathogens.

eLife assessment
This study presents Bactabolize, a valuable tool for the rapid genome-scale reconstruction of 
bacteria and the prediction of growth phenotypes. Using validated methodology, the tool relies on 
a reference pan-genome model to create strain-specific draft metabolic models, as demonstrated 
in this study using Klebsiella pneumoniae. While the evidence in this specific case is solid, validation 
across diverse bacterial species is yet to be confirmed.

Introduction
Bacteria exhibit metabolic diversity and can utilise a broad range of substrates for growth. It has 
become clear amongst pathogens that there is an intertwined relationship between metabolism and 
nutrient usage with virulence and antimicrobial resistance (Su et al., 2016; Wu et al., 2021; Mir et al., 
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2014; Vornhagen et al., 2019; Eberl et al., 2021; Jenior et al., 2021; Hudson et al., 2022). Compar-
ative analyses of metabolic profiles (e.g. substrate usage) are key to fully understanding these rela-
tionships. Traditionally, these profiles have been assessed via phenotypic growth on a limited number 
of substrates, such as those used to delineate between species (Rodrigues et al., 2019; Blin et al., 
2017; Brisse et al., 2009) which form the basis of a number of commercial products for species iden-
tification. However, these methods are not sufficiently discriminatory for in-depth comparisons within 
species, and alternative approaches such as the Omnilog Phenotype MicroArray system (Biolog) are 
too expensive and/or labour intensive for application to large numbers of isolates. Similarly, probing 
of essential metabolism-associated genes via transposon mutant libraries (e.g. to identify novel viru-
lence factors and therapeutic targets) (Vornhagen et al., 2019; Mobegi et al., 2014; Hogan et al., 
2018) cannot be easily scaled across diverse bacterial populations.

Genome-scale metabolic models or metabolic reconstructions are a computational approach to 
analysing the metabolic potential of an organism, within which the entire biochemical network is repre-
sented as a stoichiometric matrix (Edwards and Palsson, 1999). Metabolic models are constructed 
programmatically, but typically informed and at least partially validated using phenotypic growth data 
(Hawkey et al., 2022; Henry et al., 2017; Liao et al., 2011). Once constructed, they can be run 
through simulations and analysed under various contexts, such as in silico growth experiments (flux 
balance analysis [FBA]) to predict substrate usage profiles (Orth et al., 2010), evaluate the impact of 
single-gene knockouts on growth (Hawkey et al., 2022; Stanway et al., 2019), and identify metabolic 
chokepoints for drug targets (Ramos et al., 2018), among others. Traditionally, metabolic models are 
strain-specific (i.e. each model represents a unique individual http://bigg.ucsd.edu/models) and may 
not be applicable to other isolates due to unrepresented genetic diversity.

We recently described 37 curated strain-specific models for the Klebsiella pneumoniae species 
complex (KpSC) (Hawkey et al., 2022) comprised of K. pneumoniae and its close relatives (Wyres 
et al., 2020). These organisms are a common cause of healthcare-associated infections worldwide, 
and among the World Health Organization’s priority antimicrobial resistant pathogens (WHO, 2017). 
KpSC are highly diverse and gene content can differ substantially between strains (Gorrie et al., 2022; 
Holt et al., 2015). Accordingly, our models varied in terms of gene and reaction content, resulting 
in variable growth substrate usage profiles and metabolic redundancy (Hawkey et al., 2022). Similar 
variation has also been described in other key bacterial pathogens, for example Escherichia coli (Monk 
et al., 2013), Salmonella enterica (Seif et al., 2018), Staphylococcus aureus (Bosi et al., 2016), and 
Pseudomonas aeruginosa (Bartell et al., 2017). This is highly relevant to the use of metabolic models 
for the exploration of virulence and antimicrobial resistance, and for the identification of novel drug 
targets. Therefore, such works should seek to include multiple strain-specific models, and in some 
cases 100s–1000s of models may be required to accurately represent population diversity (Gorrie 
et al., 2022; Croucher et al., 2014; Cummins et al., 2022).

There are several open source tools currently available that can rapidly produce strain-specific 
metabolic models, including CarveMe (Machado et al., 2018), gapseq (Zimmermann et al., 2021a), 
ModelSEED (Seaver et al., 2021), and KBase (Arkin et al., 2018) (see the recent review by Mendoza 
and colleagues for comparative descriptions Mendoza et al., 2019), as well as a recently published 
modelling and analysis pipeline, ChiMera, which leverages CarveMe for model construction (Tamasco 
et al., 2022). In their systematic analysis, Mendoza et al. indicated CarveMe and ModelSEED to be 
of particular interest for large-scale studies due to their speed and model quality (Mendoza et al., 
2019) (note that gapseq was published later and therefore not included in this review). KBase imple-
ments ModelSEED (Seaver et al., 2021) as a web interface application, limiting its utility for high-
throughput analysis of 100s–1000s of bacterial genomes. CarveMe is a command line application; it is 
open source but is dependent on commercial solvers such as CPLEX (free for academic use). However, 
its use of a universal reference model may limit specificity of strain-specific models (Norsigian et al., 
2020), and result in overestimation of model genes. These limitations can be overcome by manual 
curation of the output models, but such curation is highly labour intensive and not suitable for high-
throughput analyses. Furthermore, the CarveMe database (BiGG universal_model) appears to be no 
longer actively maintained, meaning that there is no opportunity to integrate novel structural and/
or biochemical data as these become available in the literature (as discussed in COBRA community 
forums). gapseq is a recently published command line tool which leverages an independent universal 
database (Zimmermann et al., 2021a). In their comparative analyses, the gapseq authors demonstrate 
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superior accuracy to both CarveME and ModelSEED; however the concerns about the specificity of 
universal models remain and it has been reported that model construction takes considerable time 
(several hours in some cases Zimmermann et al., 2021b).

Here, we present Bactabolize (Watts et  al., 2023), an easy-to-use tool which allows scalable 
production of strain-specific draft metabolic models and prediction of growth phenotypes in under 3 
min per input genome. Bactabolize builds upon the reference-based model reconstruction approach 
described by Norsigian et al., 2020, leveraging the COBRApy framework (Ebrahim et al., 2013) and 
BiGG nomenclature (Schellenberger et al., 2010). We present a pan-metabolic reference model for 
the KpSC (derived from our 37 curated strain-specific models Hawkey et al., 2022), and describe an 
exemplar quality control framework for the application of Bactabolize to KpSC draft genome assem-
blies. We show that Bactabolize can rapidly produce strain-specific models from draft genomes with 
a high degree of completeness (as compared to models generated from completed genome assem-
blies), resulting in highly accurate growth predictions that match or exceed the accuracy of models 
from CarveMe and manual curation efforts.

Results
Description of Bactabolize
Bactabolize is written in Python 3 and utilises the metabolic modelling library COBRApy (Ebrahim 
et al., 2013). Bactabolize has four main commands:

1.	 Draft model generation (draft_model command), which generates a strain-specific draft meta-
bolic reconstruction (‘model’) using the approach outlined previously (Norsigian et al., 2020), 
and uses gap-filling to identify any missing reactions required to simulate growth in the user-
specified conditions

2.	 Patching incomplete models (patch_model command) by the addition of missing reactions, for 
example those identified by the automated gap-filling process

3.	 Substrate usage analysis via FBA (fba command) to predict growth outcomes for a specified 
range of substrates supported by the model(s) Figure 1.

Additional processing scripts are provided alongside Bactabolize to improve model metadata 
annotation (​improve_​model_​annotations.​py), convert models generated using KBase and Model-
SEED to Bactabolize/BiGG-compatible format (​SEED_​to_​BiGG_​model_​convert.​sh), generate network 
graph files from models (​model_​to_​network_​graph.​py) and merging output FBA profiles (​merge_​fba_​
profiles_​longtable.​sh). Full documentation including example code and test data are available at the 
Bactabolize code repository (Watts et al., 2023).

For draft model construction, Bactabolize requires users to provide an input assembly (annotated 
or unannotated FASTA or Genbank format respectively), a reference model (JSON format), and the 
corresponding reference sequence data (gene and protein sequences in two separate multi-fasta files 
or a single Genbank annotation in a .gbk file) (Figure 1—figure supplement 1). For optimum results 
we suggest using a pan-model that captures as much diversity as possible for the target species or 
group of interest, because Bactabolize’s reconstruction method is reductive, that is each output strain-
specific model will include only genes, reactions, and metabolites that are present in the reference or 
a subset thereof (although novel genes, reactions, and metabolites can be added via manual curation).

If the input assembly is unannotated, Bactabolize will identify coding sequences using Prodigal 
(Hyatt et  al., 2010) but will otherwise honour the existing coding sequence (CDS) notations and 
optionally use Prodigal to search for additional CDS. Draft genome-scale metabolic models are output 
in both SMBL v3.1 (Keating et al., 2020) and JSON formats (one pair of files for each independent 
strain-specific model), along with an optional MEMOTE quality report (Lieven et al., 2020). Bactab-
olize will identify orthologs in the input genome(s) compared to the reference sequence data using 
Bi-directional BLAST (Camacho et al., 2009) Best Hits (BBH) (Hernández-Salmerón and Moreno-
Hagelsieb, 2020) using BLAST+ (Norsigian et al., 2020). Users can parameterise the ortholog finding 
settings (coverage and identity thresholds) for BBH. Alternatively, there is the option of using protein 
similarity to identify orthologs instead of identity.

Once a draft model has been constructed, it is validated via a simulated growth experiment on user-
input choice of media and atmosphere (aerobic or anerobic). Predefined media include BG11 (Gibco), 
M9+glucose (Norsigian et al., 2020), nutrient media (Zimbro et al., 2009), Luria-Bertani (LB) (Zimbro 
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et al., 2009), Tryptic Soy (TSA) (Zimbro et al., 2009), TSA+sheep blood (Zimbro et al., 2009), LB 
as specified by the CarveMe developers (Machado et al., 2018), Chemically Defined Medium-like 
(Mendoza et al., 2019), Plantarum Minimal Medium (PMM) PMM5-like (Mendoza et al., 2019) and 
PMM7-like (Mendoza et  al., 2019). Users can also define custom media as Bactabolize supports 
several complex media ingredients, including peptone (peptic digest of bovine and porcine tissue) 
(BD Biosciences, 2015; Loginova et  al., 1974; ThermoFisherScientific, 2019), tryptone (pancre-
atic digest of casein) (BD Biosciences, 2015; ThermoFisherScientific, 2019; Clausen et al., 1985), 
soy peptone/soytone (digest of soymeal) (BD Biosciences, 2015; ThermoFisherScientific, 2019; 
Hagely et al., 2013; Choct et al., 2010), yeast extract (Tomé, 2021; Plata et al., 2013; Liu et al., 
2018; Blagović, 2001; Blagović et al., 2005; Avramia and Amariei, 2021), and beef extract (BD 
Biosciences, 2015; ThermoFisherScientific, 2019). If the model fails to simulate growth, gap-filling 
is performed to indicate missing reactions. Users can add these reactions to a patch JSON file and 
optionally use the patch_model command to correct the model (Figure 1—figure supplement 2). 

Figure 1. Simplified overview of Bactabolize’s main commands. In pink is the draft_model command, which builds 
a draft strain-specific metabolic model using an input reference model and an input target assembly (approach 
adapted from Norsigian et al., 2020). If the model fails to simulate growth, Bactabolize will attempt automated 
gap-filling and produce a model patch file. The patch_model command (orange) allows the addition of missing 
reactions to produce a valid draft model that can simulate growth in a user-specified growth environment. A 
functioning model can be passed to the fba command (yellow), which performs Flux Balance Analysis to simulate 
growth in the user specified conditions, across all carbon, nitrogen, phosphorus, and sulphur metabolite sources 
supported by the model under aerobic and anerobic conditions. The sgk command (blue) shows the single-gene 
knockout analysis, which outputs a predicted phenotype. User inputs and outputs are shown in white boxes while 
Bactabolize commands are shown inside the grey box. Additional graphics can be found in Figure 1—figure 
supplements 1–4.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Flow diagram showing the overview of the draft_model module from Bactabolize, which 
produces draft metabolic models.

Figure supplement 2. Flow diagram showing the overview of the patch_model module from Bactabolize, which 
patches metabolic models that do not simulate growth.

Figure supplement 3. Flow diagram showing the overview of the fba module from Bactabolize, which performs 
growth simulations using Flux Balance Analysis.

Figure supplement 4. Flow diagram showing the overview of the sgk module from Bactabolize, which performs 
single-gene knockout analysis.

https://doi.org/10.7554/eLife.87406
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Bactabolize uses a conservative gap-filling approach that only adds the minimum number of reactions 
to enable growth under the chosen conditions. We recommend testing the models in minimal media 
and atmosphere expected to support growth for all isolates of the species of interest, unless the user 
has access to matched phenotypic data demonstrating growth for individual isolates in specific condi-
tions. Aggressive gap-filling will effectively homogenise the models and should be avoided if the goal 
is to understand the underlying strain diversity.

Substrate usage analysis (the fba command) is performed iteratively for each possible carbon, 
nitrogen, sulphur, and phosphor substrate supported by the model(s) (Figure 1—figure supplement 
3), by replacing the default substrate in the user-specified growth medium (specified in the fba_spec 
JSON file). For example, in M9 media the default substrates are glucose (carbon), ammonia (nitrogen), 
sulphate (sulphur), and phosphate (phosphor). Each substrate can be tested in aerobic and/or anaer-
obic conditions. Growth prediction output is recorded in a tab delimited file (one per strain). The ​
merge_​fba_​profiles_​longtable.​sh helper script will combine the outputs for multiple strains into a 
single file for downstream analysis.

The growth impacts of single-gene knockout mutations can be simulated via the sgk command 
(Figure 1—figure supplement 4). Bactabolize will iterate through every gene in the model, tempo-
rarily removing it and its associated reactions (unless they are also associated with another gene) and 
running FBA to simulate growth in the user-specified conditions. The output is comparable to single-
gene knockout studies such as transposon mutagenesis and can be used to probe gene essentiality.

KpSC pan-metabolic reference model
We constructed a species complex-specific pan-metabolic reference model by combining a collection 
of 37 manually curated models for which we have previously demonstrated high accuracy (range 88.3–
96.8% for prediction of 94 distinct growth phenotypes, Hawkey et al., 2022). These models represent 
a diverse collection of KpSC (Hawkey et al., 2022) (including at least one each of the seven major 
taxa in the complex; K. pneumoniae, Klebsiella variicola subsp variicola, Klebsiella variicola subsp 
tropica, Klebsiella quasipneumoniae subsp quasipneumoniae, Klebsiella quasipneumoniae subsp 
similipneumoniae, Klebsiella quaisivariicola, Klebsiella africana). The combined pan-model, known as 
KpSC-pan v1, comprises a total of 1265 distinct genes, 2319 reactions, and 1696 metabolites, and is 
available on GitHub (Vezina et al., 2023).

Performance comparison
We compared the output and performance of Bactabolize to the two previously published tools that 
can support high-throughput analyses, that is CarveMe (Machado et al., 2018) and gapseq (Zimmer-
mann et  al., 2021a). To aid interpretation in the context of community standard approaches, we 
also include a comparison to the popular web-based reconstruction tool, KBase (ModelSEED), and 
a manually curated metabolic reconstruction of K. pneumoniae strain KPPR1 (also known as VK055 
and ATCC 43816, metabolic model named iKp1289) (Henry et al., 2017). This isolate was chosen 
as there is a completed genome sequence (Genbank accession: CP009208), single-source growth 
phenotype (Henry et al., 2017), and single-gene knockout growth essentiality data available (Short 
et al., 2020). De novo draft models for strain KPPR1 were built using: (i) Bactabolize with the KpSC 
pan v1 reference; (ii) CarveMe, with its universal reference model (CarveMe universal); (iii) CarveMe, 
with KpSC-pan v1 reference (CarveMe KpSC pan); (iv) gapseq; and (v) KBase (ModelSEED). Impor-
tantly, neither K. pneumoniae KPPR1 nor its genetic lineage (seven gene multi-locus sequence type, 
ST493) are represented in the KpSC pan reference model, meaning these benchmarking comparisons 
were on equal footing. Subsequently, each model was used to predict growth phenotypes: (i) in M9 
minimal media with different sole sources of carbon, nitrogen, phosphorus, and sulphur; and (ii) for 
all possible single-gene knockouts in LB under aerobic conditions. The predicted phenotypes were 
compared directly to the published phenotype data.

Among the high-throughput approaches, the Bactabolize draft model captured fewer genes and 
reactions (n=1233  and 2307, respectively) than the gapseq (n=1489  and 3186, respectively) and 
CarveMe universal models (n=1960 and 2857, Figure 2A). The Bactabolize and CarveMe universal 
models contained similar numbers of metabolites (1696 vs 1737, respectively), while the gapseq 
model contained many more (n=2519). Notably, the initial gapseq model was gap-filled by simulation 
of growth in M9 minimal media with glucose (consistent with Bactabolize and CarveMe media recipes), 

https://doi.org/10.7554/eLife.87406
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Figure 2. K. pneumoniae KPPR1 metabolic model benchmarking comparisons. (A) Counts of model features: genes, metabolites, and reactions 
captured by each model. Exchanges refer to number of exchange reactions, a subset of reactions involved in substrate uptake, which determine the 
number of distinct growth substrates for which phenotypes can be predicted with the model. (B) MEMOTE scores indicating the richness of annotations 
and metadata for metabolic model features according to database outlinks. SBO refers to score of Systems Biology Ontology (SBO), a controlled 

Figure 2 continued on next page
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which resulted in the addition of 31 reactions to the draft model. This is in contrast to CarveMe and 
Bactabolize-generated models which produced biomass in M9 minimal media plus glucose without 
additional gap-filling. The CarveMe KpSC pan model captured considerably more genes than any of 
the other models (n=2407), but these were associated with many fewer unique reactions and metabo-
lites (1206 and 825, respectively). Upon further investigation we determined that this method resulted 
in the over-prescription of gene reaction rules (GPRs) to multiple reactions (mean 2.2 GPRs per reac-
tion when compared to Bactabolize using the same pan reference model: 1.94 GPRs per reaction).

Figure 2—figure supplements 1 and 2 show the overlaps of metabolites and reactions between 
the high-throughput reconstruction methods after processing with MetaNetX (Moretti et al., 2021) 
to standardise the reaction and metabolite nomenclatures (excluding CarveMe pan for simplicity and 
given the likely problems of reaction oversubscription). The majority of the reactions included in the 
Bactabolize model were conserved in either the CarveMe universal model (n=1225, 53.2%), gapseq 
model (n=54, 2.3%), or both (n=665, 28.9%). The reaction overlap was skewed to the CarveMe 
universal model which shared 1225 reactions that were conserved in the Bactabolize model but absent 
from the gapseq model. Notably, the gapseq model contained a large number (2200) of unique reac-
tions (70.4% of those in the model). Similarly, the vast majority of metabolites in the Bactabolize model 
were conserved in one or both of the other models (n=917, 85.6%). However, it is likely that true 
overlaps between methods are underrepresented due to the different reaction identifiers and chem-
ical synonyms used within the BiGG (Bactabolize, CarveMe) vs ModelSEED nomenclatures (gapseq), 
which are difficult to harmonise in an automated manner even after the application of MetaNetX.

In comparison to the low-throughput reconstruction approaches, the Bactabolize model contained 
a similar number of genes, reactions, and metabolites to the manually curated model (n=1289, 2484, 
and 1827, respectively) and many more than the KBase model (72, 544, and 534, respectively). This is 
likely due to the low number of metabolism-associated genes identified by KBase, which has impacted 
the associated reaction and metabolite data.

MEMOTE scores (produced by the MEMOTE report, Lieven et al., 2020) indicate the quality of 
the model metadata annotations, with the scores ranging between 0% and 100%. These provide a 
measure of model portability and the level of connected databases available to support the metab-
olite, reaction, and genetic information represented in the model, but bear no reflection on model 
accuracy. Bactabolize performs on the lower end, with CarveMe universal and gapseq performing 
the best (Figure 2B). The KBase model appears to perform well in this regard, however this is due to 
the low number of genes, reactions, and metabolites included in the model. Bactabolize using the 
KpSC-pan model outperforms the model propagation mode of CarveMe using the same reference 
model (Figure 2B). Work is ongoing to improve the metadata annotations in the KpSC-pan reference 
model, to support large-scale model propagation.

We assessed the performance of each model for in silico prediction of growth phenotypes 
compared to the previously published experimental data (Henry et al., 2017). Accuracy, sensitivity, 
specificity, precision, and F1 scores were calculated (Powers, 2020). Note that the specific set of 
growth substrates and gene knockouts that can be simulated is determined by the sets of genes and 
metabolites captured by each model and is therefore model-dependent (Source data 1 and Figure 
2—source data 1). Among those with matched experimental phenotype data, the Bactabolize and 

vocabulary for systems biology. Consistency refers to the score of stoichiometric consistency and chemical formulae annotation. Total refers to total 
MEMOTE score, as a combination of all previous scores, and is shown in bold. (C) Counts of carbon, nitrogen, phosphorus, and sulphur growth 
substrates that can be simulated by models and for which matched phenotypes were available for comparison (Henry et al., 2017). Hatched columns 
indicate the total number of substrates for which phenotypic data for K. pneumoniae KPPR1 were described (Henry et al., 2017). (D and E) Accuracy 
metrics for predicted to true phenotypes for the growth substrates shown in D and E, respectively. False-negatives, true-negatives, false-positives, and 
true-positives are coloured as shown in legend. (F and G) Accuracy metrics for the KPPR1 single-gene knockout mutant library described in Short et al., 
2020 as shown in F and G, respectively. Numbers of true-positives and false-positives are shown to the left of the respective columns. Figure 2—source 
data 1 and Figure 2—figure supplements 1–2 contain additional data.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data table showing single-gene knockout summary of each model.

Figure supplement 1. Venn diagram comparing the metabolite output of the best-performing tools for K. pneumoniae KPPR1.

Figure supplement 2. Venn diagram comparing the reactions output of the best-performing tools for K. pneumoniae KPPR1.

Figure 2 continued

https://doi.org/10.7554/eLife.87406
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CarveMe universal models were able to predict growth for a greater number of carbon, nitrogen, 
phosphorous, and sulphur substrates than gapseq, CarveMe KpSC pan, KBase, and iKp1289 models 
(Figure 2C, Source data 1). While the CarveMe universal model had the highest number of true-
positive growth predictions overall (n=132 of 617 total predictions), it also had a comparably high 
number of false-positive predictions (n=39 of 617 total predictions, Figure 2D). Similarly, the gapseq 
and iKp1289 models resulted in 31 (262 total predictions) and 50 (513 total predictions) false-positive 
predictions, respectively. In contrast, the Bactabolize model had fewer false-positive predictions 
(n=21 of 505 total predictions) alongside a high number of true-positive predictions (n=117 of 505 
total predictions), resulting in the highest overall accuracy metrics (Figure 2E, Source data 1). The 
KBase model was a notable outlier, associated with a high number of false-negative predictions (n=31 
of 103 total predictions) and low false-positive predictions (n=3 of 103 total predictions), presumably 
resulting from the very low number of genes and reactions included in the model, driving low sensi-
tivity and accuracy.

The gene essentiality results showed that gapseq produced the highest absolute number of true-
positive gene essentiality predictions (n=79 of 1403), followed by Bactabolize KpSC pan (n=44 of 1220 
total predictions), then CarveMe universal (n=39 of 1951 total predictions). CarveMe universal had the 
largest number of true-negatives by a wide margin (n=1599 of 1951 total predictions), followed by 
gapseq (n=1085 of 1403 total predictions), then Bactabolize KpSC pan (n=939 of 1220 total predic-
tions), driving their high accuracies (83.96%, 82.96%, and 80.57%, respectively). The Bactabolize 
model was associated with the greatest overall precision and specificity (Figure 2F and G) while the 
gapseq model resulted in the highest F1 score and sensitivity.

While model features and accuracy are essential metrics for comparison, computation time is also 
a key consideration for high-throughput analyses. We recorded the time required for each tool to 
build draft models for 10 of the completed KpSC genomes used in the quality control framework (see 
below) on a high-performance computing cluster (Intel Xeon Gold 6150 CPU @ 2.70 GHz and 155 GB 
of requested memory on a CentOS Linux release 7.9.2009 environment). CarveMe KpSC pan was the 
fastest with a mean of 20.04 (range 19.90–20.18) s, followed by CarveMe universal at 30.28 (range 
29.20–31.80) s, then Bactabolize KpSC pan at 98.05 (range 92.19–100.4) s. KBase took 183.50 (range 
120.00–338.00) s per genome via batch analysis, including genome upload time and queuing. gapseq 
took 5.46 (range 4.55–6.28) hr to produce draft models (not including the required gap-filling), consis-
tent with previous reports (Zimmermann et al., 2021b).

Quality control framework for input genome assemblies
There are now thousands of bacterial genomes available in public databases, the majority of which 
are in draft form, comprising 10s–1000s of assembly contigs. This fragmentation of the genome is 
caused by repetitive sequences that cannot be resolved by the assembly algorithm and/or sequence 
drop-out. The latter can result in the loss of genetic information such that some portion of genes 
present in the underlying genome are lost from the genome assembly (either completely or partially). 
This in turn poses a limitation for the reconstruction of metabolic models using these assemblies, 
since most published approaches use sequence searches to predict the presence/absence of genes 
and their associated enzymatic reactions. Therefore, if we are to use public genome data for high-
throughput metabolic modelling studies, it is essential to evaluate the expected model accuracies and 
understand the minimum input genome quality requirements.

Here, we performed a systematic analysis leveraging our published curated KpSC models (n=37, 
Hawkey et al., 2022), which were generated using completed genome sequences and were there-
fore considered to represent ‘complete’ models for which the underlying genome sequence contains 
all genes that are truly present in the genome (note the biological accuracy of these models was 
reported previously [Hawkey et al., 2022] and is not the subject of the current study). We randomly 
subsampled the corresponding Illumina read sets to various depths (10–100×, increments of 10) in 
triplicate and generated draft assemblies that were passed to Bactabolize for generation of draft 
metabolic models (Figure 3—source data 1). Due to low read depth (≤30×), two isolates were 
removed from this analysis. Additionally, ten 10× depth read samples failed to produce assemblies, 
leaving 1040 draft genomes for analysis. The resulting draft metabolic models were compared to the 
complete models to: (i) determine the proportions of complete model genes and reactions captured 
in the draft models; and (ii) compare 846 in silico aerobic growth predictions in M9 minimal media, 

https://doi.org/10.7554/eLife.87406
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where growth on 266 carbon, 153 nitrogen, 59 phosphorus, and 25 sulphur sources were examined. 
Substrates containing multiple elements were tested as sole sources of each element independently 
and in combination, for example 1,5-diaminopentane was tested as a sole carbon, sole nitrogen, and 
sole carbon plus nitrogen source.

As expected, assembly quality generally increased with increasing sequencing depth, that is assem-
blies generated from higher depth read sets were associated with higher N50 values, fewer contigs, 
and fewer assembly graph dead-ends, although the rate of improvement drastically declined beyond 
40–50× depth (Figure 3—figure supplement 1, Figure 3—source data 1). We noted that it was rare 
for draft models to capture 100% of model genes and reactions (just 420 of all 1040 draft assemblies 
were associated with models that captured 100% model genes) (Figure 3—source data 1, Figure 4—
figure supplement 1), even when using the highest quality draft genomes. However, ≥99% of genes 
and reactions were commonly captured, which plateaued from 40× depth onwards (Figure 4—figure 
supplement 1). Therefore, we sought to evaluate whether ≥99% model capture would produce func-
tionally accurate models.

We used FBA to simulate substrate growth profiles for the 40× depth assemblies, representing a 
sequencing depth that can be routinely achieved with standard Illumina library preparations. All but one 
assembly triplicate set (isolate SB4767 98% gene capture, 99% reaction capture) captured ≥99% but 
≤100% model genes and/or reactions. The substrate growth profiles were then compared to those of 
the complete models. The vast majority of draft models produced accurate growth predictions; 102 of 
108 models resulted in predictions with 100% concordance to those from the corresponding complete 
models. Three models for K. quasipneumoniae similipneumoniae isolate SB164 resulted in predictions 
with a mean of 99.8% concordance. The remaining three models were for isolate SB4767 and resulted 
in mean of 80.4% concordance. Notably, these models were those representing <99% gene capture. 
Together, these data suggest that draft models capturing ≥99% of the complete model genes/reac-
tions generate highly accurate growth predictions and that these capture rates can be readily achieved 
from draft genome assemblies.

We investigated the relationships between assembly quality metrics and model gene/reaction 
capture in more detail. Variation in assembly graph dead-ends accounted for the greatest amount of 
variation in model capture, closely followed by raw contig counts (cubic polynomial fit, R2 of ≥0.98 for 
graph dead-ends, R2 of ≥0.9 for contig count). A segmented linear model was fitted to N50 length 
(R2 ≥0.83), producing a breakpoint at 25,153 bp (Figure 3).

To further explore the optimum thresholds for assembly metrics, we tallied the number of draft 
assemblies resulting in ≥99% and<99% gene and reaction capture at increasing graph dead-end and 
contig count cut-offs, and decreasing N50 cut-offs. Draft models that captured ≥99% of the complete 
model genes/reactions were considered ‘good’ models, whereas draft models that captured <99% of 
complete model genes/reactions were considered ‘bad’ models. The optimum threshold for assembly 
graph dead-end was determined to be ≤200. At this value, 94.44% of ‘good’ models were captured, 
and 0% ‘bad’ models. The optimum threshold for contig counts was determined as ≤130 contigs 
at which 67.92% of ‘good’ and 0% ‘bad’ models were captured (Figure 4). The optimum threshold 
for N50 was determined to be ≥65,000, at which 94.97% of ‘good’ and 1.71% of ‘bad’ models were 
captured. The assembly graph dead-end threshold results in comparatively higher sensitivity (i.e. a 
higher proportion of ‘good’ models pass the threshold) than contig count and comparatively better 
specificity (i.e. lower proportion of ‘bad’ models pass the threshold) than N50, but the underlying 
metric information is not universally available because many isolate genomes are deposited in public 
databases only as assemblies without the associated assembly graph. We therefore recommend 
a three-tier approach, whereby the assembly graph dead-end criterion is preferenced if available, 
followed by N50 and then contig count.

Impact of gap-filling models
Of the 901 draft genome assemblies which passed our QC criteria (≤200 assembly graph dead-ends), 
23 of the resulting draft models failed to simulate growth in M9 minimal media with glucose (despite 
capturing ≥99% of the genes and reactions in the corresponding complete models). It is expected 
that all KpSC models should be able to simulate growth on M9 media with glucose as a sole carbon 
source, as this central metabolism is universal amongst KpSC. To replace missing, critical reactions 
required for growth on M9 with glucose, we investigated model gap-filling using the patch_model 

https://doi.org/10.7554/eLife.87406
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command of Bactabolize. We then assessed the accuracy of the gap-filled models for prediction 
of growth on the full range of substrates, as compared to the predictions from the corresponding 
complete models.

Gap-filling added one to three missing reactions to each model, with a median of 1, fully restoring 
biomass production in M9 media with glucose in all but 2 of the 23 failed models. The missing reac-
tions appeared to be random genes across these 23 genomes, likely due to missing information in 
these assemblies.

Substrate usage predictions from the 21 successfully gap-filled models were highly accurate, with 
18/21 having a prediction concordance of ≥99% across all 846 growth conditions (12/21 had 100% 
concordance) (Supplementary file 1). We therefore conclude that models generated for genome 
assemblies passing our QC criteria, which have been gap-filled to successfully simulate growth on 
minimal media plus glucose, are suitable for the prediction of growth across a range of substrates.
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Figure 3. Scatterplots showing distribution of best-performing assembly metrics ‘assembly graph dead-ends’, ‘contigs’, and ‘N50’ against model 
feature capture (genes and reactions). Each point represents the mean values from a single genome (technical triplicate) and is coloured by model 
quality. ‘Good’ models capture ≥99% of the model metric as compared to the corresponding complete model (shown at each facet), ‘Bad’ models 
capture <99%. Cubic polynomial line plotted for assembly ‘graph dead-ends’, ‘contigs’, while a segmented linear model was plotted for ‘N50’. R2 is 
shown on each panel. Figure 3—source data 1 contains additional data.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Data table showing assembly metrics and model completeness.

Figure supplement 1. Raincloud plot showing distributions of assembly metrics across various read subsampling depths (10× increments).

https://doi.org/10.7554/eLife.87406
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Predictive accuracy of draft models
We assessed the accuracy of Bactabolize for the construction of draft models for 10 novel KpSC clin-
ical isolates, representing five of the major taxa in the complex. We included five isolates for which 
the associated STs were represented in the KpSC-pan v1 model and five isolates with STs that were 
not represented. Whole-genome sequence data were generated on the Illumina platform and draft 
assemblies generated de novo. The resultant assemblies had 0–4 graph dead-ends, N50s of 15,1958–
388,486 bp and 83–187 contigs (Figure 5—source data 1), within the tiered threshold values.

FBA was performed, and the predicted growth profiles compared to matched phenotypic growth 
data for 16 carbon sources derived from Vitek GN ID cards. Though the number of tested carbon 
sources was limited, all were associated with high accuracy metrics (Figure 5, Figure 5—source data 
1). As expected, models for isolates with STs represented in the KpSC-pan v1 reference performed 
slightly better (mean accuracy = 0.98) than those for non-represented STs (mean accuracy = 0.95).
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Figure 4. Line graphs showing the impact of assembly metric cut-off thresholds on model feature capture (n=1040). ‘Good’ models which 
captured ≥99% of model features are shown in green, while ‘bad’ models captured <99% model features are shown in gold. The blue dotted line shows 
the metric cut-off thresholds, to minimise the number of models that capture <99% model features and maximise models that capture ≥99%. Metric cut-
off statistics are calculated in intervals of 10 for assembly graph dead-ends and contigs, and every 5000 for N50.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Line graph showing the capture of model features of draft assemblies (short-read only) at various depths, compared to the 
corresponding completed genome (long-read+short-read assemblies).

https://doi.org/10.7554/eLife.87406
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Discussion
In this work we described Bactabolize, a pipeline for rapid and scalable production of accurate bacte-
rial strain-specific metabolic models and growth phenotype predictions. We describe a pan refer-
ence model for the KpSC and demonstrate that a draft strain-specific model generated de novo via 
Bactabolize using the KpSC-pan v1 reference was highly accurate for growth phenotype prediction 
(85.79% accuracy for substrate usage across 190 substrates, and 80.57% for gene essentiality across 
1220 genes). Importantly, we also described a quality control framework for the use of draft genome 
assemblies as input for metabolic reconstructions. We used a systematic analysis to: (i) evaluate the 
proportion of gene and reaction capture compared to the corresponding ‘completed’ models; (ii) 
define quality control thresholds for input assemblies (three-tier approach for KpSC; ≤200 assembly 
graph dead-ends, followed by ≥65,000 N50, followed by ≤130 contigs); and (iii) estimate the accu-
racy of the resultant growth predictions. While the quality control thresholds and accuracy estimates 
are specific to KpSC, the conceptual framework can be applied to any organism and is essential 
to support the confident application of metabolic modelling for large-scale genome datasets. We 
appreciate that assembly graphs may not be available for dead-end count, for example for draft 
genome assemblies accessed via public repositories, however we encourage users to include this 
information in their quality control procedures wherever possible (e.g. using the recently published 
counter tool [Wick, 2023]) because these counts represent a direct reflection of the completeness of 
the genome assembly. In contrast, contig counts and N50 are influenced by biological features such as 
repeat copy numbers as well as the underlying sequence data quality, for example a bacterial genome 
harbouring many insertion sequence insertions will result in a draft assembly with a high number of 
contigs regardless of the sequence data quality and completeness.
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B) Accuracy metrics for predicted growth phenotypes
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Figure 5. Accuracy of predicted growth phenotypes using additional isolates. (A) Comparisons of predicted to true phenotypes for 16 carbon source 
substrates. False-negatives, true-negatives, false-positives, and true-positives are coloured as shown in legend. Each column represents a different 
isolate, separated by ST representation in the K. pneumoniae species complex (KpSC)-pan model. (B) Accuracy metrics for predicted vs phenotypic 
growth comparisons shown in A. Each column represents a different isolate, coloured by taxa and separated by ST representation in the KpSC-pan v1 
model. Additional information can be found in Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Growth phenotyping results for 10 isolates used for validation.

https://doi.org/10.7554/eLife.87406
https://github.com/rrwick/GFA-dead-end-counter
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Traditionally, genome-scale metabolic reconstruction approaches have relied upon significant 
manual curation efforts. While there will always remain a need for high-quality curated models, such 
resource-intensive approaches preclude their application at scale, and have therefore limited analyses 
to small numbers of individual strains (Henry et al., 2017; Liao et al., 2011). However, automated 
reconstruction approaches can support the generation and comparison of multiple strain-specific 
draft models from which meaningful biological insights can be derived (Magnúsdóttir et al., 2017). 
Additionally, the quality of curated models is likely to vary depending on their age, level, and type of 
curation, as well as the approach used for preliminary drafting. Indeed it is possible for automated 
approaches to outperform manually curated models; a draft model for K. pneumoniae KPPR1 gener-
ated using Bactabolize with the KpSC pan-v1 reference model outperformed the manually curated 
iKp1289 model representing the same strain (Henry et al., 2017). iKp1289 was published in 2017 (6 
years prior to this study) and was initially drafted via the KBase pipeline (Arkin et al., 2018), which 
uses RAST to annotate the sequences with Enzyme Commission numbers. It has been demonstrated 
several times that the Enzyme Commission scheme has systematic errors (Green and Karp, 2005; 
Rembeza and Engqvist, 2021), leading to a loss in accuracy when compared to the ortholog identifi-
cation methods used by automated approaches. Consistent with this assertion, our draft KPPR1 model 
constructed with KBase (without manual curation) was an outlier in terms of the very low number of 
genes, reactions, and metabolites that were included.

CarveMe with universal model (Machado et al., 2018) and gapseq (Zimmermann et al., 2021a) 
are the current gold standard automated approaches for model reconstruction, and we show that a 
draft KpSC model generated by Bactabolize with the KpSC pan v1 reference resulted in similar or 
better accuracy for phenotype prediction (Figure 2). Both the CarveMe universal and gapseq models 
resulted in high numbers of true-positive and true-negative growth predictions. However, these were 
also accompanied by comparatively higher numbers of false-positive predictions that resulted in a 
lower overall accuracy for substrate usage analysis compared to Bactabolize with the KpSC-pan v1 
reference (Figure 2), and comparatively lower precision and specificity for the gene essentiality anal-
ysis. False-positive predictions may indicate that the relevant metabolic machinery are present in the 
cell but were not active during the growth experiments (e.g. due to lack of gene expression). In this 
regard, false-positives are not always a sign of model inaccuracy. However, false-positive predictions 
can also occur from incorrect gene annotations, for example due to reduced specificity of ortholog 
assignment resulting from the use of the universal model without manual curation. Given a key objec-
tive here is to facilitate high-throughput analysis for large numbers of genomes, it is not feasible to 
expect that all models will be manually curated, and therefore we believe that identifying fewer genes 
with lower overall error rates provides greater confidence in the resulting draft models. We also note 
that the BiGG universal reference model which CarveMe leverages is no longer being actively main-
tained. In contrast, user-defined reference models can be iteratively curated and updated to incorpo-
rate new knowledge and data as they become available.

Bactabolize’s reference-based reconstruction approach is reductive, meaning the resultant draft 
models will comprise only the genes, reactions, and metabolites present in the reference, or a 
subset thereof, and will not include novel reactions unless they are manually identified and curated 
by the user. This is an important caveat that should be considered carefully for application of Bactab-
olize to large genome datasets, particularly for genetically diverse organisms such as those in the 
KpSC. For optimum results we suggest using a curated pan-model that captures as much diversity 
as possible for the target species or group of interest. While we acknowledge that a reasonable 
resource investment is required to generate a high-quality reference, we have shown that a pan-
model derived from just 37 representative strains can be sufficient to support the generation of 
highly accurate draft models (Figures 2 and 5). Additionally, we note that it is possible to use a 
single strain reference model, which should ideally represent the same or closely related species to 
that of the input genome assemblies, in order to facilitate accurate identification of gene orthologs. 
It is technically possible to use an unrelated reference model, but this is expected to result in inac-
curate and/or incomplete outputs and has not been tested in this study. In circumstances were no 
high-quality closely related reference model is available, we recommend alternative reconstruction 
approaches that leverage universal databases, for example CarveMe (Machado et  al., 2018) or 
gapseq (Zimmermann et al., 2021a). However, gapseq’s long compute time makes it inappropriate 
for application to datasets comprising 100s–1000s of genomes (such as have become increasingly 

https://doi.org/10.7554/eLife.87406


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Vezina, Watts et al. eLife 2023;12:RP87406. DOI: https://doi.org/10.7554/eLife.87406 � 14 of 22

common in the bacterial population biology literature) (Ludden et  al., 2020; Dyson and Holt, 
2021).

Bactabolize and the KpSC pan v1 model are freely available under open source licenses and satisfy 
the four features of the FAIR research principles (findability, accessibility, interoperability, and reus-
ability) (Wilkinson et al., 2016). In addition to the KpSC pan reference described here, a pan refer-
ence model has been described previously for S. enterica (representing 410 strains) (Seif et al., 2018), 
Bacillus subtilis (Blázquez et al., 2023) (representing 183 strains), and E. coli (Monk, 2022) (repre-
senting 222 strains). We are actively working to expand and improve the KpSC pan reference model 
and welcome similar efforts to generate high-quality references for other organisms. Together these 
resources will facilitate population-wide metabolic analyses for global priority pathogens, which can 
be used to understand how they transmit, cause disease, and evolve drug resistance, and to identify 
novel therapeutic targets.

Materials and methods
Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm Bactabolize This study – Data availability section Software

Software, algorithm Cobrapy Ebrahim et al., 2013 Software

Strain, strain 
background

K. pneumoniae KPN2061, KPN2100, KPN2175, 
KPN2233, KPN2245, KPN2250, KPN2270, 
KPN2272, KPN2285, KPN2286

This study – See Source data 1 and 
Figure 5—source data 1 for details 
and accessions

Isolates used to 
validate Bactabolize

Commercial assay or kit VITEK 2 GN ID cards bioMérieux
Method used to 
validate Bactabolize

Bactabolize pipeline
Bactabolize utilises the existing metabolic modelling library COBRApy (Ebrahim et al., 2013) and 
Python 3 (Van Rossum and Drake, 2009). All code is freely available and open source at GitHub 
(Watts et al., 2023) under a GNU General Public License v3.0. Users should additionally cite COBRApy 
(Ebrahim et al., 2013) if Bactabolize is used.

KpSC pan-metabolic model
The 37 metabolic models from a previous study (Hawkey et  al., 2022) were combined with the 
iY1228 model using the ​create_​master_​model.​py script (available at 10.6084/m9.figshare.21728717). 
Briefly, all GPRs from the iYL1228 model and the associated sequences were included, as well as 
new GPRs identified from the 36 additional strains by manual curation following comparison to the 
matched phenotype data (as described in Hawkey et al., 2022). Additionally, orthologous sequence 
variants with <75% nucleotide identity to gene sequences associated with these GPRs were added if 
there was phenotype data supporting the reaction. The biomass reaction was updated, removing the 
metabolites udpgalur_c and udpgal_c as their production was strain-specific.

Metadata annotations were improved using the ​improve_​model_​annotations.​py script (also avail-
able in the Bactabolize code repository) resulting in the KpSC_pan v1 used in this study (Vezina et al., 
2023).

Draft model generation
The annotated and unannotated genome of K. pneumoniae KPPR1 were obtained from Genbank 
accession number: CP009208.

Bactabolize draft models were generated using the draft_model command in Bactabolize v1 
with the KpSC-pan v1 model as a reference, the annotated K. pneumoniae KPPR1 as input and the 
following options:

-min_coverage 25 --min_pident 80 --media M9 --atmosphere aerobic
A draft model for K. pneumoniae KPPR1 was also generated via CarveMe version 1.5.1 using the 

universal reference, the annotated K. pneumoniae KPPR1 as input, with the following commands: ‘-g 

https://doi.org/10.7554/eLife.87406
https://github.com/kelwyres/Bactabolize
https://doi.org/10.6084/m9.figshare.21728717.v2
https://github.com/kelwyres/KpSC-pan-metabolic-model
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M9 -i M9’. Subsequently, the --universe-­file mode was also used, so the KpSC-pan model could 
be used as a reference, with the previously described command.

A draft model was generated using gapseq version 1.2 with the ‘doall’ command using the unanno-
tated genome (as gapseq does not take annotated input files). Gap-filling was subsequently performed 
using the ‘fill’ command and a custom M9 media file to match the nutrient list found in Bactabolize. 
Finally, a draft model was constructed using the annotated genbank K. pneumoniae KPPR1 file and 
the KBase narrative (Henry et al., 2017).

Speed calculations
Modelling methods were timed via a script using the date +%s.%N command run before and after 
command on the MASSIVE computing cluster (Intel Xeon Gold 6150 CPU @ 2.70 GHz and 155 GB of 
memory, CentOS Linux release 7.9.2009 environment). 10 individual complete KpSC genomes used in 
the quality control framework were tested for each method and the mean and range reported using 
R version 4.0.3 (R Development Core Team, 2020).

Performance comparisons
The annotated and unannotated genomes of K. pneumoniae KPPR1 were obtained from Genbank 
under the accession: CP009208, and draft metabolic models were generated using Bactabolize, 
CarveMe, ModelSEED, and gapseq as described above. The previously described, manually curated 
model for KPPR1 (iKp1289) was also included for comparison (Henry et al., 2017). MEMOTE version 
0.13.0 was used to collate basic model statistics. The following KPPR1 phenotype data were retrieved 
from published studies: BIOLOG Phenotypic Microarray data (Henry et al., 2017) and single-gene 
knockout data inferred from the outputs of a TraDIS transposon mutagenesis library (Short et al., 
2020).

A list of BIOLOG growth substrates for plates PM1, PM2A, PM3B, and PM4A (Biolog, 2020) were 
converted where possible to BiGG and SEED IDs by manual search of the BiGG (​bigg.​ucsd.​edu) and 
SEED websites (https://modelseed.org/biochem/compounds). An updated BiGG to SEED dictionary 
can be found in Source data 1. A total of 143 of 190 carbon, 82 of 95 nitrogen, 46 of 59 phosphor, and 
26 of 35 sulphur substrates were successfully matched to BiGG and SEED IDs (Source data 1). These 
growth data were compared to in silico predictions generated via FBA using the fba command from 
Bactabolize to optimise the biomass objective function with the following options:

-fba_spec_name m9 --fba_open_value –20
Gene essentiality was inferred from single-gene knockout growth predictions using the sgk 

command from Bactabolize with the following options to mirror the growth conditions of the TraDIS 
library (LB media grown aerobically):

-media_type lb --atmosphere aerobic
In all cases, an objective value cut-off of ≥10–4 was used to indicate binarised growth as per previous 

studies (Hawkey et al., 2022; Norsigian et al., 2019).
In silico predictions were compared to matched phenotype data and the following accuracy metrics 

were calculated:

	﻿‍
Precision = TP

TP + FP‍�

	﻿‍
Sensitivity/recall = TP

TP + FN ‍�

	﻿‍
Specificity = TN

TN + FP‍�

	﻿‍
Accuracy = TP + TN

TP + FP + TN + FN ‍�

	﻿‍
F1 − score = 2 × Precision × Sensitivity

Precision + Sensitivity ‍�

Model metabolite and reaction IDs were harmonised for overlap comparisons using the ‘Import 
model’ function from ​MetaNetX.​org (Moretti et al., 2021) after import and export via the write_
sbml_model function from COBRApy.

https://doi.org/10.7554/eLife.87406
https://github.com/kelwyres/Bactabolize/blob/main/data/media_definitions/m9_media.json
https://narrative.kbase.us/narrative/ws.14145.obj.1
https://modelseed.org/biochem/compounds
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Quality control framework
Illumina read sets (250 bp paired end) and completed genome sequences for 37 KpSC isolates were 
described previously (Hawkey et al., 2022). Here, we randomly subsampled the Illumina reads at 
various depths (10–100, by increments of 10) using rasusa version 0.3.0 (Hall, 2019) in technical trip-
licate. Reads were then trimmed using TrimGalore version 0.5.0 (Krueger, 2012) and assembled de 
novo with Unicycler version 0.4.7 (Wick et al., 2017), default parameters. Assembly statistics and 
assembly graph dead-ends were calculated using the GFA-dead-end-counter version 1.0.0 (Wick, 
2023). Draft metabolic models were generated with Bactabolize using the KpSC-pan v1 reference, 
and growth substrate profiles were predicted as described above. We compared the outputs from 
models generated for draft genome assemblies to those generated for the corresponding completed 
genomes. Where necessary models were gap-filled via the patch_model command.

Predictive accuracy of draft models
Novel growth phenotype data were generated for 10 KpSC clinical isolates from our in-house collec-
tion using the VITEK 2 GN ID card system as described previously (Hawkey et al., 2022). Briefly, 
isolates were grown on Tryptic Soy (OXOID) agar plates overnight at 37°C, then analysed using VITEK 
2 GN ID cards (bioMérieux) and read on the VITEK 2 Compact (bioMérieux) as per the manufac-
turer’s instructions using software version 8.0. DNA was extracted for whole-genome sequencing 
via Genfind v3 extraction kit, library preparation performed using Nextera Flex (Illumina) using ¼ 
reagents. Paired-end read data (300 bp) were generated on an Illumina NovaSeq6000 SP v1.0 and 
have been deposited in the European Nucleotide Archive under Bioproject PRJNA777643 (individual 
read accession numbers are given in Figure 5—source data 1). Draft genome assemblies were gener-
ated with Unicycler, and draft metabolic models and growth predictions were generated with Bactab-
olize as described above.

Statistics and visualisation
Statistical analysis and graphical visualisation were performed using R version 4.0.3 (R Development 
Core Team, 2020), RStudio version 1.3.1093 (RStudio-Team, 2020), with the following software pack-
ages: tidyverse version 1.3.1 (Wickham et al., 2019), viridis version 0.5.1 (Garnier, 2018), RColor-
Brewer version 1.1–2 (Neuwirth, 2022), ggpubr version 0.4.0 (Kassambara, 2023), ggpmisc version 
0.4.4 (Aphalo et al., 2023), aplot version 0.1.6 (Yu, 2023), colorspace version 2.0–2 (Zeileis et al., 
2020), ggpattern version 0.4.3–3 (Mike and Davis, 2022), ggtext version 0.1.1 (Wilke and Wiernik, 
2020), and glue version 1.4.2 (Hester, 2022).

Linear regression analysis was performed in R using the lm function and a third-degree polynomial 
model was fitted to plots with the following equation: y~poly(x, 3, raw = TRUE). The segmented linear 
model was fitted using segmented version 1.6–2 (Muggeo VMR, 2023).

All code used to generate results can be found as supplemental material (Watts et al., 2023 and 
Vezina et al., 2023) and on Figshare.

Logo
The Bactabolize logo was constructed in Inkscape version 1.0.1 (Inkscape, 2020). The font used is 
Proportional TFB (zanatlija, 2012) and Element (Weknow, 2015).
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