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Abstract Philadelphia chromosome- positive (Ph+) leukemia is a fatal hematological malignancy. 
Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable 
success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues 
for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and 
BCR- ABL co- occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR- ABL. Conse-
quently, neddylated BCR- ABL enhances the stability by competing its c- CBL- mediated degradation. 
Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting 
BCR- ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness 
of PROTAC- based degraders, depletion of RAPSYN expression, or its ligase activity decreased 
BCR- ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings 
represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and 
generate a rationale of targeting RAPSYN- mediated BCR- ABL neddylation for the treatment of Ph+ 
leukemia.

eLife assessment
In this important study, the authors describe a novel function for RAPSYN in bcr- abl fusion asso-
ciated leukemia, presenting convincing evidence that RAPSYN stabilizes the oncogenic BCR- ABL 
fusion protein. Compared to an earlier version of the manuscript, the authors have added data using 
primary samples that strengthen the conclusions.

Introduction
Philadelphia chromosome- positive (Ph+) leukemia is a myeloproliferative neoplasm characterized by 
the reciprocal translocation between the long arms of chromosomes 9 and 22, t (9;22) (q34.1; q11.2) 
(de Klein et al., 1982; Deininger et al., 2000). This cytogenetic abnormality results in a BCR- ABL 
fusion gene, which encodes the chimeric protein BCR- ABL with enhanced tyrosine kinase activity 
(Cortes et al., 2021). Based on its oncogenic role in Ph+ leukemia, BCR- ABL has been regarded as the 
most pivotal target for Ph+ leukemia therapy, especially for chronic myeloid leukemia (CML). Tyrosine 
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kinase inhibitors (TKIs) have been the main treatment option for Ph+ leukemia, remarkably prolonging 
the patients’ lifespan and improving their quality of life (Hochhaus et al., 2020; Jabbour and Kantar-
jian, 2020). However, most patients develop TKI resistance and relapse after long- term treatment 
(Braun et al., 2020). It is worth noting that the increase of BCR- ABL expression can affect the sensi-
tivity to TKIs and eventually determine the rate of TKI resistance in patients with Ph+ leukemia in 
addition to the mutations in the kinase domain (Jabbour et al., 2007). Mutations in the kinase domain 
can change the conformation of BCR- ABL, thus interfering with the binding between TKIs and BCR- 
ABL and resulting in decreased therapeutic efficacy (Lussana et al., 2018). In parallel, the increase 
of BCR- ABL expression can affect the sensitivity to TKIs and eventually determine the rate of disease 
progression and TKI resistance in patients with Ph+ leukemia (Barnes et al., 2005). Therefore, effec-
tive degradation of BCR- ABL could address the issues on TKI resistance and leukemia- initiating cells 
(LICs), and PROTAC- based protein degradation strategy may represent a new therapeutic approach 
(Békés et al., 2022). Currently, based on different ubiquitin E3 ligases, including VHL, CRBN, and 
IAP, PROTAC- based degraders at nM level have shown significant degradation of BCR- ABL in CML 
cell lines, cell lines carrying mutations in BCR- ABL as well as patient- derived primary cells containing 
multiple BCR- ABL mutations (Demizu et al., 2016; Lai et al., 2016; Shimokawa et al., 2017; Zhao 
et al., 2019; Burslem et al., 2019; Liu et al., 2022). Unfortunately, the excellent cellular activity by 
the PROTAC- based degraders has not been able to translate to in vivo efficacy, even in rare examples 
of xenografted mouse models (Zhao et al., 2019; Jiang et al., 2021b), resulting in uncertain useful-
ness of these degraders. Nonetheless, the unsatisfactory results are not really surprising because the 
underlying mechanism of elevated BCR- ABL expression remains largely unclear.

Receptor- associated protein of the synapse (RAPSYN) has been identified as a classic synaptic 
adaptor protein that binds to the acetylcholine receptor (AChR) and several cytoskeleton- associated 
proteins, contributing to AChR clustering and neuromuscular junction formation (Huh and Fuhrer, 

eLife digest Chronic myeloid leukemia (CML for short) accounts for about 15% of all blood 
cancers diagnosed in adults in the United States. The condition is characterized by the overpro-
duction of immature immune cells that interfere with proper blood function. It is linked to a gene 
recombination (a type of mutation) that leads to white blood cells producing an abnormal ‘BCR- ABL’ 
enzyme which is always switched on. In turn, this overactive protein causes the cells to live longer and 
divide uncontrollably.

Some of the most effective drugs available to control the disease today work by blocking the 
activity of BCR- ABL. Yet certain patients can become resistant to these treatments over time, causing 
them to relapse. Other approaches are therefore needed to manage this disease; in particular, a 
promising avenue of research consists in exploring whether it is possible to reduce the amount of the 
enzyme present in diseased cells.

As part of this effort, Zhao, Dai, Li, Zhang et al. focused on RAPSYN, a scaffolding protein previ-
ously unknown in CML cells. In other tissues, it has recently been shown to participate in neddylation 
– a process by which proteins receive certain chemical ‘tags’ that change the way they behave. The 
experiments revealed that, compared to healthy volunteers, RAPSYN was present at much higher 
levels in the white blood cells of CML patients. Experimentally lowering the amount of RAPSYN in 
CML cells led these to divide less quickly – both in a dish and when injected in mice, while also being 
linked to decreased levels of BCR- ABL.

Additional biochemical experiments indicated that RAPSYN sticks with BCR- ABL to add chemical 
‘tags’ that protect the abnormal protein against degradation, therefore increasing its overall levels.

Finally, the team showed that SRC, an enzyme often dysregulated in emerging cancers, can acti-
vate RAPSYN’s ability to conduct neddylation; such mechanism could promote BCR- ABL stabilization 
and, in turn, disease progression.

Taken together, these experiments indicate a new way by which BCR- ABL levels are controlled. 
Future studies should investigate whether RAPSYN also stabilizes BCR- ABL in patients whose leuke-
mias have become resistant to existing drugs. Eventually, RAPSYN may offer a new target for over-
coming drug- resistance in CML patients.

https://doi.org/10.7554/eLife.88375
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2002; Witzemann et al., 2013). Later, RAPSYN was found to exert NEDD8 E3 ligase activity to cata-
lyze the neddylation for AChR aggregation (Li et al., 2016). Despite the extensive studies of RAPSYN 
in muscular and neuronal cells and tissues (Legay and Mei, 2017; Li et al., 2018), with regard to its 
involvement in leukemogenesis, there is no available information thus far except for our previous 
finding. Previously, RAPSYN was found to be located in the cytosol of the typical Ph+ leukemia cell 
line K562 when a small molecule was used to probe its binding proteins using a proteomics approach 
(Wang et al., 2015). Because of its newly identified E3 ligase activity for neddylation and its occur-
rence in the Ph+ leukemia cell line, we speculated that RAPSYN might contribute to Ph+ leukemia 
development through its enzymatic activity instead of only serving as a scaffolding protein.

As a type of post- translational modification (PTM), neddylation is sequentially catalyzed by the 
neuronal precursor cell- expressed developmentally downregulated protein 8 (NEDD8)- activating 
enzyme E1 (NAE1), NEDD8- conjugating enzyme E2 (UBE2M/UBC12 or UBE2F), and a substrate- 
specific NEDD8 E3 ligase to complete the covalent conjugation of NEDD8 to a lysine residue of its 
substrates (van der Veen and Ploegh, 2012; Enchev et al., 2015). The neddylation of proteins can 
be reversed by deneddylases such as NEDP1. In the last two decades, accumulating evidence indi-
cated the strong involvement of dysregulated neddylation in tumor progression, neurodegenerative 
and cardiac diseases, aberrant immunoregulation and others (Ying et al., 2018; Zhou et al., 2019; Li 
et al., 2020; Yao et al., 2020), which rationalizes the modulation of neddylation as a feasible thera-
peutic strategy.

In this study, we report that RAPSYN is highly expressed along with BCR- ABL in patients with Ph+ 
leukemia and promotes disease progression, presumably by stabilizing the BCR- ABL fusion protein 
via neddylation. The neddylation of BCR- ABL by RAPSYN subsequently competes its ubiquitination- 
dependent degradation to increase the stability of BCR- ABL. Additionally, the NEDD8 E3 ligase 
activity of RAPSYN can be substantially increased by SRC- mediated phosphorylation, leading to 
enhanced stability and activity of RAPSYN.

Results
High protein levels of RAPSYN promoted Ph+ leukemia progression
Prior to investigating the biological roles of RAPSYN in the pathogenesis of Ph+ leukemia, its expres-
sion at both mRNA and protein levels was analyzed. We analyzed mRNA levels of RAPSN in RNA- seq 
datasets of GSE13204, GSE13159, GSE138883, and GSE140385, and no difference of RAPSN mRNA 
levels in peripheral blood mononuclear cells (PBMCs) was found between CML patients and healthy 
donors (Figure 1—figure supplement 1A). Neither a publicly available database nor our collection of 
patient samples and cell lines showed a significant increase in mRNA levels (Figure 1—figure supple-
ment 1B, C). The protein levels of RAPSYN were substantially elevated in the PBMCs of Ph+ CML 
(#8–11) and the bone marrow of ALL (#7) patient samples in comparison to that of healthy donors 
(#1–6), which was in a direct accordance with the expression of BCR- ABL (Figure 1A). This co- expres-
sion of RAPSYN and BCR- ABL was also found in Ph+ cell lines (Figure 1B), suggesting that the function 
of RAPSYN in Ph+ leukemia could be closely related to BCR- ABL.

To examine the relationship between RAPSYN and Ph+ leukemia progression, we first performed 
knockdown of its expression by using shRNAs. Whereas notable cytotoxicity following marked reduc-
tion of RAPSYN was observed in all tested Ph+ leukemia cell lines and CML patient PBMCs (Figure 1C, 
D, Figure 1—figure supplement 1D–F), transduction with the shRNA for RAPSN did not affect cell 
viability of RAPSYN- and BCR- ABL- negative HS- 5 cells, indicating the dependence on the presence 
and expression level of BCR- ABL. Conversely, exogenous expression of RAPSN rescued Ph+ leukemia 
cells from shRNA- generated toxicity (Figure 1E). Knockdown of RAPSN also changed the phenotypes 
of Ph+ leukemia cells, including proliferation, G0/G1 cell cycle arrest, and apoptosis (Figure 1—figure 
supplement 1G–I).

Next, we subcutaneously implanted shRAPSN #3- or the empty vector- transduced K562 cells 
into NCG mice to establish a cell line- derived xenotransplantation mouse model (Figure 1F). Tumor 
growth was significantly inhibited by RAPSN silencing (Figure 1G, H, Figure 1—figure supplement 
1J). Meanwhile, immunoblotting of tumor samples showed a notable downregulation of RAPSYN 
expression, along with the reduction of BCR- ABL levels (Figure 1I). After knockout of RAPSN for 
remarkable depletion of BCR- ABL expression in K562 cells (Figure 1J, Figure 1—figure supplement 

https://doi.org/10.7554/eLife.88375
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Figure 1. High protein levels of RAPSYN promotes Ph+ leukemia progression. (A) Immunoblots of RAPSYN and BCR- ABL in the peripheral blood 
mononuclear cells (PBMCs) of clinical samples. (B) Immunoblots of RAPSYN and BCR- ABL in Ph+ leukemic cells and normal bone marrow stromal cells 
(HS- 5). (C) Cytotoxicity induced by shRNA- mediated RAPSN knockdown in leukemic and HS- 5 cells. (D) Cytotoxicity induced by shRNA- mediated 
RAPSN knockdown in the PBMCs of chronic myeloid leukemia (CML) patients. (E) Rescue of leukemic cells from shRAPSN #3- induced toxicity by 
exogenous expression of RAPSN cDNA or NC1. (F) An in vivo experimental design for testing the effects of RAPSYN on tumor growth and survival. 
(G) The growth curve of subcutaneous xenograft tumors was measured every 2 days from the third day after tumor inoculation for 19 days (five mice 

Figure 1 continued on next page
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1L), these cells along with the empty vector- transduced K562 cells were intravenously injected into 
NCG mice to establish the leukemogenic mouse model (Figure 1F). Consequently, the survival of 
tumor- bearing mice was profoundly prolonged by the knockout of RAPSN compared to the controls 
(Figure 1K). Altogether, our findings indicate that RAPSYN is highly expressed at protein level with 
the accordance to BCR- ABL in Ph+ leukemia and its depletion results in inhibiting the progression of 
Ph+ leukemia.

RAPSYN directly neddylated BCR-ABL
Previous reports determined that both nicotinic AChR subunit α7 and muscarinic AChR subtypes M2, 
M3, and M4 were involved in the cell proliferation of K562 cells (Cabadak et al., 2011; Önder Narin 
et al., 2021). Furthermore, RAPSYN was found to exert its NEDD8 E3 ligase activity toward AChR in 
neuronal systems (Li et al., 2016). To determine whether RAPSYN functioned in a similar manner in 
leukemogenic cells, we investigated whether RAPSYN promoted Ph+ leukemia progression through 
neddylation of AChRs. Despite the expression of AChR subunits α7, M2, M3, and M4 at protein level 
in all tested Ph+ leukemia cells, no change in their neddylation was observed upon RAPSYN ablation 
(Figure 2—figure supplement 1A, B). In addition, we also examined mRNA levels of RAPSYN- related 
neddylation enzymes, including E1 (NAE1), E2 (UBE2M), NEDD8, and NEDP1, in above GSE data-
bases, and no significant differences of these neddylation- related genes were found between CML 
patients and healthy donors as well (Figure 2—figure supplement 1C). On the basis of the co- expres-
sion of RAPSYN and BCR- ABL, we postulated that RAPSYN could specifically mediate neddylation of 
BCR- ABL to promote Ph+ leukemia development.

To test this hypothesis, reciprocal immunoprecipitation was performed to reveal a strong interac-
tion between RAPSYN and BCR- ABL in Ph+ leukemia cells (Figure 2A, Figure 2—figure supplement 
1D). Similar results were obtained with exogenous expression in HEK293T cells (Figure 2B), further 
confirming the specific interaction of RAPSYN with BCR- ABL. Furthermore, GST pull- down assay 
with purified proteins displayed specific binding of GST- tagged RAPSYN to His- tagged BCR- ABL 
(Figure 2C), indicating that BCR- ABL is the primary target of RAPSYN- mediated neddylation. Domain 
mapping revealed that the Δ1 domain (1–927 aa) of BCR- ABL was responsible for the interaction with 
RAPSYN (Figure 2D).

in each group). (H) Photograph and weight quantification of excised tumor xenografts from (I). (I) Immunoblots of RAPSYN and BCR- ABL in mouse 
xenograft tumor biopsies from K562 cells transduced with shRAPSN #3 or shNC. (J) Immunoblots of RAPSYN and BCR- ABL in K562- RAPSNWT and 
K562- RAPSNKO cells. (K) Kaplan–Meier survival curve of NCG mice following intravenous injection of K562- RAPSNWT or K562- RAPSNKO cells, as shown in 
(F) (10 mice in each group). All data represent mean ± standard deviation (SD) of at least three independent experiments. p values were calculated using 
unpaired Student’s t- test (G and H) or log- rank test (K). ***p < 0.001, ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Original file for the Western blot analysis in Figure 1A (anti- BCR- ABL, anti- RAPSYN, anti- GAPDH).

Source data 2. PDF containing Figure 1A and original scan of the relevant Western blot analysis (anti- BCR- ABL, anti- RAPSYN, anti- GAPDH) with 
highlighted bands and sample labels.

Source data 3. Original file for the Western blot analysis in Figure 1B (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin).

Source data 4. PDF containing Figure 1B and original scan of the relevant Western blot analysis (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin) with 
highlighted bands and sample labels.

Source data 5. Original file for the Western blot analysis in Figure 1I (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin).

Source data 6. PDF containing Figure 1I and original scan of the relevant Western blot analysis (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin) with 
highlighted bands and sample labels.

Source data 7. Original file for the Western blot analysis in Figure 1J (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin).

Source data 8. PDF containing Figure 1J and original scan of the relevant Western blot analysis (anti- BCR- ABL, anti- RAPSYN, anti-β-Tubulin) with 
highlighted bands and sample labels.

Figure supplement 1. The mRNA levels of RAPSN are not changed by Ph+ leukemia, whereas inhibition of RAPSYN suppresses Ph+ leukemia 
progression.

Figure supplement 1—source data 1. Original file for the Western blot analysis in Figure 1—figure supplement 1E (anti- RAPSYN, anti- GAPDH).

Figure supplement 1—source data 2. PDF containing Figure 1—figure supplement 1E and original scan of the relevant Western blot analysis (anti- 
RAPSYN, anti- GAPDH) with highlighted bands and sample labels.

Figure 1 continued

https://doi.org/10.7554/eLife.88375


 Research article      Cancer Biology | Cell Biology

Zhao, Dai, Li et al. eLife 2023;12:RP88375. DOI: https://doi.org/10.7554/eLife.88375  6 of 28

Figure 2. RAPSYN neddylates BCR- ABL. (A) Co- immunoprecipitation of BCR- ABL and RAPSYN in leukemic cells. (B) Immunoblots of GST and His after 
immunoprecipitation of His or GST in HEK293T cells transfected with His- tagged BCR- ABL and GST- tagged RAPSYN. (C) Immunoblots of GST and 
His following GST pull- down after in vitro incubation of purified His- tagged BCR- ABL and GST or GST- tagged RAPSYN. (D) His- immunoblots of GST 
immunoprecipitates from HEK293T cells transfected with GST- tagged RAPSYN alone or in combination with His- tagged full- length or truncated BCR- 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.88375


 Research article      Cancer Biology | Cell Biology

Zhao, Dai, Li et al. eLife 2023;12:RP88375. DOI: https://doi.org/10.7554/eLife.88375  7 of 28

ABL (Δ1: aa 1–927, Δ2: aa 928–2047). (E) Analysis of BCR- ABL neddylation levels in leukemic cells. (F) Analysis of BCR- ABL neddylation levels in primary 
chronic myeloid leukemia (CML) peripheral blood mononuclear cells (PBMCs). (G) Analysis of BCR- ABL neddylation levels in leukemic cells treated with 
MLN4924 or dimethyl sulfoxide (DMSO) for 24 hr. (H) HA- immunoblots of His- immunoprecipitate from HEK293T cells transfected with His- tagged BCR- 
ABL and HA- tagged NEDD8 or NEDD8 ΔGG. (I) HA- immunoblots of His- immunoprecipitate from HEK293T cells transfected with indicated constructs. 
(J) HA- immunoblots after immunoprecipitation of His- antibody in HEK293T cells transfected with His- tagged BCR- ABL, HA- tagged NEDD8, GFP- 
tagged WT RAPSYN, or RAPSYN- C366A. (K) Analysis of BCR- ABL neddylation levels in K562 WT, RAPSN KO, and RAPSN KO with exogenous expression 
of a RAPSN cDNA cells. (L) Assessment of BCR- ABL neddylation by RAPSYN in vitro. Recombinantly expressed and purified RAPSYN and BCR- ABL were 
incubated with APPBP1/UBA3, UBE2M, or NEDD8 for in vitro neddylation assay. (M) Analysis of BCR- ABL neddylation levels in excised tumor xenografts 
from Figure 1H. (N) Verification of BCR- ABL neddylation sites in HEK293T cells transfected with indicated constructs.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Original file for the Western blot analysis in Figure 2A.

Source data 2. PDF containing Figure 2A and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 3. Original file for the Western blot analysis in Figure 2B.

Source data 4. PDF containing Figure 2B and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 5. Original file for the Western blot analysis in Figure 2C.

Source data 6. PDF containing Figure 2C and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 7. Original file for the Western blot analysis in Figure 2D.

Source data 8. PDF containing Figure 2D and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 9. Original file for the Western blot analysis in Figure 2E.

Source data 10. PDF containing Figure 2E and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 11. Original file for the Western blot analysis in Figure 2F.

Source data 12. PDF containing Figure 2F and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 13. Original file for the Western blot analysis in Figure 2G.

Source data 14. PDF containing Figure 2G and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 15. Original file for the Western blot analysis in Figure 2H.

Source data 16. PDF containing Figure 2H and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 17. Original file for the Western blot analysis in Figure 2I.

Source data 18. PDF containing Figure 2I and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 19. Original file for the Western blot analysis in Figure 2J.

Source data 20. PDF containing Figure 2J and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 21. Original file for the Western blot analysis in Figure 2K.

Source data 22. PDF containing Figure 2K and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 23. Original file for the Western blot analysis in Figure 2L.

Source data 24. PDF containing Figure 2L and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 25. Original file for the Western blot analysis in Figure 2M.

Source data 26. PDF containing Figure 2M and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 27. Original file for the Western blot analysis in Figure 2N.

Source data 28. PDF containing Figure 2N and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Figure supplement 1. RAPSYN is an E3 ligase to neddylate BCR- ABL.

Figure supplement 1—source data 1. Original file for the Western blot analysis in Figure 2—figure supplement 1A.

Figure supplement 1—source data 2. PDF containing Figure 2—figure supplement 1A and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 3. Original file for the Western blot analysis in Figure 2—figure supplement 1B.

Figure supplement 1—source data 4. PDF containing Figure 2—figure supplement 1B and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 5. Original file for the Western blot analysis in Figure 2—figure supplement 1D.

Figure supplement 1—source data 6. PDF containing Figure 2—figure supplement 1D and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure 2 continued

Figure 2 continued on next page
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Next, we studied whether RAPSYN could directly mediate BCR- ABL neddylation. Strong BCR- ABL 
neddylation could be detected in all Ph+ leukemia cell lines (Figure 2E, Figure 2—figure supplement 
1E). More importantly, the neddylation of BCR- ABL was validated by immunoprecipitation using the 
PBMCs from two CML patients (Figure 2F). Treatment with the NAE1 inhibitor, MLN4924, significantly 
dampened the neddylation of BCR- ABL (Figure 2G, Figure 2—figure supplement 1F). In addition, 
the mutation of two glycine residues at the C- terminus of NEDD8 required for its covalent conju-
gating ability, or the co- expression of NEDP1 (NEDD8- specific protease 1) essentially diminished the 
neddylation of BCR- ABL (Figure 2H, I). As shown in Figure 2J, we co- expressed either WT- RAPSYN or 
its C366A mutant along with BCR- ABL and NEDD8, revealing that mutation of Cys to Ala at the cata-
lytic residue C366 significantly decreased the neddylation level of BCR- ABL. Additionally, knockout 
of RAPSN abrogated BCR- ABL neddylation in the cells, and this effect was restored by transduction 
of RAPSN cDNA (Figure 2K). These results were further corroborated by in vitro experiments, which 
showed that BCR- ABL could hardly be neddylated in the absence of RAPSYN (Figure 2L). Consis-
tently, the amount of neddylated BCR- ABL was markedly reduced in tumors generated by K562 cells 
transfected with shRAPSN#3 (Figure 2M), indicating an essential role of the ligase activity of RAPSYN 
in BCR- ABL neddylation.

In addition, neither overall BCR- ABL expression nor its neddylation levels were affected after the 
knockdown of AChRs (Figure 2—figure supplement 1). Similarly, modulation of AChR activities and 
their downstream PKC–RAS–ERK and JAK2–AKT signaling pathways (Kawamata et al., 2011; Aydın 
et al., 2013) by either an agonist (carbachol) (Jakubík et al., 2008) or antagonists (benzethonium and 
homatropine) (Durieux and Nietgen, 1997) did not alter the expression or neddylation status of BCR- 
ABL (Figure 2—figure supplement 1H, I).

Subsequently, we tried to identified specific modification sites on BCR- ABL. The purified proteins 
were used for in vitro neddylation reactions, and the target bands were digested with trypsin for 
liquid chromatography–mass spectrometry (LC–MS/MS) analyses. Eight lysine residues were found 
to be potential NEDD8 accepting sites in BCR- ABL (Figure 2—figure supplement 2). To confirm 
these modification sites, a series of individual Lys- to- Arg mutants were generated. Except for K257, 
neddylation levels of BCR- ABL at other candidate sites were all significantly reduced, confirming the 
modification sites of these Lys residues (Figure 2N).

RAPSYN attenuated c-CBL-mediated BCR-ABL ubiquitination and 
degradation
As decreased neddylation of BCR- ABL following either MLN4924 treatment or RAPSN KO was accom-
panied by a strong decline in its overall protein expression level (Figures 2G and 3A, B, Figure 2—
figure supplement 1F, and Figure 3—figure supplement 1), we asked whether RAPSYN- mediated 

Figure supplement 1—source data 7. Original file for the Western blot analysis in Figure 2—figure supplement 1E.

Figure supplement 1—source data 8. PDF containing Figure 2—figure supplement 1E and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 9. Original file for the Western blot analysis in Figure 2—figure supplement 1F.

Figure supplement 1—source data 10. PDF containing Figure 2—figure supplement 1F and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 11. Original file for the Western blot analysis in Figure 2—figure supplement 1G.

Figure supplement 1—source data 12. PDF containing Figure 2—figure supplement 1G and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 13. Original file for the Western blot analysis in Figure 2—figure supplement 1H.

Figure supplement 1—source data 14. PDF containing Figure 2—figure supplement 1H and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1—source data 15. Original file for the Western blot analysis in Figure 2—figure supplement 1I.

Figure supplement 1—source data 16. PDF containing Figure 2—figure supplement 1I and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 2. Liquid chromatography–mass spectrometry (LC–MS/MS) of trypsin- digested peptide fragments of neddylated BCR- ABL.

Figure 2 continued
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Figure 3. RAPSYN attenuates BCR- ABL ubiquitination and degradation. (A) Immunoblots of BCR- ABL in leukemic cells treated with MLN4924 or 
DMSO for 24 hr and corresponding quantification of three independent replicates. (B) Immunoblots of BCR- ABL in K562 WT and RAPSN KO cells and 
corresponding quantification of three independent replicates. (C) Assessment of BCR- ABL protein stability in K562 cells expressing DOX- inducible 
shRAPSN #3 treated with CHX alone or in combination with DOX at indicated time points by immunoblotting. (D) Analysis of BCR- ABL neddylation 
and ubiquitination levels in leukemic cells treated with MLN4924 or DMSO for 24 hr. (E) Analysis of BCR- ABL neddylation and ubiquitination levels in 
K562 WT and RAPSN KO cells. (F) Immunoblots of HA and Myc after His- immunoprecipitation in HEK293T cells transfected with His- tagged BCR- ABL, 

Figure 3 continued on next page
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BCR- ABL neddylation affects protein stability. Subsequently, the protein synthesis inhibitor CHX was 
applied to K562 cells transduced with vectors encoding doxycycline- inducible RAPSN shRNA #3. 
Indeed, the expression levels of BCR- ABL declined much faster in cells with the induction of shRNA 
expression (Figure 3C). Meanwhile, we found that a clear inverse correlation between the neddyla-
tion and ubiquitination levels of BCR- ABL was observed (Figure 3D, E). BCR- ABL ubiquitination was 
remarkably reduced in the cells transfected with NEDD8 (Figure 3F). Consistent with these results, 
treatment of the cells with the proteasome inhibitor MG132 significantly increased the amount of 
ubiquitinated BCR- ABL accompanied by the decrease of BCR- ABL neddylation (Figure 3G).

To clarify the molecular basis of the battle between BCR- ABL neddylation and its ubiquitination, we 
detected that whether RAPSYN competes for binding to BCR- ABL with c- CBL, a reported E3 ligase 
mediating BCR- ABL ubiquitin–proteasome degradation (Mao et al., 2010). As a result, exogenous 
expression of RAPSN interfered with the interactions between BCR- ABL and c- CBL, whereas RAPSN 
ablation in K562 cells promoted c- CBL binding to BCR- ABL (Figure 3H–I). These data indicated that 
RAPSYN competes with c- CBL for binding to BCR- ABL, leading to subsequent BCR- ABL neddylation 
to enhance BCR- ABL stability by counteracting its proteasomal degradation.

SRC-mediated phosphorylation stabilized RAPSYN by repressing its 
proteasomal degradation
SRC- family protein tyrosine kinases are capable of phosphorylating RAPSYN in neuronal system, 
among which SRC exerts the strongest function (Mohamed and Swope, 1999). In addition, SRC has 
been shown to be highly expressed in primary CML cells (Yang et al., 2017). We then studied whether 
SRC acts as an upstream regulator to mediate RAPSYN. SRC inhibition with saracatinib or shRNA not 

HA- tagged Ub, or without Myc- tagged NEDD8. (G) Analysis of BCR- ABL ubiquitination and neddylation in leukemic cells treated with MG132 or DMSO 
for 12 hr. (H) Co- immunoprecipitation of BCR- ABL, c- CBL, and RAPSYN in leukemic cells expressing exogenous RAPSN cDNA or empty vector. (I) Co- 
immunoprecipitation of BCR- ABL, c- CBL, and RAPSYN in K562 WT and RAPSN KO cells. All data represent mean ± standard deviation (SD) of at least 
three independent experiments. p values were calculated using unpaired Student’s t- test. **p < 0.01, ***p < 0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Original file for the Western blot analysis in Figure 3A.

Source data 2. PDF containing Figure 3A and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 3. Original file for the Western blot analysis in Figure 3B.

Source data 4. PDF containing Figure 3B and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 5. Original file for the Western blot analysis in Figure 3C.

Source data 6. PDF containing Figure 3C and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 7. Original file for the Western blot analysis in Figure 3D.

Source data 8. PDF containing Figure 3D and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 9. Original file for the Western blot analysis in Figure 3E.

Source data 10. PDF containing Figure 3E and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 11. Original file for the Western blot analysis in Figure 3F.

Source data 12. PDF containing Figure 3F and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 13. Original file for the Western blot analysis in Figure 3G.

Source data 14. PDF containing Figure 3G and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 15. Original file for the Western blot analysis in Figure 3H.

Source data 16. PDF containing Figure 3H and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 17. Original file for the Western blot analysis in Figure 3I.

Source data 18. PDF containing Figure 3I and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Figure supplement 1. RAPSYN promotes BCR- ABL stabilization.

Figure supplement 1—source data 1. Original file for the Western blot analysis in Figure 3—figure supplement 1.

Figure supplement 1—source data 2. PDF containing Figure 3—figure supplement 1 and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure 3 continued

https://doi.org/10.7554/eLife.88375


 Research article      Cancer Biology | Cell Biology

Zhao, Dai, Li et al. eLife 2023;12:RP88375. DOI: https://doi.org/10.7554/eLife.88375  11 of 28

only significantly downregulated phosphorylated (Tyr418) SRC, but also inhibited the phosphorylation 
of endogenous RAPSYN, resulting in a substantial decline in its protein level, whereas heterologous 
expression of SRC increased RAPSYN phosphorylation (Figure 4A–C, Figure 4—figure supplement 
1A). Furthermore, in vitro incubation with recombinant RAPSYN, SRC, and ATP resulted in strong 
phosphorylation of RAPSYN, which could be fully abrogated by saracatinib treatment (Figure 4D). 
LC–MS/MS analyses indicated that Tyr residues at positions 59, 152, and 336 in RAPSYN are poten-
tial phosphorylation sites by SRC (Figure  4—figure supplement 1B). Then, after mutagenesis of 
these sites from Tyr to Phe, Y336, an evolutionarily conserved Tyr residue, was confirmed to be the 
primary site of RAPSYN phosphorylation (Figure 4E, Figure 4—figure supplement 1C). As SRC has 
no effect on RAPSN mRNA levels (Figure 4—figure supplement 1D, E), implying that SRC- mediated 
phosphorylation also affects RAPSYN stability. In fact, Ph+ leukemia cells were treated with saraca-
tinib, SRC silencing or mutation of the key phosphorylation site significantly accelerated the diminish-
ment of RAPSYN expression following CHX treatment, conversely, expressing exogenous SRC cDNA 
prolonged the half- life of RAPSYN (Figure 4F–I).

To explore the molecular mechanisms responsible for the increased stability of phosphorylated 
RAPSYN, Ph+ leukemia cells were treated with saracatinib or transduction of shSRC followed by incu-
bation with MG132. In all circumstances, MG132 could rescue the decrease of RAPSYN induced by 
saracatinib treatment or shSRC knockdown (Figure 4J, K). Clearly, the specific phosphorylation of 
RAPSYN at Y336 by SRC led to its increased stability by preventing the proteasomal degradation, 
thereby maintaining the high levels of RAPSYN in Ph+ leukemia.

Phosphorylated RAPSYN potentiated its NEDD8 E3 ligase activity and 
promoted BCR-ABL stabilization
To dissect the role of SRC- mediated phosphorylation of RAPSYN, we tested whether phosphorylation 
of RAPSYN at Y336 affects its ligase activity. Immunoblotting revealed saracatinib treatment or SRC 
silencing reduced BCR- ABL neddylation and its protein expression, while exogenous expression of 
SRC cDNA strongly increased it (Figure 5A–C). Additionally, co- expression in HEK293T cells showed 
that Y336F mutation had no impact on BCR- ABL neddylation compared to co- transfection with SRC 
(Figure 5D). These results were supported by stronger neddylation of endogenous BCR- ABL in cells 
overexpressing WT RAPSN, but not in the Y336F mutant (Figure 5E). Furthermore, protein turnover 
rates of BCR- ABL were determined in Ph+ leukemia cells and the cells with exogenous RAPSNY336F 
expression displayed larger decrease in BCR- ABL level than those expressing RAPSNWT (Figure 5F). 
Therefore, RAPSYN phosphorylation at Y336 by SRC was a major contributing factor to its NEDD8 E3 
ligase activity and BCR- ABL stability in Ph+ leukemia cells.

Phosphorylation of RAPSYN at Y336 promoted Ph+ leukemia 
progression
To assess the extent to which SRC- mediated phosphorylation of RAPSYN at Y336 contributes to 
the enhanced viability of RAPSYN- dependent Ph+ leukemia cells, we first identified a specific shSRC 
by screening five candidates using toxicity tests and then performing rescue experiments with SRC 
cDNA. Toxicity tests revealed that, albeit to varying degrees, shSRC #2-, #4-, and #5- induced cyto-
toxicity in all Ph+ leukemia cell lines (Figure 6A, Figure 6—figure supplement 1A). However, exoge-
nous SRC cDNA expression only restored the growth of Ph+ leukemia cells transduced with shSRC #2 
(Figure 6B, Figure 6—figure supplement 1B, C).

Subsequently, we performed rescue experiments by introducing RAPSNWT/Y336F cDNA or an empty 
vector into shSRC #2- transducted Ph+ leukemia cells and found that virtually complete RAPSNWT- 
induced rescue was detected in both cell lines, but RAPSNY336F exhibited no restoring effect (Figure 6C, 
D). In addition, transduction of RAPSNWT cDNA conferred an increased resistance against saracatinib 
treatment, whereas the expression of RAPSNY336F cDNA did not affect the drug sensitivity of the cells 
(Figure 6E, F). Furthermore, knockdown of RAPSN substantially sensitized both cell lines to saraca-
tinib (Figure 6G).

In animal models, while the overall survival of mice intravenously injected with K562 cells 
expressing control empty vector was significantly improved by either saracatinib administration or 
shRNA- mediated SRC inhibition, overexpression of WT RAPSN fully counteracted these effects and 
shortened the lifespan of mice to the levels comparable to those of mice injected with K562 cells 

https://doi.org/10.7554/eLife.88375
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Figure 4. SRC- mediated phosphorylation at Y336 promotes RAPSYN stability by repressing its proteasomal degradation. (A) Assessment of RAPSYN 
phosphorylation levels in leukemic cells treated with saracatinib or DMSO for 24 hr. (B) Assessment of RAPSYN phosphorylation levels in leukemic 
cells transduced with shSRC or shNC. (C) Assessment of RAPSYN phosphorylation levels in leukemic cells expressing exogenous SRC cDNA or empty 
vector. (D) Assessment of RAPSYN phosphorylation by SRC in vitro. Purified RAPSYN and SRC were incubated with ATP in the presence or absence 
of saracatinib for phosphorylation assay. (E) Verification of RAPSYN phosphorylation sites. Purified SRC and RAPSYN WT or indicated mutants were 
incubated with ATP for phosphorylation assay. (F) Assessment of RAPSYN protein stability in leukemic cells treated with CHX in combination with 

Figure 4 continued on next page
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without SRC inhibition. In contrast, expression of exogenous RAPSNY336F attenuated the protective 
effects of SRC inhibition to a much lesser extent (Figure 6H–J). Taken together, these results suggest 
that phosphorylation at Y336 by SRC is a major event in the pro- leukemogenic functions of RAPSYN 
in Ph+ leukemia development.

Discussion
In this study, we identified a novel role of RAPSYN in hematology. Indeed, RAPSYN inhibition signifi-
cantly suppressed the survival of Ph+ leukemia. This phenotype was found to be linked to the NEDD8 
E3 ligase activity of RAPSYN, which mediated BCR- ABL neddylation to enhance its stability for 
promoting leukemogenesis.

Balanced protein synthesis and degradation are pivotal for maintaining protein homeostasis and 
normal cellular function. Neddylation is a type of important PTMs that mainly modulates protein 
stability. Accumulating evidence has shown that targeting the neddylation process could be an 
appealing strategy for anticancer therapy, with a particular efficacy shown in hematologic malignan-
cies (Bhalla and Fiskus, 2016; McGrail et al., 2020; Norton et al., 2021; Xie et al., 2021). On the 
other hand, neddylation is a specific PTM that modifies multiple Lys residues in BCR- ABL, shielding 

saracatinib or DMSO at indicated time points by immunoblotting. (G) Assessment of RAPSYN protein stability in leukemic cells transduced with 
shSRC or shNC by immunoblotting. (H) Assessment of RAPSYN protein stability in leukemic cells transduced with exogenous SRC cDNA or empty 
vector by immunoblotting. (I) Assessment of RAPSYN protein stability in leukemic cells transduced with exogenous RAPSN WT or Y336F cDNA by 
immunoblotting. (J) Immunoblots of RAPSYN in leukemic cells treated with saracatinib or DMSO for 12 hr, and subsequently with MG132 or DMSO for 
another 12 hr. (K) Immunoblots of RAPSYN in leukemic cells transduced with shNC or shSRC and treated with MG132 or DMSO for 12 hr.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Original file for the Western blot analysis in Figure 4A.

Source data 2. PDF containing Figure 4A and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 3. Original file for the Western blot analysis in Figure 4B.

Source data 4. PDF containing Figure 4B and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 5. Original file for the Western blot analysis in Figure 4C.

Source data 6. PDF containing Figure 4C and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 7. Original file for the Western blot analysis in Figure 4D.

Source data 8. PDF containing Figure 4D and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 9. Original file for the Western blot analysis in Figure 4E.

Source data 10. PDF containing Figure 4E and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 11. Original file for the Western blot analysis in Figure 4F.

Source data 12. PDF containing Figure 4F and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 13. Original file for the Western blot analysis in Figure 4G.

Source data 14. PDF containing Figure 4G and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 15. Original file for the Western blot analysis in Figure 4H.

Source data 16. PDF containing Figure 4H and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 17. Original file for the Western blot analysis in Figure 4I.

Source data 18. PDF containing Figure 4I and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 19. Original file for the Western blot analysis in Figure 4J.

Source data 20. PDF containing Figure 4J and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 21. Original file for the Western blot analysis in Figure 4K.

Source data 22. PDF containing Figure 4K and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Figure supplement 1. SRC- mediated phosphorylation at Y336 promotes RAPSYN stability.

Figure supplement 1—source data 1. Original file for the Western blot analysis in Figure 4—figure supplement 1A.

Figure supplement 1—source data 2. PDF containing Figure 4—figure supplement 1A and original scan of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure 4 continued
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Figure 5. RAPSYN phosphorylation at Y336 potentiates its E3 ligase activity and promotes BCR- ABL stabilization. (A) Immunoblots of BCR- ABL 
neddylation levels in leukemic cells treated with saracatinib or DMSO for 24 hr. (B) Immunoblots of BCR- ABL neddylation levels in leukemic cells 
transduced with shSRC or shNC. (C) Immunoblots of BCR- ABL neddylation levels in leukemic cells expressing exogenous SRC cDNA or empty 
vector. (D) Effects of RAPSYN phosphorylation on BCR- ABL neddylation levels in HEK293T cells transfected with indicated constructs. (E) Effects of 
RAPSYN phosphorylation at Y336 on BCR- ABL neddylation levels in leukemic cells expressing exogenous RAPSN WT, Y336F cDNA, or empty vector. 
(F) Assessment of BCR- ABL protein stability in leukemic cells transduced with exogenous cDNA for RAPSN- WT, Y336F mutant or empty vector by 
immunoblotting.

The online version of this article includes the following source data for figure 5:

Source data 1. Original file for the Western blot analysis in Figure 5A.

Source data 2. PDF containing Figure 5A and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 3. Original file for the Western blot analysis in Figure 5B.

Source data 4. PDF containing Figure 5B and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 5. Original file for the Western blot analysis in Figure 5C.

Figure 5 continued on next page
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this oncoprotein to compete ubiquitination- mediated degradation, which provides a reasonable 
explanation on the poor in vivo efficacy of PROTAC- based degraders for BCR- ABL (Li and Song, 
2020). MLN4924, a NEDD8- activating E1 enzyme inhibitor, has been shown to inhibit the survival of 
both wild- type (WT) and T315I- BCR- ABL leukemia cells as well as LICs (Liu et al., 2018; Bahjat et al., 
2019; Guo et al., 2019). Moreover, clinical trials of MLN4924 in combination with anticancer agents in 
acute myeloid leukemia have progressed to phase II (NCT03745352 and PEVENAZA [NCT04266795]) 
and III (PANTHER [NCT03268954] and PEVOLAM [NCT04090736]). However, the neddylation system 
works in a substrate- and context- dependent manner, which essentially defines its role in tumorigen-
esis as anti or pro, particularly relying on the substrate specificity of the NEDD8 E3 ligase. Neddyla-
tion can either facilitate ubiquitination- dependent degradation of its substrates, such as EGFR (Oved 
et al., 2006) and c- SRC (Lee et al., 2018), or enhance protein stability in the cases of HuR (Embade 
et al., 2012) and TGF-β type II receptor (Zuo et al., 2013). Thus, the antitumor effects of MLN4924 
are the integrative outcome of inhibiting more pro- than anti- tumorigenic neddylation activities in the 
reported tumor types. Recent studies uncovered that neddylation could also inhibit tumor progression 
and MLN4924 stimulates tumor sphere formation and wound healing as well as promotes glycolysis 
(Zhou et al., 2016; Zhou et al., 2019; Zhou and Sun, 2019). Therefore, rather than suppressing the 
entire neddylation system to affect a wide range of proteins, targeted inhibition of substrate- specific 
NEDD8 E3 ligase, such as RAPSYN, might offer a potential therapeutic opportunity for more elegant 
anticancer intervention with fewer side effects.

Functional studies on RAPSYN have focused on its contribution to neuromuscular transmission 
(Xing et al., 2019; Xing et al., 2020). In this study, we found that RAPSYN promotes disease progres-
sion by neddylating BCR- ABL for its resistance to c- CBL- mediated proteasomal degradation. Addi-
tionally, its NEDD8 E3 ligase activity was increased by SRC- mediated phosphorylation. Previously, the 
residue Y86 in RAPSYN was identified as a phosphorylation site by muscle- associated receptor tyrosine 
kinase (MuSK) at the neuromuscular junction endplate (Xing et al., 2019), which could enhance the 
ligase activity of RAPSYN by mediating its self- association (Xing et al., 2020). Differently, we found 
that SRC phosphorylates RAPSYN at Y336 residue located between its CC and RING domains in Ph+ 
leukemia cells, suggesting that the phosphorylation of RAPSYN might be kinase or tissue specific. So 
far, multiple RAPSYN mutations have been reported to be causative (Cossins et al., 2006; Finsterer, 
2019). In particular, N88K mutation could significantly reduce MuSK- mediated Y86 phosphorylation 
of RAPSYN to affect its E3 NEDD8 ligase activity (Xing et al., 2019). However, the precise process 
by which N88K mutation is involved in modulating RAPSYN phosphorylation is unclear. On the other 
hand, N88 was predicted to be a N- glycosylation site with the highest score among all putative ones 
in RAPSYN (Lam et al., 2017), implicating that N- glycosylation of RAPSYN could be a prerequisite for 
normal RAPSYN phosphorylation and activation. In the present study, we unveiled that SRC- mediated 
RAPSYN phosphorylation could substantially potentiate its NEDD8 E3 ligase activity and enhance its 
protein stability, once again suggesting the hematological specificity. In addition, given the fact that 
neddylation and sumoylation have both shown, as also in the present study, to be capable of antag-
onizing the ubiquitination of their substrates (Enchev et al., 2015; Yang et al., 2017), the potential 
self- modification of RAPSYN is likely to promote its own stabilization. Collectively, it is of great impor-
tance to further dissect different PTMs of RAPSYN and their interactions in order to better understand 
RAPSYN’s biological functions.

It is well known that the generation of BCR- ABL fusion protein is a decisive characteristic of Ph+ 
leukemia (de Klein et al., 1982). Aside from the occurrence of RAPSYN in patients with Ph+ leukemia, 
the present study revealed a fascinating finding that BCR- ABL expression levels were correlated with 

Source data 6. PDF containing Figure 5C and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 7. Original file for the Western blot analysis in Figure 5D.

Source data 8. PDF containing Figure 5D and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 9. Original file for the Western blot analysis in Figure 5E.

Source data 10. PDF containing Figure 5E and original scan of the relevant Western blot analysis with highlighted bands and sample labels.

Source data 11. Original file for the Western blot analysis in Figure 5F.

Source data 12. PDF containing Figure 5F and original scan of the relevant Western blot analysis with highlighted bands and sample labels.
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Figure 6. SRC- mediated phosphorylation of RAPSYN at Y336 promotes Ph+ leukemia progression. (A) Cytotoxicity induced by shSRC #2- mediated 
SRC knockdown in leukemic cells. (B) Rescue of leukemic cells from shSRC #2- induced toxicity by exogenous expression of SRC cDNA. (C) Rescue of 
leukemic cells from shSRC #2- induced toxicity by exogenous expression of RAPSNWT cDNA. (D) Failed rescue of leukemic cells from shSRC #2- induced 
toxicity by exogenous expression of RAPSNY336F cDNA. (E) Viability of leukemic cells transduced with either RAPSNWT cDNA or corresponding empty 
vector after 72 hr of incubation with indicated concentrations of saracatinib. (F) Viability of leukemic cells transduced with either RAPSNY336F cDNA 
or corresponding empty vector after 72 hr of incubation with indicated concentrations of saracatinib. (G) Viability of leukemic cells transduced with 
either shNC or shRAPSN #3 after 72 hr of incubation with indicated concentrations of saracatinib. (H) Experimental design used to test in vivo effects 
of RAPSYN phosphorylation at Y336 on Ph+ leukemia progression and survival time. (I) Kaplan–Meier survival curve of NCG mice following intravenous 
injection of K562- RAPSNWT or K562- RAPSNY336F cells and intragastric administration of saracatinib or corresponding vehicle from days 6 to 26 as 

Figure 6 continued on next page
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those of RAPSYN, demonstrating the specificity of RAPSYN- mediated neddylation of BCR- ABL. More-
over, as a new type of PTM for BCR- ABL, RAPSYN- mediated neddylation was found to compete 
c- CBL- mediated ubiquitination, causing a reduction in BCR- ABL degradation. Given the fact that the 
increase of BCR- ABL expression can affect the sensitivity to TKIs and eventually determine the rate 
of TKI resistance and LIC population in patients with Ph+ leukemia (Issaad et al., 2000; Barnes et al., 
2005), effective degradation of BCR- ABL is an alternative opportunity for the treatment. Although 
recent studies have greatly advanced our understanding of the regulation of BCR- ABL degradation 
(Burslem et al., 2019; Shibata et al., 2020; Jiang et al., 2021a), most reported modulatory proteins 
are not ideal for translation to clinical settings because of their pivotal roles in sustaining normal hema-
tological functions. In contrast, RAPSYN was nearly unexpressed in the blood of healthy donors. Thus, 
it is reasonable to expect that the inhibition of RAPSYN expression could lead to cytotoxicity in Ph+ 
leukemia with high specificity and marginal side effects. Furthermore, our present results showed that 
knockdown of RAPSYN significantly increased the sensitivity of leukemia cells to saracatinib, implying 
that a combination of RAPSYN inhibition and TKI treatment can effectively control mutations and LIC- 
derived TKI resistance in Ph+ leukemia.

In summary, our work has uncovered the pivotal role that RAPSYN exerts its NEDD8 E3 ligase 
activity in neddylating and stabilizing BCR- ABL in the pathogenesis of Ph+ leukemia and thus delin-
eate it as a potential novel therapeutic target for the treatment of Ph+ leukemia. More importantly, 
our results shed a light on future investigations that may help to extend to other cancer types for 
broadening our understanding of RAPSYN’s involvement in hematology and oncology.

Materials and methods

indicated (ten mice in each group). (J) Kaplan–Meier survival curve of NCG mice following intravenous injection of double- transfected K562 cells (ten 
mice in each group). Representative results from at least three independent experiments are shown (A–G); error bars, mean ± standard deviation (SD); 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; log- rank test (I–J).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. shSRC #2 is a specific shRNA targeting the 3′UTR of SRC.

Figure 6 continued
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Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (M.
musculus)

Mouse: NOD/ShiLtJGpt- Prkdcem26Cd52

Il2rgem26Cd22/Gpt GemPharmatech Cat# CB101

Cell line (Homo 
sapiens)

Human bone marrow stromal cell 
HS- 5 (male) ATCC

Cat# CRL11882;
RRID:CVCL_3720

Cell line (Homo 
sapiens)

Human chronic myelogenous 
leukemia K562 (female) COBIOER Cat# CBP60529

Cell line (Homo 
sapiens)

Human chronic myelogenous 
leukemia MEG- 01 (male) COBIOER Cat# CBP61104

Cell line (Homo 
sapiens)

Human chronic myelogenous 
leukemia KU812 (male) COBIOER Cat# CBP60732

Cell line (Homo 
sapiens) HEK- 293T KeyGEN BioTECH Cat# KG405

Antibody
Mouse monoclonal anti- RAPSYN 
(clone 1234) Abcam Cat# ab11423; RRID:AB_298028 1:1000

Antibody
Rabbit polyclonal anti- RAPSYN 
(clone 118491) Abcam

Cat# ab118491;
RRID:AB_10899872 1:1000

Antibody
Mouse monoclonal anti- 6X His tag 
(clone HIS.H8) Abcam Cat# ab18184; RRID:AB_444306 1:1000

https://doi.org/10.7554/eLife.88375
https://identifiers.org/RRID/RRID:CVCL_3720
https://identifiers.org/RRID/RRID:AB_298028
https://identifiers.org/RRID/RRID:AB_10899872
https://identifiers.org/RRID/RRID:AB_444306
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody
Mouse monoclonal anti- BCR- ABL 
(clone 7C6) Abcam Cat# ab187831 1:1000

Antibody
Rabbit monoclonal anti- SRC Family 
(phosphoY418) Abcam Cat# ab40660 1:1000

Antibody
Rabbit monoclonal anti- NEDD8 
(clone 19E3) Cell Signaling Technology

Cat# 2754;
RRID:AB_659972 1:1000

Antibody
Rabbit monoclonal anti- HA- Tag 
(clone C29F4) Cell Signaling Technology

Cat# 3724;
RRID:AB_1549585 1:1000

Antibody
Rabbit monoclonal anti- GFP (clone 
D5.1) Cell Signaling Technology Cat# 2956; RRID:AB_1196615 1:1000

Antibody
Rabbit monoclonal anti- GST (clone 
91G1) Cell Signaling Technology Cat#2625 1:1000

Antibody
Mouse monoclonal anti- Myc- Tag 
(clone 9B11) Cell Signaling Technology

Cat#2276;
RRID:AB_331783 1:1000

Antibody
Rabbit monoclonal anti- SRC (clone 
36D10) Cell Signaling Technology

Cat# 2109;
RRID:AB_2106059 1:1000

Antibody

Rabbit monoclonal anti- Flag 
(DYKDDDDK) Tag
(clone D6W5B) Cell Signaling Technology

Cat# 14793;
RRID:AB_2572291 1:1000

Antibody
Rabbit monoclonal anti- GAPDH 
(clone 14C10) Cell Signaling Technology

Cat# 2128;
RRID:AB_823664 1:2000

Antibody
Anti- mouse IgG, HRP- linked 
antibody Cell Signaling Technology

Cat# 7076 S;
RRID:AB_330924 1:5000

Antibody Anti- rabbit IgG, HRP- linked antibody Cell Signaling Technology
Cat# 7074 S;
RRID:AB_2099233 1:5000

Antibody Normal Mouse IgG Santa Cruz Biotechnology
Cat# sc- 2025;
RRID:AB_737182 1:100

Antibody
Mouse monoclonal anti- c- CBL (clone 
A- 9) Santa Cruz Biotechnology

Cat# SC- 1651;
RRID:AB_2244054 1:1000

Antibody

Mouse monoclonal anti- 
Phosphotyrosine Antibody (clone 
4G10) Sigma- Aldrich

Cat# 05- 321 X;
RRID:AB_568858 1:1000

Antibody Rabbit monoclonal anti- AChRα7 Santa Cruz Biotechnology
Cat# SC- 58607;
RRID:AB_784835 1:1000

Antibody Rabbit monoclonal anti- mAChR M2 Santa Cruz Biotechnology
Cat# SC- 33712;
RRID:AB_673789 1:1000

Antibody Mouse monoclonal anti- mAChR M3 Santa Cruz Biotechnology Cat# SC- 518107 1:1000

Antibody Rbbit polyclonal anti- mAChR M4 HUABIO Cat# ER1906- 24; 1:1000

Strain, strain 
background 
(Escherichia coli) DH5- alpha TIANGEN Cat# CB101

Strain, strain 
background 
(Escherichia coli) ArcticExpress (DE3) pRARE2 ANGYUBIO Cat# AYBIO- G6023

Transfected construct 
(human)

Plasmid: pcDNA 3.1(+) mammalian 
expression vector Invitrogen Cat# V79020

Strain, strain 
background (human)

Plasmid: pd1- EGFP- N1 mammalian 
expression vector Clontech Cat# 6073- 1

Transfected construct 
(Escherichia coli)

pGEX- 4T- 1 bacterial expression 
vector Addgene 27- 4580- 01

 Continued
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Human clinical samples
This study was approved by the ethics committee of the First Affiliated Hospital of Nanjing Medical 
University (2019- SR- 485.A1). Human peripheral blood samples were obtained from the remaining 
material utilized for routine laboratory tests at the First Affiliated Hospital of Nanjing Medical Univer-
sity (Nanjing, China) and derived from 21 patients with Ph+ CML and six healthy volunteers. And one 
human bone marrow sample of Ph+ acute lymphoblastic leukemia patient was obtained from the 
remaining material utilized for routine laboratory tests at the First Affiliated Hospital of Nanjing Medical 
University (Nanjing, China). Peripheral blood and bone marrow mononuclear cells were isolated by 
density gradient centrifugation using the Ficoll Paque Plus solution (17- 1440- 02, GE Healthcare).

Cell cultures
K562 (female; CBP60529), MEG- 01 (male; BP61104), KU812 (male; BP60732), and Jurkat cells were 
purchased from COBIOER and cultured in Roswell Park Memorial Institute 1640 medium (RPMI 1640; 
KGM31800, KeyGEN BioTECH) containing 10–20%  fetal bovine serum (FBS; FS301- 02, TransGen 
Biotech) and 100 mg/ml streptomycin/penicillin (FG101- 01, TransGen Biotech). HS- 5 (male; CRL11882, 
ATCC), purchased from the American Type Culture Collection (ATCC) and HEK293T (KG405) from 
KeyGEN BioTECH were cultured in Dulbecco’s modified Eagle’s medium (KGM12800, KeyGEN 
BioTECH) containing 10% FBS and 100 mg/ml streptomycin/penicillin. All cells were cultured in a 
humidified incubator with 5% CO2 at 37°C. All the cell lines were authenticated using short tandem 
repeat matching analysis and tested negative for mycoplasma contamination.

Animal studies
Female NOD/ShiLtJGpt- Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mice (6–8  weeks), purchased 
from GemPharmatech Co, Ltd, were used for all in vivo studies. Mice were housed under specific 
pathogen- free conditions at 24 ± 1°C and 55 ± 5% humidity in a barrier facility with 12 hr light–dark 
cycles. All animal experiments were performed in accordance with the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals with the approval of the Center for New Drug 
Evaluation and Research, China Pharmaceutical University (approval number: B20190925- 1; Nanjing, 
China).

Apoptosis assay
A total of 1–5 × 105 cells were washed with phosphate- buffered saline (PBS; 02- 024- 1ACS, Biological 
Industries) and resuspended in 100  μl of Annexin V binding buffer (E- CK- A211, Elabscience). The 
cell suspension was incubated with 2.5 μl of Annexin V- AF647 (E- CK- A211, Elabscience) and 2.5 μl 
of propidium iodide (PI; E- CK- A211, Elabscience) for 20 min in the dark, followed by the addition of 
400 μl of Annexin V binding buffer and detection by flow cytometry (Thermo Attune NxT, MA, USA).

Cell viability assay
Cells were seeded at a density of 5000 (K562) or 20,000 cells (MEG- 01) per well in round- bottom 
96- well plates and incubated with different concentrations of saracatinib (AZD0530, Selleck) or the 
corresponding amount of solvent for 72 hr. Cells were then transferred to flat- bottom 96- well plates 
for the determination of cell viability using the CCK- 8 Cell Counting Kit (A311- 01, Vazyme) following 
the manufacturer’s instructions. Each experiment was performed at least three times for individual cell 
line.

Cell proliferation assay
Cells were washed twice with PBS, resuspended with a cell number of 2 × 106 in 1 ml PBS, and incu-
bated with 2.5 μM carboxyfluorescein succinimidyl ester (CFSE) solution (1948076, Thermo Scientific) 
or 5 µM carboxylic acid, acetate, and succinimidyl ester (SNARF- 1) solution (S- 22801, Invitrogen) for 
20 min at 37°C in the dark, respectively. Subsequently, 1 ml of FBS was added to stop the staining, and 
the cells were washed twice with complete media. Cell division was monitored by measuring CFSE or 
SNARF- 1 dilution using flow cytometry via channels BL1 and YL1.

Cell cycle analysis
A total of 1 × 106 cells were washed once with pre- chilled PBS, fixed in ice- cold 70% ethanol, vortexing 
and kept for at least 20 min at −20°C. The fixed cells were washed twice with PBS and stained with 
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20  µg/ml PI containing 100  mg/ml RNAse A (740505, MACHEREY- NAGEL) for 15  min at room 
temperature. Stained nuclei were analyzed by flow cytometry and quantified using FlowJo software 
(BD Biosciences, NJ, USA).

Cell transfection and viral transduction
Transfection of the indicated DNA plasmids into HEK293T cells was performed using Lipofectamine 
2000 (11668500, Thermo Fisher Scientific), according to the manufacturer’s instructions. Briefly, trans-
fection of HEK293T was performed when cell confluency reached 60–70%. Plasmids and Lipofect-
amine 2000 reagent were diluted in Opti- MEM medium (31985- 070, Thermo Fisher Scientific) and 
incubated for 5 min at room temperature. They were then mixed together, incubated for another 
20 min at room temperature, and added to the target cells. The transfected cells were collected after 
48 hr for further analysis.

GST pull-down assay
Recombinantly expressed and purified GST or GST- RAPSYN (GenBank: NM_005055.5; 1236 bp open 
reading frame (ORF) sequence) proteins were incubated with glutathione beads 4FF (SA010010, 
Smart- Lifescience) overnight at 4°C in binding buffer (0.14 M NaCl, 2.68 mM KCl, 2 mM KH2PO4, 
0.01 M Na2HPO4, 10 mM 1,4- dithiothreitol (DTT), pH 7.4), respectively, and incubated with purified 
His- BCR- ABL (p210 BCR- ABL (b3a2); 6126 bp ORF sequence) protein for another 4 hr at 4°C. Beads 
were washed three times with washing buffer (0.14 M NaCl, 2.68 mM KCl, 2 mM KH2PO4, 0.01 M 
Na2HPO4, 0.5 mM reduced glutathione (GSH), 10 mM DTT, pH 7.4), eluted with elution buffer (0.14 M 
NaCl, 2.68 mM KCl, 2 mM KH2PO4, 0.01 M Na2HPO4, 10 mM reduced GSH, 10 mM DTT, pH 7.4), and 
subjected to immunoblotting detection.

Immunoblotting
The cells were lysed on ice with Nonidet P- 40 (NP- 40) lysis buffer (150  mM NaCl, 100  mM NaF, 
50 mM Tris–HCl (pH 7.6), and 0.5% NP- 40) supplemented with a protease inhibitor cocktail (78446, 
Thermo Fisher Scientific). Lysates were centrifuged, quantified, subjected to sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE), and transferred to polyvinylidene difluoride (PVDF) 
membranes using a Bio- Rad transfer apparatus. Membranes were blocked with 5% non- fat milk in Tris- 
buffered saline buffer containing 0.1% Tween- 20 (TBST) at 20–25°C for 2 hr, followed by incubation 
with primary antibody overnight at 4°C. The membranes were then washed three times in TBST buffer 
and incubated with species- specific horseradish peroxidase (HRP)- conjugated secondary antibodies 
for 2 hr at room temperature. Then, the membranes were washed three times in TBST buffer, devel-
oped using the enhanced chemiluminescence (ECL) reagent, and exposed to the ChemiDoc Imaging 
System (Tanon, Shanghai, China). The antibodies for immunoblotting or immunoprecipitation are list 
in Key Resources Table.

Immunoprecipitation
Immunoprecipitation assays were performed in accordance with the manufacturer’s instructions. 
Briefly, the cells were lysed on ice with NP- 40 lysis buffer supplemented with a protease inhibitor cock-
tail. Cell lysates were centrifuged, quantified, and incubated with the appropriate primary antibody 
overnight at 4°C, and subsequently with protein A agarose beads (16–125, Millipore) for another 4 hr 
at 4°C. Agarose was washed three times with lysis buffer and eluted with SDS–PAGE loading buffer. 
The eluted immunocomplexes were separated by SDS–PAGE and transferred to PVDF membranes. 
The membranes were then probed with primary and corresponding secondary antibodies, washed 
three times in TBST buffer, developed using ECL reagent and exposed by ChemiDoc Imaging System.

In vitro neddylation assay
A 30-μl reaction mixture containing 2 mM ATP- Mg2+ (B- 20, R&D), 50 ng E1 (APPBP1/UBA3; E- 313- 
25, R&D), 400 ng E2 (UBE2M; E2- 656- 100, R&D), 0.25 μg NEDD8 (UL- 812- 500, R&D), 0.35 μg His- 
BCR- ABL, with or without 4.77 µg recombinant RAPSYN was incubated at 37°C for 4 hr. Reaction was 
terminated with SDS–PAGE loading buffer and assayed using immunoblotting.
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In vitro phosphorylation assay
A 40-μl reaction mixture containing 2 mM ATP- Mg2+, 3 μg recombinant RAPSYN, and 1 μg recombi-
nant SRC (GenBank: NM_005417.5; 1608 bp ORF sequence) protein, with or without 2 µM saracatinib 
(AZD0530, Selleck), was incubated at 30°C for 30  min. Reaction was terminated with SDS–PAGE 
loading buffer and assayed by immunoblotting.

Animal experiments with mouse models
Female NCG mice aged 6–8 weeks were used in all the animal experiments. In the subcutaneous 
tumor experiment shown in Figure 1F, 20 mice were randomly divided into two groups, followed by 
subcutaneous injection of 1 × 106 K562- shNC or K562- shRAPSN #3 cells in 60 μl Matrigel (354234, 
Corning) into the right foreleg. Tumor size was measured every 2 days using a digital caliper. The 
tumor volume was quantified using the following equation: tumor volume = 0.5 × (long diameter) × 
(short diameter)2. When the average volume of the control group exceeded 2000 mm3, the mice were 
sacrificed. The tumors were separated, and their weights were measured. As shown in the survival 
experiment in Figure  1K, NCG mice were inoculated with K562- RAPSNWT or K562- RAPSNKO (1 × 
107 cells/mouse) via the tail vein. The survival time was recorded until the mice died. As shown in the 
survival experiment of Figure 6I, 40 mice were randomly divided into 4 groups and intravenously inoc-
ulated with K562- OE- NC2 (20 mice), K562- OE- RAPSNWT (10 mice), or K562- OE- RAPSNY336F (10 mice). 
From days 6 to 26 after tumor cell inoculation, 10 mice inoculated with K562- OE- NC2 were treated 
with vehicle orally, while the other 30  mice inoculated with K562- OE- NC2, K562- OE- RAPSNWT, or 
K562- OE- RAPSNWT, 10 mice in each group, were administered saracatinib orally (50 mg/kg/day). The 
survival time was recorded until the mice died. In the survival experiment shown in Figure 6J, 40 mice 
were randomly divided into four groups and intravenously inoculated with double- transfected K562 
cells, as indicated. The survival time was recorded until the mice died.

Identification of modification sites
To determine which lysine residues in BCR- ABL were neddylated by NEDD8, an in vitro neddylation 
reaction (50  μl) was performed. After incubation at 37°C for 4  hr, the reaction mixture was sepa-
rated by SDS–PAGE, and silver- stained bands were excised and sent to BiotechPack Scientific Co, Ltd 
(Beijing, China) for LC–MS/MS analysis. To determine which tyrosines in RAPSYN were phosphory-
lated by SRC, a phosphorylation reaction (50 μl) was performed. After a 30- min reaction, the reaction 
mixture was separated by SDS–PAGE, and silver- stained bands were excised and sent to Applied 
Protein Technology Co, Ltd (Shanghai, China) for LC–MS/MS analysis.

Plasmid construction
Eukaryotic expression vectors encoding His-, GST-, HA-, Myc-, or Flag- tagged proteins were generated 
by inserting PCR- amplified fragments into the pcDNA3.1(+) mammalian expression vector (V79020, 
Invitrogen). Eukaryotic expression vectors encoding green fluorescent protein (GFP)- tagged proteins 
were generated by inserting PCR- amplified fragments into pd1- EGFP- N1 vector (6073- 1, Clon-
tech). Prokaryotic plasmids encoding GST- fusion proteins were constructed using pGEX- 4T- 1 bacte-
rial expression vector (27- 4580- 01, Addgene). Mutants of His-, HA-, GST-, or GFP- tagged proteins 
were generated using QuickMutation Site- Directed Mutagenesis Kit (D0206, Beyotime) according to 
the manufacturer’s instructions. Briefly, whole plasmid DNA was amplified by PCR for 20 cycles with 
specific mutant primers (Supplementary file 1) using QuickMutation site- directed mutagenesis kit. 
Next, 1 µl DpnI was directly added to the PCR reaction mixture, followed by incubation at 37°C for 
30 min and transformation to E. coli cells. To verify the mutation sites, single colonies were selected 
for DNA sequencing and subsequent protein expression.

Preparation of stable RAPSYN-KO K562 cell line
RAPSN KO K562 cells were generated using CRISPR/Cas9 system (Genloci Biotechnologies Inc). 
Single- guide RNAs for RAPSN (sgRNAs) were designed using online CRISPR design tool (http://crispr. 
mit.edu/). The sgRNA sequences were  ATGG  GGCG  CTTC  CGCG  TGCT  GGG,  GTAG  CGGC  CCAT  CTCC  
GAGT  GGG, and  TCTG  GTTG  GACT  GGTA  CAGC  TGG, which were cloned into pGK1.1/CRISPR/Cas9 
vector (Genloci Biotechnologies Inc). To obtain single clones of RAPSN KO cells, K562 cells were 
transfected with pGK1.1/CRISPR/Cas9 plasmid containing the aforementioned sgRNA sequence, 
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expanded, selected with puromycin (0120A21, LEAGENE), and isolated by single- cell culturing. Single 
clones obtained from RAPSN KO cells were validated by DNA sequencing and immunoblotting.

Preparation of stable RAPSN-KD and SRC-KD cell lines
Lentivirus- producing shRNA targeting either human RAPSN or SRC mRNA was used to inhibit endog-
enous RAPSYN or SRC expression, respectively. All shRNAs (Supplementary file 1) were designed 
using online shRNA design tools (https://rnaidesigner.thermofisher.com and https://portals.broadin-
stitute.org). The shRNA primers were ordered from GenScript (Nanjing, China) and annealed in a 
thermal cycler according to following procedure (95°C, 2 min; 85°C, 9 min; 75°C, 9 min; 65°C, 9 min; 
55°C, 9 min; 45°C, 9 min; 35°C, 9 min; 25°C, 10 min; 4°C, hold) in the presence of NE Buffer 2.1 
(B7202S, New England BioLabs) to form a double strand with EcoRI and AgeI sticky ends. Using T4 
DNA ligase (M0202L, NEW ENGLAND BioLabs), the double- stranded shRNAs were ligated with either 
lentiviral backbone plasmid vector pLKO- EGFP- puro or a tet pLKO- EGFP- puro, which was digested 
with the restriction enzymes EcoRI- HF (R3101S, NEW ENGLAND BioLabs) and AgeI- HF (R3552S, NEW 
ENGLAND BioLabs). Plasmids containing shRNA or corresponding empty vector were co- transfected 
with lentivirus packaging plasmids (pLP1, pLP2, and pLP/VSVG) into HEK293T cells using linear poly-
ethylenimine (23966, Polyscience) transfection method. After transfection for 6–8 hr, the transfection 
reagent was replaced with a fresh medium. After incubation at 37°C, 5% CO2 for 48 and 72 hr, the 
resulting lentivirus supernatant was collected, respectively, and filtrated through a 0.22-μm disc filter. 
Then, 15 ml of filtered lentivirus supernatant was concentrated through a 100- kDa ultrafiltration tube 
at 1500 × g and 4°C for 1 hr. Ph+ leukemia cell lines were infected with concentrated lentivirus super-
natant containing 8 μg/ml polybrene (H9268, Sigma). The culture plate or dish was centrifuged in a 
horizontal rotor centrifuge at 2000 × g and 32°C for 1.5 hr. After 48 hr, the viral particles were replaced 
with fresh medium, and 3 μg/ml puromycin was added for selection for another 48–72 hr. Protein 
expression levels were analyzed by immunoblotting with the antibodies of anti- RAPSYN (ab118491, 
Abcam) or SRC (11097- 1- AP, Proteintech).

Preparation of stable RAPSN-WT, RAPSN-Y336F, or SRC expression cell 
lines
The lentiviruses for overexpressing RAPSN- WT, SRC (both with corresponding empty vector OE- NC1), 
or RAPSN- Y336F (with corresponding empty vector OE- NC2) were obtained from GenePharma. The 
volume of virus required was calculated using the following equation: Ph+ leukemia cell lines were 
infected using the spin- infection method described above. After infection for 48 hr, the viral particles 
were replaced with fresh medium. Stable RAPSYN- WT, RAPSYNY- 336F, or SRC expressing cells were 
selected in the presence of 3 μg/ml puromycin for 48–72 hr. Protein expression levels were analyzed 
by immunoblotting with anti- RAPSYN or anti- SRC antibodies.

 
virus volume = MOI × cell number

virus titer   

Protein expression and purification
Recombinant pGEX- 4T- 1- GST- RAPSYN plasmid were transformed into the ArcticExpress (DE3) 
pRARE2 competent E. coli cells (AYBIO- G6023, ANGYUBIO) and treated with 0.4 mM isopropyl-β- D- 
thiogalactoside (367- 93- 1, Sangon Biotech) to induce fusion protein expression at 18°C. After 50 hr, 
bacterial cells were harvested, resuspended in PBS (0.14 M NaCl, 2.68 mM KCl, 2 mM KH2PO4, 0.01 M 
Na2HPO4, 10 mM DTT, pH 7.4), and sonicated on ice. Precipitates were removed from cell lysates by 
centrifugation. Recombinant GST- RAPSYN was purified from the supernatant by GST- affinity chroma-
tography (SA010010, Smart- Lifescience) and size- exclusion chromatography (17- 0060- 01, GE Health-
care). Purified GST- RAPSYN protein was digested with thrombin (T8021, Solarbio) for 6 hr at 4°C to 
remove GST tag. Recombinant pcDNA3.1- His- BCR- ABL plasmids were transfected into HEK293T cells 
and were collected after 48 hr culturing. The cells were then lysed on ice using NP- 40 lysis buffer with 
a protease inhibitor cocktail. Cell lysates were centrifuged, and then the supernatant fraction was 
incubated with anti- BCR- ABL antibody overnight at 4°C and subsequently with protein A magnetic 
beads (73778, Cell Signaling Technology) for another 4 hr at 4°C. The bead complexes were washed 
three times with washing buffer (25 mM Tris–HCl, 0.15 M NaCl, 0.005% Tween- 20, pH 7.5), eluted with 
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elution buffer (0.1 M glycine, pH 2.0), and mixed with neutralization buffer (1 M Tris–HCl, pH 9.0) for 
neutralization of purified protein.

Protein stability assay
RAPSNWT, RAPSNY336F, or BCR- ABL- transfected Ph+ leukemia cells were incubated with 100 mg/ml 
cycloheximide (CHX, A8244; Cell Signaling Technology) for indicated time points. Cells were harvested 
and lysed on ice using NP- 40 lysis buffer supplemented with a protease inhibitor cocktail. The super-
natant was collected and subjected to immunoblotting using anti- RAPSYN or anti- SRC antibodies.

Quantitative reverse transcription-PCR
High- quality RNA was isolated from cells or tissues using Trizol reagent (AJF1807A, Takara) according 
to the manufacturer’s instructions. cDNA was synthesized from 1  μg of total RNA using HiScriptIIRT 
SuperMix for qPCR (R233- 01, Vazyme). The ChamQ SYBR qPCR Master Mix (Q331- 02, Vazyme) was 
used for two- step reverse transcription- PCR analysis on an Applied Biosystems StepOnePlus Real- Time 
PCR instrument. The samples were analyzed in triplicate. The expression value of target gene in a given 
sample was normalized to the corresponding expression of ACTB or GAPDH. The 2-ΔΔCt method was used 
to calculate relative expression of target genes. The primers used are listed in Supplementary file 1.

Cytotoxicity assay
Lentiviruses co- expressing GFP were used to assess the toxicity of shRNAs. Flow cytometry was 
performed 2 days after shRNA transduction to determine initial GFP- positive proportion of live cells 
for each shRNA. Subsequently, the cells were sampled every 2 days over the time. The GFP- positive 
proportion at each time point was normalized to that of day 2. Each shRNA experiment was performed 
at least three times for individual cell line.

Statistical analysis
All in vitro experiments were repeated at least three times. Animals were randomly assigned to different 
groups for each in vivo study. Kaplan–Meier survival analysis was used for all survival studies, and the 
log- rank test was used to determine significant differences between groups. Differences with *p < 0.05, 
**p < 0.01, ***p < 0.001, and ****p < 0.0001 were considered significant. Prism 8 (GraphPad Software, 
CA, USA) was used for statistical analysis. Representative results from at least three independent repli-
cates are shown. Data are presented as mean ± standard deviation (SD), and significant differences 
were determined using Student’s t- test, unpaired Student’s t- test, or one- way analysis of variance test.
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