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Abstract The energy-burning capability of beige adipose tissue is a potential therapeutic tool for 
reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate 
the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and 
adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 
and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige 
adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for 
beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. 
Examination of adipocytes by single nucleus RNA-sequencing identified compositional and tran-
scriptional differences in adipocyte populations with aging and cold exposure. Notably, cold expo-
sure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, 
and this response was severely blunted in aged animals. We further identified Npr3, which encodes 
the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and 
an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige 
adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for 
identifying cold and aging-regulated pathways in adipose tissue.

eLife assessment
This fundamental study provides evidence that de novo beige adipogenesis from Pdgfra+ adipo-
cyte progenitor cells is blocked during early aging in subcutaneous fat. The depth of the data at 
early ages is compelling, with rigorous cell tracing methodology employed. The study will aid in 
identifying new approaches to switch dormant adipocytes into an active thermogenic phenotype, 
and should be of interest to cell biologists at large.

Introduction
Brown and beige fat cells are specialized to burn calories for heat production and have the capacity 
to reduce obesity and metabolic disease. Brown adipocytes are localized in dedicated brown adipose 
tissue (BAT) depots, whereas beige adipocytes develop in white adipose tissue (WAT) in response 
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to cold exposure, and other stimuli (Wang and Seale, 2016). Adult humans possess thermogenic 
adipose depots that appear to resemble rodent beige adipose tissue (Wu et al., 2012; Jespersen 
et  al., 2013). Brown and beige adipocytes share similar cellular features such as abundant mito-
chondria, multilocular lipid droplets, and expression of thermogenic genes like Uncoupling Protein-1 
(UCP1). UCP1, when activated, dissipates the mitochondrial proton gradient, leading to high levels of 
substrate oxidation and heat production (Cannon and Nedergaard, 2004). Brown and beige adipo-
cytes can also produce heat via UCP1-independent futile cycles (Chouchani et al., 2019).

Increasing beige fat development in mice reduces obesity and improves insulin sensitivity, whereas 
ablation of beige fat in mice causes metabolic dysfunction (Cederberg et al., 2001; Seale et al., 
2011; Cohen et al., 2014; Shao et al., 2016; Stine et al., 2016). Furthermore, transplantation of 
human beige adipocytes into obese mice reduces liver steatosis and improves metabolic health (Shao 
et al., 2016). Beige adipocytes develop via the de novo differentiation of adipocyte stem and progen-
itor cells (ASPCs) or through induction of the thermogenic program in adipocytes (Shao et al., 2019; 
Ferrero et al., 2020; Sakers et al., 2022).

Human and mouse thermogenic adipose tissue activity declines with aging, predisposing to 
cardiometabolic disease and limiting the potential of brown/beige fat-targeted therapies (Yoneshiro 
et al., 2011; Cypess et al., 2012; Rogers et al., 2012; Berry et al., 2017; Wang et al., 2019; Becher 
et al., 2021). In mice, beige adipose tissue is reduced by ‘middle-age’ (i.e. 1-year-old), preceding 
many of the damaging effects of old age on organ function (Rogers et al., 2012; Berry et al., 2017; 
Gonçalves et al., 2017). The aging-associated decline in beige fat activity can occur independently 
of increases in body weight (St Onge, 2005; Rogers et al., 2012). A variety of processes and path-
ways have been linked to the aging-induced deficit in beige fat formation, including diminished 
proliferation and cellular senescence of ASPCs (Berry et al., 2017), increased fibrosis (Wang et al., 
2019), increased inflammation (Ghosh et al., 2019), accumulation of anti-adipogenic regulatory cells 
(Nguyen et al., 2021), and reduced adrenergic tone (Rogers et al., 2012). However, a comprehensive 
understanding of how cold exposure and aging affect ASPC identity, adipogenesis, and adipocyte 
phenotypic switching remains elusive.

We applied ASPC lineage tracing, along with unbiased single-cell and single-nucleus RNA 
sequencing (scRNA-seq; snRNA-seq) to profile the beiging process and evaluate the impact of aging 
on this process. We found that aging modulates the gene program of fibroblastic ASPC populations 
and blocks the differentiation of these cells into beige adipocytes in vivo. snRNA-seq analysis revealed 
four types of adipocytes defined by different responses to cold exposure and aging: beige, Npr3-
high, de novo lipogenesis (DNL)-low, and DNL-high. Notably, DNL-high adipocytes were defined 
by a marked induction of DNL genes during cold exposure in young compared to aged animals. A 
white adipocyte subpopulation in young mice was marked by expression of Npr3, which was also 
increased in adipocyte populations from aged mice. Altogether, this study shows that aging blocks 
cold-stimulated adipocyte reprogramming and ASPC adipogenesis, while implicating suppression of 
natriuretic peptide signaling and DNL as contributing to the aging-mediated decline in beige fat 
formation.

Results
Aging impairs iWAT beiging
To study the impact of aging on beige adipose tissue development, we exposed young (9-week-old) 
and middle aged (57-week-old) C57BL/6  mice to 6  °C for either 3 or 14  days. All mouse groups 
were first acclimated to 30 °C (thermoneutrality [TN]) for 3 weeks to reduce beige adipose tissue to 
baseline levels. Following acclimation, TN-housed mice remained at 30 °C; acute cold mice (3D) were 
transitioned to 6 °C after 11 days for the final 3 days; and chronic cold mice (14D) were moved to 
6 °C for 2 weeks (Figure 1A). As expected, the aged mice weighed more and had larger iWAT depots 
than the young mice (Figure 1—figure supplement 1A-B). Cold exposure progressively increased 
the expression levels of thermogenic genes Ucp1, Cidea, Dio2, and Ppargc1a in iWAT from young 
mice, and the activation of these genes was significantly blunted in aged mice, especially at the 3D 
time point (Figure 1B). Immunofluorescence (IF) staining showed a robust induction of UCP1 protein 
in multilocular adipocytes of young iWAT at 3D of cold exposure, which was further increased at 
14D. The induction of UCP1+ beige adipocytes at 3D was severely reduced in aged animals, with few 
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Figure 1. Aged mice exhibit decreased iWAT beiging in response to cold exposure or β3-agonist treatment. (A) Young (9-week-old) and aged (57-week-
old) C57BL/6 mice were acclimated to 30 °C for 3 weeks, followed by two additional weeks either remaining at 30 °C (TN, thermoneutral), spending 
the last 3 days at 6 °C (3D, acute cold) or the last 14 days at 6 °C (14D, chronic cold). (B) Relative mRNA levels of thermogenic marker genes in mouse 
iWAT from (A), n=5. (C) Immunofluorescence analysis of UCP1 (green) and DAPI (blue) in iWAT sections from mice in (A), LN = lymph node. Scale bar 
100 μm. (D–F) Relative mRNA levels of Ucp1 and Cidea in iWAT from separate groups of young and aged mice that were either: exposed to 6 °C cold 
for 6 weeks (D), treated with CL-316,243 for 1 hr (E) or treated with CL 316,243 for 5 days (F). Data represent mean ± SEM, points represent biological 
replicates, two groups analyzed using a Student’s t-test, and multiple conditions analyzed using a two-way ANOVA with a Tukey correction for multiple 
comparisons. Significance: not significant, p>0.05; * p<0.05 ** p<0.01; *** p<0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Aging impairs WAT beiging.

https://doi.org/10.7554/eLife.87756


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Developmental Biology

Holman et al. eLife 2023;12:RP87756. DOI: https://doi.org/10.7554/eLife.87756 � 4 of 27

UCP1 +adipocytes detected. At 14D, the beige adipocytes were morphologically similar in young and 
aged mice, although there were many fewer in aged animals (Figure 1C). At both ages, beige adipo-
cytes were more prominent in the inguinal versus dorsolumbar region of iWAT, consistent with other 
reports (Barreau et al., 2016; Chi et al., 2018; Dichamp et al., 2019), and beiging was largely absent 
in the dorsolumbar region of aged mice (Figure 1—figure supplement 1C–F). To determine if the 
beiging response was delayed in aged mice, we exposed young and aged mice at 6 °C for 6 weeks. 
At this time point, the iWAT of aged mice exhibited a larger deficit in thermogenic gene expression 
compared to young animals (Figure 1D). Thermogenic gene levels in interscapular BAT were similar 
between young and aged mice at TN and after cold exposure, indicating that the inhibitory effects of 
aging were selective to WAT (Figure 1—figure supplement 1E).

Next, we examined beige fat formation in young and aged animals upon treatment with the β3-se-
lective adrenergic agonist CL-316,243 (CL). CL acts in an adipose tissue autonomous manner to stim-
ulate beige fat biogenesis, bypassing the central nervous system pathways that mediate the cold 
response. Acute CL treatment for only 1 hr increased Ucp1 expression in in iWAT of young mice to a 
much greater extent than in aged mice (Figure 1E). Chronic CL exposure for 5 days also induced much 
higher expression levels of Ucp1 and Cidea in iWAT of young compared to aged mice (Figure 1F). 
Taken together, these results demonstrate that beige adipose tissue induction is severely impaired in 
middle aged mice.

Aging blocks beige adipogenesis from Pdgfra+ ASPCs
To determine the contribution of fibroblastic ASPCs to beige adipocytes during cold exposure, we 
performed lineage tracing using Pdgfra-CreERT2; R26RtdTomato reporter mice. Pdgfra expression marks 
multiple ASPC populations, including preadipocytes (Merrick et  al., 2019; Sakers et  al., 2022). 
Young and aged reporter mice were treated with tamoxifen for 5 days at TN (30 °C; ‘pulse’) to activate 
Cre and induce tdTomato expression in Pdgfra+ cells. Following a 9-day washout period, mice were 
transferred to 6 °C (cold) for 2 weeks (‘chase’; Figure 2A). We observed near complete and specific 
labeling of ASPCs during the pulse period, with ~95% of PDGFRα+ cells in iWAT from young and aged 
mice displaying tdTomato expression (Figure 2B, Figure 2—figure supplement 1). The proportion 
of PDGFRα+ cells in iWAT was similar between young and aged mice (Figure 2B). No tdTomato-
expressing adipocytes were observed after the pulse (Figure 2—figure supplement 1). After 14 days 
of cold exposure, we detected many newly developed beige adipocytes from ASPCs in young mice 
(visible as tdTomato+/UCP1+ multilocular adipocytes). By contrast, very few ASPC-derived (tdTomato+) 
adipocytes were detected in the beige fat areas of aged iWAT at day 14 (Figure 2C). Quantifying 
across the entire length of iWAT pads revealed that most beige adipogenesis occurred in the inguinal 
region and was ~12-fold lower in aged compared to young mice (Figure 2D and E). However, the 
overall contribution of Pdgfra+ ASPCs to beige adipocytes was relatively low, even in young animals, 
with <20% of beige adipocytes expressing tdTomato.

Single-cell expression profiling of ASPCs
We previously identified three main fibroblastic ASPC populations in iWAT: DPP4+ cells, ICAM1+ 
preadipocytes, and CD142+ cells. All these cell types express Pdgfra and have the capacity to undergo 
adipogenic differentiation (Merrick et al., 2019). To test whether aging dysregulates one or more of 
these ASPC types, we performed scRNA-seq on stromal vascular cells from iWAT of young and aged 
animals, maintained at TN, or following transition to cold for 3 or 14 days (Figure 1A). ASPCs were 
enriched by removing immune (CD45+) cells using fluorescence activated cell sorting (FACS). We 
integrated the datasets from all conditions together and performed clustering analysis. The following 
cell populations were annotated based on their expression of cell-type-specific marker genes: four 
fibroblast populations (Dpp4+; Icam1+ preadipocytes; Cd142+, Spp1+), two populations of endothelial 
cells (Pecam1+); smooth muscle cells/pericytes (Myh11+, Pdgfrb+); Schwann cells (Mpz+); and residual 
immune cells (Ptprc+; Figure 3A–C). We did not identify any cell population specific to either aging 
or cold exposure. In this regard, we did not identify ‘aging-dependent regulatory cells (ARCs)’, which 
were previously defined as ASPCs expressing Lgals3 and other inflammatory genes (Figure 3—figure 
supplement 1; Nguyen et al., 2021). The expression levels of identity markers of the ASPC popula-
tions were not modulated during cold exposure or aging (Figure 3—figure supplement 1).

https://doi.org/10.7554/eLife.87756
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Figure 2. Aging blocks beige adipogenesis from fibroblastic ASPCs. (A) Schematic of Pdgfra-CreERT2;R26R-tdTomato reporter mouse model and 
lineage tracing paradigm. (B) Flow cytometry-based quantification showing proportions of tdTomato-expressing cells (as % of total Live, Lin- (CD45-/
CD31-, PDGFRα+ cells)) (left) and PDGFRα+ cells (as % of total Live, Lin- cells) (right) in iWAT from young and aged Cre- (control, +/+), and Cre+ (CER) 
mice. n=6 young, 5 aged (Circles represent male mice, triangles represent female mice). (C) IF analysis of tdTomato (red), UCP1 (green), PLIN1 (white) 
and DAPI (blue) in iWAT from young and aged reporter mice after 14 days of 6 °C cold exposure (chase). Scale bar 100 μm. (D) Representative stitched 
images of full length iWAT histology slices from samples in (C) showing quantification of traced tdTomato+; UCP1 + multilocular (beige) adipocytes 
(blue numbers). LN = lymph node, scale bar 500 μm. (E) Quantification of traced beige adipocytes from (D) presented as total cell number (left) or 
proportion of PLIN1 + area (right), n=7 (young), n=5 (aged). Data represent mean ± SEM, points represent biological replicates, two groups analyzed 
using a Student’s t-test, and multiple conditions analyzed with a two-way ANOVA with a Tukey correction for multiple comparisons. Significance: not 
significant, p>0.05; * p<0.05 ** p<0.01; *** p<0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Aging blocks beige adipogenesis from PDGFRa +ASPCs.

https://doi.org/10.7554/eLife.87756
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Differential gene expression analyses identified aging-modulated genes in ASPCs (Figure  3D). 
Notably, expression of Cd9, previously identified as a fibrogenic marker, was upregulated with age in 
Dpp4+ cells and preadipocytes (Marcelin et al., 2017). Pltp and Gpnmb were also elevated by aging 
across all ASPC populations and temperature conditions. Genes downregulated by aging in all ASPC 
populations included Meg3, Itm2a and Gpc3 and Postn. Of note, Postn encodes an extracellular 
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Figure 3. Single-cell expression profiling of ASPCs during iWAT beiging. (A) Integrated UMAP of gene expression in 54,987 stromal vascular cells (FACS 
depleted of CD45 +immune cells) from young and aged mouse groups detailed in Figure 1A. (B) UMAPs split by condition. (C) Violin plots showing 
the expression levels of representative marker genes for cell clusters. Y-axis=log-scale normalized read count. (D) Expression heatmap of the top 
differentially expressed genes in young vs. aged fibroblastic ASPCs (Dpp4+, Icam1+ preadipocytes and Cd142+ cells). Table shows expression of these 
genes in ASPC populations across temperature conditions (TN, cold 3D, cold 14D) from young and aged mice.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Single-cell expression profiling of ASPCs during iWAT beiging.

https://doi.org/10.7554/eLife.87756
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matrix protein that was previously reported to regulate adipose tissue expansion and decrease in 
expression during aging (Graja et al., 2018).

ASPCs from aged mice are competent for beige adipogenesis ex vivo
We next evaluated if ASPCs from young and aged animals exhibit cell-autonomous differences in 
adipogenic differentiation capacity. We FACS-purified DPP4+, ICAM1+, and CD142+ cells from the 
iWAT of young and aged mice, plated them in culture and induced adipocyte differentiation. Using a 
minimal differentiation stimulus consisting of insulin only (Min), ICAM1+ and CD142+ cells underwent 
more efficient differentiation into lipid droplet-containing adipocytes, and expressed higher levels of 
adipocyte genes (Adipoq and Fabp4) than DPP4+ cells, consistent with prior work (Figure 4A and 
B; Merrick et al., 2019). DPP4+ and CD142+ cells from young and aged mice underwent adipocyte 
differentiation and induced adipocyte genes with equivalent efficiency. Unexpectedly, ICAM1+ cells 
from aged mice exhibited greater differentiation capacity than those from young mice, as evidenced 
by higher expression levels of Adipoq and Fabp4 (Figure 4A and B). Maximal stimulation with a full 
cocktail of adipogenic inducers (Max) produced similar and robust differentiation in all ASPC popula-
tions from young or aged mice (Figure 4C and D). To assess whether young and aged ASPCs behave 
differently when cultured as a mixed heterogeneous population, we isolated the stromal vascular 
fraction (SVF) for adipogenesis assays. Again, SVF cell cultures from young and aged mice displayed 
similar adipogenic differentiation efficiency following either Min or Max stimulation (Figure 4E and 
F). Finally, we treated differentiated adipocyte cultures with the pan-adrenergic agonist isoproterenol 
for 4 hours to evaluate thermogenic gene activation (i.e. beiging). Basal levels of Ucp1 expression 
were lower in DPP4+ cells compared to other ASPC types, but all ASPC populations activated Ucp1 
expression to similarly high levels in response to isoproterenol treatment and did not differ by age 
(Figure 4G). We also did not observe an aging-related difference in the levels of Ucp1 induction in 
SVF-derived adipocyte cultures (Figure 4H). Together, these data suggest that the beige adipogenic 
capacity of ASPCs is not intrinsically compromised in aged mice, and therefore the in vivo deficit in 
beige adipogenesis could be due to non-ASPC-autonomous effects.

Single-nucleus RNA sequencing uncovers adipocyte heterogeneity
To determine the effects of aging and cold exposure on adipocyte gene profiles, we performed 
snRNA-seq analyses of iWAT samples using the same experimental paradigm described above 
(Figure 1A). We integrated all the conditions together for analyses from two separate runs (Figure 5A 
and C). Similar cell types were captured as with scRNA-seq (Figure 3A), but with the addition of 
mature adipocyte populations. This dataset also has increased representation from immune cells since 
there was no negative selection against CD45+ cells. As with the single-cell data set, we did not identify 
any aging-specific cell populations (Figure 5—figure supplement 1). However, we observed striking 
gene expression differences in the adipocyte cluster across age and temperature. Most obvious, and 
expectedly, was the emergence and expansion of a distinct beige adipocyte population, marked by 
expression of Ucp1 and other thermogenic genes, during cold exposure (Figure 5B).

To focus on adipocyte responses, we reintegrated the snRNA-seq data using only the adipocytes, 
which revealed four main clusters (Figure  5D–F). All adipocyte clusters displayed similarly high 
mRNA levels of canonical adipocyte markers Fabp4 and Plin1. Beige adipocytes, marked by high 
expression of thermogenic genes (i.e. Ppargc1a, Esrrg, Cidea, Gk, Prdm16, and Ucp1), were the 
most distinctive cluster and were largely absent at TN in young and aged mice. These cells began 
to appear in young mice after 3 days of cold exposure, and were further increased at 14 days. By 
contrast, in aged mice, beige cells were barely detectable at 3 days of cold exposure and were 
present at greatly reduced numbers than in young mice at 14 days (Figure 5E). This analysis also 
revealed three sub-populations of ‘white’ adipocytes. ‘Npr3-high’ adipocytes were enriched for 
expression of Npr3, Synpo2, Prr16, and Tshr, expressed higher levels of white fat marker genes 
Leptin (Lep) and Nnat, and exhibited the lowest expression levels of thermogenic (beige) genes 
(Gesta et al., 2007; Rosell et al., 2014). Two additional white adipocyte clusters were designated 
as ‘de novo lipogenesis (DNL)-low’ and ‘DNL-high’ cells, both of which expressed lower levels 
of Npr3 and shared selective expression of Fgf14. DNL-high cells uniquely expressed Ces1f and 
Gsta3 and activated high levels of DNL pathway genes (i.e. Fasn, Acss2 and Acly) upon cold expo-
sure (Figure 5F). Interestingly, Adiponectin (Adipoq) was differentially expressed across adipocyte 
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Figure 4. ASPCs from young and aged mice display similar beige adipogenic activity ex vivo. (A, C) Phase contrast images of DPP4+, ICAM1+ 
and CD142+ cells from iWAT of young and aged mice that were induced to undergo adipocyte differentiation with minimal (Min, A) or maximal (Max, 
C) induction cocktail for 8 days. Scale bar 200 μm. (B, D) mRNA levels of adipocyte marker genes Adipoq and Fabp4 in cultures from (A, C). Data points 
represent separate wells, sorted from a pool of five mice (A) or sorted from two pools of two to three mice (C). (E) Stromal vascular fraction (SVF) cell 
cultures from the iWAT of young and aged mice were induced to differentiate for 8 days with Minimal or Maximal cocktail, followed by Bodipy (green) 
staining of lipid droplets and DAPI (blue) staining of nuclei. Scale bar 100 μm. (F) Relative mRNA levels of Adipoq and Fabp4 in cultures from (E). Data 

Figure 4 continued on next page
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clusters, with higher levels in Npr3-high and DNL-high cells. Quantification of adipocyte nuclei from 
this data set suggested that the proportions of Npr3-high and DNL-high adipocytes remain stable 
across temperature, with aged mice having more Npr3-high adipocytes. The proportion of beige 
adipocytes increased during cold exposure, while DNL-low adipocytes decreased with cold expo-
sure in both young and aged mice (Figure 5G).

points represent wells from individual mice, n=5. (G, H) Relative mRNA levels of Ucp1 in adipocyte cultures from (C, E) with or without treatment with 
isoproterenol for 4 hr. Data points represent wells sorted from two pools of two to three mice (G) or wells from individual mice, n=5 (H). Data represent 
mean ± SEM, two groups analyzed using a Student’s t-test, and multiple conditions analyzed with a two-way ANOVA with a Tukey correction for multiple 
comparisons. Significance: not significant, p>0.05; * p<0.05 ** p<0.01; *** p<0.001.

Figure 4 continued
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Figure 5. Single-nucleus expression profiling of adipocytes during the beiging process in young and aged mice. (A) Fully integrated UMAP of mRNA 
levels in 11,905 nuclei from iWAT of mouse groups detailed in Figure 1A, n=2 mice per condition. (B) UMAPs split by condition. (C) Violin plots showing 
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Single-nucleus expression profiling of iWAT during the beiging process.
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Aging dysregulates gene programming in adipocyte populations
To evaluate the global effects of cold exposure and aging on adipocytes, we performed differential 
gene expression analysis between young and aged adipocytes within each cluster. DNL-high and 
beige adipocytes exhibited the most dramatic expression changes between young and aged animals 
(Figure 6A and B, Figure 6—figure supplement 1A and B). At TN, DNL-high cells from aged animals 
expressed lower levels of several genes, including Fkbp5, Spon1, and Adam12. Interestingly, Npr3, in 
addition to marking Npr3-high cells, was increased by aging in DNL-high adipocytes and to a lesser 
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Figure 6. Aging blocks activation of the lipogenic gene program in adipocytes. (A) Expression heatmap of the top aging-regulated genes in DNL-high 
adipocytes at TN (left) and after 14 days of cold exposure (right). (B) Expression heatmap of the top aging-regulated genes in beige adipocytes after 
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The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Single-nucleus expression profiling of adipocytes during the beiging process.

https://doi.org/10.7554/eLife.87756
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extent in other adipocyte populations (Figure 6C and D). In young animals, Npr3 expression was 
downregulated by cold exposure in the three white adipocyte populations, and this downregulation 
was blunted in aged animals (Figure 6D). Gene expression analysis of whole iWAT pads confirmed 
that Npr3 mRNA levels were progressively decreased by cold exposure and elevated in aged versus 
young mice under all temperature conditions (Figure 6E). Npr3 expression levels were also increased 
in isolated primary adipocytes from aged relative to young mice (Figure 6F). Expression levels of the 
G-protein-coupled NP receptors Npr1 or Npr2 were not modulated by cold or aging in iWAT or iWAT 
adipocytes (Figure 6—figure supplement 1).

We also observed a striking activation of the DNL gene program (Acly, Fasn, Acaca, Scd1, etc.) 
in DNL-high and beige adipocytes during cold exposure (Figure 6G and H). The induction of these 
genes during cold exposure, exemplified by Acly expression, was a cluster-defining attribute of DNL-
high cells, which did not express beige markers like Ucp1 even after 14 days of cold exposure. Of 
note, we found two types of beige (Ucp1+) adipocytes, distinguished by the presence vs. absence 
of high DNL gene levels (i.e. Ucp1+; DNL+ and Ucp1+; DNL(-)), with the latter arising first during cold 
exposure (3D vs. 14D) (Figure 6G, Figure 6—figure supplement 1E, F). Importantly, the induction 
of DNL genes was nearly completely blocked in DNL-high cells and reduced in beige cells of aged 
animals (Figure 6G). Indeed, the top aging downregulated genes in adipocytes from cold exposed 
mice correspond to DNL and related pathways, especially in DNL-high cells (Figure 6—figure supple-
ment 1G). Lastly, at the whole tissue level, we observed robust induction of Acly in iWAT of young 
relative to aged mice with increasing duration of cold exposure (Figure 6—figure supplement 1H). 
Taken together, these results implicate the suppression of natriuretic peptide signaling and DNL in the 
aging-related impairment of beige fat formation.

Discussion
Thermogenic adipose tissue activity declines during aging of mice and humans, correlating with 
increases in fat mass and susceptibility to cardiometabolic diseases (Cypess et al., 2009; Saito et al., 
2009; Pfannenberg et al., 2010; Yoneshiro et al., 2011; Rogers et al., 2012; Berry et al., 2017; 
Wang et al., 2019; Becher et al., 2021). Our study provides a comprehensive unbiased profile of the 
adipose tissue beiging process and reveals pathways dysregulated by aging in ASPCs and adipocytes.

Beige adipocytes develop via the de novo differentiation of ASPCs or through activation of the 
thermogenic gene program in mature adipocytes. Previous studies defined three populations of fibro-
blastic ASPCs in iWAT, namely Dpp4+ cells, Icam1+ preadipocytes, and Cd142+ cells. Aging or cold 
exposure did not induce dramatic shifts in either the proportions, or gene expression signatures of any 
of these ASPC types, suggesting that these cell populations are stably maintained across a range of 
conditions. In support of this, aging did not diminish the cell-intrinsic adipogenic capacities of these 
ASPC populations when subjected to adipogenesis assays ex vivo. Notably, we did not observe the 
emergence of aging-dependent regulatory cells (ARCs), previously described as modulated ASPCs 
co-expressing ASPC and immune marker genes, which have the capacity to suppress adipocyte 
differentiation (Nguyen et al., 2021). However, we did observe the induction of ARC-selective gene 
markers (i.e., Lgals3, Cd36) specifically in immune cells (Ptprc+, Adgre1+) from aged mice in both our 
scRNA-seq and snRNA-seq datasets. This Lgals3/Cd36 gene signature has also been described in Lin+ 
macrophages and CD45+ lipid-associated (LAM) macrophages (Burl et al., 2018; Jaitin et al., 2019). 
Overall, our results suggest that aging-induced alterations to the systemic milieu or adipose tissue 
environment are responsible for the block in beige adipogenesis.

Gene expression analyses identified several genes that were altered by aging across multiple ASPC 
types and temperature conditions. The top aging-upregulated gene was Cd9, which was previously 
identified as a marker of fibrogenic (fibrosis-generating) progenitor cells (Marcelin et al., 2017). Cd9 
encodes for a tetraspanin protein implicated in various processes that could affect adipogenesis, 
extracellular vesicle production, cell adhesion, inflammation, and platelet activation (Brosseau et al., 
2018). Aging also upregulated the expression of Pltp and Gpnmb, which are both linked to the regu-
lation of inflammation and fibrosis (Prabata et  al., 2021; Saade et  al., 2021). Conversely, Meg3, 
Itm2a, and Postn were consistently downregulated across all ASPC populations from aged versus 
young mice. Of note, Periostin (Postn) is an extracellular matrix protein that regulates adipose tissue 
lipid storage, and its levels were previously shown to decrease in several adipose tissue depots during 
aging (Graja et al., 2018).

https://doi.org/10.7554/eLife.87756
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We were surprised by the limited (<20%) contribution of fibroblastic (Pdgfra+) ASPCs, (which 
includes Pparg-expressing preadipocytes), to beige adipocytes during cold exposure. Of note, we 
also observed tdTomato+, unilocular white adipocytes upon cold exposure, suggesting the bi-po-
tential fate of Pdgfra+ cells. Previous studies in mice using an adipocyte fate tracking system show 
that a high proportion of beige adipocytes arise via the de novo differentiation of ASPCs as early 
as 3 days of cold (Wang et al., 2013). However, the relative contribution from ASPC differentiation 
and direct adipocyte conversion to the formation of beige adipocytes depends highly on the experi-
mental conditions, especially cold exposure history (Shao et al., 2019). Mice housed at TN from birth 
undergo high rates of de novo beige adipogenesis upon first cold exposure, whereas mice reared at 
room temperature acquire many ‘dormant’ beige adipocytes that can be re-activated by cold expo-
sure (Rosenwald et al., 2013; Shao et al., 2019). Based on these findings, we presume that mature 
(dormant beige) adipocytes serve as the major source of beige adipocytes in our cold-exposure para-
digm. However, long-term cold exposure also recruits smooth muscle cells to differentiate into beige 
adipocytes; a process that we did not investigate here (Long et al., 2014; McDonald et al., 2015; 
Berry et al., 2016; Shamsi et al., 2021).

The beiging process is associated with a dramatic remodeling of adipose tissue structure and meta-
bolic function. We applied snRNA-seq analysis to investigate the cold response of iWAT adipocytes 
in young and aged animals, leading us to identify four adipocyte clusters: beige adipocytes and three 
‘white’ subsets: Npr3-high, DNL-low and DNL-high adipocytes. Npr3-high adipocytes were enriched 
for expression of white fat-selective genes and exhibit the lowest levels of thermogenic genes (Rosell 
et al., 2014; Ussar et al., 2014). Interestingly, Npr3 also upregulated by aging in all white adipocytes. 
Previous studies show that obesity also increases Npr3 levels in adipose tissue of mice and humans 
(Kovacova et al., 2016; Gentili et al., 2017). NPR3 represses beige fat development and adipocyte 
thermogenesis by functioning as a clearance receptor for natriuretic peptides (NPs), thereby reducing 
their lipolytic and thermogenic effects (Sengenès et al., 2000; Sengenes et al., 2003; Moro et al., 
2004; Bordicchia et al., 2012; Coué et al., 2018). Together, these results suggest that Npr3-high 
adipocytes may impede beige fat development in a cell non-autonomous manner by reducing NP 
signaling. Moreover, high NPR3 levels in aged animals could contribute to the block in beige fat devel-
opment, and targeting this pathway may be a promising avenue to elevate beige fat activity.

We were also intrigued by the dramatic induction of DNL genes in beige adipocytes and DNL-high 
cells during cold exposure. DNL-high cells resemble an adipocyte subpopulation (mAd5), displaying 
enriched expression levels of Acly and Acss2, that was identified by Emont et al., 2022. Previous 
work established that cold stimulates opposing pathways of lipid oxidation and lipogenesis in thermo-
genic fat tissue (Yu et al., 2002; Mottillo et al., 2014; Sanchez-Gurmaches et al., 2018). The co-oc-
currence of these two processes is unusual and may provide a mechanism to ensure the continued 
availability of fatty acids to fuel thermogenesis and/or provide critical metabolic intermediates, such 
as acetyl-CoA. The Granneman lab demonstrated that high expression of the lipid catabolic enzyme 
MCAD and lipogenic enzyme FAS occurred in separate populations of iWAT adipocytes upon stimula-
tion with a β3-adrenergic agonist for 3–7 days (Lee et al., 2017). We identified two subsets of UCP1+ 
beige adipocytes, distinguished by the presence vs. absence of high levels of DNL genes (i.e. Ucp1+; 
DNL-high and Ucp1+; DNL-low). Interestingly, the Ucp1+; DNL-high cells accumulated later during 
cold exposure (14D), suggesting that fully cold-adapted beige adipocytes express both pathways 
simultaneously. Of note, the induction of Acly and other lipogenic genes was very severely impaired 
in aged animals. Related to this point, Martinez Calejman and colleagues showed that Acly deficiency 
in brown adipocytes caused a whitened phenotype, coupled with an unexpected and unexplained 
reduction in Ucp1 expression (Martinez Calejman et al., 2020). We speculate that high levels of ACLY 
may be required to support thermogenic gene transcription by supplying and efficiently shuttling 
acetyl-CoA for acetylation of histones or other proteins.

Aging is a complex process, and unsurprisingly, many pathways have been linked to the aging-
related decline in beiging capacity. For example, increased adipose cell senescence, impaired mito-
chondrial function, elevated PDGF signaling and dysregulated immune cell activity during aging 
diminish beige fat formation (Berry et al., 2017; Goldberg et al., 2021; Nguyen et al., 2021; Benvie 
et al., 2023). Of note, older mice exhibit higher body and fat mass, which is associated with meta-
bolic dysfunction and reduced beige fat development. While the effects of aging and altered body 
composition are difficult to separate, previous studies suggest that the beiging deficit in aged mice 

https://doi.org/10.7554/eLife.87756
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is not solely attributable to changes in body weight (Rogers et al., 2012). Further studies, including 
additional time points across the aging continuum may help clarify the role of aging and ascertain 
when beiging capacity decreases.

In summary, this work shows that aging impairs beige adipogenesis through non-cell-autonomous 
effects on adipose tissue precursors and by disrupting adipocyte responses to environmental cold 
exposure. Expression profiling at the single-cell level reveals adipocyte heterogeneity, including two 
different types of UCP1+ beige adipocytes. Finally, aging-dysregulated pathways, including natriuretic 
peptide signaling and lipogenesis, may provide promising targets for unlocking beige adipocyte 
development.

Materials and methods
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent 
(M. musculus) C57BL/6 J

The Jackson 
Laboratory, Bar Harbor, 
ME

RRID:IMSR_
JAX:000664

Genetic reagent 
(M. musculus) C57BL/6JN NIA, Bethesda, MD NA

Genetic reagent 
(M. musculus)

Rosa26 loxp-stop-loxp 
tdTomato Reporter (Ai14)

The Jackson 
Laboratory, Bar Harbor, 
ME

RRID:IMSR_
JAX:007914

Genetic reagent 
(M. musculus) PdgfraCreERT2

The Jackson 
Laboratory, Bar Harbor, 
ME

RRID:IMSR_
JAX:032770

Antibody
Rabbit polyclonal anti–red 
fluorescent protein (RFP)

Rockland, Pottstown, 
PA

600-401-379, 
RRID:AB_2209751 1:500

Antibody
Rabbit polyclonal anti-Perilipin 
(D418)

Cell Signaling, 
Denvers, MA

3470, 
RRID:AB_2167268 1:200

Antibody Rabbit polyclonal anti- UCP1

Specially made 
by AstraZeneca, 
Cambridge, UK NA 1:2000

Antibody
Rabbit polyclonal Anti-mouse 
CD142

Sino Biological, 
Chesterbrook, PA R001 1:100

Antibody
Goat polyclonal Anti-mouse 
CD142

R & D Systems, 
Minneapolis, MN

AF3178, 
RRID:AB_2278143 1:50

Antibody
Rat monoclonal Anti-mouse 
CD140a-(PDGFRɑ)-PECy7

Biolegend, San Diego, 
CA

135912, 
RRID:AB_2715974 1:100

Antibody
Rat monoclonal Anti-mouse-
CD31 (APC-Fire)

Biolegend, San Diego, 
CA

102528, 
RRID:AB_2721491 1:1000

Antibody

Rat monoclonal Anti-mouse 
CD45-allophycocyanin (APC/
Cy7)

Biolegend, San Diego, 
CA

103116, 
RRID:AB_312981 1:1000

Antibody
Rat monoclonal Anti-mouse 
ICAM1-phycoerythrin (PE/Cy7)

Biolegend, San Diego, 
CA

116122, 
RRID:AB_2715950 1:100

Antibody

Rat monoclonal Anti-mouse 
CD26 (DPP-4)- fluorescein 
isothiocyanate (FITC)

Biolegend, San Diego, 
CA

137806, 
RRID:AB_10663402 1:200

Sequence-based 
reagent mTbp PMID:24703692 NA

F-​GAAG​​CTGC​​GGTA​​CAAT​​TCCA​G
R-CCCC​TTGT​ACCC​TTCA​CCAA​T

Sequence-based 
reagent mAdipoq PMID:24703692 NA

F-​GCAC​​TGGC​​AAGT​​TCTA​​CTGC​​AA
R-GTAG​GTGA​AGAG​AACG​GCCT​TGT

https://doi.org/10.7554/eLife.87756
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent mFabp4 PMID:24703692 NA

F-​ACAC​​CGAG​​ATTT​​CCTT​​CAAA​​CTG
R-CCAT​CTAG​GGTT​ATGA​TGCT​CTTC​A

Sequence-based 
reagent mCidea PMID:24703692 NA

F-​TGCT​​CTTC​​TGTA​​TCGC​​CCAG​T
R-GCCG​TGTT​AAGG​AATC​TGCT​G

Sequence-based 
reagent mPgc1a PMID:24703692 NA

F-CCCT​GCCA​TTGT​TAAG​ACC
R-TGCT​GCTG​TTCC​TGTT​TTC

Sequence-based 
reagent mUcp1 PMID:24703692 NA

F-​ACTG​​CCAC​​ACCT​​CCAG​​TCAT​T
R-CTTT​GCCT​CACT​CAGG​ATTG​G

Sequence-based 
reagent mDio2 PMID:24703692 NA

F-​CAGT​​GTGG​​TGCA​​CGTC​​TCCA​​ATC R-TGAA​CCAA​
AGTT​GACC​ACCA​G

Sequence-based 
reagent mAcly PMID:31141698 NA

F-GAGT​GCTA​TTGC​GCTT​CCC
R-GGTT​GCCG​AAGT​CACA​GGT

Sequence-based 
reagent mNpr3 This Paper NA

F-​TTTT​​CAGG​​AGGA​​GGGG​​TTGC​
R-ACAC​ATGA​TCAC​CACT​CGCT​

Sequence-based 
reagent mNpr1 MGH PrimerBank

Primer Bank ID: 
113930717 c1

F-​GCTT​​GTGC​​TCTA​​TGCA​​GATC​G
R-CCTC​GACG​AACT​CCTG​GTG

Sequence-based 
reagent mNpr2 MGH PrimerBank

Primer Bank ID: 
118129825 c2

F-​CATG​​ACCC​​CGAC​​CTTC​​TGTT​G
R-CGAA​CCAG​GGTA​CGAT​AATG​CT

Commercial assay 
or kit

ABI High-Capacity cDNA 
Synthesis kit

Applied Biosystems, 
Waltham, MA 4368813

Commercial assay 
or kit Purelink RNA Mini columns

Invitrogen, Waltham, 
MA LT-12183018

Commercial assay 
or kit

TSA TMR Tyramide Reagent 
Pack

Akoya Biosciences, 
Marlborough, MA NEL742001KT

Commercial assay 
or kit

TSA Fluorescein Tyramide 
Reagent Pack

Akoya Biosciences, 
Marlborough, MA NEL741001KT

Commercial assay 
or kit Bulls Eye Decloaking Buffer Biocare, Pacheco, CA BULL1000 MX

Commercial assay 
or kit

AbC Total Antibody 
Compensation Bead Kit

BioLegend,San Diego, 
CA A10497

Commercial assay 
or kit Biotium Mix-n-Stain CF647 Sigma, Burlington, MA MX647S100

Commercial assay 
or kit PicoPure RNA Isolation Kit

Invitrogen, Waltham, 
MA KIT0204

Commercial assay 
or kit

Qubit dsDNA High Sensitivity 
assay kit

ThermoFisher, 
Waltham, MA Q32851

Commercial assay 
or kit

DNA High Sensitivity 
Bioanalyzer Chip (Agilent)

Agilent, Santa Clara, 
CA 5067–4626

Software, algorithm Graphpad Prism
Graphpad, San Diego, 
CA RRID:SCR_002798

Software, algorithm Adobe Illustrator Adobe, San Jose, CA RRID:SCR_010279

Software, algorithm Adobe Photoshop Adobe, San Jose, CA RRID:SCR_014199

Software, algorithm Image J PMID:22743772 RRID:SCR_003070

Software, algorithm Cell Ranger 10 x Genomics RRID:SCR_017344

Software, algorithm Seurat PMID:34062119 RRID:SCR_016341

Software, algorithm bcl2fastq Illumina RRID:SCR_015058
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Cumulus PMID:32719530 RRID:SCR_021644

Software, algorithm FACSDiva Softward
Becton Dickinson, 
Franklin Lakes, NJ RRID:SCR_001456

Other Tamoxifen (Free Base) Sigma, Burlington, MA T5648
Synthetic estrogen receptor antagonist used to 
activate Cre.

Other Corn Oil Sigma, Burlington, MA C8267 Vehicle solution for tamoxifen.

Other 16% Paraformaldehyde EMS, Hatfield, PA 15710 Fixative used for tissue histology

Other TRIzol
Invitrogen, Waltham, 
MA 15596018

Phenol-based solution used for nucleic acid 
extraction

Other CL-316,243 Sigma, Burlington, MA C5976 Agonist of Beta3-adrenergic receptor

Other

4’,6-Diamidine-2’-
phenylindole dihydrochloride 
(DAPI), 1:10,000

Roche, Basel, 
Switzerland 10236276001 Fluorescent stain for DNA/nuclei

Other
Bovine Serum Albumin, 
fraction V, fatty-acid free

Gold Biotechnology, St. 
Louis, MO A-421–250 Protein carrier for small molecules

Other DMEM/F12
Fisher Scientific, 
Waltham, MA 11320033 Basal cell culture medium

Other Fetal Bovine Serum
Omega Scientific, 
Tarzana, CA FB-11, Lot 401714 For cell culture

Other Primocin
InvivoGen, San Diego, 
CA ant-pm-2 Anti-microbial for cell culture

Other
PCR Master Mix, Power SYBR 
Green

Applied Biosystems, 
Waltham, MA 4367659 Kit for qRT-PCR

Other HBSS, 1 X
Fisher Scientific, 
Waltham, MA 14175079 Hank’s Balanced Salt Solution

Other Dispase II
Roche, Basel, 
Switzerland 4942078001 Enzyme used for adipose tissue digestion

Other Collagenase, Type 1
Worthington, 
Lakewood, NJ LS004197 Enzyme used for adipose tissue digestion

Other
Red Blood Cell Lysis Buffer, 
10 x

BioLegend, San Diego, 
CA 420302 For lysing red blood cells during cell isolations

Other Human Insulin, Novolin
Novo Nordisk, 
Bagsvaerd, Denmark 183311 Used for cell culture studies

Other Dexamethasone
Sigma-Aldrich, 
Burlington, VT D4902 Glucorticoid Receptor agonist

Other
3-isobutyl-1-methylxanthine 
(IBMX)

Sigma-Aldrich, 
Burlington, VT I7018

Chemical used to Increase cAMP levels, used in 
adipocyte differentiation cocktail

Other Rosiglitazone
Cayman Chemical, Ann 
Arbor, MI 11884 Synthetic PPARgamma activator

Other Indomethacin
Sigma-Aldrich, 
Burlington, VT I8280 Chemical used in adipocyte differentiation cocktail

Other
3,30,5-Triiodo-L-thyronine 
sodium salt (T3)

Sigma-Aldrich, 
Burlington, VT T6397 Thyroid Receptor agonist

Other isoproterenol
Sigma-Aldrich, 
Burlington, VT I6504 Pan beta-adrenergic receptor agonist

Other Bodipy 493/503
Invitrogen, Waltham, 
MA D3922 Fluorescent dye for neutral lipids
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Other Hoechst 33342
Thermo Fisher, 
Waltham, MA 62249 DNA stain

Other Protector RNase Inhibitor
Roche, Basel, 
Switzerland 3335399001 Used for RT-PCR

 Continued

Mice
All animal procedures were approved and performed under the guidance of the University of Pennsyl-
vania Institutional Animal Care and Use Committee (IACUC) (protocol #805649). Young (4 weeks) and 
aged (52 weeks) C57BL/6 male mice were obtained from the National Institute of Aging (C57BL/6JN) 
or Jackson Laboratories (C57BL/6 J, stock number 000664). Mice were housed at 30 °C for 3 weeks, 
then were either: maintained at 30 °C for 2 weeks (TN); kept at 30 °C for 11 more days before moving 
to 6 °C for 3 days (3D cold) or moved to 6 °C for 14 days (14D cold). Mice were single housed during 
the final 2-week temperature treatment and provided with a nestlet and shepherd shack. For experi-
ments with CL316,243 (CL, Sigma-C5976), mice were housed at 30 °C for 5 weeks, followed by intra-
peritoneal (IP) injection of 1 mg/kg/d CL either 1 hr prior to tissue harvest or for 5 days. PdgfraCreERT2 
mice were obtained from Dr. Brigid Hogan (Duke University) (Chung et al., 2018) and crossed with 
Rosa26tdTomato (strain: B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, stock no. 007914). To induce 
Cre activity, tamoxifen (Sigma, T5648) dissolved in corn oil (Sigma, C8267) was injected intraperito-
nially (IP) into mice at a dose of 100 mg/kg/d for 5 days. For all iWAT processing other than histology, 
the inguinal lymph node was removed.

Histology and immunofluorescence
Tissues were fixed overnight in 4% paraformaldehyde, washed with PBS, dehydrated in ethanol, 
paraffin-embedded and sectioned. Following deparaffinization, slides were subjected to heat antigen 
retrieval in a pressure cooker with Bulls Eye Decloaking buffer (Biocare), unless otherwise noted. 
Slides were incubated in primary antibody overnight and secondary antibody conjugated to perox-
idase and then developed using Tyramide Signal Amplification (TSA, Akoya Biosciences). Samples 
were stained with either hematoxylin and eosin or the following antibodies: anti-red fluorescent 
protein (RFP) (rabbit; 1:500; Rockland #600-401-379), anti-UCP1 (rabbit, 1:2000, AstraZeneca), and 
anti-PLIN1 (rabbit, 1:200 Cell Signaling #3470). Slides were imaged on an inverted fluorescence micro-
scope (Keyence BZ-X710). For quantification of tdTomato-expressing adipocytes, full-length iWAT 
slices were tile imaged, stitched, exported as a BigTiff, and quantified in a blinded-manner using the 
Count Tool in Photoshop (Adobe).

Isolation of stromal vascular cells (SCVs) and adipocytes
SVCs
As previously described (Merrick et al., 2019; Wang et al., 2019), iWAT tissue was dissected, minced 
gently and digested with Collagenase Type I (1.5 units/ml; Worthington) and Dispase II (2.4 units/ml; 
Roche) in DMEM/F12 containing 1% fatty acid-free bovine serum albumin (Gold Biotechnology) in a 
gentleMACS dissociator (Miltenyi Biotec) on program ‘37 MR ATDK-1’. The digestion was quenched 
with DMEM/F12 containing 10% FBS, and the dissociated cells were passed through a 100 μm filter 
and spun at 400 x g for 4 min. The pellet was resuspended in red blood cell lysis buffer (BioLegend), 
incubated for 4 min at RT, then quenched with DMEM/F12 containing 10% serum. Cells were passed 
through a 70 μm filter, spun, resuspended, then passed through a final 40 μm filter, spun at 400 x g for 
4 min and plated or underwent further processing for FACS. Mice were not pooled unless indicated.

Adipocytes
Tissue went through the same process as above, except after digestion and quenching, adipocyte/
SVF slurry was filtered through a 200 μm filter and centrifuged at 50 x g for 3 min at RT. Using a 20 mL 
syringe and 1.5-inch, 25 G needle, media containing the SVCs was removed from below the adipo-
cytes (and saved if concurrently isolating SVCs), leaving only the adipocytes in the tube. Adipocytes 

https://doi.org/10.7554/eLife.87756
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were washed twice with the same media as quenching, transferred to 2 mL tubes, spun a final time, 
media was removed from below the adipocytes again, and TRIzol was added for RNA extraction. Mice 
were not pooled.

FACS
DPP4+, ICAM1+, and CD142+ cells were isolated as previously described (Merrick et  al., 2019). 
Briefly, SVCs from the subcutaneous adipose of mice (n=2–5) were pooled and resuspended in 
FACS buffer (HBSS containing 3% FBS; Fisher), then incubated for 1 hr at 4  °C with the following 
antibodies: CD26 (DPP4)-fluorescein isothiocyanate (FITC) (Biolegend, 137806; 1:200), anti-mouse 
ICAM1-phycoerythrin (PE)/Cy7 (Biolegend, 116122; 1:100), anti-mouse CD45-allophycocyanin (APC)/
Cy7 (Biolegend, 103116; 1:1000), anti-mouse CD31-APC-Fire (Biolegend, 102528; 1:1000), and anti-
mouse CD142 (Sino Biological, 50413-R001, 1:100; or R&D Systems, AF3178, 1:50). Anti-mouse 
CD142 antibodies were conjugated with Biotium Mix-n-Stain CF647 (Sigma, MX647S100). For lineage 
tracing pulse analysis, SVCs were isolated from individual mice without pooling. SVCs were stained 
with anti-mouse CD31, anti-mouse CD45, and anti-mouse CD140a (PDGFRΑ) (PE/Cy7) (Biolegend, 
135912; 1:100). In all FACS experiments, cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) 
(Roche, 10236276001; 1:10,000) for 5  min, then washed three times with FACS buffer to remove 
unbound antibodies. Cells were sorted with a BD FACS Aria cell sorter (BD Biosciences) equipped 
with a 100 μm nozzle and the following lasers and filters: DAPI, 405 and 450/50 nm; FITC, 488 and 
515/20 nm; mTomato, 532 and 610/20 nm; PE/Cy7, 532 and 780/60 nm; CF647, 640 and 660/20 nm; 
and APC/Cy7 and APC-Fire, 640 and 780/60 nm. All compensation was performed at the time of 
acquisition in Diva software by using compensation beads (BioLegend, A10497) for single-color 
staining and SVCs for negative staining and fluorescence (DAPI and tdTomato).

Cell culture and differentiation
Adipocyte precursor cells
All cells were cultured in DMEM/F12 containing 10% FBS and Primocin (50 ng/ml; InvivoGen, ant-
pm-1). DPP4+, ICAM1+, and CD142+ populations were FACS purified, plated on CellBind 384-well 
plates (Corning) at 15–25 K cells/well, and incubated for 48 (25K cells) to 72 hr (15 K cells) to facilitate 
attachment before the induction of adipogenic differentiation. For whole SVF, SVCs were isolated 
and plated in a 48 well CellBind plate (Corning) at a high confluency of one mouse per 18 wells. No 
cells were passaged after plating to maintain adipogenic competency. Differentiation was carried out 
with either maximum adipogenic cocktail, max: 500 μM isobutylmethylxanthine (Sigma, I7018), 10 μM 
dexamethasone (Sigma, D4902), 125 μM indomethacin (Sigma, I8280), 1 μM rosiglitazone (Cayman 
Chemical, 11884), 1 nM T3 (Sigma, T6397), and 20 nM insulin (Novolin) or a minimal adipogenic cock-
tail, min: 20 nM insulin. For the max adipogenic cocktail induction, cells were incubated with cocktail 
for 2 days and then transferred to adipogenic maintenance medium for the remaining 6 days (1 μM 
rosiglitazone, 1 nM T3, and 20 nM insulin). For all conditions, medium was changed every 2 days, and 
cells were harvested on day 8 of differentiation. For drug treatments, cells were treated for 4 hr on 
day 8 with 1 μM isoproterenol (Sigma, I6504). Adipogenesis was assessed by staining with Biodipy 
493/503 (Invitrogen, D3922) for lipid droplet accumulation and Hoechst 33342 (Thermo Fisher, 62249) 
for nuclei number. The cells were imaged on a Keyence inverted fluorescence microscope (BZ-X710) 
by using DAPI (excitation, 360/40 nm; emission, 460/50 nm) and green fluorescent protein (excitation, 
470/40 nm; emission, 525/50 nm) filters. Individual wells were imaged in their entirety at ×4 magnifi-
cation, and at 20 x to see morphology. 384-well plates were not stained and imaged in brightfield due 
to low cell number recovery from FACS prior to RNA extraction.

RNA Extraction, qRT-PCR and RNA Sequencing
RNA Extraction
Total RNA was extracted using TRIzol (Invitrogen) combined with PureLink RNA Mini columns (Thermo 
Fisher, 12183025) for tissue and SVC cells or by PicoPure RNA Isolation Kit (Applied Biosystems, 
KIT0204) for 384-well plate populations and adipocytes. Prior to the addition of chloroform, all tissue 
and primary adipocytes in TRIzol included an extra spin at max speed for 10 min at RT, then TRIzol 
was removed from below the lipid layer to avoid lipid contamination disrupting the subsequent 
phase separation with chloroform. Chloroform was added to the lipid-free TRIzol, spun for 15 min at 

https://doi.org/10.7554/eLife.87756
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12,000 x g and the aqueous layer was removed and added to columns. mRNA was quantified using 
a Nanodrop and reverse transcribed to cDNA using the ABI High-Capacity cDNA Synthesis kit (ABI, 
4368813). Real-time PCR was performed on a QuantStudio5 qPCR machine using SYBR green fluo-
rescent dye (Applied Biosystems). Fold changes were calculated using the ddCT method, with TATA 
binding Protein (Tbp) mRNA serving as a normalization control.

Single-cell RNA-seq Samples
Cells were flow sorted to isolate live (DAPI-) cells and remove debris. We enriched non-immune cells 
by sorting out CD45+ cells. Next-generation sequencing libraries were prepared using the Chromium 
Next GEM Single Cell 3’ Reagent kit v3.1 (10x Genomics, 1000121) per manufacturer’s instructions. 
Libraries were uniquely indexed using the Chromium Single Index Kit T Set A, pooled, and sequenced 
on an Illumina NovaSeq 6000 sequencer in a paired-end, dual indexing run by the CHOP Center for 
Applied Genomics at the University of Pennsylvania. Sequencing for each library targeted 20,000 
mean reads per cell.

Single nucleus RNA-seq samples
Nuclei were isolated from frozen mouse iWAT samples as previously described, with the following modi-
fications to integrate hash multiplexing and FANS-assisted nuclear quality thresholding and sample 
pooling (Drokhlyansky et  al., 2020; Slyper et  al., 2020). Briefly, 300 mg of flash-frozen adipose 
samples were held on dry ice until immediately before nuclei isolation, and all sample handling steps 
were performed on ice. Each sample was placed into a gentleMACS C tube (Miltenyi Biotec, 130-093-
237) with 2 mL freshly prepared TST buffer (0.03% Tween 20 (Bio-Rad), 0.01% Molecular Grade BSA 
(New England Biolabs), 146 mM NaCl (Thermo Fisher Scientific), 1 mM CaCl2 (VWR International), 
21 mM MgCl2 (Sigma Aldrich), and 10 mM Tris-HCl pH 7.5 (Thermo Fisher Scientific) in ultrapure water 
(Thermo Fisher Scientific)) with 0.2 U/μL of Protector RNase Inhibitor (Sigma-Aldrich, RNAINH-RO). 
gentleMACS C tubes were then placed on the gentleMACS Dissociator (Miltenyi Biotec) and tissue 
was dissociated by running the program ‘mr_adipose_01’ three times, and then incubated on ice for 
10 min. Lysate was passed through a 40 μm nylon filter (CellTreat) and collected into a 50 mL conical 
tube (Corning). Filter was rinsed with 3 mL of freshly prepared ST buffer (146 mM NaCl, 1 mM CaCl2, 
21 mM MgCl2; 10 mM Tris-HCl pH 7.5) with 0.2 U/μL RNase Inhibitor, and collected into the same 
tube. Flow-through was passed through a 20 μm pre-separation filter (Miltenyi Biotec) set on top 
of a 5 mL FACS tube (Corning) and collected into the same tube. Suspension was centrifuged in a 
swinging-bucket centrifuge (Eppendorf) at 500 × g for 5 min at 4 °C with brake set to low. Following 
centrifugation, supernatant was removed and 5  mL of PBS pH 7.4 (Thermo Fisher Scientific) with 
0.02% BSA and 0.2 U/μL RNase Inhibitor was added without resuspending the nuclear pellet. Sample 
was centrifuged again at 500 × g for 5 minutes at 4 °C with brake set to low. Following centrifuga-
tion, supernatant was removed, and the nuclear pellet was resuspended in 1 mL PBS-0.02% BSA with 
0.2 U/μL RNase Inhibitor. Each sample was split into two 500 μL aliquots and transferred to new 5 mL 
FACS tubes for subsequent hashing. Each aliquot of resuspended nuclei was stained with NucBlue 
(ThermoFisher, R37605), labeled with 1 μg of a unique TotalSeq anti-Nuclear Pore Complex Proteins 
Hashtag Antibody (Biolegend), and then incubated on ice for 30 min. Suspension was centrifuged 
at 500 × g for 5 min at 4 °C with brake set to low. Following centrifugation, 450 μL of supernatant 
was removed and the nuclear pellet was resuspended in 450 μL PBS-0.02% BSA with 0.2 U/μL RNase 
Inhibitor. For nuclear quality thresholding, fluorescence-activated nuclear sorting (FANS) was imple-
mented to collect 4,000–4,300 nuclei from hashtagged aliquots directly into a shared well of a 96-well 
PCR plate (Thermo Scientific) containing 24.6 μL of 10 X RT Reagent B with 1 U/uL RNase Inhibitor 
on a Beckman Coulter MoFlo AstriosEQ fitted with a 70 μm nozzle. High-quality nuclei were selected 
by initial gating at 360  nm with laser filter 405-448/59 followed by SSC-H and FSC-H to remove 
doublets and unlysed cells. Once all sample aliquots were FANS-sorted, the pool of 43,000 nuclei was 
loaded on the 10 x Chromium controller (10 x Genomics) according to the manufacturer’s protocol. 
cDNA and gene expression libraries were generated according to the manufacturer’s instructions 
(10 x Genomics). Libraries of hashtag oligo fractions were generated according to the manufacturer’s 
instructions (Biolegend). cDNA and gene expression library fragment sizes were assessed with a DNA 
High Sensitivity Bioanalyzer Chip (Agilent). cDNA and gene expression libraries were quantified using 
the Qubit dsDNA High Sensitivity assay kit (Thermo Fisher, Q32854). Gene expression libraries were 
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multiplexed and sequenced on the Nextseq 500 (Illumina) using a 75-cycle kit and the following read 
structure: Read 1: 28 cycles, Read 2: 55 cycles, Index Read 1: 8 cycles.

Bioinformatics analysis
Single-cell RNA sequencing
Data was processed using the Cell Ranger pipeline (10 x Genomics, v.3.1.0) for demultiplexing and 
alignment of sequencing reads to the mm10 transcriptome and creation of feature-barcode matrices. 
The cell ranger output files were read into R (version 4.1.1) and processed utilizing the standard 
Seurat CCA integrated workflow (version 4.3.0). Each of the six samples went through a first phase 
of filtering, where only cells that recorded more than 200 features and only features present in a 
minimum of 3 cells were kept. Each sample was filtered prior to downstream analysis on nCount_
RNA, nFeature_RNA, and mitochondrial percentages. Samples were then normalized using a LogNor-
malization method with a scaling factor of 10,000 followed by FindVariableFeatures using Variance 
Stabilization Transformation with the top 6000 features to be returned. The samples were scored on 
their cell cycle phases which would be used in the regression later. The FindIntegrationAnchors func-
tion using the CCA reduction method and IntegrateData was utilized to integrate the data together. 
The integrated data-set was then scaled in which mitochondrial percentage and cell cycle state was 
regressed out. A principal component analysis was performed and the top 15 dimensions were kept. 
Uniform Manifold and Projection (UMAP) was run on the dataset, in addition to FindNeighbors and 
FindClusters. Differential gene expression between clusters was performed using the FindMarkers 
function with the Wilocox test in Seurat. Violin plots and individual UMAP plots were all generated 
using the Seurat toolkit VlnPlot and FeaturePlot functions, respectively. Heatmaps were generated 
utilizing the pheatmap package (version 1.0.12).

Single-nucleus RNA sequencing
Raw sequencing reads were demultiplexed to FASTQ format files using bcl2fastq (Illumina; version 
2.20.0). Digital expression matrices were generated from the FASTQ files using Cell Ranger (Zheng 
et al., 2017; version 6.1.2) with the option to include intronic reads (--include-introns). Reads were 
aligned against the GRCm38 mouse genome assembly and gene counts were obtained, per-droplet, 
by summarizing exonic and intronic UMIs that overlapped with the GENCODE mouse annotation 
(release 24) for each gene symbol. In order to adjust for downstream effects of ambient RNA expres-
sion within mouse nuclei, we used the ‘remove-background’ module from CellBender (Pita Juarez 
et al., 2022; version 0.2.0) to remove counts due to ambient RNA molecules from the count matrices 
and to estimate the true cells. Genes were subsequently filtered such that only genes detected in two 
or more cells and with at least 6 total counts (across all cells) were retained. Sample demultiplexing 
via hashtag oligonucleotide sequences (HTOs) was performed with the Cumulus sc/snRNA-Seq 
processing pipeline (Li et al., 2020). Specifically, HTO quantification was performed with the Cumulus 
Tool on Feature Barcoding (Li and Yang, 2024), which provided a cell-by-HTO count matrix. This HTO 
count matrix, along with the gene count matrices generated via Cell Ranger (above) were used to 
assign each cell to their respective sample(s) with the demuxEM program. Only cells that were identi-
fied as singlets were retained (i.e. no cells identified as a multiplet or unassignable) in the per-sample 
CellBender-ed gene count matrices.

Cellbender output files were read into R (version 4.1.1) and processed utilizing the standard Seurat 
CCA and later RPCA integration workflows (version 4.3.0). Each of the hashed samples (24 in total) 
were merged with their respective pair to have a total of twelve samples consisting of six different 
groups. Each sample was filtered prior to downstream analysis based on their nCount_RNA, nFea-
ture_RNA, and mitochondrial percentages. Samples were then normalized using a LogNormalization 
method with a scaling factor of 10000 followed by FindVariableFeatures using a Variance-Stabilizing 
Transformation as the method with the top 2000 features to be returned. The FindIntegrationAn-
chors function using the CCA reduction method and IntegrateData was utilized to integrate the data 
together. The integrated data-set was then scaled on which mitochondrial percentage was regressed. 
A principal component analysis was performed in which only the top 18 dimensions were retained. 
Uniform Manifold and Projection (UMAP), FindNeighbors, and FindClusters with a resolution of 0.4 
was performed on the dataset. To remove doublets in the dataset, we used the package scDblFinder 
(1.8.0) and their function scDblFinder with the parameters of samples set to our twelve samples, dbr 

https://doi.org/10.7554/eLife.87756
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set to NULL, ​dbr.​sd set to 1, clusters set to FALSE, and multiSampleMode set to split. The object 
was then subsetted to only contain expected singlets. Differential gene expression between clus-
ters was performed using the FindMarkers function with the Wilocox test in Seurat. Violin plots and 
individual UMAP plots were all generated using the Seurat toolkit VlnPlot and FeaturePlot functions, 
respectively. Heatmaps were generated utilizing the dittoSeq package (1.9.1) and pheatmap package 
(version 1.0.12).

After identifying the adipocyte population, we subsetted our object on that population, extracting 
the raw RNA counts on the cells for each of the six samples (YTN, OTN, Y3D, O3D, Y14D, O14D) 
(Y is young, O is ‘Old’ or as referred to in this paper, Aged). These samples were then integrated 
together using the standard RPCA integration workflow. There was no further filtering done on the 
reintegrated adipocyte population. Samples were normalized using a LogNormalization method with 
a scaling factor of 10000 followed by FindvariableFeatures using a Variance-Stabilizing Transformation 
as the method with the top 2000 features to be returned. The function SelectIntegrationFeatures was 
performed on the dataset where it was then scaled on which mitochondrial percentage was regressed, 
and principal components were found using the ScaleData and RunPCA functions. The FindIntegra-
tionAnchors function using the ROCA reduction method and a k.anchors of 20 and IntegrateData 
was utilized to integrate the data together. After integration, the dataset was then scaled in which 
mitochondrial percentage was regressed on again. A principal component analysis was performed 
in which only the top 18 dimensions were retained. Uniform Manifold and Projection (UMAP), Find-
Neighbors, and FindClusters with a resolution of 0.2 was performed on the dataset. Differential gene 
expression between clusters was performed using the FindMarkers function with a Wilcoxon signed-
rank test as the method in Seurat. Violin plots and individual UMAP plots were all generated using the 
Seurat toolkit VlnPlot and FeaturePlot functions, respectively. Heatmaps were generated utilizing the 
dittoSeq package (1.9.1) and pheatmap package (version 1.0.12).

Enrichment analysis was performed on the positively expressed genes with a log2 fold change 
(LFC) >0.25 and a P adjusted value <0.01 on comparison of the young 14 days cold and old 14 days 
cold groups in the DNL high cluster. The generated gene list, which was in order of significance, was 
fed into g:Profiler (version 0.2.1) using default parameters except with modifications to query as an 
ordered query against the ‘mmusculus’ database, a gSCS correction method for multiple testing, with 
domain scope set to annotated, and sources set to the Reactome database. The top six enriched 
pathways yielded from the database were taken and displayed in order of P adjusted value.

Statistical methods
Mouse studies were performed with >n = 5 per group for p=0.05 with 95% power given the expected 
variability of examined phenotypes. Each experiment was independently replicated at least twice. 
Sample sizes are reported in figure legends. All bar graphs represent the mean ± SEM. A Student’s 
t-test was used when two groups were compared. Where multiple conditions were compared, we 
applied two-way ANOVA with a Tukey correction for multiple comparisons. Only the Young vs. Aged 
comparisons were depicted on graphs for clarity, with additional multiple comparisons provided 
below. p Values are indicated by asterisks and defined as *p<0.05, **p<0.01  and ***p<0.001. All 
statistics were calculated with GraphPad Prism Version 10.0.3.

Figure Graph Statistical test Comparison p value

1B Ucp1 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

3D: Young vs. Aged <0.001

14D: Young vs. Aged <0.001

Young: TN vs. 3D <0.001

Young: TN vs. 14D <0.001

 Continued on next page
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Figure Graph Statistical test Comparison p value

1B Cidea qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

3D: Young vs. Aged <0.001

14D: Young vs. Aged <0.001

Young: TN vs. 3D <0.001

Young: TN vs. 14D <0.001

Young: 3D vs. 14D 0.001

1B Dio2 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

3D: Young vs. Aged <0.001

14D: Young vs. Aged 0.03

Young: TN vs. 3D <0.001

Young: TN vs. 14D 0.008

Young: 3D vs. 14D <0.001

1B Ppargc1a qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

3D: Young vs. Aged <0.001

Young: TN vs. 3D <0.001

Young: TN vs. 14D 0.03

Young: 3D vs. 14D <0.001

2B % tdTom%/Lin-;PDGFRa+ Two-way ANOVA with an 
Uncorrected Fisher’s LSD

Young: +/+vs. CER/+ <0.001

Aged: +/+vs. CER/+ <0.001

2B % PDGFRa+/Lin- cells Two-way ANOVA with an 
Uncorrected Fisher’s LSD

Young: +/+vs. CER/+ 0.008

4B Adipoq qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

ICAM1: Young vs. Aged <0.001

Young: DPP4 vs. CD142 0.006

Aged: DPP4 vs. ICAM1 <0.001

Aged: DPP4 +vs. CD142 0.004

4B Fabp4 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

ICAM1: Young vs. Aged <0.001

Aged: DPP4 vs. ICAM1 <0.001

Aged: ICAM1 vs. CD142 0.002

4D Adipoq qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

Young: DPP4 vs. CD142 0.03

Young: ICAM1 vs. CD142 0.008

Aged: DPP4 vs. ICAM1 0.04

Aged: DPP4 vs. CD142 <0.001

Aged: ICAM1 vs. CD142 0.006

4D Fabp4 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

ICAM1: Young vs. Aged 0.008

Young: DPP4 vs. ICAM1 <0.001

Young: DPP4 vs. CD142 <0.001

Aged: DPP4 vs. ICAM1 <0.001

Aged: DPP4 +vs. CD142 <0.001

Aged: ICAM1 vs. CD142 0.03

4F Adipoq qPCR Two-way ANOVA with an 
Uncorrected Fisher’s LSD

Young: MIN vs. MAX <0.001

Aged: MIN vs. MAX <0.001

 Continued on next page
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Figure Graph Statistical test Comparison p value

4F Fabp4 qPCR Two-way ANOVA with an 
Uncorrected Fisher’s LSD

Young: MIN vs. MAX <0.001

Aged: MIN vs. MAX <0.001

4G Ucp1 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

DPP4: Young vs. Young 
+Iso

<0.001

DPP4: Aged vs. Aged +Iso <0.001

ICAM1: Young vs. Young 
+Iso

<0.001

ICAM1: Aged vs. 
Aged +Iso

<0.001

ICAM1: Young +Iso vs. 
Aged +Iso

0.02

CD142: Young vs. Young 
+Iso

0.02

CD142: Aged vs. 
Aged +Iso

<0.001

Aged +Iso: Dpp4 +vs. 
Icam1+

0.002

Aged +Iso: Icam1 +vs. 
Cd142+

0.03

4H Ucp1 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

MAX: Young vs. Young 
+Iso

<0.001

MAX: Aged vs. Aged +Iso <0.001

Young +Iso: MIN vs. MAX <0.001

Aged +Iso: MIN vs. MAX <0.001

6E Npr3 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

TN: Young vs. Aged 0.001

14D: Young vs. Aged 0.01

Young: TN vs. 14D 0.04

Aged: TN vs. 3D 0.004

Aged: TN vs. 14D 0.005

S1A Body mass Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

TN: Young vs. Aged <0.001

3D: Young vs. Aged <0.001

14D: Young vs. Aged <0.001

S1B iWAT mass Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

TN: Young vs. Aged 0.005

3D: Young vs. Aged 0.03

S1B iWAT mass % Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

No comparisons 
significant

N/A

S1E Ucp1 qPCR Two-way ANOVA with an 
Uncorrected Fisher’s LSD

Young: TN vs. 14D 0.01

Aged: TN vs. 14D 0.008

S1E Cidea qPCR Two-way ANOVA with an 
Uncorrected Fisher’s LSD

No comparisons 
significant

N/A

S4D Npr1 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

Young: TN vs. 3D 0.03

 Continued

 Continued on next page
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Figure Graph Statistical test Comparison p value

S4D Npr2 qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

No comparisons 
significant

N/A

S4H Acly qPCR Two-way ANOVA with 
a Tukey correction for 
multiple comparisons

3D: Young vs. Aged <0.001

14D: Young vs. Aged <0.001

Young: TN vs. 3D <0.001

Young: TN vs. 14D <0.001

Young: 3D vs. 14D <0.001
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