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Abstract Knowledge of biodiversity is unevenly distributed across the Tree of Life. In the long 
run, such disparity in awareness unbalances our understanding of life on Earth, influencing policy 
decisions and the allocation of research and conservation funding. We investigated how humans 
accumulate knowledge of biodiversity by searching for consistent relationships between scientific 
(number of publications) and societal (number of views in Wikipedia) interest, and species- level 
morphological, ecological, and sociocultural factors. Across a random selection of 3019 species 
spanning 29 Phyla/Divisions, we show that sociocultural factors are the most important correlates 
of scientific and societal interest in biodiversity, including the fact that a species is useful or harmful 
to humans, has a common name, and is listed in the International Union for Conservation of Nature 
Red List. Furthermore, large- bodied, broadly distributed, and taxonomically unique species receive 
more scientific and societal attention, whereas colorfulness and phylogenetic proximity to humans 
correlate exclusively with societal attention. These results highlight a favoritism toward limited 
branches of the Tree of Life, and that scientific and societal priorities in biodiversity research broadly 
align. This suggests that we may be missing out on key species in our research and conservation 
agenda simply because they are not on our cultural radar.
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eLife assessment
With a carefully collected dataset and compelling analyses, this fundamental manuscript demon-
strates detailed links between societal and academic interest and natural species across the globe. 
In doing so, the authors reveal biases that may be diminishing our abilities to care for the species on 
our planet that may need our care the most. While some parts of this manuscript reflect previously 
published work, the authors are commended for putting all the puzzle pieces together for the first 
time. Their work highlights our uneven knowledge of biodiversity and its potential causes.

Introduction
Human relationships with biodiversity trace back to our dawn as a species (Wilson, 1993). Wildlife 
permeates art, myths, and traditions; it constitutes an irreplaceable source of food and goods; and, 
even in the digital age, it remains one of the most powerful triggers of human emotions (Correia and 
Mammola, 2023; Hicks and Stewart, 2018; Jacobs, 2012; Soga and Gaston, 2016). Furthermore, 
the birth of modern science has turned biodiversity into a subject of intense investigation. However, 
scientific and societal attention toward biodiversity is unevenly distributed across the branches of the 
Tree of Life (Wilson et al., 2007). Whether for utilitarian reasons or due to conflictual emotional stimuli 
(Nyhus, 2016), we have better knowledge of some species than others (Jarić et al., 2022).

Widespread evidence indicates that biodiversity research has concentrated on certain lineages, 
habitats, and geographic regions over others (Clark and May, 2002; García- Roselló et al., 2023; 
Hortal et al., 2015; Mammola et al., 2023; Šmíd, 2022; Troudet et al., 2017). At the species level, 
for example, research interests and conservation efforts are often skewed toward vertebrates rather 
than other animals (Cardoso et al., 2011a; Cardoso et al., 2011b; Leather, 2013), plants (Adamo 
et al., 2022; Balding and Williams, 2016), or fungi (Gonçalves et al., 2021; Oyanedel et al., 2022). 

Animalia

Fungi

Plantae

0e+00

1e+02

1e+03

1e+05

5e+07

0 10 100 1000 3000 9000
N° papers in the Web of Science [log−scaled axis]

N
° v

ie
w

s 
in

 W
ik

ip
ed

ia
 [l

og
−s

ca
le

d 
ax

is
]

A Societal interestScientific interest

Rhodophyta
Marchantiophyta

Bryophyta
Tracheophyta

Anthocerotophyta
Basidiomycota

Nematoda
Acanthocephala

Brachiopoda
Kinorhyncha

Platyhelminthes
Nematomorpha

Annelida
Chaetognatha

Tardigrada
Hemichordata

Arthropoda
Rotifera

Mollusca
Echinodermata

Cycliophora
Nemertea

Bryozoa
Cnidaria
Porifera

Priapulida
Ctenophora

Loricifera
Chordata

−10 −5 0 5 10
Residuals from fitted line in A

B

Figure 1. Relationship between societal and scientific interest across the eukaryotic Tree of Life. (A) Relationship between number of views in Wikipedia 
(popular interest) and number of papers in the Web of Science (scientific interest) for each species. Both axes are log- scaled to ease visualization. 
Density functions are provided for both scientific (above scatter plot) and societal interests (right of scatter plot) to illustrate the distribution of values. 
Color coding refers to the three realms of Animalia, Fungi, and Plantae. The regression line is obtained by fitting a Gaussian generalized additive model 
through the data (F1,3017 = 2497.5; p<0.001). The farther away a dot is from the fitted line, the more the attention is unbalanced toward either scientific 
(negative residuals) or societal interest (positive residuals). (B) Distribution of negative and positive residuals (from the regression line in A) across the 
species sampled for each Phylum/Division. Phyla/Divisions with only one sampled species are represented with dots.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Global distribution of the sampled species.

Figure supplement 2. Breakdown of scientific (A) and societal (B) interest by phylum, as well as the number of sampled species (C).

https://doi.org/10.7554/eLife.88251
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Furthermore, scientific and societal attention towards species may correlate, to some degree, with 
aesthetic features (Adamo et al., 2021; Borgi et al., 2014; Ward et al., 1998), online popularity 
(Correia et al., 2016; Mammola et al., 2020), and phylogenetic proximity to humans (Miralles et al., 
2019), although the relative importance of these factors is likely to vary across cultural settings and 
societal groups. Indeed, even the selection of model organisms is not always based on functional 
criteria (e.g., ease of growth under controlled conditions, cell size, genome size, ploidy level; Hedges, 
2002) and instead may be driven by economic, affective, cultural, or other subjective attributes (Diet-
rich et al., 2020).

Importantly, most attempts to quantify which features make species attractive to humans have 
focused on vertebrates—typically mammals and birds (Santangeli et al., 2023; Haukka et al., 2023; 
Miralles et al., 2019). This means we now possess a growing understanding of research biases for 
selected taxa (Guedes et al., 2023; Šmíd, 2022; Sumner et al., 2018; Zvaríková et al., 2021), but 
we still lack a comprehensive picture of cross- taxa features that could drive human interest in biodi-
versity. Here, we explored research and societal interest in organisms across the Tree of Life, asking 
two general questions: What are the species- level and cultural drivers of scientific interest throughout 
the Tree of Life? And, how do those drivers differ from those explaining societal interest? To this end, 
we randomly sampled 3019 species spanning 29 Phyla and Divisions (Figure  1; Figure  1—figure 
supplement 1). We sourced the number of scientific papers focusing on each species as a measure of 
scientific interest (Figure 1—figure supplement 2A), and the number of views of the Wikipedia page 
of each species as a measure of societal interest (Figure 1—figure supplement 2B). Furthermore, 
we collected species- level traits referring to morphology and ecology (size, coloration, range size, 
biome, and taxonomic uniqueness) and cultural factors reflecting how humans perceive and interact 
with biodiversity (usefulness and harmfulness for humans, presence of a common name in English, 
phylogenetic distance to humans, International Union for Conservation of Nature [IUCN] conservation 
status).

Results
The number of scientific papers focusing on these randomly selected species varied by four orders 
of magnitude and showed a highly skewed distribution (Figure 1A). While 52% of species lacked 
scientific papers associated with their scientific name in the Web of Science (median ± SE = 0 ± 3.96), 
there was a long tail of comparatively few species attracting substantial scientific attention (the most 
studied species in our selection, Ginkgo biloba L., appeared in as many as 7280 scientific papers) 
(Figure 1—figure supplement 2A). In contrast, the distribution of the number of views in Wikipedia 
was less skewed (Figure 1A), but there was enormous disparity in societal attention across species 
(266 ± 25,217; range = 0–50,727,745) (Figure 1—figure supplement 2B). With the notable exception 
of Chordata (the Phylum encompassing all vertebrates), most species from other taxonomic groups 
attracted more scientific interest than expected from societal attention (Figure 1B). The few species 
that attracted disproportionately more societal than scientific attention were colorful, of larger size, 
and possessed a common name (Figure 2).

Next, we modeled scientific and societal interest in relation to species- level traits and cultural 
features using generalized linear mixed effects models, controlling for phylogenetic and geographic 
effects. This analysis revealed a set of drivers that were associated with a high scientific and societal 
interest (Figure 3A; see ‘Materials and methods’ for driver- specific hypotheses), with scientific and 
societal priorities largely mirroring each other. First, larger species were more attractive to both scien-
tists and the general public. Second, species with broader geographic distributions and taxonomi-
cally unique species (i.e., with fewer congenerics) all received greater scientific and societal attention. 
Third, several cultural features strongly correlated with both scientific and societal interest, including 
the presence of a common name, whether a species is useful and/or harmful for humans, and whether 
a species had been assessed in the IUCN Red List of Threatened Species. Finally, there were three 
traits uniquely associated with societal interest in organisms: colorful species, freshwater- dwelling 
species, and species phylogenetically closer to humans all received greater societal attention.

Overall, both models explained ~60% of variance, with an additional ~20% captured by random 
effects related to taxonomic relatedness and geographic provenance. Using variance partitioning 
analysis, we compared the relative contribution of morphological, ecological, and cultural factors 
in determining the observed pattern of research and societal attention. Cultural features were the 
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most important in explaining the choice of investigated species across the scientific literature (31% 
of explained variance) and, to an even greater extent, the number of views on Wikipedia (38%). 
Species- level traits explained 12% of the variance in the scientific model and 15% of the variance in 
the societal interest model, whereas both sets of drivers jointly contributed an additional 19 and 16%, 
respectively, to the two models (Figure 3B).

Discussion
We found that the strongest drivers of research and societal interest are utilitarian cultural features, 
namely whether a species is useful and/or harmful for humans in some way (Figure 3A), matching 
previous evidence based on restricted taxonomic samples. For example, Vardi et al., 2021 showed 
that in Israel, the most popular plants in terms of online representation often have some use for 
humans. Similarly, Ladle et  al., 2019 found that bird representation online is strongly associated 
with long histories of human interactions, for example, in the form of hunting or pet- keeping. From a 
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Figure 2. Influence of species- level traits (blue) and cultural factors (red) on relative scientific and societal interest for different taxa. Forest plots 
summarize the estimated parameters based on Gaussian linear mixed models testing the relationship between residuals from the regression line in 
Figure 1A and species- level traits. Positive residuals indicate species with a greater popular than scientific interest, residuals close to zero indicate 
species with a balanced scientific and societal interest, and negative residuals indicate species with a greater scientific than societal interest (Figure 1B). 
Baseline levels for multilevel factor variables are: Domain (Multiple) and International Union for Conservation of Nature (IUCN) (Unknown). Error bars 
mark 95% confidence intervals. Variance explained is reported as marginal R2, that is, those explained by fixed factors. Asterisks (*) mark significant 
effects (α = 0.01). Estimated regression parameters are provided in Supplementary file 1a.
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cognitive standpoint, an interpretation of this relationship may be rooted in our ancestral past, when 
we more often relied on wildlife products and we were more frequently subject to predation and other 
hazards related to wildlife. Experimental evidence suggests that, even in today’s society, images of 
dangerous animals are better able to arouse and maintain human attention (Yorzinski et al., 2014). 
Interestingly, harmfulness to humans was not a significant driver of scientific and societal interest in 
Tracheophyta (Figure 4). This result may partly be an artifact because plants dangerous to humans are 
those that are poisonous, but many poisonous plants are contemporary medicinal plants, making it 
difficult to draw a clear border between usefulness and dangerousness. This is also the case for many 
poisonous animals, but since vascular plants do not move, the value of their poison as a medicine 
might overrun our perception of them as a threat. More broadly, many species with deeply rooted 
histories of interactions with humans retain their importance in specific cultural contexts, particularly 
among indigenous peoples, and are thus more likely to remain salient nowadays. Disrupting these 
connections can have important biocultural consequences, and negatively affect both the species and 
the communities that value them (Ladle et al., 2023; Reyes- García et al., 2023).

Species with a common name also attracted more scientific and popular interest, matching previous 
studies (e.g., Vardi et al., 2021). This result should be interpreted with caution, however, because we 
considered only whether a species possesses an English common name. While we recognize the 
limitations of this approach, English was selected due to the lack of a comprehensive list of common 
species names in multiple languages, and because most species that are relevant in other cultural 
and language settings are also likely to have been attributed English common names as part of legis-
lative, scientific, and other societal processes. It must also be noted that this variable entails some 
circularity, given that humans tend to assign common names to popular species and/or those that are 
relevant to humans in some way. For example, a recent study showed that across nine local villages in 
Mozambique, species perceived as dangerous were more likely to have a local name (Farooq et al., 
2021). Interestingly, this speaks about the possible existence of specific interactions among different 
cultural traits and cultural settings which our results do not capture and could be further explored with 
targeted studies.
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Figure 3. Influence of species- level traits (blue) and cultural factors (red) on the scientific and societal interest across the eukaryotic Tree of Life. (A) 
Forest plots summarize the estimated parameters based on negative binomial generalized linear mixed models (Equation 1). Baseline levels for 
multilevel factor variables are: Domain (Multiple) and IUCN (Unknown). Error bars mark 95% confidence intervals. Variance explained is reported as 
marginal R2, that is, those explained by fixed factors. Asterisks (*) mark significant effects (α = 0.01). Exact estimated regression parameters and p- 
values are provided in Supplementary file 1a. (B) Outcomes of the variance partitioning analysis, whereby we partitioned out the relative contribution 
of species- level traits (blue) and culture factors (red). Joint explained variance (Species + Culture) is highlighted in purple. Unexplained variance is 
the amount of unexplained variance after considering the contribution of random factors related to species’ taxonomy and biogeographic origin (as 
obtained via conditional R2).
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The positive effect of body size on scientific and societal interest suggests our attention is likely 
best captured by organisms with sizes similar (or larger than) our own, rather than organisms that 
are barely visible. Furthermore, larger species are easier to study and more detectable in the field 
(Johnston et al., 2014; Kéry and Gregg, 2003). Previous studies documented positive relationships 
between human interest and body size, for example, in different vertebrate groups (Berti et al., 2020; 
Guedes et al., 2023; Ward et al., 1998; Żmihorski et al., 2013) and flowering plants (Adamo et al., 
2021), while others observed negative relationships, for example, in passerine birds (Garrett et al., 
2018) and butterflies (Żmihorski et al., 2013). This hints that there may be some within- group vari-
ability that is not captured in our broad- scale analysis. However, it is worth noting that most previous 
studies have focused on organisms that are within the same approximate size range as humans. 
Indeed, when we repeated regression analyses within subsets of data corresponding to the phylum 
Chordata, Arthropoda, and Tracheophyta, we found that the effect of body size was not significant 
in Tracheophyta (Figure 4). While our random sample of Tracheophyta encompassed an enormous 
range of sizes—from a duckweed to a sequoia—it may be that attractiveness in plants is primarily 
controlled by other aesthetic drivers (Adamo et al., 2021).

−0.403 *

0.439 *

0.429

−0.378

−0.48

−0.588

1.828

−1.02

−0.132

0.904 *

3.334 *

2.065 *
R2 = 0.38

1.423 *

0.238

0.818 *

0.315 *

−0.797

−0.398

1.176 *

0.891

−0.17 *

0.773

0.501 *

1.247 *
R2 = 0.41

0.422

0.401

0.968 *

−1.786

2.05 *

1.694 *

−0.172

1.078 *

1.047 *

0.849
R2 = 0.28

Arthropoda Chordata Tracheophyta

Harmful to humans [yes]

Human use [yes]

Common name [yes]

IUCN [non−threatened]

IUCN [threatened]

Domain [terrestrial]

Domain [marine]

Domain [freshwater]

Taxonomic uniqueness (Genus)

Range size

Colorful [yes]

Organism size

N° papers in the Web of ScienceA

0.857 *

0.754 *

0.099

−0.254

−0.23

−0.009

1.81

−0.32

−0.149

1.2 *

3.021 *

2.357 *
R2 = 0.34

1.555 *

0.446

0.446 *

2.107 *

0.398

0.091

0.539 *

−0.011

−0.261 *

0.623

0.645 *

1.205 *
R2 = 0.24

0.268

0.495

0.48 *

1.363

2.218 *

1.633 *

−0.02

1.37 *

0.985 *

−0.169
R2 = 0.24

Arthropoda Chordata Tracheophyta

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

Harmful to humans [yes]

Human use [yes]

Common name [yes]

IUCN [non−threatened]

IUCN [threatened]

Domain [terrestrial]

Domain [marine]

Domain [freshwater]

Taxonomic uniqueness (Genus)

Range size

Colorful [yes]

Organism size

Estimated beta ± 95% Confidence interval

N° views in WikipediaB

Figure 4. Influence of species- level traits (blue) and cultural factors (red) on scientific (A) and societal (B) interest for Arthopoda, Chordata, and 
Tracheophyta. Forest plots summarize the estimated parameters based on negative binomial generalized linear mixed models (Equation 2). Baseline 
levels for multilevel factor variables are: Domain (Multiple) and IUCN (Unknown). Error bars mark 95% confidence intervals. Variance explained is 
reported as marginal R2, that is, those explained by fixed factors. Asterisks (*) mark significant effects (α = 0.01). Estimated regression parameters and 
p- values are provided in Supplementary file 1b (A) and Supplementary file 1c (B).
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Different variables reflecting both commonness and rarity contributed markedly in explaining 
scientific and, to a lesser extent, societal interest. The positive relationship between scientific and soci-
etal interest and geographic range size suggests a broader area of distribution could make a species 
accessible and visible to more people, including researchers, and thus more likely to be studied and 
searched for in Wikipedia. This result aligns with previous studies observing a positive correlation 
between proxies of species familiarity and online popularity (Correia et al., 2016; Żmihorski et al., 
2013) or scientific interest (Adamo et al., 2021). Furthermore, taxonomically unique species often 
attracted more scientific and societal interest. These species may represent unique adaptations and 
phylogenetic distinctiveness and thus be of interest from research or conservation standpoints. Taxo-
nomic uniqueness may also appeal and fascinate the general public, as in famous cases of the discovery 
of living individuals belonging to taxa previously restricted to the fossil record such as the maidenhair 
tree (G. biloba L.) or the coelacanth fish (Latimeria chalumnae Smith). Conservation rarity, measured 
as presence and status on the IUCN Red List, was also an important driver of scientific and societal 
interest. Concerning scientific interest, this was true regardless of the threatened status, namely both 
endangered and least concern species were more studied and popular across our dataset compared 
to unlisted species. This variable also entails a certain degree of circularity: IUCN assessments require 
a lot of data, making it possible to confidently assess species only when there is background informa-
tion on their distribution and threats.

Finally, colorfulness and phylogenetic proximity to humans correlated exclusively with societal 
attention. Colorfulness is an important proxy for the aesthetic value of biodiversity (Langlois et al., 
2022; Santangeli et  al., 2023) and has been shown to often match cultural and economic inter-
ests—for example, it was recently shown that colorful birds and fish are more frequently targeted in 
wildlife trade (Borges et al., 2022; Senior et al., 2022). Phylogenetic proximity to humans seemingly 
correlates with a range of traits including the degree of empathy and anthropomorphism toward 
species. This result resonates with a recent study by Miralles et al., 2019, who used an online survey 
to assess the empathy of 3500 raters toward 52 taxa (animals, plants, and fungi) and observed a 
strong negative correlation between empathy scores and the divergence time separating the different 
taxa from Homo sapiens (Miralles et al., 2019). It is more difficult to explain the fact that freshwater- 
dwelling species were significantly more searched for in Wikipedia than species inhabiting multiple 
habitats. Speculatively, this may reflect human preference for species inhabiting habitats that are more 
foreign to human experience, but may also be a sampling artifact (only 103 species in the model, less 
than 4% of the total, were freshwater- dwelling).

The fact that subjectivity might drive scientific and societal attention toward biodiversity is not a 
problem per se, but, in the long run, it may bias our general understanding of life on Earth to the point 
of influencing policy decisions and allocation of research and conservation funding. For example, 
more popular species tend to receive more funding and resources for conservation efforts (Adamo 
et al., 2022; Davies et al., 2018; Mammola et al., 2020) and the allocation of protected areas has 
not adequately considered non- vertebrate species, as up to two- thirds of threatened insect species 
are not currently covered by existing protected areas (Chowdhury et  al., 2023). This disparity in 
awareness may also influence species’ long- term conservation prospects—a species is less likely to go 
extinct if humans choose to protect it. Bluntly put, it may be that we are concentrating our attention 
on species that humans generally consider to be useful, beautiful, or familiar, rather than species that 
deserve more research effort due to a higher extinction risk and/or due to the key role they play in 
ecosystem stability and functioning.

Excluding subjectivity when developing any research agenda is certainly challenging. However, 
once we are aware that utilitarian needs and emotional and familiarity factors play a key role in the 
development of biodiversity research globally, we can start moving toward more balanced research 
agendas by carefully selecting which criteria we want to focus on. Ideally, we should aim, over time, 
for all parameter estimates in Figure 3A to move toward the middle (with the possible exceptions 
of IUCN categories). This strategy would minimize the effect of aesthetic and cultural factors in the 
selection of research and conservation priorities, and can be achieved over time through a more 
even repartition of research and conservation funds (see, e.g., Mammola et al., 2020 for a concrete 
agenda).

Global biodiversity is disappearing at an accelerating pace, not only from the physical world 
(Barnosky et al., 2011; Cowie et al., 2022) but also from our minds (Donadio Linares, 2022; Jarić 
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et al., 2022; Soga and Gaston, 2016). Given that the long- term survival of humanity is intertwined 
with the natural world, preserving biodiversity in all its forms and functions (including cultural aware-
ness of it) is a central imperative of the 21st century (Díaz and Malhi, 2022; Jarić et al., 2022; Loreau 
et al., 2021). However, biodiversity goals can only be reached by ensuring a ‘level- playing field’ in the 
selection of conservation priorities, rather than looking exclusively at the most appealing branches of 
the Tree of Life.

Materials and methods
Species sampling
We carried out random stratified sampling of the eukaryotic multicellular Tree of Life (Animalia, Fungi 
[restricted to Agaricomycetes], and Plantae [excluding unicellular Algae]) using the Global Biodiversity 
Information Facility (GBIF) backbone taxonomy. To our knowledge, GBIF is the only available back-
bone taxonomy covering all our target groups using a congruent classification. Note that we restricted 
our analyses to pluricellular organisms to bypass issues with the unstable taxonomic classification of 
protists (Ladle et al., 2019; Adl et al., 2012; Adl et al., 2019) and the challenge of extracting compa-
rable traits between unicellular and multicellular eukaryotes.

Initially, we cleaned the GBIF backbone taxonomy by subselecting only accepted names (taxonom-
icStatus = ‘accepted’), removing subspecies and varieties (taxonRank = ‘subspecies’ and ‘variety’), and 
fossil species (by removing both entirely extinct groups [e.g., Dinosauria] and single species labeled as 
‘Fossil_Specimen’). We chose the following criteria for the stratified random sampling:

i. The sample was at the species level within each order of Animalia, Fungi, and Plantae (this way, 
we sampled all extant phyla and classes in the database).

ii. For each order, we sampled a fraction of 0.002 species. To avoid having an excessively uneven 
number of species among orders, we set the following thresholds:

If the number of species in an order was comprised of between 10,001 and 50,000, we arbi-
trarily sampled 20 species;
If the number of species in an order was comprised of between 50,001 and 100,000, we 
arbitrarily sampled 40 species; and
If the number of species in an order was >100,000, we arbitrarily sampled 60 species.

iii. We incorporated a broader sample of tetrapods so as to reflect the typical knowledge bias 
(‘Institutional vertebratism’; Leather, 2013). For each tetrapod order, we arbitrarily sampled 
20 species. However, for small tetrapod orders with less than 10 species, we only sampled 1 
species.

This random sampling procedure yielded a database consisting of 3019 species (Figure 1—figure 
supplement 2C). Despite the initial cleaning procedure of the dataset, due to the fact that some taxo-
nomic names were not properly labeled in GBIF, 129 of the sampled names were synonyms, doubtful 
(nomina dubia), or fossils. We therefore manually inspected all records and dealt with taxonomic 
issues. Each expert involved in the study made decisions for their focal organisms on the invalid taxo-
nomic names, for example, reclassifying subspecies to the species rank, replacing eventual synonyms 
with the currently valid name, and substituting fossils with extant species.

Measures of scientific and societal interest
We collected data on two indicators of human attention toward species, pertaining to scientific and 
societal interest.

We measured scientific interest as the number of articles indexed in the Web of Science that refer 
to a given species. This is a standard quantitative estimate of research effort toward individual species 
(Adamo et al., 2021; dos Santos et al., 2020; Tam et al., 2022; Wilson et al., 2007). We collected 
data using the R package ‘wosr’ version 0.3.0 (Baker, 2018). Specifically, we queried the Web of 
Science’s Core Collection database using topic searches (‘TS’) and the species scientific name as the 
search term, and recorded the total number of references published between 1945 and the date of 
sampling returned by each query. The use of scientific names returns comparable results to searches 
using vernacular names (Correia et  al., 2017; Jarić et  al., 2016) but avoids common problems 
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associated with vernacular language queries (e.g., words with multiple meanings [homonyms] or used 
as brand names [theronyms]).

We measured societal interest for each species as the total number of pageviews across the 
languages where the species is represented on Wikipedia. Wikipedia is one of the top 10 most visited 
websites in the world (https://www.similarweb.com/top-websites/, accessed on February 3, 2023) and 
is often visited as a source of information for wildlife enthusiasts, many species containing a page in 
this digital encyclopedia. Wikipedia data has been widely used to explore patterns of popular interest 
in biodiversity, and total pageviews may be a particularly useful metric in instances where some pages 
have very few visits overall (Vardi et al., 2021). To extract the number of pageviews for each species, 
we first obtained the identification number of each species from the Wikidata knowledge base using 
the R package ‘WikidataQueryServiceR’ version 1.0.0 (Popov, 2020). We then used each species’ 
identifier to compile a list of available Wikipedia pages for the species in any language using the 
same query service. Once we identified the full list of Wikipedia pages for the species, we used the R 
package ‘pageviews’ version 0.5.0 (Keyes and Lewis, 2020) to extract monthly user pageviews (i.e., 
excluding views by bots) for the period between January 1, 2016, and December 31, 2021.

Species-level traits and associated hypotheses
To investigate the relationship between species- level traits, cultural factors, and scientific and popular 
interest, we selected a set of candidate variables related to species morphology, ecology, and scien-
tific and societal preferences of humans. Extracting comparable traits across distantly related taxa is 
challenging (Chichorro et al., 2022; Palacio et al., 2022; Weiss and Ray, 2019), thus we restricted 
the analysis to a small number of scalable traits and kept trait resolution low (i.e., we scored most traits 
as categorical variables rather than on continuous scales). Importantly, to ensure cross- taxon compa-
rability of traits, we made specific decisions on how to score traits for the different organisms (details 
of decisions made and sources of traits are provided in Appendix 1).

Species-level traits
First, we extracted the average body size for each species (in mm). Size is among the most conspic-
uous and ubiquitous traits in ecology, relating to diverse body functions and ecological strategies 
(Calder, 1996; Peters, 1986). Furthermore, we expected an innate preference for large- sized species 
among scientists, the media, and the public alike (Berti et al., 2020; Hall et al., 2011; Mammola 
et al., 2017; McClain et al., 2015). We also extracted the average size of males and females to calcu-
late sexual size dimorphism as a possible driver of interest. However, as sex- specific size values were 
available for <20% of species in the database, we ended up excluding this variable from analyses.

We also scored, as binary variables (Yes/No), whether individuals within a species are colorful 
overall (brightly colored and/or multicolored species), blue- colored (i.e., when the species has bright 
blue/light blue markings or overall coloration), or red- colored (when the species has bright red/
purple markings or overall coloration). In the case of sexually dichromatic species, we scored these 
traits as ‘Yes’ even if only one sex displayed colorations. While there are more sophisticated ways 
to compute color variables (e.g., by extracting RGB pixels from standardized photographs; Delhey 
et al., 2021), this was not possible in our case since photographs were available for only 57% of the 
species included in our database. Given the role of aesthetics in driving human preference across 
diverse domains (Hoyer and Stokburger- Sauer, 2012), we hypothesized colorfulness to be a strong 
driver of attention toward biodiversity (Langlois et al., 2022). Furthermore, we scored red and blue 
patterns because these colors are known to impact people’s affection, cognition, and behavior (Elliot 
and Maier, 2014). Recent studies on European plants, for example, have highlighted that species with 
blue/purple flowers are more frequently studied in the scientific literature (Adamo et al., 2021) and 
receive more conservation funds (Adamo et al., 2022).

For each species, we calculated taxonomic uniqueness as the number of species in the same family 
(Family uniqueness) or the number of congeneric species (Genus uniqueness). Taxonomic uniqueness 
may be interesting to scientists and the general public for different reasons. On the one hand, mono-
specific genera or families may capture divergent phylogenetic lineages defined by the presence of 
rare or exclusive characters (i.e., unique synapomorphies), and thus be of interest from research or 
conservation standpoints. On the other hand, families or genera rich in species may be useful as case 
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studies (e.g., to explore evolutionary radiations; Gillespie et al., 2020) or be of interest to the general 
public simply because of greater accessibility and familiarity.

We marked the main domain inhabited by each species, namely ‘freshwater,’ ‘marine,’ ‘terrestrial,’ 
or ‘multiple.’ Finally, we used the R package ‘rgbif’ version 3.7.1 (Chamberlain et al., 2022) to extract 
distribution points for each species. As in Adamo et al., 2021, we expressed the geographic range 
size of each species as the average distance between occurrence points. This measure (dispersion) is 
less influenced by sampling effort than commonly used proxies of range size (e.g., minimum convex 
polygon or the area of occupancy). Hence, it should be better suited when dealing with opportunis-
tically collected occurrence data such as in GBIF (Hughes et al., 2021). Geographic range size is not 
only a measure of ecological commonness (Gaston, 2011), but also reflects species’ accessibility and 
familiarity to scientists and the general public. Indeed, there is a tendency for humans to be more 
interested in wildlife species with which they have direct experience (Ladle et al., 2016), for example, 
common species that are available to us through direct experience (Adamo et al., 2021; Schuetz and 
Johnston, 2019). Using the GBIF coordinates, we also extracted the coordinate of the centroid of 
each species’ range, providing a rough indication of their geographic provenance (Figure 1—figure 
supplement 1). Using the FADA Faunistic Regions database (Balian et al., 2008) (available at https://
www.marineregions.org/; accessed on November 1, 2022), we extracted the biogeographic region 
in which each species occurs (Afrotropical, Antarctic, Australasian, Nearctic, Neotropical, Oriental, 
Pacific, and Palaearctic) based on the centroid coordinates.

Cultural features
To express cultural knowledge and relationships between humans and wildlife, we scored, as binary 
variables (Yes/No), whether (i) a species has a popular name in English (Common name); (ii) is an 
established scientific model organism beyond ecology and evolution (Model organism); (iii) is harmful 
to humans in some way—for example, crop pests, invasive non- native species, species potentially 
dangerous to humans (large carnivores, venomous snakes, etc.) (Harmful to human); (iv) has any 
commercial and/or cultural use (used as pets, as food, for pharmaceuticals, etc.) (Human use); and (v) 
whether it has been assessed by the IUCN. Although we acknowledge that for the variables Harmful 
to human and Human use further subcategories could be used (e.g., crop pests, invasive, and harmful 
to humans may elicit different reactions and interests from a scientific and societal perspective), we 
decided not to split them due to sample size limitations.

We obtained divergence time (in millions of years) between each organism and H. sapiens from 
the Time Tree database (Kumar et al., 2022). For this, we used a modified version of the timetree() 
function in the R package ‘timetree’ version 1.0 (https://github.com/FranzKrah/timetree; accessed on 
November 8, 2021; Krah, 2018). First, we obtained pairwise divergence time between each taxon and 
H. sapiens by running the function at the genus rank. If the assignment failed, we ran the function iter-
atively up to the family rank. If still missing, we manually assigned values to the first occurring rank in 
Time Tree (78 taxa, 2.3% of total). We hypothesize divergence time from H. sapiens to be a key factor 
that may explain human interest in biodiversity (Wilson, 1993), relating to empathy and compassion 
towards species (Miralles et al., 2019) and the degree of anthropomorphism in human–organism 
interactions (Servais, 2018).

Finally, we expressed the conservation status of each species as their IUCN extinction risk, which 
we extracted from the IUCN Red List of Threatened species using the R package ‘rredlist’ version 
0.7.0 (Chamberlain, 2022). We assigned each species to one of the following categories: Extinct (EX), 
Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threat-
ened (NT), Least Concern (LC), Data Deficient (DD), and Not evaluated (NE). To balance the factor 
levels, we later re- grouped the different categories into three levels: ‘Threatened’ (EX, EW, CR, EN, 
and VU), ‘Non- Threatened’ (NT and LC), and ‘Unknown’ (DD and NE).

Data analysis
We used regression analyses (Zuur et al., 2016) to test whether there were consistent relationships 
between scientific (number of scientific papers) and societal (number of views in Wikipedia) interest in 
an organism and species- level traits and cultural features. We carried out all analyses in R version 4.1.0 
(R Development Core Team, 2021). We used the package ‘glmmTMB’ version 1.1.1 for modeling 
(Brooks et al., 2017) and ‘ggplot2’ version 3.3.4 (Wickham, 2016) for visualizations. In all analyses, we 
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followed the general approach by Zuur et al., 2016 for data exploration, model fitting, and validation. 
For data exploration, we visually inspected variable distribution, the presence of outliers, collinearity 
among continuous predictors (using pairwise Pearson’s correlations), and the balance of factor levels 
(Zuur et al., 2010). For model validation, we used the suite of functions of the package ‘performance’ 
version 0.0.0.6 (Lüdecke et al., 2020) to visually inspect model residuals and evaluate overdispersion, 
zero- inflation, and multicollinearity. Given the large sample size of our dataset, we used a conservative 
approach in the identification of significance, setting an alpha level for significance at 0.01 instead of 
the usually accepted 0.05 (Benjamin et al., 2018). Furthermore, in interpreting and discussing results, 
we gave more relevance to explained variance and effect sizes rather than significance (Muff et al., 
2022).

In a first set of models, we explored the role of species- level and cultural traits in explaining scien-
tific and popular interest (dependent variables). As a result of data exploration, we log- transformed 
the variables Organism size, Range size, Family uniqueness, and Phylogenetic distance to humans to 
homogenize their distribution and minimize the effect of a few outlying observations. We dropped 
the categorical variable Model organism because it was highly unbalanced—our random sample of 
species across the Tree of Life only captured 15 species classified as model organisms. Likewise, the 
variables blue colored and red colored were unbalanced and, to a certain extent, associated with the 
variable Colorful. We used only the latter in the analyses. Finally, we scaled continuous variables to a 
mean of zero and a standard deviation of 1 to facilitate model convergence and interpretation of the 
effect sizes. We fitted the initial models assuming a Poisson error structure (suitable for count data) 
and a log- link function (ensuring positive fitted data). The models had the formula (in R notation):

 

y ∼ Organism Size + Colorful + Range size + Domain + Taxonomic uniqueness + Common name +

IUCN + Humanuse + Harmful to human + Phylogenetic distance to humans + (1|Phylum/Class/Order) +

(1|Biogeographic region)   

(1)

where y is either the number of articles in the Web of Science (Scientific interest) or the number of 
views in Wikipedia (Popular interest). We introduced random factors to take into account the non- 
independence of observations. We accounted for taxonomic relatedness among species with a nested 
random intercept structure (1 | Phylum / Class / Order), under the assumption that closely related 
species should share more similar traits than would be expected from a random sample of species. 
Likewise, we used the random intercept structure (1 | Biogeographic region) under the assumption 
that people from the same region, including researchers, might be geographically biased in their inter-
ests, that is, share common appreciation for similar species. Both models were overdispersed (scien-
tific interest: dispersion ratio = 47.2; Pearson’s chi2=109874.8; p<0.001; popular interest: dispersion 
ratio = 632366.5; Pearson’s chi2=1471516950.1; p<0.001). Therefore, we fitted new models assuming 
a negative binomial distribution—that is, a generalization of Poisson distribution that loosens the 
assumption that the variance should be equal to the mean.

Model validation for the scientific interest model revealed the existence of a highly influential obser-
vation corresponding to the Asian elephant (Elephas maximus L.). We therefore refitted the model 
removing this observation, which yielded almost identical model estimates but a better distribution 
of residuals versus fitted values. Also in the case of the popular interest model, there was a highly 
influential observation corresponding to the Mugger crocodile (Crocodylus palustris [Lesson]), which 
we removed. Model validation further revealed that the popular interest model was underfitting zeros 
(observed zeros: 176; predicted zeros: 95; ratio: 0.54), suggesting probable zero- inflation. Therefore, 
we refitted the model as a standard zero- inflated negative binomial model using the default ‘NB2’ 
parameterization implemented in ‘glmmTMB’ (Hardin and Hilbe, 2007). This substantially improved 
model fit (Akaike information criterion of 42727.9 vs. 42805.1). No multicollinearity affected either 
final model, with all variance inflation factors for covariates below 3 (Zuur et al., 2010).

Once the models were fitted and validated, we used variance partitioning analysis (Borcard et al., 
1992) to estimate the relative contribution of species- level traits and cultural factors in determining 
the observed pattern of scientific and societal interest. We used variance explained (marginal R2) to 
evaluate the contribution of each variable and combination of variables to the research and societal 
attention each species receives by partitioning their explanatory power with the R package ‘modEvA’ 
version 2.0 (Barbosa et al., 2015).
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Next, we tested whether the importance of traits would change across the main groups of organ-
isms by running three models within subsets of data corresponding to Arthropoda, Chordata, and 
Tracheophyta (i.e., the Phyla/Divisions with most observations). The structure of the models was

 

y ∼ Organism Size + Colorful + Range size + Domain + Genus uniqueness + Common name + IUCN +

Humanuse + Harmful to human + (1|Class/Order) + (1|Biogeographic region)   
(2)

The formula is essentially the same as Equation 1, but for the exclusion of Phylum from the random 
part (as we modeled at the Phylum/Division level) and Phylogenetic distance to humans from the 
fixed part (as we lacked enough resolution in the phylogenetic distance information within Phyla). 
We also used Genus uniqueness instead of Family uniqueness given that we modeled at the Phylum 
level. Also in this case, since Poisson models were overdispersed, we switched to a negative binomial 
distribution.

We also ran an analysis to understand which species- level traits drive the relative interest of scien-
tists and the general public in different taxa. First, we used a generalized additive model to model 
the relationship between Popular interest and Scientific interest (Figure 1A). For each species, we 
extracted the residuals from this regression curve, whereby positive residuals indicate species with 
a greater popular than scientific interest, residuals close to zero indicate species with a balanced 
popular and scientific interest, and negative residuals indicate species with a greater scientific than 
popular interest (Figure 1B). Next, we used a Gaussian linear mixed model to model the relationship 
between the residuals and species- level traits. This model had the same general formula as Equation 
1.
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Appendix 1

Additional text
Information on trait extraction for the different groups. Note that the grouping of taxa is not always 
at the same level of Linnaean rank, but rather it reflects the groups that were tackled by the different 
experts (see author list).

Acanthocephala
We derived data on specific traits from the original description (or redescription) of each. Average 
size is the total body length. Information on size according to sex is unknown or not reported for 
most taxa.

Annelida
We derived data on specific traits from the original description (or redescription) of each. Average 
size is the total body length. Information on size according to sex is unknown or not reported for 
most taxa.

Arthropoda
Arachnida
For Araneae, we derived specific traits from the original description of each species (World Spider 
Catalog, 2022), and complemented information by searching relevant papers and information in 
Google and Google Scholar. Male and female size is the total body length (prosoma + opisthosoma), 
including chelicerae. Habitat is simply the habitat of the type locality unless additional information 
was available in ecological/faunistic papers. For other arachnid orders, we derived specific traits 
from the original descriptions of the species (World Arachnida Catalog; https://wac.nmbe.ch/), and 
complemented information by searching relevant papers and information in Google and Google 
Scholar. For Acari, total body length is given after excluding the gnathosoma. For oribatid mites, total 
body size is given as the length of notogaster + prodorsum. For classes with a tail or telson (e.g., 
scorpions and microwhip scorpions), body length is the sum of prosoma + opisthosoma + tail/telson.

Insecta
We retrieved the imaginal phase trait information by searching relevant papers and information 
in Google, Google Scholar, the Biodiversity Heritage Library, and in entomological books. Male 
and female size is the total body length (head + thorax + abdomen). We reported only the mean 
body length when no information about the sex was available. We classified the domain as the 
natural environment of the type locality unless additional information was available in supplementary 
literature.

Merostomata
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews and monographs. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 
locality unless additional information was available in the supplementary literature.

Myriapoda
Specific traits for each species were derived from original descriptions and/or additional relevant 
literature. The majority of the information about the literature was found on Millibase (https://www. 
millibase.org/aphia.php?p=search). Body size is the distance between the anterior margin of the 
head and the posterior margin of the last body segment, excluding the antennae and/or the last 
pair of legs. Original descriptions and/or additional relevant literature were used to extract habitat 
information.

Entognatha
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews and monographs. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 
locality unless additional information was available in the supplementary literature.
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Pygnogonida
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews and monographs. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 
locality unless additional information was available in the supplementary literature.

Basidiomycota
We retrieved data through web- based searches using the Google search engine. When available, 
we assessed the original species description using the Biodiversity Heritage Library (https://www. 
biodiversitylibrary.org/). We retrieved habitat information from online searches and compared it 
with GBIF data. We ranked species as harmful if known to be poisonous or toxic to humans. We 
considered the pileus/fruiting body diameter as the average size.

Bryozoa
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the mean zooid length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Chaetognata
We derived data on specific traits from the original description of each species (when available) and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Chordata
Amphibia
We retrieved the average size and domain for most species from Oliveira et  al., 2017. The 
remaining length values were mostly taken from the database AmphibiaWeb, either English or 
French language accounts, and very few had to be retrieved from the original description or other 
literature. We considered Amphibian species as harmful if they were classified as invasive/pests. No 
venomous urodele or anuran species were present in the list. Caecilian secretion inoculation systems 
were only very recently described and their toxicity is still unclear, but nevertheless these animals 
were not considered harmful since no envenomations are known. Harm due to improper ingestion 
or preparation (e.g., amphibians with toxic secretions) was also not considered since every food 
item has the potential to be harmful. Species solely harmful to human pets were not considered as 
harmful to humans.

Aves
For each species, we used data from various online sources, especially https://www.oiseaux.net/, 
https://birdsoftheworld.org/bow/home, and the IUCN Red List (IUCN, 2020), to find specific traits. 
We derived additional information from various books (Cramp and Perrins, 1994; Sibley, 2000; 
Stevenson and Fanshawe, 2002) and from scientific articles located through searches in Web of 
Science. Details of the measurements of body size were rarely given, but the standard measurement 
is bill tip to tail tip of a laid- out specimen, which we assumed unless specified otherwise. Information 
on human use, domain, habitat, and trophic role was based primarily on that given in the IUCN Red 
List (IUCN, 2020); otherwise, we used scientific publications. We selected red or blue colorations 
based on ‘strikingness’ rather than extent (e.g., a black bird with a small bright red crown would 
be scored as red colored) assessed from online images (images were available for all selected bird 
species).

Fish (Actinopterygii, Chondrichthyes, Hyperoartia, Myxini, and Sarcopterigii)
We collected data on fish species from these five classes from several online databases such as 
Fishbase, the IUCN red list (IUCN, 2020), and WORMS (Horton, 2021). We gathered data on 
domain, reproductive habitat, and trophic role in the specialized literature when not available on 
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the online databases. Body size refers to the maximum body length. The field ‘human use’ includes 
both species used for human consumption and popular species for aquarists. In the latter case, we 
checked specialized webpages to determine if a species was regularly used as an aquarium fish.

Mammalia
We compiled data on mammals from a variety of sources including the Handbook of Mammals of the 
World (body size measurements, Diet), AnimalDiversity web (body size measurements, human use), 
and the IUCN Red List (IUCN, 2020) archive (habitat preferences and human use). We expressed 
body size as head- body length in all cases except cetaceans for which size measures are expressed 
as total length (including the tail length).

Reptilia
We retrieved squamate body length (maximum SVL) retrieved from Slavenko et al., 2019. Data 
comprise SVL for lizards and amphisbaenians, while for snakes most of the data (ca. 90%) comprise 
total lengths (TL) and the rest SVL. Crocodilian body length values were obtained from Trutnau 
and Sommerlad, 2006. Turtle carapace lengths were obtained from Itescu et al., 2014. It should 
be noted that there is a reptile- standardized mass size- value, based on clade- specific allometric 
equations (updated in Slavenko et al., 2019; Slavenko et al., 2016), but that was not used to keep 
coherence with other taxa in this study.

Cnidaria
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length of a specimen. The size of a colonial 
species correlates to the overall size of the colony since this is what is recognized in the field. 
Information on size according to sex is unknown or not reported for most taxa. Habitat corresponds 
to that of the type locality or to the habitat stated in the review monographs unless additional 
information was available in the supplementary literature.

Ctenophora
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews and monographs (WORMS; Horton, 
2021). Average size is the body length measured from the aboral pole to the tip of the mouth. 
Information on size according to sex is unknown or not reported for most taxa. Habitat corresponds 
to that of the type locality unless additional information was available in the supplementary literature.

Cycliophora
We derived data on specific traits from the original description of each species and from additional 
relevant literature. Average size is the total body length. Information on size according to sex 
is unknown or not reported. Habitat corresponds to that of the type locality unless additional 
information was available in the supplementary literature.

Echinodermata
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is body length for Holothuroidea, body diameter for 
Echinoidea and Asteroidea, arm length for Crinoidea, and disc diameter measured from the distal 
edge of the radial shields to the edge of the opposite interradial for Ophiuroidea. Information on 
size according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the 
type locality unless additional information was available in the supplementary literature.

Hemichordata
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

https://doi.org/10.7554/eLife.88251
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Kinorhyncha
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021) Average size is the total body length. Information on size according to sex 
is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Loricifera
We derived data on specific traits from the original description of each species when available 
and from additional relevant literature, including taxonomic reviews, monographs, and online 
databases (WORMS; Horton, 2021). Average size is the body length excluding the mouth 
cone. Information on size according to sex is unknown or not reported for most taxa. Habitat 
corresponds to that of the type locality unless additional information was available in the 
supplementary literature.

Mollusca
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(MolluscaBase; MolluscaBase eds, 2023). Average size is the total body length. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 
locality unless additional information was available in the supplementary literature .

Nemertea
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Nematoda
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews and monographs. Average size is the 
total body length. Information on size according to sex is unknown or not reported for most taxa. 
Habitat corresponds to that of the type locality or to the habitat stated in the review monographs 
unless additional information was available in the supplementary literature

Nematomorpha
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Platyhelminthes
We derived data on specific traits from the original description of each species when available and 
from additional relevant literature, including taxonomic reviews, monographs, and online databases 
(Gibson et  al., 2014; Horton, 2021). Average size is the total body length. Information on size 
according to sex is unknown or not reported for most taxa. Habitat for parasitic species corresponds 
either to the habitat of the animal they parasite or (when known) the domain where the larval free- 
living stages inhabit.

Porifera
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length of a specimen. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 

https://doi.org/10.7554/eLife.88251
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locality or to the habitat stated in the review monographs unless additional information was available 
in the supplementary literature.

Priapulida
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the body length excluding the tail. Information on size 
according to sex is unknown or not reported for most taxa. Habitat corresponds to that of the type 
locality unless additional information was available in the supplementary literature.

Rotifera
We derived specific traits from the original descriptions and published literature, especially guides 
and taxonomic reviews (extracted from Jersabek and Leitner, 2013). Size is the total body length 
when fully extended, which is not available for the yet unknown males for most species.

Tardigrada
We derived specific traits from the original description of each species when available and from 
additional relevant literature, including taxonomic reviews, monographs, and online databases 
(WORMS; Horton, 2021). Average size is the total body length. Information on size according to 
sex is unknown or not reported for most taxa. Habitat corresponds to that of the type locality unless 
additional information was available in the supplementary literature.

Viridiplantae (Anthocerotophyta, Bryophyta, Marchantiophyta, Tracheo-
phyta) and Rhodophyta
We retrieved data from web- based searches, using the species’ binomial in the Google search 
engine. Where available, we obtained data from online databases and websites encompassing the 
main floras worldwide. If no information was retrieved, we accessed the original species description 
using the Biodiversity Heritage Library (https://www.biodiversitylibrary.org/) (if available). Given the 
differences in taxonomies adopted in GBIF and the different mined sources, when searches using 
GBIF taxonomy did not return any useful data, we used synonyms. We retrieved habitat information 
from accessed sources (both web- based searches and literature) when available, and compared 
with available information in GBIF. We checked species usefulness for humans using the ‘Useful 
Tropical Plant’ (http://tropical.theferns.info/) and the ‘Pl@ntUse’ (https://uses.plantnet-project.org/) 
databases or by web searches looking for uses as raw materials, food, or other purposes such as 
cosmetics, medicine, sources of phytochemicals, or domesticated plants. We classified species as 
harmful if they are known to be poisonous or toxic to humans. We calculated the average size using 
the maximum and minimum stem height for herbs, or overall size for trees and shrubs. When not 
available, we only considered the maximum size. For algae and bryophytes, we approximated size 
as the thallus height.

https://doi.org/10.7554/eLife.88251
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