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Abstract Representational drift refers to the dynamic nature of neural representations in the 
brain despite the behavior being seemingly stable. Although drift has been observed in many 
different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability 
is suggested to play a key role in regulating memory allocation, fluctuations of excitability could 
bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. 
Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic 
excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of 
this ensemble. The model predicts that drift is induced by co-activation of previously active neurons 
along with neurons with high excitability which leads to remodeling of the recurrent weights. Consis-
tent with previous experimental works, the drifting ensemble is informative about its temporal 
history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal 
information from the activity of the ensemble. Finally, we show that the memory is preserved and 
can be decoded by an output neuron having plastic synapses with the main region.

eLife assessment
This is an important theoretical study providing insight into how fluctuations in excitability can 
contribute to gradual changes in the mapping between population activity and stimulus, commonly 
referred to as representational drift. The authors provide convincing evidence that fluctuations can 
contribute to drift. Overall, this is a well-presented study that explores the question of how changes 
in intrinsic excitability can influence distinct memory representations.

Introduction
In various brain regions, the neural code tends to be dynamic although behavioral outputs remain 
stable. Representational drift refers to the dynamic nature of internal representations as they have 
been observed in sensory cortical areas (Driscoll et al., 2017; Sadeh and Clopath, 2022; Driscoll 
et al., 2022) or the hippocampus (Ziv et al., 2013; Hainmueller and Bartos, 2018) despite stable 
behavior. It has even been suggested that pyramidal neurons from the CA1 and CA3 regions form 
dynamic rather than static memory engrams (Hainmueller and Bartos, 2018; Spalla et al., 2021), 
namely that the set of neurons encoding specific memories varies across days. In the amygdala, 
retraining of a fear memory task induces a turnover of the memory engram (Cho et al., 2021). Addi-
tionally, plasticity mechanisms have been proposed to compensate for drift and to provide a stable 
read-out of the neural code (Rule and O’Leary, 2022), suggesting that information is maintained. 
Altogether, this line of evidence suggests that drift might be a general mechanism with dynamical 
representations observed in various brain regions.
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However, the mechanisms underlying the emergence of drift and its relevance for the neural 
computation are not known. Drift is often thought to arise from variability of internal states (Sadeh 
and Clopath, 2022), neurogenesis (Rechavi et al., 2022; Driscoll et al., 2017) or synaptic turnover 
(Attardo et al., 2015) combined with noise (Kossio et al., 2021; Manz and Memmesheimer, 2023). 
On the other hand, excitability might also play a role in memory allocation (Zhou et al., 2009; Mau 
et al., 2020; Rogerson et al., 2014; Silva et al., 2009), so that neurons having high excitability are 
preferentially allocated to memory ensembles (Cai et al., 2016; Rashid et al., 2016; Silva et al., 
2009). Moreover, excitability is known to fluctuate over timescales from hours to days, in the amyg-
dala (Rashid et al., 2016), the hippocampus (Cai et al., 2016; Grosmark and Buzsáki, 2016), or the 
cortex (Huber et al., 2013; Levenstein et al., 2019). Subsequent reactivations of a neural ensemble 
at different time points could therefore be biased by excitability (Mau et al., 2022), which varies at 
similar timescales than drift (Mau et al., 2018). Altogether, this evidence suggest that fluctuations of 
excitability could act as a cellular mechanism for drift (Mau et al., 2020).

In this short communication, we aimed at proposing how excitability could indeed induce a drift of 
neural ensembles at the mechanistic level. We simulated a recurrent neural network (Delamare et al., 
2022) equipped with intrinsic neural excitability and Hebbian learning. As a proof of principle, we first 
show that slow fluctuations of excitability can induce neural ensembles to drift in the network. We then 
explore the functional implications of such drift. Consistent with previous works (Rubin et al., 2015; 
Clopath et al., 2017; Mau et al., 2018; Miller et al., 2018), we show that neural activity of the drifting 
ensemble is informative about the temporal structure of the memory. This suggest that fluctuations of 
excitability can be useful for time-stamping memories (i.e. for making the neural ensemble informative 
about the time at which it was form). Finally, we confirmed that the content of the memory itself can 
be steadily maintained using a read-out neuron and local plasticity rule, consistently with previous 
computational works (Rule and O’Leary, 2022). The goal of this study is to show one possible mech-
anistic implementation of how excitability can drive drift.

Results
Many studies have shown that memories are encoded in sparse neural ensembles that are activated 
during learning and many of the same cells are reactivated during recall, underlying a stable neural 
representation (Josselyn and Tonegawa, 2020; Poo et al., 2016; Mau et al., 2020). After learning, 
subsequent reactivations of the ensemble can happen spontaneously during replay, retraining or 
during a memory recall task (e.g. following presentation of a cue Josselyn and Tonegawa, 2020; Káli 
and Dayan, 2004). Here, we directly tested the hypothesis that slow fluctuations of excitability can 
change the structure of a newly-formed neural ensemble, through subsequent reactivations of this 
ensemble.

To that end, we designed a rate-based, recurrent neural network, equipped with intrinsic neural 
excitability (Methods). We considered that the recurrent weights are all-to-all and plastic, following 
a Hebbian rule (Methods). The network was then stimulated following a 4day protocol: the first day 
corresponds to the initial encoding of a memory and the other days correspond to spontaneous or 
cue-induced reactivations of the neural ensemble (Methods). Finally, we considered that excitability 
of each neuron can vary on a day long timescale: each day, a different subset of neurons has increased 
excitability (Figure 1a, Methods).

Fluctuations of intrinsic excitability induce drifting of neural ensembles
While stimulating the naive network on the first day, we observed the formation of a neural ensemble: 
some neurons gradually increase their firing rate (Figure 1b and c, neurons 10–20, time steps 1000–
3000) during the stimulation. We observed that these neurons are highly recurrently connected 
(Figure 1d, leftmost matrix) suggesting that they form an assembly. This assembly is composed of 
neurons that have a high excitability (Figure 1a, neurons 10–20 have increase excitability) at the time 
of the stimulation. We then show that further stimulations of the network induce a remodeling of the 
synaptic weights. During the second stimulation for instance (Figure 1b and c, time steps 4000–6000), 
neurons from the previous assembly (10–20) are reactivated along with neurons having high excit-
ability at the time of the second stimulation (Figure 1a, neurons 20–30). Moreover, across several 
days, recurrent weights from previous assemblies tend to decrease while others increase (Figure 1d). 

https://doi.org/10.7554/eLife.88053
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Indeed, neurons from the original assembly (Figure  1c, red traces) tend to be replaced by other 
neurons, either from the latest assembly or from the pool of neurons having high excitability. This 
is translated at the synaptic level, where weights from previous assemblies tend to decay and be 
replaced by new ones. Overall, each new stimulation updates the ensemble according to the current 
distribution of excitability, inducing a drift towards neurons with high excitability. Finally, in our model, 
the drift rate does not depend on the size of the original ensemble (Figure 1—figure supplement 2, 
Methods).

Activity of the drifting ensemble is informative about the temporal 
structure of the past experience
After showing that fluctuations of excitability can induce a drift among neural ensembles, we tested 
whether the drifting ensemble could contain temporal information about its past experiences, as 
suggested in previous works (Rubin et al., 2015).

Figure 1. Excitability-induced drift of memory ensembles. (a) Distribution of excitability ‍ϵi‍ for each neuron i, 
fluctuating over time. During each stimulation, a different pool of neurons has a high excitability (Methods). (b, c) 
Firing rates of the neurons across time. The red traces in panel (c) correspond to neurons belonging to the first 
assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars 
show the stimulation and the dashed line shows the active threshold. (d) Recurrent weights matrices after each of 
the four stimuli show the drifting assembly.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of drifting behavior for different values of excitability amplitude.

Figure supplement 2. The rate of the drift does not depend on the size of the initial engram.

https://doi.org/10.7554/eLife.88053
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Inspired by these works, we asked whether it was possible to decode relevant temporal infor-
mation from the patterns of activity of the neural ensemble. We first observed that the correlation 
between patterns of activity after just after encoding decreases across days (Figure 2a, Methods), 
indicating that after each day, the newly formed ensemble resembles less the original one. Because 
the patterns of activity differ across days, they should be informative about the absolute day from 
which they were recorded. To test this hypothesis, we designed a day decoder (Figure 2b, Methods), 
following the work of Rubin et al., 2015. This decoder aims at inferring the reactivation day of a 
given activity pattern by comparing the activity of this pattern during training and the activity just 
after memory encoding without increase in excitability (Figure 2b, Methods). We found that the day 
decoder perfectly outputs the reactivation day as compared to using shuffled data (Figure 2c).

Figure 2. Neuronal activity is informative about the temporal structure of the reactivations. (a) Correlation of the 
patterns of activity between the first day and every other days, for n=10 simulations. Data are shown as mean ± 
s.e.m. (b) Schema of the day decoder. The day decoder maximises correlation between the patterns of each day 
with the pattern from the simulation with no increase in excitability. (c) Results of the day decoder for the real data 
(red) and the shuffled data (orange). Shuffled data consist of the same activity pattern for which the label of each 
cell for every seed has been shuffled randomly. For each simulation, the error is measured for each day as the 
difference between the decoded and the real day. Data are shown for n=10 simulations and for each of the 4 days. 
(d) Schema of the ordinal time decoder. This decoder output the permutation ‍p‍ that maximises the sum ‍S(p)‍ of 
the correlations of the patterns for each pairs of days. (e) Distribution of the value ‍S(p)‍ for each permutation of 
days ‍p‍. The value for the real permutation ‍S(preal)‍ is shown in black. (f) Student’s test t-value for n=10 simulations, 
for the real (red) and shuffled (orange) data and for different amplitudes of excitability ‍E ‍. Data are shown as mean 
± s.e.m. for n=10 simulations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sparse recurrent connectivity shows similar drifting behavior as all-to-all connectivity.

Figure supplement 2. Change of excitability as a variable slope of the input-output function shows similar drifting 
behavior as considering a change in the threshold.

Figure supplement 3. Two distinct ensembles can be encoded and drift independently.

Figure supplement 4. The two ensembles are informative about their temporal history and can be decoded using 
two output neurons.

https://doi.org/10.7554/eLife.88053
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After showing that the patterns of activity are informative about the reactivation day, we took a 
step further by asking whether the activity of the neurons is also informative about the order in which 
the memory evolved. To that end, we used an ordinal time decoder (Methods, as in Rubin et al., 
2015) that uses the correlations between activity patterns for pairs of successive days, and for each 
possible permutation of days ‍p‍ (Figure 2d, Methods). The sum of these correlations ‍S(p)‍ differs from 
each permutation ‍p‍ and we assumed that the neurons are informative about the order at which the 
reactivations of the ensemble happened if the permutation maximising ‍S(p)‍ corresponds to the real 
permutation ‍preal

‍ (Figure 2e, Methods). We found that ‍S(preal)‍ was indeed statistically higher than ‍S(p)‍ 
for the other permutations ‍p‍ (Figure 2f, Student’s t-test, Methods). However, this was only true when 
the amplitude of the fluctuations of excitability ‍E‍ was in a certain range. Indeed, when the amplitude 
of the fluctuations is null, that is when excitability is not increased (‍E = 0‍), the ensemble does not drift 
(Figure 1—figure supplement 1a). In this case, the patterns of activity are not informative about the 
order of reactivations. On the other hand, if the excitability amplitude is too high (‍E = 3‍), each new 
ensemble is fully determined by the distribution of excitability, regardless of any previously formed 
ensemble (Figure 1—figure supplement 1c). In this regime, the patterns of activity are not informa-
tive about the order of the reactivations either. In the intermediate regime (‍E = 1.5‍), the decoder is 
able to correctly infer the order at which the reactivations happened, better than using the shuffled 
data (Figure 2f, Figure 1—figure supplement 1b).

Figure 3. A single output neuron can track the memory ensemble through Hebbian plasticity. (a) Conceptual 
architecture of the network: the read-out neuron ‍y‍ in red ‘tracks’ the ensemble by decreasing synapses linked 
to the previous ensemble and increasing new ones to linked to the new assembly. (b) Output neuron’s firing rate 
across time. The red trace corresponds to the real output. The dark blue, light blue and yellow traces correspond 
to the cases where the output weights were randomly shuffled for every time points after presentation of the first, 
second and third stimulus, respectively. (c) Output weights for each neuron across time. (d) Center of mass of the 
distribution of the output weights (Methods) across days. The output weights are centered around the neurons 
that belong to the assembly at each day. Data are shown as mean ± s.e.m. for n=10 simulations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The quality of the read-out decreases with the rate of the drift.

https://doi.org/10.7554/eLife.88053
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Finally, we sought to test whether the results are independent on the specific architecture of the 
model. To that end, we defined a change of excitability as a change in the slope of the activation func-
tion, rather than of the threshold (Figure 2—figure supplement 2, Methods). We also used sparse 
recurrent synaptic weights instead of the original all-to-all connectivity matrix (Figure  2—figure 
supplement 1, Methods). In both cases, we observed a similar drifting behavior and were able to 
decode the temporal order in which the memory evolved.

A read-out neuron can track the drifting ensemble
So far, we showed that the drifting ensemble contains information about its history, namely about the 
days and the order at which the subsequent reactivations of the memory happened.

However, we have not shown that we could use the neural ensemble to actually decode the 
memory itself, in addition to its temporal structure. To that end, we introduced a decoding output 
neuron connected to the recurrent neural network, with plastic weights following a Hebbian rule 
(Methods). As shown by Rule and O’Leary, 2022, the goal was to make sure that the output neuron 
can track the ensemble even if it is drifting. This can be down by constantly decreasing weights from 
neurons that are no longer in the ensemble and increasing those associated with neurons joining the 
ensemble (Figure 3a). We found that the output neuron could steadily decode the memory (i.e. it 
has a higher firing than in the case where the output weights are randomly shuffled; Figure 3b). This 
is due to the fact that weights are plastic under Hebbian learning, as shown by Rule and O’Leary, 
2022. We confirmed that this was induced by a change in the output weights across time (Figure 3c). 
In particular, the weights from neurons that no longer belong to the ensemble are decreased while 
weights from newly recruited neurons are increased, so that the center of mass of the weights distri-
bution drifts across time (Figure 3d). Finally, we found that the quality of the read-out decreases with 
the rate of the drift (Figure 3—figure supplement 1, Methods).

Two memories drift independently
Finally, we tested whether the network is able to encode two different memories and whether excit-
ability could make two ensembles drift. On each day, we stimulated a random half of the neurons 
(context A) and the other half (context B) sequentially (Methods). We found that, day after day, the 
two ensembles show a similar drift than when only one ensemble was formed (Figure  2—figure 
supplement 3). In particular, the correlation between the patterns activity on the first day and the 
other days decay in a similar way (Figure 2—figure supplement 4a). For both contexts, the temporal 
order of the reactivations can be decoded for a certain range of excitability amplitude (Figure 2—
figure supplement 4b). Finally, we found that using two output decoders allowed us to decode both 
memories independently. The output weights associated to both ensembles are remodeled to follow 
the drifting ensembles, but are not affected by the reactivation of the other ensemble (Figure 2—
figure supplement 4c). Indeed, both neurons are able to ‘track’ the reactivation of their associated 
ensemble while not responding to the other ensemble (Figure 2—figure supplement 4d).

Discussion
Overall, our model suggests a potential cellular mechanisms for the emergence of drift that can serve 
a computational purpose by ‘time-stamping’ memories while still being able to decode the memory 
across time. Although the high performance of the day decoder was expected, the performance of 
the ordinal time decoder is not trivial. Indeed, the patterns of activity of each day are informative 
about the distribution of excitability and therefore about the day at which the reactivation happened. 
However, the ability for the neural ensemble to encode the order of past reactivations requires drift 
to be gradual (i.e. requires consecutive patterns of activity to remain correlated across days). Indeed, 
if the amplitude of excitability is too low (‍E = 0‍) or too high (‍E = 3‍), it is not possible to decode the 
order at which the successive reactivations happened. This result is consistent with the previous works 
showing gradual change in neural representations, that allows for decoding temporal information of 
the ensemble (Rubin et al., 2015). Moreover, such gradual drifts could support complex cognitive 
mechanisms like mental time-travel during memory recall (Rubin et al., 2015).

In our model, drift is induced by co-activation of the previously formed ensemble and neurons 
with high excitability at the time of the reactivation. The pool of neurons having high excitability can 

https://doi.org/10.7554/eLife.88053
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therefore ‘time-stamps’ memory ensembles by biasing allocation of these ensembles (Clopath et al., 
2017; Mau et al., 2018; Rubin et al., 2015). We suggest that such time-stamping mechanism could 
also help link memories that are temporally close and dissociate those which are spaced by longer 
time (Driscoll et al., 2022; Mau et al., 2020; Aimone et al., 2006). Indeed, the pool of neurons with 
high excitability varies across time so that any new memory ensemble is allocated to neurons which 
are shared with other ensembles formed around the same time. This mechanism could be comple-
mentary to the learning-induced increase in excitability observed in amygdala (Rashid et al., 2016), 
hippocampal CA1 (Cai et al., 2016) and dentate gyrus (Pignatelli et al., 2019).

Finally, we intended to model drift in the firing rates, as opposed to a drift in the turning curve, of 
the neurons. Recent studies suggest that drifts in the mean firing rate and tuning curve arise from two 
different mechanisms (Geva et al., 2023; Khatib et al., 2023). Experience drives a drift in neurons 
turning curve while the passage of time drives a drift in neurons firing rate. In this sense, our study is 
consistent with these findings by providing a possible mechanism for a drift in the mean firing rates 
of the neurons driven a dynamical excitability. Our work suggests that drift can depend on any expe-
rience having an impact on excitability dynamics such as exercise as previously shown experimentally 
(Rechavi et al., 2022; de Snoo et al., 2023) but also neurogenesis (Aimone et al., 2006; Tran et al., 
2022; Rechavi et al., 2022), sleep (Levenstein et al., 2017) or increase in dopamine level (Chowd-
hury et al., 2022).

Overall, our work is a proof of principle which highlights the importance of considering excitability 
when studying drift, although further work would be needed to test this link experimentally.

Methods
Recurrent neural network with excitability
Our rate-based model consists of a single region of ‍N ‍ neurons (with firing rate ‍ri‍, ‍1 ≤ i ≤ N ‍). All-to-all 
recurrent connections ‍W ‍ are plastic and follow a Hebbian rule given by:

	﻿‍
dWij

dt
= ri ∗ rj/τW − Wij/τdecay‍�

(1)

where ‍i‍ and ‍j‍ correspond to the pre- and post-synaptic neuron respectively. ‍τW ‍ and ‍τdecay‍ are the 
learning and the decay time constants of the weights, respectively.

A hard bound of ‍[0, c]‍ was applied to these weights. We also introduced a global inhibition term 
dependent on the activity of the neurons:

	﻿‍
I = I0 + I1

N∑
i=1

ri + I2

N∑
i=1

r2
i
‍�

(2)

here ‍I0‍, ‍I1‍ and ‍I2‍ are positive constants. All neurons receive the same input, ‍∆(t)‍, during stimulation 
of the network (Figure 1c, black bars). Finally, excitability is modeled as a time-varying threshold ‍ϵi‍ of 
the input-output function of each neuron ‍i‍. The rate dynamics of a neuron ‍i‍ is given by:

	﻿‍

τr
dri
dt

+ ri = ReLU


∆(t) +

N∑
j=1

Wijrj − I + ϵi(t)




‍�
(3)

where ‍τr‍ is the decay time of the rates and ReLU is the rectified linear activation function. We consid-
ered that a neurons is active when its firing rate reaches the active threshold ‍θ‍.

In Figure 2—figure supplement 1, we applied a random binary mask to the recurrent weights in 
order to set 50% of the synapses at 0. A new mask was randomly sampled for each simulation.

In Figure 2—figure supplement 2, we modeled excitability as a change of the slope of the acti-
vation function (ReLU) instead of a change of the threshold as previously used (Figure  2—figure 
supplement 2a):

	﻿‍

τr
dri
dt

+ ri = ϵi(t) ∗ ReLU


∆(t) +

N∑
j=1

Wijrj − I




‍�
(4)

https://doi.org/10.7554/eLife.88053
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Protocol
We designed a 4-day protocol, corresponding to the initial encoding of a memory (first day) and 
subsequent random or cue-induced reactivations of the ensemble (Josselyn and Tonegawa, 2020; 
Káli and Dayan, 2004) (second, third, and fourth day). Each stimulation consists of ‍Nrep‍ repetitions of 
interval ‍T ‍ spaced by a inter-repetition delay ‍IR‍. ‍∆(t)‍ takes the value ‍δ‍ during these repetitions and is 
set to 0 otherwise. The stimulation is repeated four times, modeling four days of reactivation, spaced 
by an inter-day delay ‍ID‍. Excitability ‍ϵi‍ of each neuron ‍i‍ is sampled from the absolute value of a normal 
distribution of mean 0 and standard deviation 1. In Figure 2—figure supplement 2, excitability ‍ϵi‍ is 
sampled from the absolute value of a normal distribution of mean 0.4 and standard deviation 0.2. 
Neurons 10–20, 20–30, 30–40, and 40–50 then receive an increase of excitability of amplitude ‍E‍, 
respectively on days 1, 2, 3, and 4 (Figure 1a). A different random seed is used for each repetition 
of the simulation. When two memories were modeled (Figure  2—figure supplements 3 and 4), 
we stimulated a random half of the neurons (context A) and the other half (context B) successively 
(Figure 2—figure supplement 3a), every day.

Decoders
For each day ‍d‍, we recorded the activity pattern ‍Vd‍, which is a vector composed of the firing rate of 
the neurons at the end of the last repetition of stimulation. To test the decoder, we also stimulated the 
network while setting the excitability at baseline (‍E = 0‍), and recorded the resulted pattern of activity 

‍V
0
d‍ for each day ‍d‍. We then designed two types of decoders, inspired by previous works (Rubin et al., 

2015): (1) a day decoder which infers the day at which each stimulation happened and (2) an ordinal 
time decoder which infers the order at which the reactivations occurred. For both decoders, the shuf-
fled data was obtained by randomly shuffling the day label of each neuron. When two memories were 
modeled (Figure 2—figure supplements 3 and 4), the patterns of activity were taken at the end of 
the stimulations by context A and B, and the decoders were used independently on each memory.

1. The day decoder aims at inferring the day at which a specific pattern of activity occurred. To that 
end, we computed the Pearson correlation between the pattern with no excitability ‍V

0
d‍ of the day ‍d‍ 

and the patterns of all days ‍d′‍ from the first simulation ‍Vd′‍. Then, the decoder outputs the day ‍dinf ‍ that 
maximises the correlation:

	﻿‍
dinf = arg max

d′
{corr(V0

d, Vd′ )}
‍� (5)

The error was defined as the difference between the inferred and the real day ‍dinf − d‍.
2. The ordinal time decoder aims at inferring the order at which the reactivations happened from 

the patterns of activity ‍Vd‍ of every day ‍d‍. To that end, we computed the pairwise correlations of each 
pair of consecutive days, for the ‍4!‍ possible permutations of days ‍p‍. The real permutation is called 

‍preal = (1, 2, 3, 4)‍ and corresponds to the real order of reactivations: day 1 → day 2 → day 3 → day 4. 
The sum of these correlations over the 3 pairs of consecutive days is expressed as:

	﻿‍
S(p) =

3∑
i=1

corr(Vpi , Vpi+1 )
‍�

(6)

We then compared the distribution of these quantities for each permutation ‍p‍ to that of the real 
permutation ‍S(preal)‍ (Figure 2). The patterns of activity are informative about the order of reactivations 
if ‍S(preal)‍ corresponds to the maximal value of ‍S(p)‍. To compare ‍S(preal)‍ with the distribution ‍S(p)‍, we 
performed a Student’s t-test, where the t-value is defined as:

	﻿‍
t = S(preal) − µ

σ/
√

N ‍�
(7)

where μ and σ correspond to the mean and standard deviation of the distribution ‍S(p)‍, respectively.
The drift rate Δ (Figure  1—figure supplement 2 and Figure  3—figure supplement 1) was 

computed as:

	﻿‍
∆ =

4∑
i=2

(1 − corr(V1, Vi))
‍�

(8)

https://doi.org/10.7554/eLife.88053
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Memory read-out
To test if the network is able to decode the memory at any time point, we introduced a read-out 
neuron with plastic synapses to neurons from the recurrent network, inspired by previous computa-
tional works (Rule and O’Leary, 2022). The weights of these synapses are named ‍W

out = (Wout
i )1≤i≤N ‍ 

and follow the Hebbian rule defined as:

	﻿‍

dWout
ij

dt
= h(Wout) ∗ ri ∗ y/τ+

out − Wout
i /τ−out‍�

(9)

where ‍τ
+
out‍ and ‍τ

−
out‍ corresponds to the learning time and decay time constant, respectively. ‍h(Wout)‍ is 

a homeostatic term defined as ‍h(Wout) = 1 −
∑N

j=1 Wout
j ‍ which decreases to 0 throughout learning. ‍h‍ 

takes the value 1 before learning and 0 when the sum of the weights reaches the value 1. ‍y‍ is the firing 
rate of the output neuron defined ‍y‍ as:

	﻿‍
y =

N∑
i=1

Wout
i ri

‍�
(10)

The read-out quality index ‍Q‍ (Figure 3—figure supplement 1) was defined as:

	﻿‍
Q = ⟨

4∑
d=2

yd/yshuffle
d ⟩Nshuffle

‍�
(11)

where ‍yd‍ corresponds to the value of ‍y‍ taken at the end of the last repetition of day ‍d‍, and ‍y
shuffle
d ‍ the 

equivalent with shuffled outputs weights. ‍⟨...⟩Nshuffle‍ indicates the average over ‍Nshuffle = 10‍ simulations.
In Figure 2—figure supplements 3 and 4, two output decoders ‍yk‍, ‍k ∈ {1, 2}‍, with corresponding 

weights ‍W
out
k = (Wout

i,k )1≤i≤N ‍ are defined as:

	﻿‍
yk =

N∑
i=1

Wout
i,k ri + βk

‍�
(12)

and follow the Hebbian rule defined as:

	﻿‍

dWout
i,k

dt
= h(Wout

i,k ) ∗ ri ∗ yk/τ+
out − Wout

i,k /τ−out‍�
(13)

Then, we aimed at allocating ‍y1‍ and ‍y2‍ to the first and the second ensemble (context A and B), 
respectively. To that end, we used supervised learning on the first day by adding a current ‍βk‍ to the 
output neurons which is positive when the corresponding context is on:

	﻿‍

β0 = 0.1 if 1000 < t < 3000, 0 otherwise

β1 = 0.1 if 4000 < t < 6000, 0 otherwise‍�
(14)

The shuffled traces were obtained by randomly shuffling the output weights ‍Wout‍ or ‍W
out
k ‍ for each 

ensemble ‍k‍.

Table of parameters
The following parameters have been used for the simulations. When unspecified, the defaults values 
were used. All except ‍N ‍ are in arbitrary unit. Figure 2—figure supplement 2 corresponds to the 
change from a threshold-based to a slope-based excitability. Figure 2—figure supplements 3 and 
4 corresponds to the stimulation of two ensembles. Figure 2—figure supplement 1 corresponds to 
the sparsity simulation.

Param. Description Default
Figure 2—figure 
supplement 2

Figure 2—figure 
supplements 3 and 4

Figure 2—figure 
supplement 1

N Number of neurons 50 - - -

 Continued on next page
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Param. Description Default
Figure 2—figure 
supplement 2

Figure 2—figure 
supplements 3 and 4

Figure 2—figure 
supplement 1

‍τW ‍
Learning time constant of the 
recurrent weights 800 700 - -

‍τdecay‍
Decay time constant of the 
recurrent weights 1000 800 4000 -

‍τr ‍
Decay time constant of the 
firing rates 20 - - -

‍τ
+
out‍

Learning time constant of the 
output weights 200 - - -

‍τ
−
out‍

Decay time constant of the 
output weights 1000 - - -

‍I0‍ First inhibition parameter 12 4 8 7

‍I1‍ Second inhibition parameter 0.5 0.7 0.8 0.8

‍I2‍ Third inhibition parameter 0.05 - - -

‍δ‍ Input current during stimulation 15 - 12 20

‍E ‍
Amplitude of the fluctuations of 
excitability 1.5 0.5 - -

‍Nrep‍ Number of repetitions 10 - - -

‍T ‍ Duration of each repetition 100 - - -

‍IR‍ Inter-repetition delay 100 - - -

‍ID‍ Inter-stimulation delay 1000 - - -

‍θ‍ Active threshold 5 1 - -

‍c‍ Cap on the recurrent weights 1 .5 - -
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