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Dissecting muscle synergies in the 
task space
David O'Reilly*, Ioannis Delis*

School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom

Abstract The muscle synergy is a guiding concept in motor control research that relies on the 
general notion of muscles ‘working together’ towards task performance. However, although the 
synergy concept has provided valuable insights into motor coordination, muscle interactions have 
not been fully characterised with respect to task performance. Here, we address this research gap 
by proposing a novel perspective to the muscle synergy that assigns specific functional roles to 
muscle couplings by characterising their task-relevance. Our novel perspective provides nuance 
to the muscle synergy concept, demonstrating how muscular interactions can ‘work together’ in 
different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily 
towards common task-goals. To establish this perspective, we leverage information- and network-
theory and dimensionality reduction methods to include discrete and continuous task parameters 
directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of 
the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant 
(present across tasks), redundant (shared task information), or synergistic (different task information). 
To demonstrate these types of interactions in real data, we firstly apply the framework in a simple 
way, revealing its added functional and physiological relevance with respect to current approaches. 
We then apply the framework to large-scale datasets and extract generalizable and scale-invariant 
representations consisting of subnetworks of synchronised muscle couplings and distinct temporal 
patterns. The representations effectively capture the functional interplay between task end-goals 
and biomechanical affordances and the concurrent processing of functionally similar and comple-
mentary task information. The proposed framework unifies the capabilities of current approaches in 
capturing distinct motor features while providing novel insights and research opportunities through 
a nuanced perspective to the muscle synergy.

eLife assessment
The work by O'Reilly and Delis is important to extend the synergy ideas using methods from signal 
processing and information theory to cluster muscles and task parameters, thereby advancing our 
understanding of the modular architecture of motor control. The method is innovative, and the find-
ings are compelling from theoretical and practical perspectives. The work will be of broad interest 
to motor control and neural engineering researchers.

Introduction
Human movement is a highly complex behaviour, with a broad spectrum of multiplexed spatio-
temporal dynamics typically exhibited for basic activities-of-daily-living (Macpherson et  al., 2021; 
Kaplan et al., 2020). How the central nervous system controls movement in the face of this inherent 
complexity to ensure efficient and reliable navigation of the environment and task performance is a 
nontrivial question currently under investigation in the motor control field (Bruton and O’Dwyer, 
2018; Bizzi and Cheung, 2013). The muscle synergy hypothesis is a long-withstanding proposition 
on the underlying neural constraints producing coordinated movement, stating that this complexity is 
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offset by the allocation of computational resources to the spinal level in the form of motor primitives 
(Bruton and O’Dwyer, 2018; Bizzi and Cheung, 2013; Berret et al., 2019; Bernstein, 1966). These 
motor primitives modularly activate functional groups of muscles that are flexibly combined for the 
efficient construction of a movement. The conceptual underpinning of the ‘muscle synergy’ entails 
the idea of combinations of muscles ‘working together’ for the purpose of effective goal-orientated 
behaviour (Latash, 2008). This emergent cohesion involves the following qualifying attributes: a 
repeatable muscle activation pattern common across trials and participants, a reciprocal relationship 
among functional muscle groups such that changes occur in one group to compensate for changes in 
another, and task dependence (i.e. the pattern of interdependencies among muscles must map onto 
task performance) (Latash, 2008; Brenner et al., 2000). A common approach to analyse the neural 
constraints underlying these motor patterns is to apply unsupervised machine-learning algorithms to 
electromyographic (EMG) data (Turpin et al., 2021; d’Avella and Lacquaniti, 2013), with the aim of 
extracting a latent, low-dimensional representation.

In Ó’ Reilly and Delis, 2022, we considered, key limitations among current approaches to muscle 
synergy analysis in extracting functionally relevant and interpretable patterns of muscle activity (Ales-
sandro et al., 2013). We proposed a combinatorial approach based on information- and network-
theory and dimensionality reduction (the network information framework [NIF]) that significantly 
improved the generalisability of the extraction process by, among others, removing restrictive model 
assumptions (e.g. linearity, same mixing coefficients) and the reliance on variance-accounted-for 
metrics (Alessandro et  al., 2013). By determining the pairwise mutual information (MI) between 
muscles, this innovation paved the way for the appropriate mapping of muscular interactions to the 
task space. To elaborate on the significance of this development, the extraction of motor patterns 
in isolation of the task space often comes at the expense of functional and physiological relevance 
(Alessandro et al., 2013; de Rugy et al., 2013). Furthermore, effective methods for mapping large-
scale physiological dynamics to behaviour is a current gap across the neurosciences (Krakauer et al., 
2017). Thus, here we build on this work by, for the first time, directly including task space parameters 
during muscle synergy extraction. This enables us, in a novel way, to dissect the concept of the muscle 
synergy and therefore quantify interactions between muscle activations with shared or complemen-
tary functional roles.

Further to the above, in its currently defined state, the muscle synergy concept describes the role 
of common neural drives to functional muscle groupings working redundantly towards a common 
task-goal (Bruton and O’Dwyer, 2018; Bizzi and Cheung, 2013; Berret et al., 2019; Latash, 2008; 
Cheung and Seki, 2021). However, recent influential works have highlighted several other important 
mechanisms involved in this low-dimensional control strategy that are not well recognised by the 
muscle synergy concept (Ronzano et al., 2021; Hug et al., 2021; Hug et al., 2023; Alessandro et al., 
2020; Valero-Cuevas et al., 2009; Nazarpour et al., 2012; Todorov and Jordan, 2002; d’Avella 
and Bizzi, 2005; Cheung et al., 2005). Such insights include the partitioning of motor variability by 
the nervous system into task-relevant and -irrelevant spaces and the cooperation between function-
ally distinct muscle groupings in the form of cross-module functional connectivities. These observa-
tions highlight the need for a refinement of the muscle synergy concept to comprehensively describe 
diverse muscle interactions during movement, including their partitioning into task-relevant and -irrel-
evant spaces and the characterisation of their functional roles.

We thus motivate the development of a more nuanced perspective to the muscle synergy concept 
and the general notion of ‘working together’ that comprehensively describes the muscle interac-
tions underlying motor behaviour. To do so, we propose an information-theoretic approach (based 
on the NIF pipeline) that characterises the contributions of muscle couplings to task performance. In 
other words, we frame the notion of ‘working together’ in more specific terms of shared information 
between pairs of spatiotemporal muscle activations (‍

[
mx, my

]
‍ Figure 1.3a) (red and green sets, respec-

tively) and a corresponding task parameter (‍τ ‍) (blue set) (see Venn diagrams in Figure 1.3b). Among 
current approaches to muscle synergy analysis, the shared information between muscles (yellow and 
white areas in Figure 1.1a) is quantified, using dimensionality reduction, as common patterns of vari-
ability. These common patterns are essentially task-agnostic and may contain patterns of variability 
(1) present in specific tasks (i.e. task-relevant white shaded area in Figure 1.1a as well as 2) shared 
across tasks (i.e. task-irrelevant, yellow shaded area in Figure 1.1a). Our proposed approach dissects 
patterns of muscle variability in space, time, and across trials in terms of their task-relevance and 

https://doi.org/10.7554/eLife.87651
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Figure 1. A general outline of the proposed approach. (1.1a, b) We propose a novel approach to mapping muscle couplings to the task space. 
Among current muscle synergy analysis approaches, muscle couplings are quantified in isolation of the task solely using dimensionality reduction. 
Using our approach, the functional characteristics of muscle interactions can be quantified in terms of the similarity of their encoded task information. 
We do so by determining the coupling between ‍

[
mx, my

]
‍ and a corresponding task parameter (‍τ ‍) using mutual information (MI). From this perspective, 

task-redundant muscle couplings (pink shaded area in pink-orange intersection) represent muscles cooperating towards similar task-goals, while task-
synergistic muscle couplings (orange shaded area in pink-orange intersection) encapsulate the task information provided by a muscle pairing acting 
towards complementary task-goals. Muscle couplings present across tasks (i.e. task-irrelevant) are quantified by conditioning the MI between ‍

[
mx, my

]
‍ 

pairs with respect to ‍τ ‍ (yellow intersection). (1.2) A description of redundant and synergistic interactions. (a) Net redundant interactions are defined by a 
greater amount of information generated by the sum of individual observation of ‍mx‍ and ‍my‍ (‍

[
mx + my

]
‍) than their simultaneous observation (‍

[
mx, my

]
‍). 

(b) In a net synergistic interaction, ‍
[
mx, my

]
‍ provides more information than ‍

[
mx + my

]
‍. (1.3a, c) An overview of the approach. Spatiotemporal muscle 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.87651
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functional similarity in a generalizable manner using MI (Figure 1.3a–c). This enables us to decom-
pose muscle activations into muscle pair–task parameter couplings and characterise their combined 
functional roles. We can then extract low-dimensional representations of these muscle couplings, 
that is muscle networks with specific spatial and temporal signatures, across participants and tasks 
(Figure 1.3c).

Crucially, using this novel framework, we can separately quantify the task-irrelevant (i.e. muscle 
interactions present across tasks) information conveyed by a muscle coupling (yellow intersection in 
Figure 1.1b) from the task-relevant information (pink-and-orange shaded area in Figure 1.1b). These 
task-relevant interactions can be either sub-additive/redundant (i.e. the muscle coupling provides 
less information about the task compared to the sum of the individual muscle patterns) or super-
additive/synergistic (i.e. the muscle coupling conveys more task information than the sum of individual 
muscle-task encodings). Conceptually, the information a muscle interaction provides is considered 
redundant when all the information can essentially be found in one of the muscles (pink shaded area 
Figure  1.2a). This redundant task information thus reveals a functional similarity between muscle 
activations. Alternatively, we can also identify muscles that act synergistically towards complementary 
task-goals, meaning their variations provide different information about a motor behaviour. A key, 
quantifiable attribute of this complementary interaction is the emergent task information (synergy) 
they provide when considered together (orange shaded area Figure 1.2b). From this novel perspec-
tive, muscle activations can ‘work together’ not just similarly towards a common task-goal but also 
complementarily towards different aspects of motor behaviour and concurrently towards objectives 
functionally irrelevant to overt task performance, thus providing a comprehensive view of the muscle 
interactions governing coordinated movement.

To illustrate this novel conceptual and analytical framework, we conducted two example applica-
tions to data from human participants performing naturalistic movements. These applications demon-
strate the added utility of this framework to current muscle synergy analysis in terms of functional 
and physiological relevance and interpretability. We then applied it to three large-scale datasets, 
extracting generalizable and functionally interpretable space–time muscle networks with respect to 

activation samples are extracted across trials from large-scale electromyographic (EMG) datasets and concatenated into vectors, forming ‍
[
mx, my

]
‍ pairs.

The derived muscle couplings are then run through the network information framework (NIF) pipeline (Ó’ Reilly and Delis, 2022), producing low-
dimensional, multiplexed space–time muscle networks.

Figure 1 continued

Figure 2. A simulation demonstrating how informational redundancy and synergy can be interpreted when applied to the muscle space. Four 
observations of a given muscle pair (‍mx‍ and ‍my‍) that can fall into two equiprobable on and off activation states and a corresponding task parameter (‍τ ‍) 
describing left (L) or right (R) movement direction. Observing either ‍mx‍ or ‍my‍ in the redundancy example gives 1 bit of information while observing both 

‍mx‍ and ‍my‍ together in the synergy example gives 1 bit of information.

https://doi.org/10.7554/eLife.87651
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both discrete and continuous task spaces. We have also made available open-source Matlab routines 
for readers to apply this approach to their own data (https://github.com/DelisLab/EMG2Task copy 
archived at O’Reilly and Delis, 2024).

Results
Our primary aim here is to characterise muscle synergies in task space by quantifying the contribu-
tions of muscle couplings to task performance. To achieve this, we essentially reverse the analytical 
approach typically used in muscle synergy studies (i.e. muscle groupings are identified and inferences 
then made about their functional roles) (Turpin et  al., 2021). More specifically, we firstly identify 
functional couplings between paired muscle activations by evaluating their task-relevance and then 
extracting representative patterns of such couplings using dimensionality reduction methods. This 
enables us to distinguish task-irrelevant from task-relevant muscle couplings. Of the muscle couplings 
that demonstrate task-relevance, we can then characterise their functional roles as either redundant or 
synergistic. Figures 2 and 3 illustrates a simulation to facilitate interpretations of what informational 
redundancy and synergy mean when applied to muscle activities in the context of task performance. 
Redundant task information is generated when ‍mx‍ and ‍my‍ carry identical predictive information about 
‍τ ‍. This is distinct from current muscle synergy analysis which would consider ‍mx‍ and ‍my‍ to share infor-
mation about ‍τ ‍ if their magnitudes are equivalent. Here, ‍τ ‍ is always L when ‍mx‍ is on and when ‍my‍ is 
off and R when vice versa. Thus, all the task information can be found in either ‍mx‍ or ‍my‍ alone, gener-
ating 1 bit of redundant information. Synergistic task information on the other hand is predictive task 
information generated only when observing both ‍mx‍ and ‍my‍ together. In the simple example shown, 
‍τ ‍ can be L when both ‍mx‍ and ‍my‍ are active or inactive. However, we can see that when both muscles 
are active or inactive then ‍τ ‍ is L. Thus, no predictive task information is provided by either ‍mx‍ or ‍my‍ 
alone but the full 1 bit of information available is generated when observing both muscles together .

Building on current approaches to muscle synergy analysis
Current approaches to muscle synergy analysis based on non-negative matrix factorisation (NMF) 
have a proven use case in the extraction of functionally and physiologically relevant motor patterns 
(Bruton and O’Dwyer, 2018; Alessandro et al., 2013; Funato et al., 2022; Scano et al., 2022; Buon-
giorno et al., 2020). To demonstrate that the proposed framework adds to this current utility, here 
we firstly provide a simple example output from the proposed and current approaches (see Figure 
5A–D). This example was derived from the EMG recordings of a single trial of a participant walking 
on level ground in the counter-clockwise direction around the circuit depicted in Figure 4C, Camargo 
et al., 2021. For the proposed approach, the muscle couplings were determined with respect to a 
single, continuous task parameter, the heel kinematic marker in the anterior–posterior direction. For 
the application of the current approach, we applied the spatial muscle synergy model across the same 
single-trial EMG recordings (Tresch et al., 1999), extracting one component.

The simplified representations from the proposed approach reveal the functional role of muscular 
interactions with respect to the heel marker and provide intuition on the types of muscle couplings 
that can be identified, including task-irrelevant (A), -redundant (B), and -synergistic (C) interactions. 
Their submodular structure is illustrated via the node colour on the accompanying human body models 
(Makarov et al., 2015), describing muscles that have a closer functional relationship. For example, (1) 
the hamstring muscles (ST and BF) controlling knee flexion work redundantly together with muscles 
involved in hip abduction (GR, GlutM, and Obl) to move the heel around the circuit (Figure 4B), and 
(2) calf muscles involved in ankle flexion (GM and TA) cooperatively determine heel position in synergy 
with the same hamstring muscles (Figure 5CFigure 5C). Moreover, these hamstring muscles together 
with their antagonist RF also form a task-irrelevant network, that is their couplings are not predictive 
of heel position (Figure 5A). Overall, task-irrelevant muscle couplings primarily capture interactions 
between co-agonist and agonist–antagonist muscles that are indiscriminative of heel marker posi-
tion. Also, task-redundant and -synergistic couplings reveal functionally similar and dissimilar muscle 
combinations, respectively, that provide sub-additive (i.e. shared or redundant) and super-additive 
(i.e. complementary or synergistic) information about heel marker position.

The NMF representation (Figure 5D) conveys important information about gait in a task-agnostic 
manner, thus it may contain both task-relevant and -irrelevant interactions. Intuitively, SO, GM, and 

https://doi.org/10.7554/eLife.87651
https://github.com/DelisLab/EMG2Task
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Figure 3. A summary of the network information framework (NIF) pipeline. (A) Large-scale datasets of electromyographic (EMG) signals are captured 
while participants perform various motor tasks (Delis et al., 2014; Hilt et al., 2018; Camargo et al., 2021). (B) The mutual information (MI) between all 
unique muscle-timepoint vector (‍

[
mx, my

]
‍ combinations with respect to a corresponding task parameter (‍τ ‍) is determined (Ince et al., 2017), forming 

a network of functional connectivities. (C) These adjacency matrices are then analysed in terms of statistical significance and modular structure using 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.87651
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percolation theory (Ó’ Reilly and Delis, 2022). (D) The optimal spatial and temporal model-ranks are determined using generalised, consensus-based 
network community detection methods (Blondel et al., 2008; Mucha et al., 2010; Lancichinetti and Fortunato, 2012; Rubinov and Sporns, 2010). 
(E) The optimal model-ranks are used as input parameters for dimensionality reduction, where space–time muscle networks along with their underlying 
activation coefficients are concurrently extracted (Delis et al., 2014).

Figure 3 continued

Figure 4. Graphical illustrations of each of the datasets analysed in the current study. (A) Dataset 1 consisted of participants executing table-top point-
to-point reaching movements (40 cm distance from starting point P0) across four targets in forward (P1–P4) and backwards (P5–P8) directions at both 
fast and slow speeds (40 repetitions per task) (Delis et al., 2014). The muscles recorded included the finger extensors (FE), brachioradialis (BR), biceps 
brachii (BI), medial-triceps (TM), lateral-triceps (TL), anterior deltoid (AD), posterior deltoid (PD), pectoralis major (PE), latissimus dorsi (LD) of the right, 
reaching arm. (B) For dataset 2, the activity of 30 muscles was recorded while participants performed whole-body point-to-point reaching movements 
across three different heights and bars and in various directions, accumulating to 72 unique reaching tasks (Hilt et al., 2018). (C) The circuit navigated 
by participants in dataset 3 as they executed various locomotion modes is illustrated, of which level-ground walking, stair- and ramp-ascent/descent 
were analysed in the current study (Camargo et al., 2021). Several sub-conditions were undertaken by participants for each locomotion mode including 
different walking speeds, clockwise vs. counter-clockwise direction, different stair heights and ramp inclines, etc. Participants executed these tasks 
while the electromyography (EMG) of 11 muscles on the right leg gluteus medius (GlutM), right external oblique (Obl), semitendinosus (ST), gracilis 
(GR), biceps femoris (BF), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus (SO), tibialis anterior (TA), gastrocnemius medialis (GM) 
along with kinematic, dynamic, and inertial motion unit (IMU) signals were captured. (D) The EMG placement for dataset 4 [deltoideus pars clavicularis 
(DC), biceps brachii (BB), triceps brachii (TB), flexor digitorum superficialis (FDS), extensor digitorum (ED), brachioradialis (BR), flexor carpi ulnaris (FCU), 
extensor carpi ulnaris (ECU), pronator teres (PT), flexor carpi radialis (FCR), abductor pollicus brevis (APB), abductor digiti minimi (ADM)] (Averta et al., 
2021). A single trial was taken from 25 healthy and 20 post-stroke participants performing a unilateral pointing movement with the index finger and arm 
outstretched (task 9 of the Softpro protocol [MHH]).

https://doi.org/10.7554/eLife.87651
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Obl of the outer, right side are most prominently weighted here, perhaps representing their func-
tional role in accelerating the body in the counter-clockwise direction around the circuit whilst main-
taining upright posture (Figure  4C). This observation can only be inferred indirectly however as, 
amongst current approaches, no direct association is made with other muscles or with task perfor-
mance. Indeed, with respect to heel position, the proposed approach reveals that SO is functionally 
similar to Obl and GM whilst also containing task-synergistic and -irrelevant information with GM 
(Figure 5A–C). From the perspective of existing approaches, the knee flexors and extensors play a 
minor role during turning gait (as indicated by their relatively low weighting Figure 5D). However, the 
proposed approach conveys a central role for these muscles suggesting that the proposed framework 
enables targeted dissections of muscle functionality with respect to a chosen task parameter, thus 
revealing subtle couplings with potentially important behavioural consequences.

Next, to demonstrate the additional physiological relevance the proposed methodology brings to 
current muscle synergy analysis, we applied the proposed framework to single trials of pointing move-
ments performed by 20 participants with stroke and 25 healthy controls from dataset 4 (Figure 4D) 
(‘MMH’ task 9, Averta et al., 2021). Specifically, we determined MI from a randomly selected trial of 
healthy and post-stroke participants with respect to the 3D position of the anterior wrist kinematic 
marker (WRBA) of the pointing arm. We chose WRBA as the task variable here due to its sensitivity 
to hand orientation. For the purpose of this simplified demonstration, we focused on a comparison 
between task-redundant (with respect to WRBA) and NMF-based muscle representations. We firstly 
generated a normative representation of this pointing motion by extracting the first component across 
the healthy controls using the proposed approach (Figure 6a.1 and NMF, Figure 6a.2). We then quan-
tified the similarity of muscle representations extracted from each post-stroke participant individually 
to this normative reference (obtained across all healthy participants) using Pearson’s correlation and 
converted these values to distances (i.e. 1-r) (Figure 6b, c). Finally, we determined if these distances 
from healthy control values were predictive of the stroke survivor’s motor impairment, measured using 
the upper-extremity section of the Fugl-Meyer assessment (Figure 6d).

To briefly summarise the results, the distance of post-stroke participants from healthy controls was 
found to be predictive of motor impairment for the proposed approach (‍β‍ = −8.52 ± 2.2, p = 0.0012) 
but not the NMF-based approach (‍β‍ = 1.4 ± 1.39, p = 0.33). This finding suggests, intuitively, that 
the proposed approach captures redundant muscle couplings that support robust motor control and 
that deviations from this normative pattern of motor redundancy are linearly related to the degree 
of impairment. Importantly, this result was obtained using only one randomly selected trial for each 

Figure 5. A simplified example output from the proposed framework applied to a single trial of turning gait from dataset 3. (A) Task-irrelevant, 
(B) task-redundant, and (C) task-synergistic synchronous muscle couplings were quantified (the unit of shared information is 1 bit) with respect to the 
heel kinematic marker (anterior–posterior direction). Human body models accompanying each spatial network illustrate their respective submodular 
structure with node colour and size and edge width indicating community affiliation (Blondel et al., 2008), network centrality and connection strength, 
respectively (Makarov et al., 2015; Benzi and Klymko, 2013). (D) A corresponding synergy representation from a single trial of turning gait from 
dataset 3 extracted using the spatial model from current approaches (Tresch et al., 1999). Each bar represents the relative weighting of each muscle in 
the synergy component.

https://doi.org/10.7554/eLife.87651
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participant. This simple example conveys the physiologically relevant targeted insights that can be 
generated from the proposed framework. Although current approaches have demonstrated signif-
icant linear relationships with motor impairment (Clark et al., 2010; Schwartz et al., 2016; Steele 
et al., 2015), these assessments generally rely on large numbers of trials and participants and do not 
point to specific underlying muscle interactions as provided here.

Together, through two example applications, we have demonstrated attributes of the proposed 
methodology that provide novel capabilities to current muscle synergy analysis. In the following, we 
sequentially present in more detail the three types of muscular interactions in the spatiotemporal 
domain across three datasets and then show the robustness of the approach and its outputs.

Representations of motor behaviour in muscle couplings
To begin, we derived pairs of muscle activation vectors ‍

[
mx, my

]
‍ from benchmark datasets of human 

participants executing naturalistic movements, namely arm reaching (dataset 1), whole-body point-
to-point reaching (dataset 2), and various locomotion modes (dataset 3) (Delis et  al., 2014; Hilt 
et al., 2018; Camargo et al., 2021; Averta et al., 2021) (see Figure 4 for the experimental design 
of each dataset and ‘Materials and methods’ for an outline of the experimental setups and EMG data 
pre-processing) (Figure 3A). For datasets 1 and 2, we determine the MI between ‍

[
mx, my

]
‍ vectors 

with respect to several discrete task parameters representing specific task attributes (e.g. reaching 
direction, speed, etc.), while for dataset 3 we determined the task-relevant and -irrelevant muscles 
couplings in an assumption-free way by quantifying them with respect to all available kinematic, 
dynamic, and inertial motion unit (IMU) features.

Having extracted the muscle pair-task interdependencies representing a specific intersection in 
Figure 1.1b, we next sought to find a parsimonious representation of motor behaviour that is consis-
tent across tasks and participants for datasets 1–3 (Figure 3E; Ó’ Reilly and Delis, 2022; Delis et al., 
2014). To produce this sparse, low-dimensional representation, we undertook the following interme-
diary steps:

We modelled the MI values as adjacency matrices in the spatial or temporal domain and iden-
tified dependencies that were statistically significant using percolation theory (Figure  3C; Gallos 
et al., 2012; Bunde and Havlin, 2012). By assuming the muscle networks operate near a state of 

Figure 6. A simple demonstration of the physiological relevance of the proposed approach (a.1–d.1) and the traditional, non-negative matrix 
factorisation (NMF)-based approach (a.2–d.2). From dataset 4 (Averta et al., 2021), we took the electromyographic (EMG) signals and WRBA kinematic 
from 20 post-stroke and 25 healthy participants. We extracted a single normative reference of healthy controls task-redundant muscle couplings with 
respect to WRBA (a.1) and a corresponding normative reference using NMF only (a.2). We then extracted a single component from each post-stroke 
participant and compared them individually with the corresponding normative reference, computing distance values (1 r) (b, c). We finally determined 
the predictive relationship of these distance values with a measure of upper-extremity motor impairment derived from the Fugl-Meyer assessment 
(FMA-UE) (d).

https://doi.org/10.7554/eLife.87651
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self-organised criticality (Bak et  al., 1987), we effectively isolated dependencies that were above 
chance-level occurrence, thus empirically sparsifying the networks.

To empirically determine the number of components to extract in a parameter-free way, we then 
concatenated these adjacency matrices into a multiplex network and employed network community 
detection protocols to identify modules across spatial and temporal scales (Figure 3D; Blondel et al., 
2008; Mucha et al., 2010; Lancichinetti and Fortunato, 2012; Rubinov and Sporns, 2010; Didier 
et al., 2018). Having detected the spatiotemporal modular structure, we then returned the sparsified 
networks to their original format and used the number of modules identified as input parameters into 
dimensionality reduction (Figure 3E; Delis et al., 2014).

By optimising a modularity-maximising cost-function (Newman and Girvan, 2004; Magnani et al., 
2022), the community detection protocols we employed consistently identified three spatial (S1–S3) 
and two temporal (T1–T2) modules as representative of the underlying task-redundant, -synergistic, 
and -irrelevant informational dynamics. Following their extraction, we further analysed the spatial 
networks from each dataset in terms of their submodular structure by applying network-theoretic 
tools (Blondel et al., 2008; Rubinov and Sporns, 2010; Benzi and Klymko, 2013). In doing so, we 
identified subnetworks within each spatial network and interesting patterns of network centrality, that 
is the relative importance of a node in a network. The spatial and temporal networks of each dataset 
output are illustrated in panels A and B (Figure 7; Figure 8; Figure 9; Figure 10; Figure 11; Figure 12) 
of the following sections. They are accompanied by human body models where node colour and size 
indicate subnetwork community affiliation and network centrality, respectively (Makarov et al., 2015). 
The networks we extracted operate in parallel within spatial and temporal domains while having an 
all-to-all correspondence across domains, that is any spatial component can be combined with any 
temporal component via a task-specific coefficient (illustrated in panel C for dataset 1 and 2 outputs 
and in the supplementary materials for dataset 3) (Delis et al., 2014). Unlike similar muscle synergy 

Figure 7. Three spatial (S1–S3) and two temporal task-irrelevant muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 2 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Hilt et al., 2018). 
(Panel C) Activation coefficients are presented to the right of the networks, indicating their task parameter-specific scaling averaged across participants. 
Human body models accompanying each spatial network illustrate their respective submodular structure with node colour and size and edge width 
indicating community affiliation (Blondel et al., 2008), network centrality and connection strength, respectively (Makarov et al., 2015; Benzi and 
Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Three spatial (S1–S3) and two temporal task-irrelevant muscle networks (T1–T2) were empirically identified and extracted across 
participants and task parameters from dataset 1 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Delis 
et al., 2014).

https://doi.org/10.7554/eLife.87651
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extraction approaches, dimensionality reduction in the NIF pipeline does not seek to approximate the 
variance of recorded EMG data but to identify sets of muscles that share the same type of interaction. 
Thus, the multiplexing coefficients extracted in this framework are instead interpreted as the partici-
pant- and task-specific scaling of information overlap.

Task-irrelevant muscle couplings
To quantify the task-irrelevant contributions of muscular interactions to motor behaviour, we condi-
tioned the MI between ‍

[
mx, my

]
‍ with respect to ‍τ ‍ (see ‘Materials and methods’) (Ince et al., 2017). 

This conditioning effectively removes the task-relevant information, leaving information produced by 
pairwise muscle variations that are task-indiscriminative. Following a run through the NIF pipeline 
(Figure 3; Ó’ Reilly and Delis, 2022), the output from datasets 2 and 3 are presented in Figures 7 
and 8, respectively, while the output from dataset 1 is presented in Figure 7—figure supplement 1. 
The task-irrelevant space–time muscle networks we extracted from datasets 1 and 2 shared several 
structural features with their task-agnostic counterparts extracted in the preliminary study (Ó’ Reilly 
and Delis, 2022), supporting recent work showing that functional muscle network structure are heavily 
influenced by task-irrelevant factors such as anatomical constraints (Kerkman et al., 2018). The func-
tional connectivities identified here captured known contributions of spatiotemporal muscular inter-
actions to aspects of motor behaviour common across tasks and participants which we outline briefly 
here.

Figure 8. Three spatial (S1–S3) and two temporal task-irrelevant muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 3 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Camargo et al., 
2021). Activation coefficients are presented in supplementary material 1, indicating their task parameter-specific scaling averaged across participants 
in the dynamic, inertial motion unit (IMU), and kinematic spaces. Human body models accompanying each spatial network illustrate their respective 
submodular structure with node colour and size and edge width indicating community affiliation (Blondel et al., 2008), network centrality and 
connection strength, respectively (Makarov et al., 2015; Benzi and Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Task-irrelevant activation coefficients (dataset 3) (Delis et al., 2014).

https://doi.org/10.7554/eLife.87651
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The temporal networks from datasets 1 and 2 captured mostly co-activations from movement 
onset – mid-movement and movement cessation, indicating that some co-contraction mechanisms 
were consistently task-irrelevant across trials. The temporal networks for dataset 2 were more diffuse 
compared to dataset 1, probably reflecting the more variable role of passive forces in generating 
movements to different heights captured in this dataset’s experimental design (Hilt et  al., 2018; 
Hardesty et al., 2020). Furthermore, this co-contraction mechanism was more parsimoniously repre-
sented as a single network in dataset 3 (T1 in Figure  8B), where passive forces in contrast likely 
played a consistently resistive role during locomotion. Interestingly, T1 for dataset 3 corresponded 
equivalently high for all three task spaces when corresponding with S2 which consisted of upper-leg 
extensors (see Figure 8—figure supplement 1). Muscle couplings indicative of agonist–antagonist 
pairings were also identified as separate subnetworks in S3 of dataset 3 (Figure 8A). More specifically, 
their functional segregation appeared to be based on their distinct functional roles in forward propul-
sion (red nodes) and deceleration (blue nodes) during the mid-stance phase of gait, as indicated by 
the prominent correspondence with T2 across task spaces (see Figure 8—figure supplement 1). This 
finding reflects the consistent agonistic and antagonistic contributions of muscular interactions across 
locomotive tasks.

The gross motor function of muscle couplings was another characteristic of task-irrelevant muscle 
couplings that pervaded across the datasets analysed here. For instance, AD had a central role in S2 of 
dataset 1 while also displaying a unique pattern of connectivity with tibial musculature in S3 of dataset 
2. Similarly, GlutM had a central role in S1 of dataset 3 (Figure 8A). We further found a common 
pattern of task-irrelevant connectivity in S2 across datasets, namely the musculature about a hinge 
joint (elbow in datasets 1 and 2, knee in dataset 3) coupled with proximal shoulder or hip muscula-
ture, indicative of their biomechanical affordances. Finally, the passive, left arm was connected with 
the tibial musculature of S3 in dataset 2 (green nodes Figure 7A). To probe the underlying function 
of this connectivity in the left arm, we inspected the original EMG signals. We observed periodic, 

Figure 9. Three spatial (S1–S3) and two temporal task-redundant muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 2 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Hilt et al., 2018). 
(Panel C) Activation coefficients are presented to the right of the networks, indicating their task parameter-specific scaling averaged across participants. 
Human body models accompanying each spatial network illustrate their respective submodular structure with node colour and size and edge width 
indicating community affiliation (Blondel et al., 2008), network centrality and connection strength, respectively (Makarov et al., 2015; Benzi and 
Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Three spatial (S1–S3) and two temporal task-redundant muscle networks (T1–T2) were empirically identified and extracted across 
participants and task parameters from dataset 1 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Delis 
et al., 2014).

https://doi.org/10.7554/eLife.87651
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tonic activations across tasks, reflective of reciprocal inhibition of contralateral limb musculature that 
enables unilateral movement (Cincotta and Ziemann, 2008).

Task-redundant muscle couplings
To characterise the functional role of task-relevant muscle couplings, we employed a higher-order 
information-theoretic concept known as co-information (co-I) (Ince et al., 2017; McGill, 1954; Schyns 
et al., 2020). This metric quantifies the MI between three random variables and may take on positive 
values (net synergistic) and negative values (net redundant) (see Figure 13 of ‘Materials and methods’). 
Co-I quantifies the task-relevant information shared between ‍

[
mx, my

]
‍ independently of the informa-

tion generated by task-irrelevant muscular interactions. In doing so, it also defines the functional 
relationship between ‍

[
mx, my

]
‍ overall as redundant or complementary. Following the quantification 

of co-I for all ‍
[
mx, my

]
‍ and corresponding ‍τ ‍ (pink area in orange-and-pink intersection Figure 1.3B), 

we parsed the negative values indicating redundancy into a separate matrix and rectified them. In 
Figures 9 and 10, we illustrate the output following the extraction of task-redundant space–time 
muscle networks from datasets 2 and 3 across tasks and participants, respectively, while the output 
for dataset 1 is presented in Figure 9—figure supplement 1. In the co-I formulation, task-redundant 
muscle couplings can be interpreted as muscle couplings that overall shared a common task-relevant 
functional role. For example, with reference to Figure 9 here, muscles in the networks presented in S1 
(Figure 9A) carry redundant information about the movement endpoint (Figure 9C) with the temporal 
profile T1 (Figure 9B) whereas S3 (Figure 9A) contains muscle networks carrying redundant informa-
tion about the starting point (Figure 9C) with the same temporal profile T1 (Figure 9B).

Figure 10. Three spatial (S1–S3) and two temporal task-redundant muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 3 using the network information framework (NIF) pipeline (A, B) (Ó’ Reilly and Delis, 2022; Camargo et al., 2021). 
Activation coefficients are presented in supplementary material 1, indicating their task parameter-specific scaling averaged across participants in 
the dynamic, inertial motion unit (IMU), and kinematic spaces. Human body models accompanying each spatial network illustrate their respective 
submodular structure with node colour and size and edge width indicating community affiliation (Blondel et al., 2008), network centrality and 
connection strength, respectively (Makarov et al., 2015; Benzi and Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Task-redundant activation coefficients (dataset 3) (Delis et al., 2014).

https://doi.org/10.7554/eLife.87651
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Both dataset 1 (Figure 9—figure supplement 1) and dataset 3 (Figure 10) outputs display similar 
patterns of muscle couplings at the same spatial scale of an individual, task-relevant limbs’ muscu-
lature, with an emphasis on the coupling of specific muscles with all other muscles. For dataset 1, 
FE, BI, and BR displayed this integrative pattern across S1–S3, respectively, while BF, TA, and ST 
demonstrated this pattern in dataset 3 also. The muscle networks encapsulated several functionally 
interpretable couplings such as the agonist–antagonist pairings of the BI and TM of S2 (dataset 1, 
Figure 9—figure supplement 1A) and the task redundancy of ankle dorsi-flexors, and knee/hip flexors 
during sloped walking for example in S2 of dataset 3 (Figure 10A; Pickle et al., 2016). The functional 
interpretation of these muscle connectivity patterns was in line with the extracted task-specific acti-
vations. For instance, S2 of dataset 1 was modulated most prominently by reaching direction when 
corresponding with T2, commensurate with the biomechanical affordances of this upper-arm muscle 
network. Furthermore, S2 of dataset 3 was specifically modulated by the right-thigh kinematic marker 
along the y-axis (up–down direction) for both T1 and T2 (see Figure 10—figure supplement 1). The 
centrality of task-redundant muscle couplings in datasets 1 and 3 suggests particular muscle activa-
tions drive the task-specific variations in the reaching arm and stepping leg muscle activities towards a 
common behavioural goal. It is also worth noting that the magnitude of these functional connectivity 
patterns appeared to be proportional to anatomical distance, as evidenced by the magnitude of 
connection strengths, a finding supportive of previous related research (Kerkman et al., 2018).

Meanwhile at the greater spatial scale of dataset 2 (Figure 9A), task-redundant muscle couplings 
were anatomically compartmentalised to the upper- and lower-body. This functional segregation was 
emphasised at the subnetwork level also, where the upper- and lower-body musculature of S3 for 
instance formed distinct submodules (blue and red nodes). Amongst the task-specific activations 
in dataset 2, S1 carried redundant task information about endpoint target, -height, and up–down 
direction when corresponding with T1. T2 for dataset 2 on the other hand contained mostly tempo-
rally proximal dependencies along the diagonal, suggestive of co-contraction mechanisms, which 

Figure 11. Three spatial (S1–S3) and two temporal task-synergistic muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 2 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Hilt et al., 2018). 
(Panel C) Activation coefficients are presented to the right of the networks, indicating their task parameter-specific scaling averaged across participants. 
Human body models accompanying each spatial network illustrate their respective submodular structure with node colour and size and edge width 
indicating community affiliation (Blondel et al., 2008), network centrality and connection strength, respectively (Makarov et al., 2015; Benzi and 
Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Three spatial (S1–S3) and two temporal task-synergistic muscle networks (T1–T2) were empirically identified and extracted across 
participants and task parameters from dataset 1 using the NIF pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Delis et al., 2014).

https://doi.org/10.7554/eLife.87651
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Figure 12. Three spatial (S1–S3) and two temporal task-synergistic muscle networks (T1–T2) were empirically identified and extracted across participants 
and task parameters from dataset 3 using the network information framework (NIF) pipeline (panels A, B) (Ó’ Reilly and Delis, 2022; Camargo et al., 
2021). Activation coefficients are presented in supplementary material 1, indicating their task parameter-specific scaling averaged across participants 
in the dynamic, inertial motion unit (IMU), and kinematic spaces. Human body models accompanying each spatial network illustrate their respective 
submodular structure with node colour and size and edge width indicating community affiliation (Blondel et al., 2008), network centrality and 
connection strength, respectively (Makarov et al., 2015; Benzi and Klymko, 2013).

The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Task-synergistic activation coefficients (dataset 3) (Delis et al., 2014).

Figure 13. Co-information (Co-I) determines the difference between the sum total information shared with ‍τ ‍ in ‍mx‍ and ‍my‍ when observed separately 
and the information shared with ‍τ ‍ when they are observed together. The adjacency matrices show how this calculation is carried out for all unique 

‍
[
mx, my

]
‍ combinations. Redundant and synergistic muscle couplings are then separated into two equivalently sized networks. The accompanying colour 

bars indicate the values present in the adjacency matrix.

https://doi.org/10.7554/eLife.87651
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became more diffuse near movement cessation. These endpoint trajectory and co-contraction related 
temporal patterns were qualitatively similar to T1 and T2 of both datasets 1 and 3, respectively (see 
Figure 10 and Figure 9—figure supplement 1, respectively).

Task-synergistic muscle couplings
Similarly, we isolated task-synergistic muscle couplings by parsing, instead, the positive co-I values 
from the computations conducted across all ‍

[
mx, my

]
‍ and corresponding ‍τ ‍ into a sparse matrix where 

all redundant couplings were set to zero (see Figure 13 of ‘Materials and methods’). Task-synergistic 
muscle couplings here can be interpreted as a ‍

[
mx, my

]
‍ pair that provide complementary (i.e. function-

ally dissimilar) task information, thus more information is gained by observing ‍[mx, my]‍ together rather 
than separately (orange area in orange-and-pink intersection Figure 1.3B). In Figures 11 and 12, we 
illustrate the task-synergistic space–time muscle networks from datasets 2 and 3, respectively (dataset 
1 output is presented in Figure 11—figure supplement 1).

Across datasets, muscle networks could be characterised by the transmission of complementary 
task information between functionally specialised muscle groups, many of which were identified 
among the task-redundant representations (Figures 9 and 10 and Figure 9—figure supplement 1). 
The most obvious example of this is the S3 synergist muscle network of dataset 2 (Figure 11), which 
captures the complementary interaction between task-redundant submodules identified previously 
(S3, Figure 9). A particularly consistent structural feature was the emphasis of an individual muscles’ 
connectivity with all other muscles which was evident among synergistic couplings in dataset 3 (see 
VM, VL, and RF of S1, GR, TA, and SO of S2, and GlutM of S3 in Figure 12A). This structural similarity 
demonstrates that parallel and synchronous exchanges of redundant and synergistic task informa-
tion underlie task-specific variations across trials (e.g. S3 of dataset 2 in Figure 9A and Figure 11A). 

Table 1. A summary table illustrating the findings from an examination of the generalisability of the muscle networks extracted from 
each dataset.
The spatial and temporal representations extracted from the full input data in each muscle-task information subspace were compared 
using Pearson’s correlation against functionally similar representations extracted from a subset of the input data.

Dataset 1

Spatial Temporal

Participants Tasks Participants Tasks

Task-redundant 0.95 ± 0.23 0.89 ± 0.28 0.98 ± 0.19 0.89 ± 0.27

Task-synergistic 0.95 ± 0.23 0.73 ± 0.26 0.98 ± 0.19 0.91 ± 0.3

Task-irrelevant 0.84 ± 0.1 0.85 ± 0.1 0.79 ± 0.15 0.95 ± 0.04

Dataset 2

Spatial Temporal

Participants Tasks Participants Tasks

Task-redundant 0.82 ± 0.42 0.94 ± 0.27 0.99 ± 0.03 0.96 ± 0.28

Task-synergistic 0.79 ± 0.37 0.96 ± 0.25 0.92 ± 0.3 0.99 ± 0.1

Task-irrelevant 0.84 ± 0.15 0.99 ± 0.01 0.93 ± 0.1 0.99 ± 0.06

Dataset 3

Spatial Temporal

Kinematics Dynamics IMU Kinematics Dynamics IMU

Task-redundant 0.92 ± 0.28 0.91 ± 0.32 0.86 ± 0.31 0.93 ± 0.21 0.92 ± 0.24 0.87 ± 0.29

Task-synergistic 0.97 ± 0.16 0.9 ± 0.27 0.96 ± 0.19 0.99 ± 0.04 0.98 ± 0.13 0.95 ± 0.18

Task-irrelevant 0.9 ± 0.34 0.83 ± 0.37 0.8 ± 0.33 0.99 ± 0.04 0.98 ± 0.1 0.97 ± 0.15

https://doi.org/10.7554/eLife.87651
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Interestingly, despite the similarity between the redundant and synergistic muscle networks, the way 
they are combined to encode task information differs depending on the type of interaction (syner-
gistic vs. redundant, e.g. panel C of Figure 11 in comparison to panel C of Figure 9).

Concerning the temporal activations of these networks, the task-synergistic structure of dataset 2 
(Figure 11B) was also relatively unchanged compared to the task-redundant structure (Figure 9B). This 
suggests that the task end-goal- and co-contraction-related mechanisms provided both redundant 
and synergistic task information concurrently during whole-body reaching movements. In contrast, a 
different view of synergistic information exchange is provided in datasets 1 and 3 (Figure 11—figure 
supplement 1 and Figure 12, respectively), where T1 and T2 consist of more idiosyncratic activations 
that together appear to reflect the task end-goal-related patterns found elsewhere. More specifically, 
in both datasets we found two distinct patterns of task end-goal-related activity where early and late 
timepoints during movement initiation operated in parallel to provide complementary task informa-
tion (see Figure 12B and Figure 11—figure supplement 1).

Generalisability of the extracted space–time muscle networks
To ascertain the generalisability of the extracted representations presented here beyond any subset 
of the input data, we conducted a similarity analysis through a leave-n-out cross validation proce-
dure. In more detail, we compared the space–time networks extracted from the full dataset (illus-
trated in Figures 4–9 and corresponding supplementary materials) to the networks extracted from 
a subset of the data (see ‘Materials and methods’). Across datasets, a high level of concordance was 
found on average (~0.9 correlation, see Table 1). This trend was evident across all datasets and for 
task-redundant, -synergistic, and -irrelevant spatial and temporal networks. Dataset 1 and 2 findings 
demonstrate that the extracted networks are generalisable beyond any individual participant or task. 
Dataset 3 results go further by demonstrating that the extracted patterns are generalizable beyond 
any randomly selected and randomly sized subset of the input data. The highest correlations on 
average were consistently among temporal networks, replicating previous findings (Ó’ Reilly and 
Delis, 2022; Delis et al., 2018b; Brambilla et al., 2022). Although the spatial networks demonstrated 
a lower average correlation, this was substantially higher compared to previous applications of data-
sets 1 and 2 (Ó’ Reilly and Delis, 2022; Delis et al., 2014; Delis et al., 2018b), suggesting that the 
inclusion of task parameters here captures the inter-participant differences more effectively. When 
comparing representations extracted from each continuous task space in dataset 3, kinematic features 
consistently had the highest average correlation and lowest variability compared to dynamic and 
IMU feature spaces. These findings support our change in the interpretation of the extracted activa-
tion coefficients away from conventional approaches where representational biases towards particular 
participants and/or tasks are inferred.

To further probe how the underlying assumption of an all-to-all correspondence between spatial 
and temporal representations made by sNM3F influenced the generalisability of the extracted 
networks, we compared its performance to non-negative Canonical-Polyadic (CP) tensor decomposi-
tion, which assumes an opposing one-to-one correspondence between components. We found that 
although CP has demonstrated a considerable capacity to de-mix neural data into simplified and inter-
pretable low-dimensional components (Williams et al., 2018), its application here resulted in poor 
generalisability of the extracted patterns (~0.5 correlation on average). This finding suggests that the 
all-to-all correspondence implemented by sNM3F identifies a more generalizable representation and 
should be favourably considered in future applications of this framework.

Discussion
The aim of the current study was to dissect the muscle synergy concept and offer a novel, more 
nuanced perspective on how muscles ‘work together’ to achieve a common behavioural goal. To 
do so, we introduced a computational approach based on the NIF pipeline (Figure 3), enabling the 
effective decomposition of muscle interactions and the comprehensive description of their functional 
roles. Through the direct inclusion of task parameters in the extraction of muscle synergies, a novel 
perspective was produced where muscles ‘work together’ not just towards a common task-goal, but 
also concomitantly towards complementary task objectives and lower-level functions irrelevant for 
overt task performance. The functional architectures we uncovered were comprised of distributed 

https://doi.org/10.7554/eLife.87651
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subnetworks of synchronous muscle couplings and driven by distinct temporal patterns operating 
in parallel. Example applications to simple real and simulated EMG datasets revealed the addi-
tional capabilities provided by the proposed framework to current muscle synergy analysis in terms 
of functional and physiological relevance and interpretability. When applied to large-scale data, the 
proposed methodology extracted representations scale-invariant to dataset complexity and motor 
behaviours whilst being generalizable beyond any subset of the data. We thus present this framework 
as a useful analytical approach for mechanistic investigations on large-scale neural data through this 
novel perspective to the muscle synergy.

The ‘muscle synergy’ is a major guiding concept in the motor control field (Bruton and O’Dwyer, 
2018; Bizzi and Cheung, 2013; Berret et al., 2019; Bernstein, 1966; Latash, 2008; Cheung and 
Seki, 2021), providing a conceptual framework to the problem of motor redundancy that centres 
around the general notion of ‘working together’. In its current conceptualisation, ‘working together’ 
describes how the nervous system functionally groups muscles in a task-dependent manner through 
common neural drives to simplify movement control. This idea has undergone continued refinement 
since its early conception (Bruton and O’Dwyer, 2018; Bernstein, 1966; Latash, 2008), with a notable 
progression being the introduction of the qualifying attributes: a sharing pattern, reciprocity, and task 
dependence (Latash, 2008). Nonetheless, recent influential works revealing other important mecha-
nisms for the simplification of motor control highlight the generality of the current perspective offered 
by this concept (Ronzano et al., 2021; Hug et al., 2021; Hug et al., 2023; Alessandro et al., 2020; 
Valero-Cuevas et al., 2009; Nazarpour et al., 2012; Todorov and Jordan, 2002; d’Avella and Bizzi, 
2005; Cheung et al., 2005). We thus sought to provide greater nuance to the notion of ‘working 
together’ by defining motor redundancy and synergy in information-theoretic terms (Bernstein, 1966; 
Schneidman et  al., 2003). In our framework, redundancy and synergy are terms describing func-
tionally similar and complementary motor signals, respectively, introducing a new perspective that is 
conceptually distinct from the traditional view of muscle synergies as a solution to the motor redun-
dancy problem (Bruton and O’Dwyer, 2018; Bernstein, 1966; Latash, 2008). In this new definition 
of muscle interactions in the task space, a group of muscles can ‘work together’ either synergistically 
or redundantly towards the same task. In doing so, the perspective instantiated by our approach 
provides novel coverage to the partitioning of task-relevant and -irrelevant variability implemented 
by the motor system along with an improved specificity regarding the functional roles of muscle 
couplings (Valero-Cuevas et al., 2009; Nazarpour et al., 2012; Todorov and Jordan, 2002). Our 
framework emphasises not only the role of functionally redundant muscle couplings that result from 
the underlying degeneracy of the motor system, but also of complementary, synergistic dependencies 
that are important for communication and integration across specialised neural circuitry (Nigam et al., 
2019; Luppi et al., 2022). Thus, the present study aligns the muscle synergy concept with the current 
mechanistic understanding of the nervous system whilst offering an analytical approach amenable to 
the continued advances in large-scale data capture (Krakauer et al., 2017; Urai et al., 2022).

Among current approaches to muscle synergy analysis, the established synchronous, temporal, and 
time-varying muscle synergy models are understood to each characterise unique motor features (Chio-
vetto et  al., 2013). More specifically, the synchronous model captures agonist–antagonist muscle 
pairings, the temporal model decomposes EMG signals into functionally distinct temporal phases and 
the task-specific modulation of spatiotemporal invariants are quantified in the time-varying model. 
In a unifying framework, here we quantify space–time muscle networks that concurrently capture 
many of these salient motor features in a holistic and principled way whilst mapping their functional 
consequences to motor behaviour. These salient features included, among others, agonist–antago-
nist pairings and functionally meaningful inter-limb couplings that consistently appeared across task-
redundant, -synergistic, and -irrelevant spaces. Thus, in dissecting the muscle interactions governing 
coordinated movement, our framework revealed their parallel and synchronous processing of func-
tionally similar, complementary, and task-irrelevant information. This insight aligns with several recent 
works also demonstrating this distributed neural architecture of parallel information processing units 
(Macpherson et al., 2021; Nigam et al., 2019; Luppi et al., 2022).

Our framework also revealed novel characteristics of the motor system. For instance, the task-
redundant and -synergistic networks we extracted appeared to be structured around the coupling 
between a prime-mover muscle and several supporting muscles, supporting recent work showing the 
nonhomogeneous sharing of neural drives within modules (Del Vecchio et al., 2022). These novel 
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spatial characteristics were driven by parallel temporal patterns representing endpoint trajectory and 
co-contraction-related mechanisms, an insight supportive of recent work showing their parallel inner-
vation (Ronzano et al., 2021; Hardesty et al., 2020; Borzelli et al., 2022). Together, these represen-
tations encapsulated the functional interplay between task end-goal requirements and biomechanical 
affordances, a dynamic frequently highlighted in object manipulation experiments (Sartori et  al., 
2011). In other words, the task-relevant networks reflected how muscles ‘work together’ both redun-
dantly and synergistically towards a desired end-goal state whilst, in parallel, continually controlling 
the present trajectory of the system. Meanwhile, the task-irrelevant networks demonstrated that these 
muscle couplings also work concomitantly towards lower-level objectives assigned mostly during the 
transition to this desired end state. Although distinguishing task-irrelevant muscle couplings may 
capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles 
including gross motor functions (Dounskaia et al., 2020), the maintenance of internal joint mechanics 
and reciprocal inhibition of contralateral limbs (Alessandro et  al., 2020; Cincotta and Ziemann, 
2008). Thus, task-irrelevant muscle interactions reflect both biomechanical- and task-level constraints 
that provide a structural foundation for task-specific couplings. The separate quantification of these 
muscle interaction types opens up novel opportunities in the practical application of muscle synergy 
analysis, as demonstrated in the current study through the identification of a significant predictor 
of motor impairment post-stroke from single trials (Berret et  al., 2019; Alessandro et  al., 2013; 
Santello et al., 2016). For instance, these distinct representations may encapsulate different neural 
substrates that can be specifically assessed at the muscle-level for the purpose of bodily restoration 
and augmentation (Dominijanni et al., 2021). Uncovering their neural underpinnings is an interesting 
topic for future research.

Indeed, in future work, we aim to complement this study’s combinatorial perspective to the 
muscle synergy by dissecting the unique contribution of individual muscles to motor behaviour and 
how they may work independently towards task performance (see magenta and cyan intersections 
in Figure 1.3B). More broadly, our work here parallels related information-theoretic approaches to 
decomposing task-relevant brain activity (Schyns et al., 2020; Delis et al., 2018a), whilst addressing 
a current research gap across the neurosciences in effective methods to mapping large-scale, spatio-
temporal neural activity to behaviour (Krakauer et al., 2017; Urai et al., 2022). Future applications 
of this framework should include large-scale, multi-modal data captured from participants performing 
a wide range of natural behaviours.

In sum, this study introduced a novel perspective to the muscle synergy concept and a computa-
tional framework to extract muscle couplings that map their pairwise contributions to motor behaviour. 
We suggest that this approach offers novel research opportunities for investigating the underlying 
neural constraints on motor behaviour and the fundamental structure–function relationships gener-
ated by agent–environment interactions (Cheung and Seki, 2021; Adams et al., 2013).

Materials and methods
Quantifying muscle couplings in the task space
To quantify muscle couplings we used MI, a non-linear measure of dependence that captures any type 
of relationship between random variables. Here to estimate MI, we used a Gaussian copula-based 
approximation (Ince et al., 2017). This semi-parametric estimator exploits the equivalence between 
MI and the negative entropy of the empirical copula (‍c‍), a function that maps a multivariate set (e.g. 
[mx, my] representing activities of muscles X and Y) to their joint distribution (Equation 1.1; Ince et al., 
2017).

	﻿‍ I
(
mx; my

)
= −H

(
c
)
‍� (1.1)

Thus, to determine task-irrelevant muscle couplings (‍I
(
mx, my|τ

)
‍), we conditioned the negative 

entropy of the empirical copula for ‍
[
mx, my

]
‍ with respect to a task variable ‍τ ‍ (Equation 1.2). As 

mentioned, ‍
[
mx, my

]
‍ are continuous vectors composed of individual muscle amplitudes at specific 

timepoints across trials while ‍τ ‍ is a corresponding discrete (e.g. movement direction for datasets 1 
and 2) or continuous (e.g. movement kinematics in dataset 3) task parameter. For discrete task vari-
ables, ‍τ ‍ takes one value for each trial and the MI is calculated across trials using a Gaussian mixture 
model (Ince et al., 2017). In the case of continuous task variables, ‍τ ‍ varies in time within a specific 
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trial. Thus, we compute MI at each timepoint t using the muscle activity ‍mx
(
t
)
‍ and the task variable 

value ‍τ
(
t
)
‍ at this time point using a closed-form parametric estimator (Ince et al., 2017).

	﻿‍ I
(
mx; my|τ

)
= −H

(
c|τ

)
‍� (1.2)

To evaluate the task-relevance of the identified muscle couplings, we used a higher-order 
information-theoretic measure known as co-I (Equation 1.3; Figure 11), which quantifies the relation-
ship between three random variables, here ‍

[
mx, my

]
‍, and ‍τ ‍. Co-I implements the inclusion–exclusion 

principle of combinatorics (McGill, 1954), whereby the sum of MIs between individual ‍m‍ vectors and 
‍τ ‍ (‍I

(
mx; τ

)
+ I

(
my; τ

)
‍) is compared against their composite MI (‍I

(
mx, my; τ

)
‍) as follows:

	﻿‍ −I
(
mx; my; τ

)
= I

(
mx; τ

)
+ I

(
my; τ

)
− I

([
mx, my

]
; τ

)
‍� (1.3)

Negative ‍I
(
mx; my; τ

)
‍ corresponds to a net redundant coupling between ‍

[
mx, my

]
‍ about ‍τ ‍ while 

positive ‍I
(
mx; my; τ

)
‍ indicates a net synergy. To analyse these distinct couplings separately, we parsed 

redundant and synergistic ‍I
(
mx; my; τ

)
‍ into two equivalently sized matrices and rectified the redundant 

couplings to make them suitable for non-negative dimensionality reduction.
Then, to produce a multiplexed view of the muscular interactions across trials, we iterated these MI 

computations over all unique combinations of ‍
[
mx, my

]
‍ and ‍τ ‍. The resulting MI estimates collectively 

form ‍A‍, a symmetric adjacency matrix (i.e. ‍ATA = I ‍) that represents the functional connectivities between 
all muscle activations (Figure 10). When repeated across all available task variables ‍τ ‍ and participants, 
‍A‍ is of dimension ‍[No. of muscle pairs × No. of timepoint pairs × [No. of τ × No. of participants]]‍. Thus, by 
applying network-theoretic statistical tools to ‍A‍, we can identify functional modules carrying the same 
type of (redundant/synergistic) task information (Figure 2B).

Estimating statistical significance of muscle couplings
To isolate statistically significant dependencies, we applied a modified percolation analysis to each ‍A‍ 
(Gallos et al., 2012). This method sparsifies functional connectivities in ‍A‍ with respect to its perco-
lation threshold (‍Pc‍). ‍Pc‍ is a critical value that specifies the probability of a nodes’ occupation in ‍A‍ 
with respect to the networks size. In random networks, a ‘giant component’ comprised of long-range 
connections exists above ‍Pc‍ but disappears as ‍Pc‍ tends to zero (Bunde and Havlin, 2012), while it is 
thought that living systems optimise adaptability by fluctuating around ‍Pc‍ in a state of self-organised 
criticality (Bak et al., 1987). Preliminary testing of this method showed it to be at least equivalent to 
permutation-testing each MI value in the network and thus, much more computationally efficient. ‍Pc‍ 
was therefore iteratively specified for each layer of ‍A‍ relative to equivalently sized random networks 
and utilised to remove insignificant network edges up to a stopping-point where this giant compo-
nent begins to become affected (Figure  3C). This procedure was carried out for each layer of ‍A‍ 
separately configured as muscle-wise couplings across temporal scales (i.e. a 3D tensor of dimension 

‍[No. of muscle] × [No. of muscle] × [No. of timepoint pairings × No. of τ × No. of participants]‍) and vice 
versa as timepoint-wise couplings across spatial scales (Figure  3D). The separate sparsification of 
each individual network layer in both alternative network configurations produced discrepancies in 
the output, as some connections were found to be significant in only one domain. To ameliorate this 
discrepancy, we employed a conservative heuristic where dependencies must be significant in both 
space and time to be included in the final input matrix for dimensionality reduction. Thus, the spar-
sified input matrices to dimensionality reduction were comprised of significant spatiotemporal task-
redundant, -synergistic, or -irrelevant muscle couplings.

Model-rank specification
To determine the optimal number of modules to extract, we implemented two alternative community 
detection algorithms generalised to multiplex networks (Blondel et al., 2008; Mucha et al., 2010; 
Didier et al., 2018). Both forms seek to optimise a modularity criterion known as the Q-statistic that 
quantifies the proportion of within-community network edges compared to what would be expected 
from a network consisting of random connections (Newman and Girvan, 2004). More specifically, 
for a particular division of a single layer network (Equation 2.1), let  ‍δ

(
gi, gj

)
‍=1 if nodes ‍i‍ and ‍j‍ 

belong to the same group (‍g‍) and 0 otherwise and ‍Aij‍ be the number of edges between nodes ‍i‍ and 

‍j‍. The equivalent of ‍Aij‍ from a randomised network (‍Pij‍) is expected to be ‍
kikj
2m ‍ (Newman–Girvan null 
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model) (Newman and Girvan, 2004), where ‍ki‍ and ‍kj‍ are the node degrees and ‍m = 1
2
∑

ij Aij‍ . The 
typical output of the Q-statistic is found within the range [0,1] with 1 indicating maximum modularity 
(Newman and Girvan, 2004).

	﻿‍
Qmonolayer = 1

4m
∑

ij

(
Aij − Pij

)
δ
(
gi, gj

)
‍�

(2.1)

In its generalised multilayer form, the Q-statistic is given an additional term to consider couplings 
between layers ‍l‍ and ‍r‍ with intra- and inter-layer resolution parameters ‍γ‍ and ‍ω‍ (Equation 2.2). Here, 
μ is the total edge weight across the network and ‍γ‍ and ‍ω‍ were set to 1 in the current study for clas-
sical modularity (Mucha et al., 2010), thus removing the need for any hyperparameter tuning.

	﻿‍
Qmultilayer = 1

2µ
∑
ijlr

[(
Aijl − γlPijl

)
δlr + δijωjlr

]
δ
(
gil, gjr

)
‍�

(2.2)

We chose to implement two complementary model-rank specification approaches to address limita-
tions related to stochasticity and scalability present in the multilayer formulation and the inability to 
consider inter-layer dependencies present in the mono-layer formulation (Hug et al., 2023; Magnani 
et al., 2022). To apply these algorithms to our data, we grouped the set of ‍A‍ into multiplex networks 
configured with respect to spatial or temporal scales (Figure 3D). We then applied these algorithms 
to both space–time network configurations for individual participant/tasks. This procedure generated 
a binary adjacency matrix from the resulting community partition vector in each case where 1 indi-
cated the nodes belonged to the same community and 0 otherwise (Didier et al., 2018). Following a 
consensus-based approach (Lancichinetti and Fortunato, 2012), we then grouped these binary adja-
cency matrices into a new multiplex network and re-applied the two alternative community detection 
algorithms to find an optimal spatial and temporal model-rank (Lancichinetti and Fortunato, 2012).

Extraction of low-dimensional representations
Following the specification of an optimal model-rank in the spatial and temporal domains, we 
used these values as input parameters into dimensionality reduction (Figure 3E). To extract a low-
dimensional representation of motor behaviour across muscle couplings, we applied a sample-based 
non-negative matrix tri-factorisation method (sNM3F) with additional orthogonality constraints to 
the matrices consisting of vectorised and concatenated ‍A‍ (Delis et al., 2014). More specifically, we 
decomposed the input three-mode tensor ‍A‍ of dimension [K = No. of unique muscle pairs (‍m‍) × (L 
= No. of time-sample pairs (‍t‍) × No. of participants + tasks)] into a set of spatial (‍V ‍) and temporal 
(‍W ‍) factors and the participant- and task-specific weighting coefficients (‍S‍) reflecting the amount of 
information carried by each combination of spatial–temporal factors for each participant and task 
parameter (Equation 3.1). In Equation 3.2, this factorisation is also illustrated in vector sum notation 
for a single participant and task variable:

	﻿‍ A ≈ WSV ‍� (3.1)

	﻿‍




(
m1t1

)
· · ·

(
m1tL

)

...
. . .

...(
mKt1

)
· · ·

(
mKtL

)


 ≈

(
wt1

i . . . wtL
i

)
·


 sw1

v1 . . . sw1

vj

swi

v1 . . . swi

vj


 .




vm1

j
...

vmK

j


 + residuals

‍
� (3.2)

Examining the generalisability of extracted representations
To determine the generalisability of the extracted space–time muscle networks, we implemented a 
representational similarity analysis where we compared representations extracted from the full data-
sets 1–3 to equivalent networks extracted from a subset of the respective datasets. We computed the 
similarity between pairs of representations using Pearson’s correlation.

For datasets 1 and 2 (see below), we removed from the input data an individual participant or task 
at a time and compared the similarity of the decomposition outputs with those obtained from the full 
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dataset. We repeated this for all participants and task variables and reported the average similarity as 
a measure of robustness of the decomposition.

For dataset 3 (see below), due to the greater number of participants and task parameters, we imple-
mented a more stringent examination. More specifically, we firstly extracted representations from 
each task space individually and, using these representations as a reference, compared them against 
functionally similar outputs after removing randomly sized portions of randomly selected vectors in 
the input data (up to the no. of column vectors − 1). We repeated this procedure for 50 iterations, 
and computed summary statistics by converting the coefficients to Fisher’s Z values, computing the 
average and standard deviation, and then reverting these values back to correlation coefficients.

Subnetwork analysis
To illustrate the relative importance of individual muscles within each network, we determined the 
total communicability (‍C

(
i
)
‍) of individual nodes (‍i‍) in each network (‍A‍). ‍C

(
i
)
‍ is defined as the row-

wise sum of all matrix exponentials (‍e‍) in the adjacency matrix (‍A‍) that consider the number of walks 
between each pair of nodes ‍i‍ and ‍j‍ (Equation 4.1; Benzi and Klymko, 2013; Estrada and Hatano, 
2008):

	﻿‍
C
(
i
)

=
N∑

j=1

[
eA
]

ij
‍�

(4.1)

To emphasise salient functional connectivities in the spatial networks, we sparsified all dependen-
cies with a below average network communicability and illustrated the output on the accompanying 
human body models (Makarov et al., 2015; Estrada and Hatano, 2008). To uncover salient subnet-
work structures consisting of more closely functionally related muscle activations, we applied the 
monolayer community detection algorithm in Equation 2.1 to the extracted spatial networks (Blondel 
et al., 2008; Rubinov and Sporns, 2010).

Data acquisition and processing
To illustrate our framework, we applied it to three datasets of EMG signals recorded during different 
motor tasks. In dataset 1 (Figure 4A), 7 adult participants (age: 27 ± 2 years, height: 1.77 ± 0.03 m) 
performed table-top point-to-point reaching movements in both forward and backwards directions 
and at fast and slow speeds while the activity of nine muscles on the preferred right, reaching arm 
(finger extensors (FE), brachioradialis (BR), biceps brachii (BI), medial-triceps (TM), lateral-triceps (TL), 
anterior deltoid (AD), posterior deltoid (PD), pectoralis major (PE), latissimus dorsi (LD)) were captured 
for a total of 640 trials per participant (Delis et al., 2014). To enable the quantification of shared 
information across muscles with respect to specific task attributes, we formulated four discrete task 
parameters of length equal to the number of trials executed. These discrete variables represented 
the trial-to-trial variation in reaching direction (fwd vs. bwd), speed (high vs. low), and reaching target 
[P1–P8] (Figure 3A).

In dataset 2 (Figure 4B), 3 participants performed whole-body point-to-point reaching movements 
in various directions and to varying heights while EMG from 30 muscles (tibialis anterior, soleus, pero-
neus, gastrocnemius, vastus lateralis, rectus femoris, biceps femoris, gluteus maximus, erector spinae, 
pectoralis major, trapezius, anterior deltoid, posterior deltoid, biceps and triceps brachii) across both 
hemi-bodies were captured (Hilt et al., 2018). Like dataset 1, we formulated task parameters each 
representing a specific task attribute across trials (~2160 trials per participant). In this case, we formed 
eight discrete task parameters representing start- and endpoint target, -bar, and -height and both 
up–down (vertical) and left–right (horizontal) reaching directions.

Dataset 3 consisted of multiple trials from 17 participants performing level-ground walking, stair- 
and ramp-ascents/descents with various sub-conditions (walking speed, clockwise/counter-clockwise 
direction, different stair/ramp inclines, etc.) (Figure 4C; Camargo et al., 2021). These locomotion 
modes were performed while 11 EMG signals were captured from the right lower limb (gluteus medius 
(GlutM), right external oblique (Obl), semitendinosus (ST), gracilis (GR), biceps femoris (BF), rectus 
femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus (SO), tibialis anterior (TA), gastrocnemius 
medialis (GM)), XYZ coordinates were captured bilaterally from 32 kinematic markers and 4 IMUs and 
a force-plate captured accelerations and dynamic features among the lower limbs also. More detailed 
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breakdowns of the experimental design for each dataset can be found at their parent publications 
(Delis et al., 2014; Hilt et al., 2018; Camargo et al., 2021).

For all datasets, we processed the EMG signals offline using a standardised approach (d’Avella 
and Lacquaniti, 2013): the EMGs for each sample were digitally full-wave rectified, low-pass filtered 
(Butterworth filter; 20 Hz cut-off; zero-phase distortion), normalised to 1000 time-samples and then 
the signals were integrated over 20 time-step intervals yielding a waveform of ~50 time-steps. To 
match the time-series lengths, we resampled the kinematic, dynamic and IMU recordings of dataset 3 
using cubic-spline interpolation to match the EMG signals.
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