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eLife assessment
This paper describes an important, well-organized study into an under-exploited area of spatial 
transcriptomics. The limitations of the approach are generally made clear, but there is insufficient 
orthogonal validation to demonstrate the biological significance of the results, which leads to the 
evidence for the claims being currently incomplete. Nevertheless, the tools presented will provide 
a resource to researchers wishing to characterise spatial patterning of mRNAs, and the paper will be 
of interest to researchers studying cell biology, RNA biology, and method development for spatial 
transcriptomics/proteomics.

Abstract Targeted low-throughput studies have previously identified subcellular RNA local-
ization as necessary for cellular functions including polarization, and translocation. Furthermore, 
these studies link localization to RNA isoform expression, especially 3’ Untranslated Region (UTR) 
regulation. The recent introduction of genome-wide spatial transcriptomics techniques enables the 
potential to test if subcellular localization is regulated in situ pervasively. In order to do this, robust 
statistical measures of subcellular localization and alternative poly-adenylation (APA) at single-cell 
resolution are needed. Developing a new statistical framework called SPRAWL, we detect extensive 
cell-type specific subcellular RNA localization regulation in the mouse brain and to a lesser extent 
mouse liver. We integrated SPRAWL with a new approach to measure cell-type specific regulation 
of alternative 3’ UTR processing and detected examples of significant correlations between 3’ UTR 
length and subcellular localization. Included examples, Timp3, Slc32a1, Cxcl14, and Nxph1 have 
subcellular localization in the mouse brain highly correlated with regulated 3’ UTR processing that 
includes the use of unannotated, but highly conserved, 3’ ends. Together, SPRAWL provides a statis-
tical framework to integrate multi-omic single-cell resolved measurements of gene-isoform pairs to 
prioritize an otherwise impossibly large list of candidate functional 3’ UTRs for functional prediction 
and study. In these studies of data from mice, SPRAWL predicts that 3’ UTR regulation of subcellular 
localization may be more pervasive than currently known.

Introduction
As a general rule, it is accepted that the cellular localization of a protein is biologically critical for 
its function (Hung and Link, 2011). However, the general importance of RNA localization within a 
cell, and how this localization varies in different biological situations remains poorly understood. 
Targeted studies have identified examples of genes whose RNA localization is critical to function, such 
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as the enrichment of beta-actin (Actb) RNA to lamellipodia in motile chicken embryonic myoblasts 
(Lawrence and Singer, 1986). It was observed that approximately 80% of total actin mRNA localized 
to the lamellipodia, and specific disruption of localization, but not expression, of the mRNA, resulted 
in decreased cell motility (Kislauskis et al., 1994; Kislauskis et al., 1997). The same authors also 
identified so-called ‘zipcode’ sequences in the 3’ UTR of Actb which were necessary for proper RNA 
localization (Kislauskis et al., 1994). In a larger-scale study, it has been estimated that 70% of mRNAs 
are spatially localized in Drosophila embryogenesis (Lécuyer et  al., 2007). Other well-known and 
recently identified examples of RNA subcellular localization with functional consequences include lipid 
droplets (Saka and Valdivia, 2012) and TIS11B protein granules (Ma and Mayr, 2018). In these case 
studies, RNA localization is cis-regulated by either alternative splicing or 3’ UTR usage.

While the vast majority of 3’ UTR isoform functions remain unknown and incompletely annotated, 
emerging evidence points to an abundance of cell-type specific regulation (Meyer et al., 2022) where 
the inclusion of different 3’ UTRs may even have opposite functions. Cd47, for example, expresses a 
long-isoform 3’ UTR that results in a peripherally localized protein product protecting against phago-
cytosis, but can also express a short-isoform 3’ UTR that results in a cytoplasmic protein product with 
the same amino-acid sequence that does not confer the same phagocytotic protection (Berkovits and 
Mayr, 2015). Control of RNA subcellular localization through RNA isoform choice may help pinpoint 
functions for alternative RNA isoforms and UTRs in eukaryotes.

Spatial transcriptomics has seen rapidly increasing interest as methods become increasingly 
powerful and affordable (Marx, 2021). However, work remains primarily focused on gene expres-
sion. Techniques such as MERFISH (Moffitt et al., 2016), and its commercialization Vizgen, as well as 
SeqFISH+ (Eng et al., 2019) utilize sequential multiplexed fluorescence imaging to localize hundreds 
to thousands of distinct genes across a tissue with subcellular resolution. Along with RNA-capture-
based spatial transcriptomics techniques (Ståhl et al., 2016; Stickels et al., 2021; Su et al., 2021), 
these spatial datasets have primarily been used to analyze the distribution of cell-types within a tissue 
via gene expression. At a finer scale, RNA distribution within cells has been understudied despite an 
established history of biologically important case studies discussed in multiple reviews (Lipshitz and 
Smibert, 2000; Holt and Bullock, 2009; Suter, 2018).

The limited approaches that have been used to detect subcellular localization patterns from high 
throughput, high-resolution spatial datasets rely on co-stains and/or heuristics without statistical 
formalism (Samacoits et al., 2018; Xue et al., 2020; Tang et al., 2021). As an example, an analysis 
of a SeqFISH + dataset relied on arbitrarily chosen hard thresholds to determine peripherally and 
centrally localizing genes in different mouse cortex cell-types. The use of thresholding can result in 
overlooked weaker spatial patterns and also makes it difficult to control the false discovery rate (FDR) 
(Eng et al., 2019). Additionally, compartment-based analysis of MERFISH datasets has been used to 
detect differences in neuron soma, axon, and dendrite transcriptomes using the Wilcoxon rank-sum 
test and Moran’s I (Moran, 1950; Xia et al., 2019). Discretizing cellular regions does not fully utilize 
the information present in the MERFISH dataset since RNA subcellular localization is intrinsically a 
continuous process. Similarly, while proximity-tagging and sequencing approaches such as APEX-seq 
(Fazal et al., 2019; Padrón and Ingolia, 2022) have generated high-plex datasets for RNA local-
ization within subcellular compartments, these methods require genetically modified cell-lines, and 
cannot be readily applied to tissue. Finally, to our knowledge, no study has attempted to test whether 
isoform regulation can explain subcellular localization at the gene level in massively multiplexed FISH 
datasets.

To address the limitations of prior approaches, we introduce Subcellular Patterning Ranked Analysis 
With Labels (SPRAWL) as a transparent and statistical approach to detect RNA subcellular patterning 
from multiplexed imaging datasets. SPRAWL assigns an interpretable score to detect RNA localiza-
tion patterning for a gene of interest in an individual cell. Furthermore, these scores can be carefully 
aggregated to detect spatial patterns between cell-types and biological replicates with FDR control. 
SPRAWL currently identifies continuous peripheral, central, radial, and punctate localization patterns 
which are significantly more extreme than expected by chance in either direction of effect. SPRAWL 
can be extended to detect user-defined patterns and represents a general framework for unbiased 
discovery of RNA subcellular localization patterns from multiplexed imaging datasets. This integrative 
approach identifies genes with potential cis-regulatory spatial sequences, and prioritizes candidates 
for experimental follow-ups.

https://doi.org/10.7554/eLife.87517
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Results
SPRAWL was developed to be a non-parametric single-cell resolved measure of RNA subcellular 
localization that is robust against confounding variables of cell size, and RNA expression level, while 
providing effect-size and statistical significance measures. SPRAWL reduces complex spatial patterns 
into one-dimensional scores that are readily interpretable and comparable. An additional benefit 
of SPRAWL scores is their direct integration with other statistical methods: scores can be analyzed 
through the lens of various metadata such as cell type, or correlated with other measures such as RNA 
3’ UTR regulation or splicing state.

SPRAWL is a publicly available Python package that can be installed using pypi with pip install 
subcellular-sprawl and has also been implemented in Nextflow (Di Tommaso et al., 2017) and Docker 
for reproducible analyses at large scale in high-performance or cloud computing environments. 
SPRAWL source code and documentation are available on GitHub, (copy archived at Bierman, 2024).

SPRAWL quantifies peripheral and central subcellular RNA patterning 
with rank statistics
Examples of RNA localized to the plasma membrane include Actin and Tubulin in mammalian cells 
(Lawrence and Singer, 1986), ASH1 in yeast (Bertrand et al., 1998), and Oskar in fly oocytes (Rongo 
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Figure 1. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) peripheral and central score workflow. (a) RNAs are ranked from closest to 
furthest from the cell-boundary to calculate the median peripheral rank of the gene of interest. For the central metric, distances from the cell centroid 
are used for ranking instead. (b) Under the null hypothesis of each rank being equally likely, the probability mass function of the median is exactly 
calculable. (c) The intuitive SPRAWL score per gene per cell, X, will be near +1 for highly-peripheral patterns, near 0 for randomly-peripheral patterns, 
and near –1 for anti-peripheral patterns. (d) Peripheral significance of a gene within a cell-type is estimated from per cell SPRAWL scores using the 
Lyapunov Central Limit Theorem (CLT). Overlaying cell outlines are a result of viewing 3D slices from the top down.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) metrics have high specificity and lack bias.

https://doi.org/10.7554/eLife.87517
https://github.com/salzman-lab/SPRAWL
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et al., 1995). These foundational examples motivate the unbiased statistical detection of RNA local-
ization patterns in reference to the cell-boundary. To satisfy this need, we’ve created the SPRAWL 
peripheral metric (Figure 1) which quantifies the extent to which the RNA spots of a gene of interest 
are more extremely proximal or distal from the cell-membrane than expected by chance.

To calculate the SPRAWL peripheral metric for a given gene in a given cell, first, the minimum 
euclidean distance is calculated between each RNA spot, regardless of gene identity, and the 
cell-boundary. These distances are then used to rank the spots from 1 to n corresponding to the 
nearest and furthest RNA spot from the boundary, respectively (Figure 1a). The median rank is 
calculated for the m RNA spots of the gene. Under the null hypothesis that the gene is not periph-
erally localized, the expected value is (n+1)/2. Genes with lower median ranks than the expected 
value are more peripherally localizing, while larger median ranks correspond with anti-peripheral 
localization.

The probability mass function (PMF) of observing each possible median peripheral rank has a direct 
formulation which allows for exact calculations of p-values under the null (Figure  1b). The actual 
SPRAWL peripheral score, X, is the result of normalizing the median rank to be between –1 (anti-
peripheral) and 1 (peripheral) with an expected value of 0 (not peripheral) (Figure 1c). Finally, the per 
cell-type scores can be calculated as the mean of the SPRAWL cell scores to provide an aggregate 
measure, Y, of RNA localization per gene per cell-type. Under the Lyapunov Central Limit Theorem 
(Billingsley, 1995), Y will approach in distribution a standard normal as the number of cells increases. 
The SPRAWL centrality score is conceptually identical to the peripheral score, but RNA spots are 
ranked by distance from the cell-centroid rather than the cell boundary. All subsequent steps are the 
same as the peripheral metric.

One of the main advantages of using a rank-based formulation of the periphery and centrality 
scores is the insensitivity to cell size and rotation. This feature facilitates direct comparisons of SPRAWL 
scores between cells and even samples. The simplicity of the statistically-backed metrics provides both 
effect size and p-value handles for detecting extreme RNA patterning in either the positive (periph-
eral/central) or negative (anti-peripheral/anti-central) direction of effect. Finally, it is worth noting that 
while the peripheral and central scores are strongly anti-correlated (Figure 1—figure supplement 1c), 
there are clear examples of RNA with simultaneously central and peripheral localization in a cell when 
the cell-boundary runs near to the cell centroid.

SPRAWL detection of punctate and radial patterning relies on gene-
label permutations
While some RNAs are known to be peripherally or centrally localizing as discussed above, others are 
known to be trafficked to organelles (Chang et al., 2004), cell-poles (Rongo et al., 1995; Hachet and 
Ephrussi, 2004), or neuronal processes (Minis et al., 2014; Zappulo et al., 2017; Das et al., 2019). 
In all cases, RNA molecules of the same gene will be more spatially aggregated than expected by 
chance. To detect such patterning, SPRAWL punctate and radial metrics have been defined to respec-
tively identify RNA species that tend to aggregate by euclidean distance or in one angular sector of 
the cell.

SPRAWL’s punctate score represents the degree to which RNA spots from a given gene are clus-
tered together, scores closer to 1 indicate self-colocalizing or self-aggregating genes. Scores near –1 
indicate self-repulsion, and scores of 0 indicate an expected level of aggregation under the null of 
random patterning.

When calculating the punctate score for a gene of interest with m>1 RNA spots in a cell, a subset 
of k random pairs of spots are selected and the distances between them are measured and averaged 
(Figure 2a). Next gene-label permutations are performed, randomly swapping gene labels but not 
RNA spot locations, to create a null background of mean between-spot distances by again choosing 
k random spots from the gene of interest in each permuted cell (Figure 2b). The punctate score, X, is 
normalized to be between –1 and 1 with E[X]=0 under the null (Figure 2c). Negative values indicate 
anti-punctate patterning, values near 0 are random or non-punctate, and positive values indicate 
punctate behavior (Figure 2d). Finally, SPRAWL cell-type scores can be calculated using the Lyapunov 
Central Limit theorem in the same manner as in the peripheral score (Figure 1d). The radial metric 
is conceptually identical to the punctate metric but measures mean between-spot angles instead of 
between-spot distances.

https://doi.org/10.7554/eLife.87517
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Unlike the peripheral and central metrics, the radial and punctate scores rely on permutation 
testing to create a null distribution for each gene in each cell. The advantages of permutation testing 
are that the metrics can be of any complexity, but the disadvantage is the increased compute time in 
comparison with the simpler rank-based approaches. The permutation-based metrics retain the crit-
ical insensitivity to cell size, shape, and orientation present in the rank-based metrics.

SPRAWL robustly detects subcellular localization in massively 
multiplexed FISH datasets
The SPRAWL peripheral, central, punctate, and radial metrics described above have been used 
to analyze spatial datasets comprising a total of 26 experiments over six mice processed by three 
different research groups and two technologies (Eng et al., 2019; Zhang et al., 2021; Vizgen, 2024; 
Liu et al., 2022). Applying SPRAWL to these datasets revealed: (1) gene/cell-type localization patterns 
have a high correlation between biological replicates; (2) differential subcellular localization patterns 
of the same gene in different cell-types; and (3) differential subcellular regulation corresponding with 
cell-type differential 3’ UTR length from associated single-cell RNA sequencing (scRNA-seq) datasets 
(Yao et al., 2021) for 26 genes including Slc32a1, Cxcl14, Nxph1, and Timp3.

Randomly select   pairs of RNA spots
to estimate mean pairwise distance

SPRAWL punctate score

RNA gene of interest

Selected distance
Skipped distance

Other genes

Punctate Anti-punctate

Permute gene labels    times
to estimate null mean distances 

Limits and Behavior

a)

Anti-punctate PunctateRandom/Permutedd)

b)

c)

Figure 2. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) punctate and radial scores workflow. (a) The SPRAWL punctate metric relies 
on (b) permutation testing to create a score (c) that represents whether RNA molecules from the gene of interest are closer together than expected by 
chance. The radial metric is identically calculated, except using average angle instead of distance. The significance of gene-cell-type punctate patterns 
is calculated using the Lyapunov Central Limit Theorem (CLT) as in the peripheral metric. (d) Depictions and interpretation of the SPRAWL punctate 
metric.

https://doi.org/10.7554/eLife.87517
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SPRAWL detects cell-type specific localization patterns across 
biological replicates
We applied SPRAWL to the BICCN motor cortex (MOp) (Zhang et al., 2021), Vizgen Brainmap, and 
Vizgen Liver datasets (Vizgen, 2024) which each contained either biological or technical replicates. 
The median SPRAWL gene/cell-type scores were significantly positively correlated between replicates 

Real data

Permuted

BICCN  MERFISH

Vizgen Brainmap

Rep 1

Rep 1

Rep 1

Rep 2

Rep 2

Rep 2

Vizgen Liver
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Figure 3. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) gene/cell-type scores are highly correlated between biological replicates. 
(a) BICCN MERFISH, Vizgen Brainmap, and Vizgen Liver biological replicates (rows top to bottom) have Pearson correlation coefficients (blue) larger 
than 0.47 for SPRAWL peripheral, radial, punctate, and central metrics (columns left to right). Randomly permuting gene labels in these datasets 
eliminates underlying spatial patterning and yields insignificant Pearson correlation coefficients (orange) between biological replicates. Dotted lines 
indicate zero-valued SPRAWL gene-cell type scores. (b) In the motor cortex (MOp) BRAIN Initiative Cell Census Network (BICCN) dataset 87% of gene/
cell-type pairs have positive punctate RNA patterning (blue), compared to 50% in the gene-label permuted data (orange). Similarly extreme trends of 
95% and 52% are observed for the radial metric. Cldn5 RNA is consistently highly punctate and radial in all cell-types that express it, depicted by purple 
x-axis ticks.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Vizgen Liver Showcase scores are highly correlated between replicates.

https://doi.org/10.7554/eLife.87517
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within all three datasets for all four spatial metrics having significant Pearson correlation with coeffi-
cients larger than 0.47 at an alpha level of 0.05 (Figure 3a: blue).

Given the observed high pervasiveness of subcellular patterning in all datasets, we tested the 
specificity of SPRAWL by using permuted data. By permuting the gene-label of the RNA spots in a 
cell, we create negative control datasets that are known not to have significant spatial patterning. 
Assuringly, SPRAWL median gene/cell-type scores were not significantly correlated between biolog-
ical replicates in any permuted dataset (Figure 3a: orange). Furthermore, in these negative control 
datasets, SPRAWL does not call any gene to be significantly localized in any cell-type after correcting 
for multiple hypothesis testing.

As an additional control for SPRAWL specificity, MERFISH and Vizgen experiments include ‘blank-
codes’ which do not correspond to actual genes and are, therefore, not expected to have significant 
spatial patterning. In the BICCN MOp dataset, 10 blank-codes were included which SPRAWL deter-
mined to be spatially regulated in only the radial and punctate metrics. For the punctate metric, 191 
of the 248 unique genes that had statistically significant patterning in at least one cell-type had smaller 
BH-corrected p-values than the most significant blank-codes. Similarly, for the radial metric, 232 of the 
241 unique significant genes had a smaller p-value than the most significant blank-codes. SPRAWL did 
not identify significant patterning of blank-codes in any cell-type pairings across all replicates for the 
Vizgen Brainmap and Vizgen Liver datasets. Therefore, adjusting the p-value thresholds to filter out 
blank-codes would result in the loss of only 57 punctate and nine radial gene significance calls from 
only one dataset, again supporting SPRAWL’s specificity.

To test whether the SPRAWL peripheral score was sensitive to cell-segmentation, we compared 
SPRAWL before and after mutating the cell boundaries of a dataset (Methods and Figure 1—figure 
supplement 1e). Specifically, the cell boundary locations were computationally shrunk by a factor of 
1.25 fold in the x and y direction, discarding spots that fell outside the new boundaries. In both the 
BICCN MOp and Vizgen Brainmap datasets, a Pearson correlation coefficient of greater than 0.85 was 
observed between the shrunk and original median gene/cell-type periphery scores. Insensitivity to 
cell-segmentation is an important feature of a subcellular localization algorithm due to the multitude 
of approaches and noted difficulties in computational cell segmentation (Coelho et al., 2009; Thomas 
and John, 2017; Vicar et al., 2019; Durkee et al., 2021).

While SPRAWL’s specificity can be benchmarked with multiple approaches, estimating SPRAWL’s 
sensitivity on real datasets is confounded by a lack of known true positive subcellular RNA patterning 
by cell-type. As a proxy for ground-truth, we hypothesized that RNAs encoding proteins with a 
signal recognition particle (SRP+) would have more centralized patterning than RNAs without (SRP-) 
due to their known trafficking to the endoplasmic reticulum. Surprisingly, the scores of all SPRAWL 
metrics were indistinguishably distributed between SRP+ and SRP- genes (Figure 5—figure supple-
ment 1a). In an additional approach, we tested whether highly central RNAs were enriched in single-
nucleus sequencing (snRNA-seq), compared to scRNA-seq, which was true for only a subset of genes 
(Figure 5—figure supplement 1b). A potential reason for both ground-truth proxies behaving unex-
pectedly is the nucleus is not necessarily centrally localized and RNAs may not be detectable when 
protein-bound.

Cell-type specific subcellular localization is regulated in BICCN MOp 
replicates
In the MOp dataset, SPRAWL detects hundreds of significantly patterned gene/cell-type groups. 
The MOp dataset imaged 252 genes through multiplexed barcoding, including 10 negative-control 
barcodes, and profiled nearly 300,000 cells from the mouse motor cortex (Zhang et al., 2021). Biolog-
ical replicates were present from two mice (Figure 3a: top row) with six slices taken from each animal. 
Conservative filtering of cells and cell-types (see Methods: SPRAWL Filtering) resulted in 220 unique 
genes and 19 distinct cell-types, with 1999 of 4180 (47.8 %) possible gene/cell-type combinations 
observed. After BH multiple hypothesis testing corrections over both biological replicates, 1511 
(75.6%) gene/cell-type pairs were called significant by the SPRAWL peripheral metric, 1492 (74.6%) 
by the central metric, 1475 (73.8%) by the radial metric, and 1448 (72.4%) by the punctate metric. 
Spatial patterning was extensive and consistent between replicates with more than 77.8% of the 
gene/cell-type pairs having the same direction of effect, positive or negative, between the two repli-
cates. Additionally, 176 of 220 (80%) unique genes were found to be significantly spatially regulated 

https://doi.org/10.7554/eLife.87517
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in at least one cell-type in all metrics, but not necessarily the same cell-type in all metrics. Similarly, all 
19 cell-types were observed to be significant with at least one gene in each metric.

Cell-type specific subcellular localization is regulated in Vizgen Brain 
replicates
The Vizgen Brainmap dataset contains nine MERFISH experiments from three coronal sections of a 
mouse brain. Each section contains three adjacent cryotome slices from the same animal that are 
considered pseudo-biological replicates (Figure 3a: middle row). Approximately 70,000 cells and 649 
genes, of which 165 were blank-code negative controls, were imaged. Cell-type annotations were 
not provided for this dataset, and instead, a simple clustering of cells by gene count from the spatial 
data was performed using Scanpy (Wolf et al., 2018) that resulted in 42 cell-type proxies (Methods, 
Brainmap clustering). Analysis of the three brain slices resulted in 158 (54.7%), and 159 (55.0%), 139 
(48.1%), and 156 (54.0%) unique genes significant in at least one cell type for the peripheral, central, 
radial, and punctate analysis, respectively. For the peripheral metric, 2535 of 2877 (88.1%) gene/cell-
type groups present in all three tissue slices had significant Benjamini-Hochberg corrected p-values 
(ɑ=0.05). A similar 87.7% of gene/cell-types were significant according to the centrality metric. For the 
radial metric, 1194 of 2877 (51.6%) gene/cell-type groups were significant, while the punctate metric 
identified 2196 of 2877 (76.3%) of the gene/cell-type pairs as significant.

All slices from all sections were pairwise significantly correlated for the peripheral, radial, and punc-
tate metrics with a minimum Pearson correlation coefficient of 0.55. Cell-type SPRAWL correlation 
results were insensitive to different cell-type clustering parameters (Figure 3—figure supplement 1), 
suggesting that the agreement between biological replicates found by SPRAWL is robust to different 
granularities of clustering; a desirable trait since cell-type clustering approaches vary widely.

Cell-type specific subcellular localization is regulated in Vizgen Liver 
replicates
The Vizgen Liver dataset consists of two mice, each with two replicates for a total of four MERFISH 
experiments (Figure 3a: bottom row). Spatial data was collected on more than 1 million liver cells 
across all four datasets and 589 distinct genes were imaged, of which 127 were blank-codes. As 
with the Vizgen Brainmap dataset, no cell-type annotations were provided and naive clustering was 
performed to generate pseudo-annotations. After filtering out gene/cell-type groups with fewer than 
20 cells, SPRAWL detected 112 (29.1%) peripheral, 112 (29.1%) central, 118 (30.6%) radial, and 134 
(34.8%) punctate genes significant in at least one cell-type. Median SPRAWL scores per gene/cell-type 
were highly correlated between the biological replicates with Pearson correlation coefficients of 0.79, 
0.56, 0.75, and 0.76 for the peripheral, central, radial, and punctate metrics, respectively. The periph-
eral metric identified 1399 of 1642 (85.2%) significant gene/cell-type pairs after restricting to median 
RNA spot count greater than or equal to 5, and presence in both biological replicates. Similar percent-
ages of 85.1%, 51.4%, and 77.4% of gene/cell-type pairs were found to be significantly patterned in 
the central, radial, and punctate metrics.

Significant SPRAWL punctate and radial scores are highly skewed 
towards aggregation
Over 99% of the significant gene/cell-type groups have positive (X>0) radial and punctate scores, 
revealing a significant and general tendency of RNAs to colocalize with other RNAs of the same gene 
both by euclidean distance (punctate metric), and angular dispersion (radial metric). In comparison, 
the SPRAWL peripheral metric in the BICCN MOp dataset identifies 56.1% of significant gene/cell-
type pairs as more positively peripheral (X>0) and the remaining 43.9% are anti-peripheral (X<0). 
Similarly, the SPRAWL central metric identifies 45.2% of significantly positive scoring gene/cell-type 
pairs. Empirical CDF plots of SPRAWL metric scores provide an alternate view for the same phenom-
enon (Figure 1—figure supplement 1a, b). Additionally, null simulated datasets did not have a bias 
towards positive radial or punctate scoring (Figure 3a orange).

SPRAWL detects 112 of 252 genes (44.4%) as globally positively punctate and radial in all cell-types 
which express them including extreme genes, such as Claudin 5 (Cldn5) which has a median SPRAWL 
punctate and radial score of 0.85 and 0.84, respectively (Figure 3b purple ticks) as well as VEGFR-1 
(Flt1) which has a median SPRAWL punctate and radial score of 0.83 for both metrics (Figure 3b). 

https://doi.org/10.7554/eLife.87517
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Cldn5 protein product is the primary integral membrane protein component of tight junctions in 
mouse brain and knockouts result in postnatal death (Nitta et al., 2003). Flt1 is a transmembrane 
tyrosine kinase receptor that binds vascular endothelial growth factor (VEGFR) and also has a short-
ened alternative soluble protein isoform (Shibuya et al., 1990; Jin et al., 2012). The consistent posi-
tive punctate and radial scores of Flt1, and lack of differential localization patterns, could indicate that 
either only one isoform of Flt1 is expressed across all cell-types, or that the two mRNA isoforms are 
alternatively expressed but do not have differential subcellular localization patterns. It is currently not 
known in the literature whether Cldn5 or Flt1 RNA localization is regulated, but a followup targeted 
FISH experiment could be insightful. We note that imaging errors resulting in calling a single RNA 
molecule as two nearby molecules could be artificially inflating the radial and punctate scores leading 
to more significant calls.

SPRAWL detects genes with opposite and cell-type dependent RNA 
localization
We defined opposite-directionality genes as those that have the pattern of being significantly posi-
tively scoring in one cell-type, while being significantly negatively scoring in another cell-type for 
the same metric, such as peripheral vs. anti-peripheral. Significant spatial patterning of a gene in 
only a subset of cell-types suggests differences in either cis or trans-acting regulatory factors. For 
the BICCN dataset out of 252 genes, 92 (36%) peripheral, 96 (38%) central, 2 (1%) radial, and 10 
(4%) punctate genes are opposite-directionality (Supplemental Table 1 in Supplementary file 1). We 
define an additional class of genes as cell-type dependent, but not opposite-directionality patterning. 
These genes are significant in at least one cell-type, but insignificantly localized in at least one other 
cell-type and account for approximately 55% of genes in peripheral and central metrics, and 20% 
for the radial and punctate metrics across all datasets. SPRAWL’s ability to detect cell-type specific 
regulation of subcellular patterning generates testable hypotheses for follow-up analysis and experi-
mentation. A computationally tractable hypothesis of interest inspired by the known presence of ‘zip 
code’ elements, is whether there exist general correlations between 3’ UTR isoform and localization 
across cell-types.

Subcellular RNA localization is enriched for correlations with 3’ UTR 
length
Alternative 3’ UTRs and splice isoforms are known to result in differential mRNA localization (Kislauskis 
et al., 1994). Inclusion or exclusion of specific sequence elements can disrupt RNA binding proteins 
(RBPs) from binding and localizing the transcript. RBPs that have been identified as controlling tran-
script localization can have cell-type specific expression, including at the isoform level (Yisraeli, 2005; 
Müller-McNicoll and Neugebauer, 2013; Hentze et  al., 2018). Examples of such RBPs include 
members of the RNA-transport granule (Kanai et al., 2004), providing a model for why RNAs may 
be cell type specifically localized as a function of their isoform. Conversely, differential localization of 
the same isoform can occur if the trans-acting localization factor is differentially expressed in different 
cell-types.

We coupled a recent statistical method to measure 3’ UTR length called the ReadZS (Meyer et al., 
2021) with SPRAWL to identify genes with spatial localization correlated with 3’ UTR regulation (Booe-
shaghi et al., 2021). We used ReadZS to statistically quantify 3’ UTR lengths at single-cell resolution, 
and then computed the median ReadZS score by cell-type and gene on cell-type-matched 10Xv3 
scRNA-seq datasets from the BICCN consortium (BRAIN Initiative Cell Census Network (BICCN), 
2021). Spatial localization SPRAWL scores and ReadZS 3’ UTR lengths were correlated by gene/cell-
type (Figure 4a). Twenty-six genes were detected as having significant SPRAWL/ReadZS correlation 
after BH multiple hypothesis correction at an FDR level of 0.05, a twofold enrichment compared to 
what is expected by chance (see Methods: Correlation analysis between SPRAWL and ReadZS). No 
significant gene/metric pairs were detected from the CZB mouse kidney/liver dataset which was the 
only other dataset with matched scRNA-seq. The lack of significant correlations between the SPRAWL 
metric score and 3’ UTR length in this dataset could be due to multiple factors, including this dataset 
having fewer coarser cell-type definitions.

https://doi.org/10.7554/eLife.87517
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Figure 4. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) spatial scores and 3’ Untranslated Region (UTR) length are significantly 
correlated for a subset of genes. (a) Workflow to calculate median 3’ UTR length and spatial score per gene/cell-type. (b) Slc32a1 median centrality, 
(c) Cxcl14 radial, and (d) Nxph1 punctate SPRAWL scores from the BRAIN Initiative Cell Census Network (BICCN) MERFISH dataset correlate significantly 
with 3’ UTR length determined from 10 X scRNA-seq data by ReadZS. The left-column boxplots show individual SPRAWL cell scores as overlaid dots. 

Figure 4 continued on next page
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Slc32a1, Cxcl14, and Nxph1 3’ UTR length predicts sub-cellular 
localization
SPRAWL detects 26 unique genes and 84 pairs of gene/metric combinations (i.e. gene1/peripheral, 
gene1/radial) with significant correlations to that gene’s 3’ UTR length. From this list, Slc32a1, Cxcl14, 
and Nxph1 were selected as representatives of the central, radial, and punctate metrics, respectively. 
All have significant evidence for cell-type differential expression of un-annotated 3’ UTRs and an 
unusually high degree of 3’ UTR conservation. Figure 4 depicts the SPRAWL scores and predicted 
3’ UTR lengths for Slc32a1, Cxcl14, and Nxph1 in multiple cell-types. Representative low and high-
scoring cells for each gene/cell-type pair were chosen randomly after filtering for SPRAWL scores less 
than –0.2 and greater than 0.2, respectively, having 5 or more RNA spots of the gene of interest.

Slc32a1, synonymously VIAAT or VGAT, is a marker of GABAergic neurons and was found to be 
differentially central by cell-type (Figure  4b). Slc32a1 is an integral membrane protein residing in 
synaptic vesicles where it uptakes glycine and gamma-aminobutyric acid (GABA) (Gasnier, 2004). 
Slc32a1 is currently annotated to have two exons in the UCSC genome browser mm39 (Lee et al., 
2022), but was at one point thought to have three exons and exhibit alternative splicing near the 3’ 
UTR without known biological significance (Ebihara et al., 2003). SPRAWL central score and ReadZS 
have a significant correlation (Pearson R=−0.94, corrected p<<0.05). Differential central localization 
of Slc32a1 RNA between cell-types is of potential interest due to the protein product’s known role 
of localizing to synaptic vesicles in neurons which would yield the highly non-central distribution 
observed in the L6 CT and L5 IT neuronal cell-types.

Cxcl14 3’ UTR length and SPRAWL radial score were significantly correlated (Pearson R=0.9 
corrected p<<0.05); cell-types with longer 3’ UTRs have increasingly extreme radial clustering, while 
the unannotated shorter 3’ UTRs have middling SPRAWL non-radial scores near zero. Only one Cxcl14 
3’ UTR isoform is annotated, but ReadZS analysis predicts a decrease in length of about 600 bps 
(Figure 4c; Bässler et al., 2001). The protein product of Chemokine (C-X-C motif) ligand 14, Cxcl14 
or BRAK, is a small chemokine of length 99 residues in mouse and 111 in humans, and was originally 
found to be highly expressed in breast and kidney (Hromas et al., 1999). Cxcl14 is constitutively 
expressed in skin and keratinocytes and is a potent leukocyte recruitment factor (Westrich et al., 
2020) but has also more recently been observed as constitutively expressed throughout multiple 
brain regions where one of its functions is to regulate synaptic transmission (Banisadr et al., 2011). 
According to the MERFISH dataset, Cxcl14 was lowly but consistently expressed with the full-length 
3’ annotated UTR in 429 L6 neurons with a median of 5 spots per cell while having higher expression 
in Vip-cells and astrocytes where a slightly shorter 3’ UTR was expressed. We hypothesize that Cxcl14 
has differential 3’ UTR usage associated with differential expression across these cell-types and that 
the novel short 3’ UTR is less radially clustered than the annotated full-length 3’ UTR.

Nxph1, neurexophilin-1, is a ligand of Nrxn1 and is expressed in inhibitory neurons (Born et al., 
2014). The punctate SPRAWL score of Nxph1 is positively correlated with 3’ UTR length (Pearson 
R=0.9, corrected p<<0.05 Figure  4d). Nxph1 is a secreted protein that binds to multiple splice 
isoforms of Nrxn1 at synapses with varying specificity (Wilson et al., 2019). To our knowledge, neither 
differential 3’ UTR lengths nor differential subcellular localization patterns have been previously 

The cell-types are sorted by increasing median score marked in red. The two cell-types with the highest and lowest median SPRAWL scores are plotted 
individually while the remaining cell-types are collapsed into the ‘Other’ category. Gene/cell examples are shown to the left of the boxplots for each 
extreme cell-type group. The density plots in the middle column show estimated 3’ UTR lengths for each read mapping within the annotated 3’ UTR, 
stratified by cell-type. Lengths were approximated as the distance between the annotated start of the 3’ UTR and the median read-mapping position. 
Each density plot is normalized by cell-type to show relative shifts in 3’ UTR length with median lengths depicted with red lines. The scatterplots show 
the significant correlations between the median SPRAWL score and the median 3’ UTR length. The two cell-types with the highest, and the two with the 
lowest SPRAWL median scores are highlighted.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. ReadZS detects Tabula Sapiens Lung differential 3’ Untranslated Region (UTR) length TIMP3 and decreases in Timp3 expression 
throughout culture.

Figure supplement 2. Computationally predicted miRNA binding sites in the 3’ Untranslated Regions (UTRs) of Slc32a1, Cxcl4, and Nxph1 and 
additional 3’ UTR correlated genes.

Figure 4 continued

https://doi.org/10.7554/eLife.87517
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described for Nxph1, although dendritic targeting by 3’ UTRs of other proteins, such as CaMKII, has 
been identified (Mayford et al., 1996).

All three genes, Slc32a1, Cxcl14, and Nxph1, have predicted miRNA binding sites tiling their 3’ 
UTRs suggesting possible mechanisms of differential 3’ UTR post-transcriptional selection and regu-
lation (Figure 4—figure supplement 2a). We show an additional three genes with correlated spatial 
and 3’ UTR length show similar patterns (Figure 4—figure supplement 2b).

Timp3 3’ UTR length predicts peripheral localization
In the BICCN data, Timp3 has the largest observed variation in estimated 3’ UTR length between 
cell-types, with the most divergent read-buildup between layer-6 corticothalamic (L6 CT) and endo-
thelial cells reflecting at least two dominant 3’ UTRs differing in length by >2 kilobases (Figure 5a). 
These 3’ UTR read densities were consistent across mouse biological sequencing replicates within 
10 X scRNA-seq experiments. Only one UTR is annotated, though a gene antisense to Timp3, Sync3 
on the minus strand, overlaps its transcriptional radius. We are confident that observed reads can be 
confidently attributed to Timp3 as Sync3’s nearest exon is ~5 kb from Timp3’s UTR and plus-strand 
mapping reads alone were analyzed.

Timp3 is a secreted matrix metalloprotease inhibitor that has been implicated in multiple diseases 
ranging from cardiomyopathies to macular dystrophies (Weber et al., 1994; Schrimpf et al., 2012), 
but subcellular RNA localization patterns have not been reported. Elevated Timp3 gene expression 
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Figure 5. Timp3 alternative peripheral localization across motor cortex (MOp) cell types is statistically correlated with ReadZs differences in 3’ 
Untranslated Region (UTR) length. (a) ReadZs detects two major alternative 3’ UTRs in mouse Timp3 from 10 X scRNA-seq which correspond to miR-
181c-5p and miR-221–3 p binding sites. Reads from L6 critical threshold (CT) cells predominantly map to a novel upstream shortened 3’ UTR while 
endothelial cells primarily express the longer annotated 3’ UTR. The UCSC genome browser placental animal sequence conservation shows highly 
conserved regions in blue. Fisher’s exact test was highly significant between the two peaks denoted by the dotted lines between the two cell types. 
(b) Timp3 mean periphery score is significantly correlated with Timp3 median ReadZs score across MOp cell-types with Pearson correlation coefficient of 
–0.91 and p<<0.05. (c) Fraction of TIMP3 RNA full-length 3’ UTR reads, gray box, and (d) bar plots, decreases during human lung tissue culture.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Subcellular Patterning Ranked Analysis With Labels (SPRAWL) scores do not correlate with the presence of signal recognition 
peptide, but do correlate with nuclear enrichment.

https://doi.org/10.7554/eLife.87517
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(Capone et al., 2016) is linked to compromised cerebral blood flow, and the RNA is experimentally 
validated to be a target of microRNA (miRNA) regulation (Fiorentino et al., 2013). We observe Timp3 
RNA to be significantly peripheral in L6 IT neurons; while being insignificantly peripherally localized 
in Sst cells. SPRAWL and ReadZS 3’ UTR scores had a significant negative correlation of R=−0.68 and 
p<<0.05 Pearson BH-corrected p-value. Timp3’s longer, annotated 3’ UTR isoform is expressed in 
cell-types with significantly less peripheral localization as compared to shorter unannotated isoforms 
(Figure 5b).

We studied whether Timp3’s 3’ UTR length was more globally regulated in endothelial and other 
cell-types through scRNA-seq and in different biological contexts in both mouse and human datasets 
and extended the analysis to include Timp2. Mouse and human Timp3 have a 96.2% amino acid 
sequence similarity with mouse and human Timp2 having an even higher 98.2% sequence identity. 
ReadZS also detected statistically significant Timp3 3’ UTR length shifts between cell-types from the 
Tabula Sapiens consortium Jones et al., 2022 in the lung and other tissues (Figure 4—figure supple-
ment 1a). Furthermore, we found both Timp2 and Timp3 UTR lengths to be regulated in lung tissue 
slices across endothelial, epithelial, immune, and stroma cell-type compartments (Figure 5c and d). 
Since SPRAWL identified a highly negative correlation between Timp3 peripheral subcellular localiza-
tion and 3’ UTR length, and since Timp3 3’ UTRs become shorter during lung culture, the subcellular 
localization of Timp3 is predicted to shift to a more peripheral distribution during the lung culture. In 
conjunction with 3’ UTR length shortening, gene expression of Timp3 decreases over this time course 
in all cell-type groups (Figure 4—figure supplement 1b).

Both mouse and human Timp3 show high conservation within its 3’ UTR. Conservation is particu-
larly high near the two dominant alternative 3’ UTR regions (Figure 5a and c: Cons 100 Verts track), 
all but one of which are un-annotated. These regions could contain alternative end processing or 
regulatory sequences. In the case of mouse Timp3, this includes annotated binding sites for miR-
181c-5p and miR-221–3 p and RBPs Cirbp, Cpsf6, and Celf1 (Figure 5a). The 3’ UTR isoforms differ-
entially include these regions, releasing the shorter isoforms from regulatory pressures by more distal 
elements, including the experimentally validated miR-21 that binds in the 3’ UTR of human Timp3 (Hu 
et al., 2016). In this study, the authors found that high expression of miR-21 led to repression of Timp3 
and pathogenic activation of angiogenesis.

Together, we hypothesize that Timp3 may have both secreted and non-secreted isoforms, with a 
precedent set by Cd47 (Berkovits and Mayr, 2015). Furthermore, we hypothesize that this regula-
tion is controlled by alternative 3’ UTR isoform lengths that determine subcellular RNA localization 
through interaction with RBPs and microRNAs that specifically bind the longer isoform. This example 
illustrates the power of SPRAWL for unsupervised discovery of subcellular localization and its inte-
gration with isoform-resolved, annotation-free analysis of scRNA-seq to generate testable biological 
hypotheses regarding isoform-specific regulation and function.

Human brain pericyte cell culture shows differential temporal Timp3 3’ 
UTR usage
Motivated by the findings that (1) mouse brain cell-types expressing shorter Timp3 3’ UTR isoforms 
were correlated with increasingly peripherally localized Timp3 RNA (Figure  5b), and (2) Timp3 3’ 
UTR lengths decrease throughout human lung slice culture (Figure 5c and d), we hypothesized that 
Timp3 protein secretion would be sensitive to RNA localization and/or 3’ UTR length. We tested this 
hypothesis using a human brain pericyte cell-line known to express Timp3 protein. The pericytes were 
cultured over 5 d with supernatant samples collected at 6, 24, 48, and 72 after plating. At each time-
point, the number of cells, total extracellular protein concentration (BCA), extracellular Timp3 protein 
(ELISA), and Timp3 RNA (qPCR) were measured (Figure 6a).

We observed that the rate of per-cell Timp3 protein secretion, as measured by ELISA, does not 
significantly change throughout culture time, averaging 350 Timp3 protein molecules per-cell per-hour. 
The approximately 15- hr half-life of Timp3 protein in cell culture (Mao et al., 2021) was taken into 
account when making these calculations (Methods Timp3 protein production estimation). However, 
total extracellular protein per-cell slightly decreased from 6 to 24 hr of cell culture as measured by 
BCA (Figure 6b). Taken together these findings suggest that Timp3 protein production is not variable 
during cell culture.

https://doi.org/10.7554/eLife.87517
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From the previous human lung culture experiment (Figure 5c), we hypothesized that the abun-
dance of shortened 3’ UTRs of Timp3 would increase relative to the canonical full-length isoform 
throughout pericyte cell culture. To test this hypothesis, Timp3 short and long 3’ UTR abundance 
were estimated using proximal and distal qPCR primers. The proximal qPCR primer pair is designed 
to amplify both full-length canonical and un-annotated shortened 3’ UTR Timp3 templates. The distal 
qPCR primer pair, however, can only amplify the full-length isoform (Figure 6c). In support of our 
hypothesis, we observe the ratio of Timp3 distal to proximal RNA abundance significantly decreased 
from 24 to 48 hr by a factor of 1.5 X (Figure 6d).

Additionally, Timp3 3’ UTR expression decreased by half between 6 and 24 hr before doubling 
between 48 and 72 hr as measured by both proximal and distal qPCR primers (Figure 6e). The large 
fluctuations in Timp3 expression relative to multiple house-keeping genes are noteworthy since the 
Timp3 protein production levels remained constant throughout the experiment. This observation may 
suggest post-transcriptional or post-translational regulation. In conclusion, transcripts of Timp3 with 
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Figure 6. Shorter TIMP3 3’ Untranslated Regions (UTRs) become relatively more abundant in pericyte cell culture while TIMP3 protein production 
remains stable. (a) Experimental setup for human pericyte cell culture with reverse-transcriptase quantitative PCR (RT-qPCR) and extracellular TIMP3 
protein ELISA readouts at four-timepoints. (b) TIMP3 protein secretion per cell per hour does not significantly change throughout culture time, even 
though the total protein measured by BCA does change. (c) qPCR experiment design with proximal and distal qPCR primers to distinguish long and 
short 3’ UTR isoforms. The proximal qPCR primer can detect both long and short isoforms while the distal primer can only amplify the long 3’ UTR. 
(d) The ratio of distal to proximal primer-template abundances significantly decreases throughout culture time, implying increased usage of the short 
TIMP3 3’ UTR compared to the long isoform. (e) TIMP3 3’ UTR abundance, normalized by 18 s housekeeper abundance, fluctuates from halving to 
doubling between culture timepoints for both distal and proximal primers.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. qPCR primer efficiencies for Timp3 3’ Untranslated Region (UTR) were estimated by using twofold cDNA dilutions of the same 
6 hr timepoint sample.

https://doi.org/10.7554/eLife.87517
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the proximal 3’ UTR region increased in relation to the distal region during pericyte culture, which is 
in agreement with our hypothesis from the human lung culture model.

Discussion
Highly multiplexed spatial transcriptomics datasets are becoming increasingly available, but analysis 
tools have overwhelmingly focused on localizing cell-types within tissue, rather than RNA within cells. 
SPRAWL addresses this need as a novel non-parametric approach for unbiased detection of subcel-
lular RNA localization patterns. In this study, SPRAWL provides evidence for (1) highly consistent RNA 
patterning across biological replicates, (2) abundant cell-type specific RNA localization, and (3) differ-
ential patterning dependent on 3’ UTR isoform.

We show that SPRAWL has perfect specificity when benchmarked on simulated negative control 
datasets, yet identifies thousands of significant genes with extreme RNA localization patterns by cell-
type in real datasets. The simplicity of the SPRAWL score facilitates integration with other datasets 
and tools for follow-up computational studies. We’ve been able to illustrate this concept by lever-
aging existing scRNA-seq datasets and the ReadZS tool (Meyer et  al., 2022) to find genes with 
correlated patterning and 3’ UTR usage. Additionally, SPRAWL results can motivate experimental 
studies that detect novel biology as we’ve shown by identifying shifting Timp3 3’ UTR isoform usage 
in a pericyte culture experiment.

SPRAWL prioritizes potentially functionally important isoform expression for further study such 
as Timp3, Slc32a1, Cxcl14, and Nxph1 which have significant spatial and 3’ UTR-usage correlation 
between cell-types. SPRAWL generates testable hypotheses of cis-regulatory elements that alter RNA 
localization which is of high interest because in mice and humans, more than 96% of genes are alter-
natively spliced and UTR regulation is pervasive but poorly annotated (Olivieri et al., 2021; Olivieri 
et al., 2022).

The localization scores generated by SPRAWL are versatile and can be computed for proteins 
rather than RNA. In fact, trans-regulated spatial events can be detected in future work by applying 
SPRAWL to subcellular protein localization datasets generated by tools such as CODEX (Black et al., 
2021) or MIBI (Keren et  al., 2019). Furthermore, the SPRAWL framework can be used to imple-
ment different measures of subcellular localization. Some but not all statistically significant patterns 
detected by SPRAWL are ‘striking to the human eye,’ which has implications for whether human-
guided or statistical-guided inferences are preferred and which are more biologically meaningful.

The importance of the correlation between SPRAWL subcellular localization and isoform expres-
sion, including Timp3, Slc32a1, Cxcl14, and Nxph1, was minimally explored in this work. Still, we 
hypothesize a causal link between 3’ UTR regulation, localization, and potential protein function, as 
was observed for Actb, which could guide future experimental efforts, as well as help pinpoint cell-
type specific functions. Our in vitro human pericyte cell culture experiment, for example, showed 
that pericytes are utilizing a previously unknown shortened Timp3 3’ UTR in addition to the full-
length isoform. Furthermore, a shift towards more shortened 3’ UTR usage occurs during pericyte cell 
culture; a result that mirrors SPRAWL findings in human lung tissue.

Sampling a handful of tissues and cell types, SPRAWL identified tens of RNA species with subcel-
lular localization related to cell type. Many technical limitations suggest that this number is a signifi-
cant underestimate: for one, MERFISH-based approaches require probes to be pre-specified, and thus 
they (a) aggregate isoforms, confounding cases where two co-expressed isoforms have dramatically 
different localization patterns; (b) miss isoforms that lack sequence contained in the probe set measure-
ments. Furthermore, single-cell sequencing technology and analysis may be under-ascertaining RNA 
expression due to (i) sampling depth; (ii) poly-A capture bias, and (iii) a dearth of computational algo-
rithms to analyze isoform-specific differences. Through the ReadZS we have collapsed UTR variation 
to a single scalar value (Meyer et al., 2021; Chaung et al., 2022; Olivieri et al., 2022) but we have 
not explored correlations with RNA splicing or other sequence variants, a topic of further research. 
Our findings support a model where 3’ UTR regulation at the nucleotide level controls localization 
through function. If this is true, imaging-based technology like MERFISH will have limited power over 
discovery and in situ sequencing may be a preferred approach. Together, this suggests that isoform-
specific localization may be widespread and confer functions that should be tested in future compu-
tational and experimental work.

https://doi.org/10.7554/eLife.87517
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SPRAWL provides an estimate of the pervasiveness of cell-type and 3’ UTR-regulated RNA localiza-
tion. Limitations of the study include possible confounding by technical artifacts from probe hybridiza-
tion, improper cell-segmentation, and bias in the gene panel selected for imaging. Additionally, our 
decision not to use nuclei boundaries blinds us to situations where an RNA may be highly peripheral, 
but still within the cell nucleus. This could mean UTR peripherality is confounded with the dynamis of 
export, including transcription at the nuclear periphery. We have attempted to address these poten-
tial artifacts through hundreds of thousands of observations and by permutation where possible. 
Additionally, computationally shrinking cell-boundaries resulted in only minimal changes in SPRAWL 
scores. Future work on novel datasets using different segmentation approaches will provide further 
confidence that SPRAWL detects biologically relevant patterns. We believe the current implementa-
tion of SPRAWL is conservative and likely misses patterns due to optical crowding and low-abundance 
gene expression.

There exists no directly competing method to SPRAWL which is able to leverage highly multi-
plexed imaging datasets, requiring only RNA spot locations, cell-boundary estimates, and gene 
identity of each RNA spot. Many current software approaches aim to discretize RNA patterning into 
subcompartments and rely on co-stains which are not guaranteed to be present in every dataset. 
Other approaches use statistically opaque machine-learning-based classifiers to assign RNA spots to 
pre-specified patterns (Mah et al., 2022). As spatial transcriptomics methods are commercialized and 
become more accessible, increasing numbers of public datasets will become available and can be 
processed by SPRAWL regardless of the tissue or study design.

Materials and methods
Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, 
algorithm SPRAWL This paper, Bierman, 2024

https://github.com/salzman-​
lab/SPRAWL

Cell line (Homo-
sapiens)

Human brain vascular 
pericytes Sciencell #1200

Sequence-
based reagent Proximal_primer_1_fwd This paper Timp3 qPCR primer ​GGGA​​ACTA​​TCCT​​CCTG​​GCCC​

Sequence-
based reagent Proximal_primer_1_rev This paper Timp3 qPCR primer ​TTCT​​GGCA​​TGGC​​ACCA​​GAAA​T

Sequence-
based reagent Proximal_primer_2_fwd This paper Timp3 qPCR primer ​AGGT​​CTAT​​GCTG​​TCAT​​ATGG​​GGT

Sequence-
based reagent Proximal_primer_2_rev This paper Timp3 qPCR primer ​TGGG​​GCCA​​GGAG​​GATA​​GTTC​

Sequence-
based reagent Distall_primer_1_fwd This paper Timp3 qPCR primer ​AATT​​GGCT​​CTTT​​GGAG​​GCGA​

Sequence-
based reagent Distal_primer_1_rev This paper Timp3 qPCR primer ​GCGG​​ATGC​​TGGG​​AGAA​​TCTA​

Sequence-
based reagent Distal_primer_2_fwd This paper Timp3 qPCR primer ​TAGC​​CAGT​​CTGC​​TGTC​​CTGA​

Sequence-
based reagent Distal_primer_2_rev This paper Timp3 qPCR primer ​GGGT​​TCGA​​GATC​​TCTT​​GTTG​G

Commercial 
assay or kit qPCR Kit BioRad

SsoAdvanced Universal 
supermix

Commercial 
assay or kit Human TIMP-3 ELISA Kit Invitrogen # EH458RB

SPRAWL input data and preprocessing
SPRAWL takes as input processed datasets from MERFISH, Vizgen, and SeqFISH + requiring cell-
boundary and RNA spot x,y, and gene label information. For MERFISH and Vizgen, this data is the 
product of applying MERlin (Emanuel and Babcock, 2020) on the raw MERFISH microscopy images 

https://doi.org/10.7554/eLife.87517
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to align the images between sequencing rounds, call RNA spots, and perform cell segmentation using 
a seeded watershed approach described in a prior MERFISH work (Moffitt et al., 2018). SeqFISH + 
utilizes a similar approach to identify and decode RNA spots, but then simply defines the cell boundary 
as the convex hull around all points (Eng et al., 2019).

The MERFISH primary mouse cortex (MOp) dataset has 258 genes from coronal slices of the MOp 
from two mice as biological replicates (Zhang et al., 2020). Each mouse had six MERFISH experi-
ments with 5–6 10- um sections processed together on the same coverslip. Each mouse had 32 total 
sections. Each 10- um thick section had seven optical layers spaced 1.5 microns apart. The MERFISH 
brain MOp processed datasets include multiple z-slices for each cell. The data was downloaded from 
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/.

The SeqFISH + dataset imaged 913 cells and 10,000 genes in the mouse cortex at a single z-slice 
(Eng et al., 2019). The authors assigned each cell to one of twenty-six different cell-type annotations 
such as Endothelial, Interneuron, Astrocyte, etc. The dataset was downloaded from https://github.​
com/CaiGroup/seqFISH-PLUS/ (Cai et al., 2019).

The Vizgen MERFISH Mouse Brain Map (BrainMap) is a dataset of 649 total genes which include 
canonical brain cell type markers, GPCRs, and RTKs from a single mouse brain (Vizgen, 2024). Three 
full coronal sections were processed along the rostral-caudal axis. Additionally, for each section, 
three adjacent slices were used as biological replicates with the underlying assumption that adja-
cent slices in the mouse brain have high similarities in cell-type composition and spatial organization. 
Each of the nine imaging datasets contain seven optical layers spaced 1.5  microns apart. Data is 
publicly available https://console.cloud.google.com/marketplace/product/gcp-public-data-vizgen/​
vizgen-mouse-brain-map.

The Vizgen MERFISH Liver showcase contained 2 mouse liver samples each with two MERFISH 
experiments imaging 347 genes and over one million cells (Vizgen, 2024). Cell-type annotations 
were not provided and instead, cell-type proxies were determined by clustering the cells based on the 
MERFISH-determined RNA composition of each cell (Methods: Vizgen Brainmap and Liver showcase 
clustering to produce cell-type proxies). The dataset contains seven optical layers spaced 1.5 microns 
apart and data is publicly available from https://info.vizgen.com/mouse-liver-data?submissionGuid=​
832a9f61-22d3-44c1-a2cf-838c166d9ac5.

The CZB kidney/liver dataset contained a single mouse kidney and liver sample that were imaged using 
the Vizgen platform to detect the same panel of 307 genes in ~57,000 cells in the kidney and ~16,000 in 
the liver (Liu et al., 2022). https://figshare.com/projects/MERFISH_mouse_comparison_study/134213.

We have specified a simple HDF5 format to standardize the different data sources. In brief, data 
is stored in a cell-centric manner, consolidating RNA spots and cell boundaries into the same object. 
This flexible format is described in detail in the GitHub repository, (copy archived at Bierman, 2024) 
and includes vignettes with example datasets. For MERFISH and Vizgen datasets, the RNA spots and 
cell boundaries were assigned locations in a global coordinate, but lacked cell assignments for each 
RNA spot. We have written simple and fast scripts to make these assignments using the python Rtree 
and shapely (Gillies et al., 2007) packages. The GitHub repository includes the next flow pipelines 
used to transform the downloaded datasets to this HDF5 format.

SPRAWL methodology
SPRAWL preprocesses spatial datasets into a standardized HDF5 file that contains cell boundary, 
cell-type, and RNA location information generated from MERFISH/Vizgen and SeqFISH + datasets 
(Figure 1a). Next per-gene/per-cells are calculated. For the peripheral metric, all RNA spots are ranked 
based on their minimum distance to the cell boundary (Figure 1b), and then their means are used 
to generate a gene/cell-type score and p-value (Figure 1c). Scores near 1 indicate a gene is highly 
peripheral in a cell-type, while scores near –1 indicate a pattern of RNA molecules far from the cell-
boundary. Intuitively, if a gene is not significant it will not be close or far from the cell boundary and 
its peripheral score will be near 0, and its p-value will be insignificant. The centrality metric is concep-
tually similar, where ranking is determined by minimum distance to the cell centroid and positive 
values indicate unexpectedly centrally-biased distributions. Empirically, the centrality and peripher-
ality metrics are anti-correlated (Figure 1—figure supplement 1b), but not perfectly, as it is possible 
for an RNA spot to be simultaneously close to the periphery and cell centroid with certain cell shapes 

https://doi.org/10.7554/eLife.87517
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such as a ‘dumbbell.’ Only the ranking step is different between the peripheral and central metrics; all 
downstream steps are identical.

Under the null hypothesis that a gene is not subcellularly patterned within a cell, the peripheral and 
central gene/cell scores have an expected value of 0 and a calculable variance that depends on the 
number of RNA spots. These statistical underpinnings of the gene/cell scores allow for the identifica-
tion of spatially significant patterning within gene/cell-types (Methods). Under the null which is each 
spot’s gene identity is drawn uniformly from the set of gene/spots observed from the cell, gene/cell 
scores for k cells of a single cell-type and gene g are independent random variables Xg,1, Xg,2, Xg,3,..., 
Xg,k with expected values, μi = 0 and variance μi. Independence in this case comes from the assumption 
that the scores of a given gene across different cells do not influence each other. Note that the scores 
of different genes within the same cell are not independent due to the ranking procedure. We define 
Y=mean(Xg,1, Xg,2, Xg,3,..., Xg,k) as the SPRAWL gene/cell-type score and a z-score can be calculated 
under the null that within a cell, each spot’s gene identity is exchangeable with the Lyapunov Central 
Limit Theorem (Billingsley, 1995) (Methods: SPRAWL gene/cell-type scoring).

The resulting values y are used to calculate two-sided p-values using the CDF of the standard 
normal. Multiple hypothesis testing from the numerous gene/cell-type pairs is controlled using the 
Benjamini-Hochberg correction (Benjamini and Hochberg, 1995).

SPRAWL peripheral and central metric definition
Each gene-cell pair is assigned a SPRAWL score by (1) ranking all RNA spots, (2) calculating median 
ranks per gene, and (3) normalizing by the expected median rank. Consider a single cell, with a single 
z-slice, that has ‍n‍ total RNA spots, and ‍g‍ unique genes with each gene having ‍m1, m2, m3, ..., mg‍ spots 
such that ‍

∑g
i mi = n‍.

For the peripheral metric, let ‍d1, d2, d3, ..., dn‍ represent the minimum euclidean distance to the 
periphery of each RNA spot, for the central metric these distances are instead measured from the cell 
centroid. Each spot is assigned a rank from 1 to n such that the spot with rank 1 is ‍argmin

(
d|1, d2, d3, ..., dn

)
‍ 

and the spot with rank ‍n‍ is ‍argmax
(
d|1, d2, d3, ..., dn

)
‍ randomly breaking ties where needed.

The ranks are then grouped by gene to calculate the median ranks ‍t1, t2, t3, ..., tg‍. The peripheral/
central SPRAWL gene/cell score ‍xi‍ for ‍1 ≤ i ≤ g‍, is the median rank ‍ti‍ normalized by the expected 
median rank ‍te‍ which is ‍

(
n + 1

)
/2‍ for all genes independent of ‍mi‍:

	﻿‍
xi = te − ti

te − 1‍�

Note that ‍−1 ≤ xi ≤ 1‍ since ‍min
(
t|i
)

= 1‍ yields ‍xi = 1‍, and ‍max
(
t|i
)

= n‍ yields ‍xi = −1‍.
To generalize the definition of the peripheral/central SPRAWL score in the case that a cell has 

multiple z-slices with a unique cell-boundary and set of spots for each, the distances ‍di‍ are calculated 
from each RNA spot to the cell-boundary/centroid in the same z-slice, and then the ranks are assigned 
across all z-slices.

SPRAWL radial metric definition
The radial SPRAWL score is assigned to each gene-cell pair by performing gene-label swapping boot-
strapping iterations and measures the tendency of genes to be in one sector of a cell or to be radially 
dispersed.

Consider a single cell, with a single z-slice, that has ‍n‍ total RNA spots, and ‍g‍ unique genes with 
each gene having ‍m1, m2, m3, ..., mg‍ spots such that ‍

∑g
i mi = n‍. We restrict to ‍mi > 2‍ since genes with a 

single spot do not conceptually have a radial bias.
Before permuting the gene labels, we randomly select a pair of RNA spots for each gene and 

measure the angle between them with respect to the cell-boundary centroid. Let ‍θ‍ represent the 
minimum angle formed by the three points of the location of RNA spot 1 ‍

(
x1, y1

)
‍, the cell centroid 

‍
(
xc, yc

)
‍, and RNA spot 2 ‍

(
x2, y2

)
‍. The cell centroid ‍

(
xc, yc

)
‍ is approximated as the mean of all vertices 

in the cell boundary polygon. This process is repeated 10 times and averaged to calculate the mean 
observed angle of each gene.

The same process is repeated after randomly swapping gene labels but keeping the RNA spot 
locations the same. We perform 1000 bootstrap iterations. These mean permuted angles serve as 
the null distribution of mean angles which are used in conjunction with the mean observed angle to 

https://doi.org/10.7554/eLife.87517
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calculate both mean and variance. In the case that a cell has multiple z-slices, the mean cell centroid 
over all slices is used to calculate pairwise angles without regard to z-slices.

SPRAWL punctate score definition
The punctate SPRAWL score is conceptually identical to the radial score and also relies on bootstrap-
ping. The punctate score is assigned to each gene-cell pair measuring euclidean distances instead of 
angles between randomly selected gene pairs. The null distribution is created using the same process 
as the radial score. In the case that a cell has multiple z-slices, the scoring is performed by projecting 
all points onto the same (x,y) plane before measuring euclidean distances. This simplification can be 
readily replaced with true 3D pairwise distances.

Theoretical features of the SPRAWL peripheral score
While the punctate and radial metrics are calculated using bootstrapping and estimated statistics, 
the SPRAWL peripheral and central metrics have known properties under the null hypothesis that the 
gene of interest is not spatially regulated in the given cell. Under this null, the ranks of the gene of 
interest are chosen with equal probability. In an alternate hypothesis such as a gene being peripherally 
localized in a cell, RNA spots of the gene of interest will have a skewed probability of being assigned 
lower ranks, closer to the cell boundary. Under the null hypothesis ‍E

[
Xi
]

= 0‍, since ‍E
[
Ti
]

= te‍ for gene 

‍1 ≤ i ≤ g‍.

‍Var
[
Xi
]
‍ depends on the total number of RNA spots in a cell ‍n‍, and the number of spots of the gene 

‍i‍, ‍mi‍. For example, in the extreme case where ‍mi = n‍, every spot in a cell is the gene of interest, and  

‍Var
[
Xi
]
‍ = 0. ‍Var

[
Xi
]
‍ for any gene can be calculated under the null by iterating over all possible values 

of ‍x ∈ X ‍ since ‍X ‍ is a discrete R.V.

	﻿‍
Var

[
X
]

=
∑

x
P
(
T = te + x

(
1 − te

))
∪ te − x

(
1 − te

)
‍�

When there are an odd number of gene spots ‍m‍, ‍t‍ is the ‍
(
m + 1

)
/2‍ rank order statistic, and under 

the null hypothesis where the ranks are chosen uniformly, the probability of the ‍r‍-th order statistic 
taking the value ‍t‍ equals:

	﻿‍

P
(
T = t

)
=

t − 1
r − 1

n − t
m − r

n
m ‍�

Where ‍n‍ is the total number of RNA spots, ‍m‍ is the number of RNA spots for the gene of interest, 
and ‍r =

(
m + 1

)
/2‍.

	﻿‍

P
(
R0 = r

)
=

r − 1
m + 1

2
− 1

n − r

m − m + 1
2

n
m ‍�

Calculating ‍Var
[
X
]
‍ when ‍m‍ is even-valued requires significantly more calculation. We still need to 

calculate

	﻿‍
P
(

X2 = x2
)

= P
‍�

But ‍t‍ is no longer an order statistic and does not have a closed-form calculation. Instead, ‍t‍ is the 
average of the ‘left of center’ ‍

(m
2
)
‍-th order-statistic ‍L‍, and the ‘right of center’ ‍

(m
2 + 1

)
‍-th order statistic 

‍R‍. Then for a given ‍x‍ and corresponding ‍t‍:

	﻿‍
P
(
T = t

)
= P

(
L + R

2
= t

)

‍�

We calculate ‍P
(
T = t

)
‍ by summing the probabilities of observing all possible pairs of ‍L‍ and ‍R‍ that 

sum to ‍2t‍. We can think of starting ‍L‍ and ‍R‍ as close to ‍t‍ as possible, and then ‘walking’ ‍L‍ and ‍R‍ away 
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from ‍t‍ one rank at a time in lockstep summing over all ‍i‍’s such that ‍1 ≤ t − 1 ≤ n‍ where ‍n‍ is the total 
number of spots in the cell:

	﻿‍
P
(

L + R
2

= t
)

=
∑

i
P
(
L = t − i ∩ R = t + i

)
=
∑

i
P
(
R = t + 1 ∨ L = t − 1

)
P
(
L = t − 1

)
‍�

Omitted for clarity, the ceiling of ‍t − 1‍ is taken and the floor of ‍t + 1‍ above to account for non-
integer ‍t‍.

‍P
(
R = r ∨ L = l

)
‍ has an intuitive interpretation that simplifies to an order statistic probability. Since 

we observe ‍L = l‍ we know that the ‍R‍-th order statistic must be one of the ranks between ‍l + 1‍ and ‍n‍ 
inclusively. We can renumber these ranks to be between 1 and ‍n − l + 1‍ and we are interested in the 
probability that the 1-st order statistic takes the value ‍r − l‍ in the renumbering. This has the same 
closed-form solution as described in the odd-valued ‍m‍ case.

Computing ‍Var
[
X
]
‍ for even-valued ‍m‍ is 

‍
O
(

n2
)
‍
 since we have to iterate over all possible medians, 

and then for each median we have to ‘walk’ ‍L‍ and ‍R‍ outwards which is itself ‍O
(
n
)
‍. In comparison, the 

computation of ‍Var
[
X
]
‍ for odd-valued ‍m‍ is ‍O

(
n
)
‍. Through various optimizations, multiprocessing, and 

caching, SPRAWL calculated ‍Var
[
X
]
‍ in under an hour for all processed samples.

SPRAWL is not highly sensitive to exact cell boundary segmentation
Sensitivity of SPRAWL to segmentation and cell-boundary locations was tested by computationally 
shrinking the cell-boundaries. Median peripheral scores per gene/cell-type were significantly correlated 
between original cell-boundaries and shrunk cell-boundaries with a Pearson correlation coefficient of 
0.85 on the mouse motor cortex datasets (Figure 1—figure supplement 1e), suggesting empirically 
that SPRAWL would have low sensitivity to potential cell-segmentation errors.

SPRAWL gene/cell-type scoring
Consider a cell-type with k cells with non-zero counts of a gene of interest where each cell is assigned 
a SPRAWL score ‍X1, X2, ..., Xk‍. Note that the ‍Xi‍ are not i.i.d. due to having different ‍Var

[
Xi
]
‍ resulting 

from different values of ‍m‍ and ‍n‍ as described above.
However, we do make the assumption that the ‍Xi‍ are independent, which has the biological inter-

pretation that the localization of the gene of interest in one cell does not depend on its localization in 
another cell. Under this assumption, we utilize the Lyapunov Central Limit Theorem Billingsley, 1995 
to estimate that

	﻿‍

lim
k→∞

1
√∑k

i=1 σ
2
i

k∑
i=1

(
Xi − µi

)
→ N

(
0, 1

)
in distribution.

‍ �

Under the assumption of bounded variance of the ‍Xi‍ satisfying Theorem 27.2 and Corollary 27.3 
from Billingsley, 1995:

	﻿‍

lim
k→∞

1
(∑k

i=1 σi

)2+δ

k∑
i=1

E
[��Xi − µi

��2+δ
]

= 0

‍�

We approximate values of ‍y‍ for each gene/cell-type using the observed ‍xi‍ and theoretical mean 
and variance whose calculation is described above. These ‍y‍ are used to calculate two-sided p-values 
from the CDF of the standard normal.

Multiple hypothesis testing over all gene/cell-type pairs is controlled using the Benjamini-Hochberg 
correction (Benjamini and Hochberg, 1995) at a significance level of ‍α = 0.05‍.

We calculate the effect size for each gene/cell-type as the mean gene/cell score ‍
1
k
∑k

i xi‍.

SPRAWL is highly specific in identifying genes with subcellular 
patterning conditional on cell boundaries
If the gene labels of RNA spots within cells of real datasets are permuted to remove any under-
lying spatial patterning (Methods), none of the metrics detect significant gene/cell-type patterning 
after Benjamini Hochberg (BH) multiple hypothesis correction with an FDR of 0.05 for any of the four 
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datasets tested (Benjamini and Hochberg, 1995). All metrics were observed to produce uniform 
p-values under this null dataset regardless of the number of cells per cell-type, as indicated by theory. 
The median score per gene/cell-type is dependent on the number of cells, with larger groups having 
median scores closer to zero (Figure 1—figure supplement 1). The lack of any false positive calls 
under the permuted null is consistent at an FDR of 0.05.

SPRAWL filtering
For all datasets sparse cells and cell-types were filtered out by removing cells with fewer than 10 
unique genes and/or fewer than 200 unique RNA spots. Gene/cell-type pairs with fewer than 20 cells 
were removed from consideration. Further filtering for the radial and punctate metrics requires the 
removal of genes from cells that have only a single RNA spot. These spots are removed and then the 
remaining spots can still be scored in this cell for other genes. All filtering steps are implemented as 
user-accessible parameters and have made SPRAWL more conservative, increasing the confidence 
of positive hits, but reducing the power to detect real localization differences that occur for lowly 
expressed genes and/or rare cell-types.

ReadZS usage and modifications
The ReadZS (Meyer et al., 2021) detects read buildup differences between cell-types from single-
cell RNA-seq datasets in an annotation-independent manner using equal-sized windows tiling the 
genome. We modified the ReadZS to analyze at the 3’ UTR-level of just the ~250 genes imaged in 
the BICCN MOp dataset. The 10 X scRNA-seq data was processed individually for the four different 
mouse donors while the SS2 cells across 45 donors were processed as a single sample due to limited 
cell counts per mouse.

Correlation analysis between SPRAWL and ReadZS for MERFISH MOp 
datasets
For a given SPRAWL gene and spatial metric, the median ReadZS score of that gene for each cell-type 
was correlated against the median SPRAWL score over the same cell-types. For positive-strand genes, 
a larger ReadZS score indicates longer 3’ UTR isoforms, and vice versa for negative-strand genes. A 
proxy for 3’ UTR length was defined as the distance between the annotated start of the 3’ UTR and 
the RNA mapping position. The span in estimated 3’ UTR lengths was measured as the difference 
between the longest and shortest median cell-type 3’ UTR proxy lengths.

Vizgen Brainmap and Liver showcase clustering to produce cell-type 
proxies
Neither the Vizgen MERFISH Mouse Brain Map nor Liver showcase datasets provided cell-type anno-
tations. We decided to roughly cluster the cells into groups to serve as a proxy for cell-type. The 
Leiden clustering method was used to find well-connected clusters in all of the filtered 90% highest 
spot-count cells using the Scanpy python package (Wolf et al., 2018). First, each dataset was normal-
ized so that each cell had 10,000 spots, then the top 40 principal components were used to build the 
neighborhood graph with 10 neighbors and perform the Leiden clustering. This resulted in 22 clusters 
for the Brainmap dataset and 100 clusters for the Liver dataset. The fraction of cells in each cluster 
was consistent across biological replicates for the Vizgen Liver (Figure 3—figure supplement 1) and 
Vizgen Brainmap (data not shown) indicating that cells were primarily clustering by type, and not by 
batch. To estimate the batch effect, we calculated the probability that two cells originated from the 
same biological replicate given that they were in the same cluster, and compared this to the overall 
probability that two cells are from the same biological replicate. All clusters were within 0.05 of the 
overall probability of two cells sharing a batch.

Simulations to benchmark SPRAWL sensitivity and specificity
Null simulated datasets were created from the MERFISH BICCN spatial dataset by randomly permuting 
the RNA-spot gene labels within each cell across the entire dataset. The cell-boundaries, RNA-spot 
counts, and RNA (x,y,z) coordinates were preserved in the null dataset.

https://doi.org/10.7554/eLife.87517
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Identification of RBP and miRNA binding to Timp3 3’ UTR
The RNAInter v4.0 RNA interactome repository was used to search for RBPs and miRNAs with exper-
imental evidence of binding in the 3’ UTR of the Mus musculus Timp3, Slc32a1, Cxcl14, and Nxph1 
genes (Kang et al., 2022). Target regions for RBPs were taken from RNAInter, while miRNA binding 
sites were generated and cross-checked against TargetScan release 8.0 (McGeary et al., 2019) and 
miRWalk (Sticht et al., 2018). Only miRNAs shared by RNAInter, TargetScan, and miRWalk results with 
experimental evidence were considered.

RNAs with signal peptides do not have significant central or peripheral 
localization
We hypothesized that RNAs encoding a signal recognition peptide (SRP) for translation on the rough 
endoplasmic reticulum would be nuclear localized and would, therefore, be more centrally localized 
than genes without signal peptides. We predicted the presence of SRPs using DeepSig (Savojardo 
et al., 2018) with protein sequences downloaded from Gencode release M28 protein-coding tran-
scripts fasta for all genes present across the MOp, Vizgen Brainmap, and SeqFISH + cortex datasets. 
For genes with multiple protein isoforms, the longest isoform was selected for SRP prediction. In all 
datasets, the per-gene per-cell peripheral and central scores were not significantly different according 
to a Kolmogorov Smirnov test (Figure 5—figure supplement 1a).

Genes enriched in single-nucleus RNAseq are marginally correlated 
with periphery score
We tested whether nuclear-localizing genes would be assigned higher SPRAWL central periphery 
scores utilizing both the 10 X single-cell RNAseq (scRNA-seq) as well as 10 X single-nucleus RNAseq 
(snRNA-seq) from the BICCN consortium (BRAIN Initiative Cell Census Network (BICCN), 2021). 
The single-cell sequencing data was first normalized to the number of counts per gene per cell per 
one million (TPM) reads for both the cell and nuclear datasets. The median gene/cell-type TPM for 
both sequencing datasets was determined, and the nuclear-fraction score was determined to be 
snRNA-seq-TPM/(snRNA-seq-TPM  +scRNA-seq  TPM). The median periphery score per gene/cell-
type was correlated against the median snRNA-seq-TPM, scRNA-seq-TPM, and nuclear-fraction. In all 
comparisons, the correlation coefficients were small in magnitude, but were significantly positive for 
the snRNA-seq, indicating a link between X tendency and peripherality, and significantly negative in 
the nuclear-fraction analyses, indicating a link between the gene’s enrichment in nuclear reads and its 
distance from the cell periphery. The small effect size was detectable due to the approximately 8000 
gene/cell-type data points and provides weak support for the hypothesis. We investigated which 
genes, if any, are differentially nuclear-enriched across cell-types by sequencing and concordantly by 
peripheral score and discovered Wipf3 (Figure 5—figure supplement 1b) and Slc30a3, which were 
highly negatively correlated with mean Pearson correlation coefficients of –0.86 and –0.93 across 
MERFISH MOp samples. Surprisingly, Satb2 was also discovered to be significant, but had a highly 
positive mean Pearson correlation coefficient of 0.95. All genes were determined to be significant 
after Benjamini Hochberg’s multiple hypothesis correction.

Pericyte culture experimental setup with ELISA, qPCR, and BCA 
readouts
Human brain vascular pericytes (PCs, Sciencell) were cultured up to passage 5 in low-glucose DMEM 
(Gibco) supplemented with 10% FBS. ~1.2 × 105 PCs were seeded in each well of a six-well plate 
pre-coated with 0.1% gelatin. PC lysates and conditioned media were collected 6 hr after seeding for 
RNA isolation and ELISA applications. Similar samples were collected on 24, 48, 72, and 120 hr after 
seeding. The 120- hr timepoint was not considered for analysis since the cells had lifted off from the 
culture dish. RNA was isolated with the PureLink RNA Kit (Invitrogen) and reverse transcribed with the 
iScript cDNA Synthesis Kit (Bio-Rad) and qRT-PCR was performed on a CFX96 Real-Time System (Bio-
Rad) using SsoAdvanced Universal supermix (Bio-Rad). Transcript levels of TIMP3 with short or long 

https://doi.org/10.7554/eLife.87517
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3’ UTR relative to housekeeping gene (B-actin or GAPDH or 18 S rRNA) were determined for each 
timepoint with four biological replicates and three technical replicates.

ELISA measurements were made using the Human TIMP-3 ELISA Kit from Invitrogen (Catalog # 
EH458RB) and precisely following the manufacturer’s instructions.

>Proximal_primer_1_fwd
​GGGA​​ACTA​​TCCT​​CCTG​​GCCC​
>Proximal_primer_1_rev
​TTCT​​GGCA​​TGGC​​ACCA​​GAAA​T
>Proximal_primer_2_fwd
​AGGT​​CTAT​​GCTG​​TCAT​​ATGG​​GGT
>Proximal_primer_2_rev
​TGGG​​GCCA​​GGAG​​GATA​​GTTC​
>Distal_primer_1_fwd
​AATT​​GGCT​​CTTT​​GGAG​​GCGA​
>Distal_primer_1_rev
​GCGG​​ATGC​​TGGG​​AGAA​​TCTA​
>Distal_primer_2_fwd
​TAGC​​CAGT​​CTGC​​TGTC​​CTGA​
>Distal_primer_2_rev
​GGGT​​TCGA​​GATC​​TCTT​​GTTG​G

Timp3 protein production estimation
An estimate of the rate of Timp3 protein production per cell per hour was calculated using the ELISA 
Timp3 measurements and cell counts at each hour. The extracellular Timp3 concentration from the 
ELISA measurements was converted from ng/mL to ng’s of Timp3 per cell using the known culture 
volume of 2 mLs and the cell counts at the same timepoint. This value represents the amount of extra-
cellular Timp3 per cell; in order to calculate how much Timp3 is produced, the amount of degraded 
Timp3 between timepoints is estimated from the tissue-culture half-life estimate of 15 hr (Mao et al., 
2021). The Timp3 protein production per cell at time t2 is estimated to be the difference between 
the amount of Timp3 at t2 and the previous timepoint t1, plus the degraded Timp3 fraction from t1, 
divided by the number of cells at t2.

qPCR analysis of pericyte culture Timp3 3’ UTR abundance
Our goal is to estimate the relative abundance of the short vs. long TIMP3 3' UTR isoforms at multiple 
timepoints during cell culture. The ratio of short to long TIMP3 3' UTR isoform in a sample can be 
estimated using the proximal and distal qPCR primer critical threshold (CT) values. Let the amount of 
template present in the sample which can be amplified by the proximal qPCR primer be represented 
as ‍P‍. Similarly let the un-amplified amount of template for the distal primer be represented as ‍D‍.

At the critical threshold number of cycles for both the distal ‍CTD‍ and proximal ‍CTP‍ qPCR primers, 
the absorbances will be equal. Assuming that the initial amount of template ‍P‍ and ‍D‍ doubles in each 
cycle we can create an equation to solve for the ratio of ‍

P
D‍

	﻿‍ P ∗ 2CTP = D ∗ 2CTD‍�

	﻿‍
P
D

= 2CTD

2CTP
= 2CTD−CTP

‍�

Since the proximal primers can amplify both the short and long isoforms, while the distal primers 
can only amplify the long isoforms we can rewrite the previous equation with ‍S‍ and ‍L‍ representing the 
amount of short and long TIMP3 3' UTR template in each sample.

	﻿‍
S + L

L
= 2CTD−CTP

‍�

Since ‍S > 0‍ and ‍L > 0‍, we expect ‍2CTD−CTP > 1‍, however, we observe 219 of 240 qPCR biological/
technical replicates having ‍2CTD−CTP < 1‍.

https://doi.org/10.7554/eLife.87517
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We at first considered that this discrepancy may be due to differences in the amplification efficiency 
of the proximal and distal qPCR primers which are assumed to be equal and 100% efficient with a 
doubling in each PCR cycle. However, if for some reason the proximal and distal primers had different 
efficiencies, it would be incorrect to directly compare their CT values. We estimated the efficiencies of 
the proximal 1, proximal 2, distal 1, and distal 2 qPCR primers by measuring the CT values at twofold 
dilutions of the same cDNA template and observed that all primer pairs had near 100% efficiency 
except for proximal primer 1 which had 82% efficiency (Figure 6—figure supplement 1). For the 
qPCR analyses presented in this paper, proximal primer 2 and distal primer 2 were used. Efficiency 
calculations were made by finding the slope, m, of the line of best fit for (x=log2 cDNA dilution) vs. 
(y=CT), and then converting slope to efficiency as (100/2^(m-1)).

Given that qPCR efficiency is not the cause of the widely observed ‍
S+L

L < 1‍ ratios, we believe that 
the existence of a template which is only amplified by the distal and not the proximal qPCR primer 
pairs could be confounding. Such templates could arise from incomplete reverse transcription or 
spliced Timp3 3' UTR isoforms. While we do not have a way to control for this in the current qPCR 
experiment, we might expect to observe the same external effect at each timepoint.
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Author(s) Year Dataset title Dataset URL Database and Identifier

CHL Eng, Lawson 
M, Zhu Q, Dries R, 
Koulena N, Takei Y, 
Yun J, Cronin C, Karp 
C, Yuan GC, Cai L

2019 SeqFish+ dataset https://​github.​com/​
CaiGroup/​seqFISH-​
PLUS/​blob/​master/​
sourcedata.​zip?​raw=​
true

GitHub, ee6c416

Zhang M, Eichhorn 
SW, Zingg B, Yao Z, 
Cotter K, Zeng H, 
Dong H, Zhuang X

2021 MERFISH primary mouse 
cortex (MOp) dataset

https://​download.​
brainimagelibrary.​
org/​cf/​1c/​
cf1c1a431ef8d021/​
processed_​data/

Brain Image Library, 
cf1c1a431ef8d021

References
Banisadr G, Bhattacharyya BJ, Belmadani A, Izen SC, Ren D, Tran PB, Miller RJ. 2011. The chemokine BRAK/

CXCL14 regulates synaptic transmission in the adult mouse dentate gyrus stem cell niche. Journal of 
Neurochemistry 119:1173–1182. DOI: https://doi.org/10.1111/j.1471-4159.2011.07509.x, PMID: 21955359

Bässler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Gründer S. 2001. Molecular and functional characterization 
of acid-sensing ion channel (ASIC) 1b. The Journal of Biological Chemistry 276:33782–33787. DOI: https://doi.​
org/10.1074/jbc.M104030200, PMID: 11448963

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society Series B 57:289–300. DOI: https://doi.org/10.1111/j.​
2517-6161.1995.tb02031.x

Berkovits BD, Mayr C. 2015. Alternative 3’ UTRs act as scaffolds to regulate membrane protein localization. 
Nature 522:363–367. DOI: https://doi.org/10.1038/nature14321, PMID: 25896326

Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 1998. Localization of ASH1 mRNA 
particles in living yeast. Molecular Cell 2:437–445. DOI: https://doi.org/10.1016/s1097-2765(00)80143-4, PMID: 
9809065

BiermanR. 2024. SPRAWL. swh:1:rev:a25bee0b043ec49f456892b4ed9a361d284759d2. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:78e521b6400a36714099a7b662cdf14408675cba;origin=https://​
github.com/salzman-lab/SPRAWL;visit=swh:1:snp:6847a765bba7e6823e845666ffd73e3e50c5708d;anchor=​
swh:1:rev:a25bee0b043ec49f456892b4ed9a361d284759d2

Billingsley P. 1995. Probability and measure. Billingsley P (Ed). WIley series in probability and mathematical 
statistics. Wiley.

Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, Goltsev Y, Schürch CM, 
Nolan GP. 2021. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nature Protocols 
16:3802–3835. DOI: https://doi.org/10.1038/s41596-021-00556-8, PMID: 34215862

Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, Pachter L. 2021. Isoform cell-type specificity in 
the mouse primary motor cortex. Nature 598:195–199. DOI: https://doi.org/10.1038/s41586-021-03969-3, 
PMID: 34616073

Born G, Breuer D, Wang S, Rohlmann A, Coulon P, Vakili P, Reissner C, Kiefer F, Heine M, Pape H-C, Missler M. 
2014. Modulation of synaptic function through the α-neurexin-specific ligand neurexophilin-1. PNAS 
111:E1274–E1283. DOI: https://doi.org/10.1073/pnas.1312112111, PMID: 24639499

BRAIN Initiative Cell Census Network (BICCN). 2021. A multimodal cell census and atlas of the mammalian 
primary motor cortex. Nature 598:86–102. DOI: https://doi.org/10.1038/s41586-021-03950-0, PMID: 34616075

Cai L, Lawson M, Shah S, Pierson N. 2019. SeqFISH-PLUS. Software Heritage. https://github.com/CaiGroup/​
seqFISH-PLUS/

Capone C, Dabertrand F, Baron-Menguy C, Chalaris A, Ghezali L, Domenga-Denier V, Schmidt S, Huneau C, 
Rose-John S, Nelson MT, Joutel A. 2016. Mechanistic insights into a TIMP3-sensitive pathway constitutively 
engaged in the regulation of cerebral hemodynamics. eLife 5:e17536. DOI: https://doi.org/10.7554/eLife.​
17536, PMID: 27476853

Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML. 2004. Localization of RNAs to the 
mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. 
Molecular Biology of the Cell 15:4669–4681. DOI: https://doi.org/10.1091/mbc.e04-03-0265, PMID: 
15292452

Chaung K, Baharav T, Zheludev I, Salzman J. 2022. A Statistical, Reference-Free Algorithm Subsumes Myriad 
Problems in Genome Science and Enables Novel Discovery. bioRxiv. DOI: https://doi.org/10.1101/2022.06.24.​
497555

Coelho LP, Shariff A, Murphy RF. 2009. Nuclear segmentation in microscope cell images: a hand-segmented 
dataset and comparison of algorithms. Proceedings. IEEE International Symposium on Biomedical Imaging 
5193098:518–521. DOI: https://doi.org/10.1109/ISBI.2009.5193098, PMID: 20628545

Das S, Singer RH, Yoon YJ. 2019. The travels of mRNAs in neurons: do they know where they are going? Current 
Opinion in Neurobiology 57:110–116. DOI: https://doi.org/10.1016/j.conb.2019.01.016, PMID: 30784978

 Continued

https://doi.org/10.7554/eLife.87517
https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true
https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true
https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true
https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true
https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/
https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/
https://doi.org/10.1111/j.1471-4159.2011.07509.x
http://www.ncbi.nlm.nih.gov/pubmed/21955359
https://doi.org/10.1074/jbc.M104030200
https://doi.org/10.1074/jbc.M104030200
http://www.ncbi.nlm.nih.gov/pubmed/11448963
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/nature14321
http://www.ncbi.nlm.nih.gov/pubmed/25896326
https://doi.org/10.1016/s1097-2765(00)80143-4
http://www.ncbi.nlm.nih.gov/pubmed/9809065
https://archive.softwareheritage.org/swh:1:dir:78e521b6400a36714099a7b662cdf14408675cba;origin=https://github.com/salzman-lab/SPRAWL;visit=swh:1:snp:6847a765bba7e6823e845666ffd73e3e50c5708d;anchor=swh:1:rev:a25bee0b043ec49f456892b4ed9a361d284759d2
https://archive.softwareheritage.org/swh:1:dir:78e521b6400a36714099a7b662cdf14408675cba;origin=https://github.com/salzman-lab/SPRAWL;visit=swh:1:snp:6847a765bba7e6823e845666ffd73e3e50c5708d;anchor=swh:1:rev:a25bee0b043ec49f456892b4ed9a361d284759d2
https://archive.softwareheritage.org/swh:1:dir:78e521b6400a36714099a7b662cdf14408675cba;origin=https://github.com/salzman-lab/SPRAWL;visit=swh:1:snp:6847a765bba7e6823e845666ffd73e3e50c5708d;anchor=swh:1:rev:a25bee0b043ec49f456892b4ed9a361d284759d2
https://doi.org/10.1038/s41596-021-00556-8
http://www.ncbi.nlm.nih.gov/pubmed/34215862
https://doi.org/10.1038/s41586-021-03969-3
http://www.ncbi.nlm.nih.gov/pubmed/34616073
https://doi.org/10.1073/pnas.1312112111
http://www.ncbi.nlm.nih.gov/pubmed/24639499
https://doi.org/10.1038/s41586-021-03950-0
http://www.ncbi.nlm.nih.gov/pubmed/34616075
https://github.com/CaiGroup/seqFISH-PLUS/
https://github.com/CaiGroup/seqFISH-PLUS/
https://doi.org/10.7554/eLife.17536
https://doi.org/10.7554/eLife.17536
http://www.ncbi.nlm.nih.gov/pubmed/27476853
https://doi.org/10.1091/mbc.e04-03-0265
http://www.ncbi.nlm.nih.gov/pubmed/15292452
https://doi.org/10.1101/2022.06.24.497555
https://doi.org/10.1101/2022.06.24.497555
https://doi.org/10.1109/ISBI.2009.5193098
http://www.ncbi.nlm.nih.gov/pubmed/20628545
https://doi.org/10.1016/j.conb.2019.01.016
http://www.ncbi.nlm.nih.gov/pubmed/30784978


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bierman et al. eLife 2023;12:RP87517. DOI: https://doi.org/10.7554/eLife.87517 � 27 of 30

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables 
reproducible computational workflows. Nature Biotechnology 35:316–319. DOI: https://doi.org/10.1038/nbt.​
3820, PMID: 28398311

Durkee MS, Abraham R, Clark MR, Giger ML. 2021. Artificial intelligence and cellular segmentation in tissue 
microscopy images. The American Journal of Pathology 191:1693–1701. DOI: https://doi.org/10.1016/j.ajpath.​
2021.05.022, PMID: 34129842

Ebihara S, Obata K, Yanagawa Y. 2003. Mouse vesicular GABA transporter gene: genomic organization, 
transcriptional regulation and chromosomal localization. Brain Research. Molecular Brain Research 110:126–
139. DOI: https://doi.org/10.1016/s0169-328x(02)00648-4, PMID: 12573541

Emanuel G, Babcock H. 2020. ZhuangLab/merlin: merlin. 0.1.6. GitHub. https://github.com/ZhuangLab/MERlin/​
blob/master/docs/installation.rst

Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G-C, Cai L. 2019. 
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235–239. DOI: https://​
doi.org/10.1038/s41586-019-1049-y

Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J, Boettiger AN, Chang HY, Ting AY. 2019. Atlas of subcellular 
RNA localization revealed by APEX-Seq. Cell 178:473–490.. DOI: https://doi.org/10.1016/j.cell.2019.05.027, 
PMID: 31230715

Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M. 2013. Regulation of 
TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetologica 50:965–969. DOI: https://doi.org/10.​
1007/s00592-013-0492-8, PMID: 23797704

Gasnier B. 2004. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflügers 
Archiv European Journal of Physiology 447:756–759. DOI: https://doi.org/10.1007/s00424-003-1091-2

Gillies S, van der Wel C, Van den Bossche J, Taves MW, Arnott J, Ward BC. 2007. Shapely: manipulation and 
analysis of geometric objects. GitHub. https://github.com/SpaceKnow/Shapely

Hachet O, Ephrussi A. 2004. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. 
Nature 428:959–963. DOI: https://doi.org/10.1038/nature02521, PMID: 15118729

Hentze MW, Castello A, Schwarzl T, Preiss T. 2018. A brave new world of RNA-binding proteins. Nature Reviews. 
Molecular Cell Biology 19:327–341. DOI: https://doi.org/10.1038/nrm.2017.130, PMID: 29339797

Holt CE, Bullock SL. 2009. Subcellular mRNA localization in animal cells and why it matters. Science 326:1212–
1216. DOI: https://doi.org/10.1126/science.1176488, PMID: 19965463

Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson K, Azam M, Hou YH. 1999. Cloning of BRAK, a 
novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochemical and 
Biophysical Research Communications 255:703–706. DOI: https://doi.org/10.1006/bbrc.1999.0257, PMID: 
10049774

Hu J, Ni S, Cao Y, Zhang T, Wu T, Yin X, Lang Y, Lu H. 2016. The angiogenic effect of microRNA-21 Targeting 
TIMP3 through the regulation of MMP2 and MMP9. PLOS ONE 11:e0149537. DOI: https://doi.org/10.1371/​
journal.pone.0149537

Hung MC, Link W. 2011. Protein localization in disease and therapy. Journal of Cell Science 124:3381–3392. 
DOI: https://doi.org/10.1242/jcs.089110, PMID: 22010196

Jin J, Sison K, Li C, Tian R, Wnuk M, Sung H-K, Jeansson M, Zhang C, Tucholska M, Jones N, Kerjaschki D, 
Shibuya M, Fantus IG, Nagy A, Gerber H-P, Ferrara N, Pawson T, Quaggin SE. 2012. Soluble FLT1 binds lipid 
microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:384–399. 
DOI: https://doi.org/10.1016/j.cell.2012.08.037, PMID: 23063127

Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, Salzman J, Yosef N, Bulthaup B, Brown P, 
Harper W, Hemenez M, Ponnusamy R, Salehi A, Sanagavarapu BA, Spallino E, Aaron KA, Concepcion W, 
Gardner JM, Kelly B, Neidlinger N, et al. 2022. The tabula sapiens: a multiple-organ, single-cell 
transcriptomic atlas of humans. Science 376:eabl4896. DOI: https://doi.org/10.1126/science.abl4896, 
PMID: 35549404

Kanai Y, Dohmae N, Hirokawa N. 2004. Kinesin transports RNA: isolation and characterization of an RNA-
transporting granule. Neuron 43:513–525. DOI: https://doi.org/10.1016/j.neuron.2004.07.022

Kang J, Tang Q, He J, Li L, Yang N, Yu S, Wang M, Zhang Y, Lin J, Cui T, Hu Y, Tan P, Cheng J, Zheng H, Wang D, 
Su X, Chen W, Huang Y. 2022. RNAInter v4.0: RNA interactome repository with redefined confidence scoring 
system and improved accessibility. Nucleic Acids Research 50:D326–D332. DOI: https://doi.org/10.1093/nar/​
gkab997, PMID: 34718726

Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K, McCaffrey E, Marquez D, Angoshtari R, 
Greenwald NF, Fienberg H, Wang J, Kambham N, Kirkwood D, Nolan G, Montine TJ, Galli SJ, West R, 
Bendall SC, Angelo M. 2019. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue 
structure. Science Advances 5:eaax5851. DOI: https://doi.org/10.1126/sciadv.aax5851, PMID: 31633026

Kislauskis EH, Zhu X, Singer RH. 1994. Sequences responsible for intracellular localization of beta-actin 
messenger RNA also affect cell phenotype. The Journal of Cell Biology 127:441–451. DOI: https://doi.org/10.​
1083/jcb.127.2.441, PMID: 7929587

Kislauskis EH, Zhu X, Singer RH. 1997. beta-Actin messenger RNA localization and protein synthesis augment 
cell motility. The Journal of Cell Biology 136:1263–1270. DOI: https://doi.org/10.1083/jcb.136.6.1263, PMID: 
9087442

Lawrence JB, Singer RH. 1986. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 
45:407–415. DOI: https://doi.org/10.1016/0092-8674(86)90326-0, PMID: 3698103

https://doi.org/10.7554/eLife.87517
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://doi.org/10.1016/j.ajpath.2021.05.022
https://doi.org/10.1016/j.ajpath.2021.05.022
http://www.ncbi.nlm.nih.gov/pubmed/34129842
https://doi.org/10.1016/s0169-328x(02)00648-4
http://www.ncbi.nlm.nih.gov/pubmed/12573541
https://github.com/ZhuangLab/MERlin/blob/master/docs/installation.rst
https://github.com/ZhuangLab/MERlin/blob/master/docs/installation.rst
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1016/j.cell.2019.05.027
http://www.ncbi.nlm.nih.gov/pubmed/31230715
https://doi.org/10.1007/s00592-013-0492-8
https://doi.org/10.1007/s00592-013-0492-8
http://www.ncbi.nlm.nih.gov/pubmed/23797704
https://doi.org/10.1007/s00424-003-1091-2
https://github.com/SpaceKnow/Shapely
https://doi.org/10.1038/nature02521
http://www.ncbi.nlm.nih.gov/pubmed/15118729
https://doi.org/10.1038/nrm.2017.130
http://www.ncbi.nlm.nih.gov/pubmed/29339797
https://doi.org/10.1126/science.1176488
http://www.ncbi.nlm.nih.gov/pubmed/19965463
https://doi.org/10.1006/bbrc.1999.0257
http://www.ncbi.nlm.nih.gov/pubmed/10049774
https://doi.org/10.1371/journal.pone.0149537
https://doi.org/10.1371/journal.pone.0149537
https://doi.org/10.1242/jcs.089110
http://www.ncbi.nlm.nih.gov/pubmed/22010196
https://doi.org/10.1016/j.cell.2012.08.037
http://www.ncbi.nlm.nih.gov/pubmed/23063127
https://doi.org/10.1126/science.abl4896
http://www.ncbi.nlm.nih.gov/pubmed/35549404
https://doi.org/10.1016/j.neuron.2004.07.022
https://doi.org/10.1093/nar/gkab997
https://doi.org/10.1093/nar/gkab997
http://www.ncbi.nlm.nih.gov/pubmed/34718726
https://doi.org/10.1126/sciadv.aax5851
http://www.ncbi.nlm.nih.gov/pubmed/31633026
https://doi.org/10.1083/jcb.127.2.441
https://doi.org/10.1083/jcb.127.2.441
http://www.ncbi.nlm.nih.gov/pubmed/7929587
https://doi.org/10.1083/jcb.136.6.1263
http://www.ncbi.nlm.nih.gov/pubmed/9087442
https://doi.org/10.1016/0092-8674(86)90326-0
http://www.ncbi.nlm.nih.gov/pubmed/3698103


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bierman et al. eLife 2023;12:RP87517. DOI: https://doi.org/10.7554/eLife.87517 � 28 of 30

Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM. 2007. 
Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. 
Cell 131:174–187. DOI: https://doi.org/10.1016/j.cell.2007.08.003, PMID: 17923096

Lee BT, Barber GP, Benet-Pagès A, Casper J, Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs AS, 
Lee CM, Muthuraman P, Nassar LR, Nguy B, Pereira T, Perez G, Raney BJ, Rosenbloom KR, Schmelter D, 
Speir ML, Wick BD, et al. 2022. The UCSC genome browser database: 2022 update. Nucleic Acids Research 
50:D1115–D1122. DOI: https://doi.org/10.1093/nar/gkab959, PMID: 34718705

Lipshitz HD, Smibert CA. 2000. Mechanisms of RNA localization and translational regulation. Current Opinion in 
Genetics & Development 10:476–488. DOI: https://doi.org/10.1016/s0959-437x(00)00116-7, PMID: 10980424

Liu J, Tran V, Vemuri VNP, Byrne A, Borja M, Kim YJ, Agarwal S, Wang R, Awayan K, Murti A, 
Taychameekiatchai A, Wang B, Emanuel G, He J, Haliburton J, Pisco AO, Neff N. 2022. Comparative analysis of 
MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. bioRxiv. DOI: https://doi.org/10.​
1101/2022.03.04.483068v1

Ma W, Mayr C. 2018. A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-
mediated protein-protein interactions. Cell 175:1492–1506.. DOI: https://doi.org/10.1016/j.cell.2018.10.007

Mah CK, Ahmed N, Lopez N, Lam D, Monell A, Kern C, Han Y, Prasad G, Cesnik AJ, Lundberg E, Zhu Q, 
Carter H, Yeo GW. 2022. Bento: A Toolkit for Subcellular Analysis of Spatial Transcriptomics Data. bioRxiv. DOI: 
https://doi.org/10.1101/2022.06.10.495510

Mao S, Zhang D, Chen L, Tan J, Chu Y, Huang S, Zhou W, Qin H, Xia Q, Zhao Y, Li R, Qin S, Wei M. 2021. FKBP51 
promotes invasion and migration by increasing the autophagic degradation of TIMP3 in clear cell renal cell 
carcinoma. Cell Death & Disease 12:899. DOI: https://doi.org/10.1038/s41419-021-04192-8

Marx V. 2021. Method of the Year: spatially resolved transcriptomics. Nature Methods 18:9–14. DOI: https://doi.​
org/10.1038/s41592-020-01033-y

Mayford M, Baranes D, Podsypanina K, Kandel ER. 1996. The 3’-untranslated region of CaMKII alpha is a 
cis-acting signal for the localization and translation of mRNA in dendrites. PNAS 93:13250–13255. DOI: https://​
doi.org/10.1073/pnas.93.23.13250, PMID: 8917577

McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, Bartel DP. 2019. The biochemical basis of 
microRNA targeting efficacy. Science 366:eaav1741. DOI: https://doi.org/10.1126/science.aav1741, PMID: 
31806698

Meyer E, Dehghannasiri R, Chaung K, Salzman J. 2021. ReadZS detects developmentally regulated RNA 
processing programs in single cell RNA-seq and defines subpopulations independent of gene expression. 
bioRxiv. DOI: https://doi.org/10.1101/2021.09.29.462469

Meyer E, Chaung K, Dehghannasiri R, Salzman J. 2022. ReadZS detects cell type-specific and developmentally 
regulated RNA processing programs in single-cell RNA-seq. Genome Biology 23:226. DOI: https://doi.org/10.​
1186/s13059-022-02795-8, PMID: 36284317

Minis A, Dahary D, Manor O, Leshkowitz D, Pilpel Y, Yaron A. 2014. Subcellular transcriptomics-dissection of the 
mRNA composition in the axonal compartment of sensory neurons. Developmental Neurobiology 74:365–381. 
DOI: https://doi.org/10.1002/dneu.22140, PMID: 24127433

Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016. High-throughput single-cell gene-expression 
profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS 113:11046–11051. DOI: https://​
doi.org/10.1073/pnas.1612826113

Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, 
Dulac C, Zhuang X. 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic 
region. Science 362:362. DOI: https://doi.org/10.1126/science.aau5324

Moran PAP. 1950. Notes on continuous stochastic phenomena. Biometrika 37:17–23 PMID: 15420245. 
Müller-McNicoll M, Neugebauer KM. 2013. How cells get the message: dynamic assembly and function of 

mRNA-protein complexes. Nature Reviews. Genetics 14:275–287. DOI: https://doi.org/10.1038/nrg3434, 
PMID: 23478349

Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. 2003. Size-selective loosening of 
the blood-brain barrier in claudin-5-deficient mice. The Journal of Cell Biology 161:653–660. DOI: https://doi.​
org/10.1083/jcb.200302070, PMID: 12743111

Olivieri JE, Dehghannasiri R, Wang PL, Jang S, de Morree A, Tan SY, Ming J, Ruohao Wu A, Quake SR, 
Krasnow MA, Salzman J, Tabula Sapiens Consortium. 2021. RNA splicing programs define tissue compartments 
and cell types at single-cell resolution. eLife 10:e70692. DOI: https://doi.org/10.7554/eLife.70692, PMID: 
34515025

Olivieri JE, Dehghannasiri R, Salzman J. 2022. The SpliZ generalizes “percent spliced in” to reveal regulated 
splicing at single-cell resolution. Nature Methods 19:307–310. DOI: https://doi.org/10.1038/s41592-022-​
01400-x, PMID: 35241832

Padrón A, Ingolia N. 2022. Analyzing the composition and organization of ribonucleoprotein complexes by 
APEX-Seq. Methods in Molecular Biology 2428:277–289. DOI: https://doi.org/10.1007/978-1-0716-1975-9_17, 
PMID: 35171486

Rongo C, Gavis ER, Lehmann R. 1995. Localization of oskar RNA regulates oskar translation and requires Oskar 
protein. Development 121:2737–2746. DOI: https://doi.org/10.1242/dev.121.9.2737, PMID: 7555702

Saka HA, Valdivia R. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annual 
Review of Cell and Developmental Biology 28:411–437. DOI: https://doi.org/10.1146/annurev-cellbio-092910-​
153958, PMID: 22578141

https://doi.org/10.7554/eLife.87517
https://doi.org/10.1016/j.cell.2007.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17923096
https://doi.org/10.1093/nar/gkab959
http://www.ncbi.nlm.nih.gov/pubmed/34718705
https://doi.org/10.1016/s0959-437x(00)00116-7
http://www.ncbi.nlm.nih.gov/pubmed/10980424
https://doi.org/10.1101/2022.03.04.483068v1
https://doi.org/10.1101/2022.03.04.483068v1
https://doi.org/10.1016/j.cell.2018.10.007
https://doi.org/10.1101/2022.06.10.495510
https://doi.org/10.1038/s41419-021-04192-8
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1073/pnas.93.23.13250
https://doi.org/10.1073/pnas.93.23.13250
http://www.ncbi.nlm.nih.gov/pubmed/8917577
https://doi.org/10.1126/science.aav1741
http://www.ncbi.nlm.nih.gov/pubmed/31806698
https://doi.org/10.1101/2021.09.29.462469
https://doi.org/10.1186/s13059-022-02795-8
https://doi.org/10.1186/s13059-022-02795-8
http://www.ncbi.nlm.nih.gov/pubmed/36284317
https://doi.org/10.1002/dneu.22140
http://www.ncbi.nlm.nih.gov/pubmed/24127433
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1126/science.aau5324
http://www.ncbi.nlm.nih.gov/pubmed/15420245
https://doi.org/10.1038/nrg3434
http://www.ncbi.nlm.nih.gov/pubmed/23478349
https://doi.org/10.1083/jcb.200302070
https://doi.org/10.1083/jcb.200302070
http://www.ncbi.nlm.nih.gov/pubmed/12743111
https://doi.org/10.7554/eLife.70692
http://www.ncbi.nlm.nih.gov/pubmed/34515025
https://doi.org/10.1038/s41592-022-01400-x
https://doi.org/10.1038/s41592-022-01400-x
http://www.ncbi.nlm.nih.gov/pubmed/35241832
https://doi.org/10.1007/978-1-0716-1975-9_17
http://www.ncbi.nlm.nih.gov/pubmed/35171486
https://doi.org/10.1242/dev.121.9.2737
http://www.ncbi.nlm.nih.gov/pubmed/7555702
https://doi.org/10.1146/annurev-cellbio-092910-153958
https://doi.org/10.1146/annurev-cellbio-092910-153958
http://www.ncbi.nlm.nih.gov/pubmed/22578141


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bierman et al. eLife 2023;12:RP87517. DOI: https://doi.org/10.7554/eLife.87517 � 29 of 30

Samacoits A, Chouaib R, Safieddine A, Traboulsi A-M, Ouyang W, Zimmer C, Peter M, Bertrand E, Walter T, 
Mueller F. 2018. A computational framework to study sub-cellular RNA localization. Nature Communications 
9:4584. DOI: https://doi.org/10.1038/s41467-018-06868-w, PMID: 30389932

Savojardo C, Martelli PL, Fariselli P, Casadio R. 2018. DeepSig: deep learning improves signal peptide detection 
in proteins. Bioinformatics 34:1690–1696. DOI: https://doi.org/10.1093/bioinformatics/btx818, PMID: 
29280997

Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin S-L, Davis GE, Gharib SA, Humphreys BD, Duffield JS. 
2012. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. Journal of the American 
Society of Nephrology 23:868–883. DOI: https://doi.org/10.1681/ASN.2011080851, PMID: 22383695

Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. 1990. Nucleotide sequence and 
expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. 
Oncogene 5:519–524 PMID: 2158038. 

Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, 
Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Pontén F, Costea PI, Sahlén P, Mulder J, Bergmann O, 
Lundeberg J, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial 
transcriptomics. Science 353:78–82. DOI: https://doi.org/10.1126/science.aaf2403, PMID: 27365449

Sticht C, De La Torre C, Parveen A, Gretz N. 2018. miRWalk: An online resource for prediction of microRNA 
binding sites. PLOS ONE 13:e0206239. DOI: https://doi.org/10.1371/journal.pone.0206239, PMID: 30335862

Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, Arlotta P, Macosko EZ, Chen F. 2021. Highly 
sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nature Biotechnology 39:313–319. 
DOI: https://doi.org/10.1038/s41587-020-0739-1, PMID: 33288904

Su G, Qin X, Enninful A, Bai Z, Deng Y, Liu Y, Fan R. 2021. Spatial multi-omics sequencing for fixed tissue via 
DBiT-seq. STAR Protocols 2:100532. DOI: https://doi.org/10.1016/j.xpro.2021.100532, PMID: 34027489

Suter B. 2018. RNA localization and transport. Biochimica et Biophysica Acta. Gene Regulatory Mechanisms 
1861:938–951. DOI: https://doi.org/10.1016/j.bbagrm.2018.08.004, PMID: 30496039

Tang Q, Nie F, Kang J, Chen W. 2021. mRNALocater: Enhance the prediction accuracy of eukaryotic mRNA 
subcellular localization by using model fusion strategy. Molecular Therapy 29:2617–2623. DOI: https://doi.org/​
10.1016/j.ymthe.2021.04.004, PMID: 33823302

Thomas RM, John J. 2017. A review on cell detection and segmentation in microscopic images. 2017 
International Conference on Circuit,Power and Computing Technologies (ICCPCT). . DOI: https://doi.org/10.​
1109/ICCPCT.2017.8074189

Vicar T, Balvan J, Jaros J, Jug F, Kolar R, Masarik M, Gumulec J. 2019. Cell segmentation methods for label-free 
contrast microscopy: review and comprehensive comparison. BMC Bioinformatics 20:360. DOI: https://doi.org/​
10.1186/s12859-019-2880-8, PMID: 31253078

Vizgen. 2024. Data release program-vizgen. https://vizgen.com/data-release-program/ [Accessed April 20, 
2027].

Weber BHF, Vogt G, Pruett RC, Stöhr H, Felbor U. 1994. Mutations in the tissue inhibitor of metalloproteinases-3 
(TIMP3) in patients with Sorsby’s fundus dystrophy. Nature Genetics 8:352–356. DOI: https://doi.org/10.1038/​
ng1294-352

Westrich JA, Vermeer DW, Colbert PL, Spanos WC, Pyeon D. 2020. The multifarious roles of the chemokine 
CXCL14 in cancer progression and immune responses. Molecular Carcinogenesis 59:794–806. DOI: https://doi.​
org/10.1002/mc.23188, PMID: 32212206

Wilson SC, White KI, Zhou Q, Pfuetzner RA, Choi UB, Südhof TC, Brunger AT. 2019. Structures of neurexophilin-
neurexin complexes reveal a regulatory mechanism of alternative splicing. The EMBO Journal 38:e101603. 
DOI: https://doi.org/10.15252/embj.2019101603, PMID: 31566781

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome 
Biology 19:15. DOI: https://doi.org/10.1186/s13059-017-1382-0, PMID: 29409532

Xia C, Fan J, Emanuel G, Hao J, Zhuang X. 2019. Spatial transcriptome profiling by MERFISH reveals subcellular 
RNA compartmentalization and cell cycle-dependent gene expression. PNAS 116:19490–19499. DOI: https://​
doi.org/10.1073/pnas.1912459116

Xue ZZ, Wu Y, Gao QZ, Zhao L, Xu YY. 2020. Automated classification of protein subcellular localization in 
immunohistochemistry images to reveal biomarkers in colon cancer. BMC Bioinformatics 21:398. DOI: https://​
doi.org/10.1186/s12859-020-03731-y, PMID: 32907537

Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, Ament SA, Bartlett A, Behrens MM, Van den Berge K, 
Bertagnolli D, de Bézieux HR, Biancalani T, Booeshaghi AS, Bravo HC, Casper T, Colantuoni C, Crabtree J, 
Creasy H, Crichton K, et al. 2021. A transcriptomic and epigenomic cell atlas of the mouse primary motor 
cortex. Nature 598:103–110. DOI: https://doi.org/10.1038/s41586-021-03500-8, PMID: 34616066

Yisraeli JK. 2005. VICKZ proteins: a multi‐talented family of regulatory RNA‐binding proteins. Biology of the Cell 
97:87–96. DOI: https://doi.org/10.1042/BC20040151

Zappulo A, van den Bruck D, Ciolli Mattioli C, Franke V, Imami K, McShane E, Moreno-Estelles M, Calviello L, 
Filipchyk A, Peguero-Sanchez E, Müller T, Woehler A, Birchmeier C, Merino E, Rajewsky N, Ohler U, 
Mazzoni EO, Selbach M, Akalin A, Chekulaeva M. 2017. RNA localization is a key determinant of neurite-
enriched proteome. Nature Communications 8:583. DOI: https://doi.org/10.1038/s41467-017-00690-6, PMID: 
28928394

Zhang M, Eichhorn SW, Zingg B, Yao Z, Zeng H, Dong H, Zhuang X. 2020. Molecular, spatial and projection 
diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics. bioRxiv. DOI: 
https://doi.org/10.1101/2020.06.04.105700

https://doi.org/10.7554/eLife.87517
https://doi.org/10.1038/s41467-018-06868-w
http://www.ncbi.nlm.nih.gov/pubmed/30389932
https://doi.org/10.1093/bioinformatics/btx818
http://www.ncbi.nlm.nih.gov/pubmed/29280997
https://doi.org/10.1681/ASN.2011080851
http://www.ncbi.nlm.nih.gov/pubmed/22383695
http://www.ncbi.nlm.nih.gov/pubmed/2158038
https://doi.org/10.1126/science.aaf2403
http://www.ncbi.nlm.nih.gov/pubmed/27365449
https://doi.org/10.1371/journal.pone.0206239
http://www.ncbi.nlm.nih.gov/pubmed/30335862
https://doi.org/10.1038/s41587-020-0739-1
http://www.ncbi.nlm.nih.gov/pubmed/33288904
https://doi.org/10.1016/j.xpro.2021.100532
http://www.ncbi.nlm.nih.gov/pubmed/34027489
https://doi.org/10.1016/j.bbagrm.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30496039
https://doi.org/10.1016/j.ymthe.2021.04.004
https://doi.org/10.1016/j.ymthe.2021.04.004
http://www.ncbi.nlm.nih.gov/pubmed/33823302
https://doi.org/10.1109/ICCPCT.2017.8074189
https://doi.org/10.1109/ICCPCT.2017.8074189
https://doi.org/10.1186/s12859-019-2880-8
https://doi.org/10.1186/s12859-019-2880-8
http://www.ncbi.nlm.nih.gov/pubmed/31253078
https://vizgen.com/data-release-program/
https://doi.org/10.1038/ng1294-352
https://doi.org/10.1038/ng1294-352
https://doi.org/10.1002/mc.23188
https://doi.org/10.1002/mc.23188
http://www.ncbi.nlm.nih.gov/pubmed/32212206
https://doi.org/10.15252/embj.2019101603
http://www.ncbi.nlm.nih.gov/pubmed/31566781
https://doi.org/10.1186/s13059-017-1382-0
http://www.ncbi.nlm.nih.gov/pubmed/29409532
https://doi.org/10.1073/pnas.1912459116
https://doi.org/10.1073/pnas.1912459116
https://doi.org/10.1186/s12859-020-03731-y
https://doi.org/10.1186/s12859-020-03731-y
http://www.ncbi.nlm.nih.gov/pubmed/32907537
https://doi.org/10.1038/s41586-021-03500-8
http://www.ncbi.nlm.nih.gov/pubmed/34616066
https://doi.org/10.1042/BC20040151
https://doi.org/10.1038/s41467-017-00690-6
http://www.ncbi.nlm.nih.gov/pubmed/28928394
https://doi.org/10.1101/2020.06.04.105700


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bierman et al. eLife 2023;12:RP87517. DOI: https://doi.org/10.7554/eLife.87517 � 30 of 30

Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, Zeng H, Dong H, Zhuang X. 2021. Spatially resolved cell atlas 
of the mouse primary motor cortex by MERFISH. Nature 598:137–143. DOI: https://doi.org/10.1038/s41586-​
021-03705-x, PMID: 34616063

https://doi.org/10.7554/eLife.87517
https://doi.org/10.1038/s41586-021-03705-x
https://doi.org/10.1038/s41586-021-03705-x
http://www.ncbi.nlm.nih.gov/pubmed/34616063

	Statistical analysis supports pervasive RNA subcellular localization and alternative 3' UTR regulation
	eLife assessment
	Introduction
	Results
	SPRAWL quantifies peripheral and central subcellular RNA patterning with rank statistics
	SPRAWL detection of punctate and radial patterning relies on gene-label permutations
	SPRAWL robustly detects subcellular localization in massively multiplexed FISH datasets
	SPRAWL detects cell-type specific localization patterns across biological replicates
	Cell-type specific subcellular localization is regulated in BICCN MOp replicates
	Cell-type specific subcellular localization is regulated in Vizgen Brain replicates
	Cell-type specific subcellular localization is regulated in Vizgen Liver replicates
	Significant SPRAWL punctate and radial scores are highly skewed towards aggregation
	SPRAWL detects genes with opposite and cell-type dependent RNA localization
	Subcellular RNA localization is enriched for correlations with 3’ UTR length
	﻿Slc32a1, Cxcl14﻿, and ﻿Nxph1﻿ 3’ UTR length predicts sub-cellular localization
	﻿Timp3﻿ 3’ UTR length predicts peripheral localization
	Human brain pericyte cell culture shows differential temporal Timp3 3’ UTR usage

	Discussion
	Materials and methods
	SPRAWL input data and preprocessing
	SPRAWL methodology
	SPRAWL peripheral and central metric definition
	SPRAWL radial metric definition
	SPRAWL punctate score definition
	Theoretical features of the SPRAWL peripheral score
	SPRAWL is not highly sensitive to exact cell boundary segmentation
	SPRAWL gene/cell-type scoring
	SPRAWL is highly specific in identifying genes with subcellular patterning conditional on cell boundaries
	SPRAWL filtering
	ReadZS usage and modifications
	Correlation analysis between SPRAWL and ReadZS for MERFISH MOp datasets
	Vizgen Brainmap and Liver showcase clustering to produce cell-type proxies
	Simulations to benchmark SPRAWL sensitivity and specificity
	Identification of RBP and miRNA binding to Timp3 3’ UTR
	RNAs with signal peptides do not have significant central or peripheral localization
	Genes enriched in single-nucleus RNAseq are marginally correlated with periphery score
	Pericyte culture experimental setup with ELISA, qPCR, and BCA readouts
	Timp3 protein production estimation
	qPCR analysis of pericyte culture Timp3 3’ UTR abundance

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


