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eLife Assessment
This study examines how self-citations in selected neurology, neuroscience, and psychiatry journals 
differ according to seniority, geography, gender and subfield. The evidence supporting the claims is 
convincing, and the article is a valuable addition to the literature on self-citations.

Abstract Citation metrics influence academic reputation and career trajectories. Recent works 
have highlighted flaws in citation practices in the Neurosciences, such as the under-citation of 
women. However, self-citation rates—or how much authors cite themselves—have not yet been 
comprehensively investigated in the Neurosciences. This work characterizes self-citation rates in 
basic, translational, and clinical Neuroscience literature by collating 100,347 articles from 63 journals 
between the years 2000–2020. In analyzing over five million citations, we demonstrate four key find-
ings: (1) increasing self-citation rates of Last Authors relative to First Authors, (2) lower self-citation 
rates in low- and middle-income countries, (3) gender differences in self-citation stemming from 
differences in the number of previously published papers, and (4) variations in self-citation rates 
by field. Our characterization of self-citation provides insight into citation practices that shape the 
perceived influence of authors in the Neurosciences, which in turn may impact what type of scientific 
research is done and who gets the opportunity to do it.

Introduction
Citations are often used as a proxy for how well a researcher disseminates their work, which is 
important both for spreading knowledge and establishing a scientific reputation (Petersen et  al., 
2014). Furthermore, citation counts and other metrics like the h-index are critical for hiring and 
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promotion in an increasingly tenuous academic job market (Abbott, 2010; Else, 2021; Holden et al., 
2005), necessitating a thorough examination of citation practices across research fields. Existing 
investigations of citation practices have found, for instance, false inflation of impact factors by specific 
journals (Van Noorden, 2013). Others have demonstrated under-citation of racial and ethnic minority 
groups Bertolero et al., 2020 and women (Dworkin et al., 2020; Chatterjee and Werner, 2021; 
Fulvio et al., 2021), including three studies specific to the Neuroscience literature (Bertolero et al., 
2020; Dworkin et  al., 2020; Fulvio et  al., 2021). These examples of citation manipulations and 
biases underscore the importance of comprehensively investigating citation practices in the broader 
Neuroscience literature.

Self-citation, or how frequently authors cite themselves, remains an understudied citation practice 
in the Neuroscience literature. Self-citation can be calculated from two different perspectives: (1) as 
the proportion of an author’s total citations that come from their own works (Ioannidis et al., 2019; 
Aksnes, 2003) or (2) as the proportion of an author’s references on which they are also an author 
(Snyder and Bonzi, 1998). Since the former accounts for the total number of times an author cites 
themselves (across all papers) divided by the total number of citations the author has received, it 
helps identify when a particular author only accumulates citations from themselves (Ioannidis et al., 
2019). However, in this manuscript, we defined self-citation as the latter because one cannot control 
how much others cite their works. As such, the second definition of self-citation rate may more closely 
reflect intention in self-citing and will allow for more self-reflection about self-citation practices.

Self-citations may often be appropriate. For example, in a direct follow-up publication, a researcher 
will need to cite their previous work. Yet, h-indices can be strategically manipulated via self-citation 
(Bartneck and Kokkelmans, 2011), and some scientists may engage in extreme or unnecessary 
self-citation (Ioannidis et al., 2019). While certain citation metrics can be adjusted to remove self-
citations, the effect of a single self-citation extends beyond adding one additional citation to an 
author’s citation count. In a longitudinal study of self-citation, Fowler and Aksnes, 2007 found that 
each self-citation leads to approximately three additional citations after five years. Given the potential 
effects of self-citations on various citation metrics that influence career trajectories, a detailed analysis 
of self-citation rates and trends in the Neuroscience literature could benefit the field.

This work summarizes self-citation rates in Neurology, Neuroscience, and Psychiatry literature 
across the last 21 years, 63 journals, 100,347 articles, and 5,061,417 citations. We then build upon 
these calculations by exploring trends in self-citation over time, by seniority, by country, by gender, 
and by different subfields of research. We further develop models of the number of self-citations and 
self-citation rate. Finally, we discuss the implications of our findings in the Neuroscience publishing 
landscape and share a tool for authors to calculate their self-citation rates: https://github.com/​
mattrosenblatt7/self_citation. (copy archived at Rosenblatt, 2025).

Results
Data
We downloaded citation information from 157,287 papers published between 2000 and 2020 from 
Scopus. Articles spanned 63 different journals representing the top Neurology, Neuroscience, and 
Psychiatry journals (Appendix 1—table 1) based on impact factor. After applying our exclusion criteria 
(see Methods), 100,347 articles and 5,061,417 citations remained.

Metrics
Using the Scopus database and Pybliometrics API (Rose and Kitchin, 2019), we calculated three 
metrics for each individual paper: First Author self-citation rate, Last Author self-citation rate, and Any 
Author self-citation rate, where self-citation rate is defined as the proportion of cited papers on which 
the citing author is also an author. As an example, consider a hypothetical paper by Author A, Author 
B, and Author C that cites 100 references.

•	 If Author A is an author on 5 of those references, then the First Author self-citation rate is 
5/100=5%.

•	 If Author C is an author on 10 of those references, then the Last Author self-citation rate is 
10/100=10%.

https://doi.org/10.7554/eLife.88540
https://github.com/mattrosenblatt7/self_citation
https://github.com/mattrosenblatt7/self_citation
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•	 If at least one of Author A, Author B, OR Author C is an author on 18 of the references, then the 
Any Author self-citation rate is 18/100=18%.

We will use the above definitions of self-citation throughout the remainder of the paper. Further-
more, our estimations via Python code of the above three metrics showed strong agreement with 906 
manually scored articles from a subset of Psychiatry journals (r=0.98 for First Authors, 0.95 for Last 
Authors, 0.96 for Any Authors).

We performed 1000 iterations of bootstrap resampling to obtain confidence intervals for all anal-
yses. We additionally performed 10,000 iterations of permutation testing to obtain two-sided p values 
for all significance tests. All P values are reported after applying the Benjamini/Hochberg (Benjamini 
and Hochberg, 1995) false discovery rate (FDR) correction, unless otherwise specified. Importantly, 
we accounted for the nested structure of the data in bootstrapping and permutation tests by forming 
co-authorship exchangeability blocks.

Throughout this work, we characterized self-citation rates with descriptive, not causal, analyses. 
Our analyses included several theoretical estimands that are descriptive (Lundberg et al., 2021), such 
as the mean self-citation rates among published articles as a function of field, year, seniority, country, 
and gender. We adopted two forms of empirical estimands. First, we showed subgroup means in 
self-citation rates. We then developed smooth curves with generalized additive models (GAMs) to 
describe trends in self-citation rates across several variables.

Table 1. Self-citation rates in 2016–2020 for First, Last, and Any Authors by field.

Field First Author Last Author Any Author

Overall
3.98
(3.87, 4.07)

8.15
(7.98, 8.30)

14.41
(13.99, 14.74)

Neurology
4.54
(4.36, 4.70)

8.87
(8.52, 9.14)

16.59
(15.85, 17.16)

Neuroscience
3.41
(3.30, 3.51)

7.54
(7.36, 7.73)

12.61
(12.29, 12.91)

Psychiatry
4.29
(4.11, 4.43)

8.41
(8.16, 8.60)

15.07
(14.48, 15.47)

Figure 1. Visualizing recent self-citation rates and temporal trends. (a) Kernel density estimate of the distribution of First Author, Last Author, and Any 
Author self-citation rates in the last five years. (b) Average self-citation rates over every year since 2000, with 95% confidence intervals calculated by 
bootstrap resampling.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Temporal trends in First Author, Last Author, and Any Author self-citation rates from 2000 to 2020 in Neurology, Neuroscience, 
and Psychiatry papers.

https://doi.org/10.7554/eLife.88540
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Self-citation rates in 2016-2020
In the last 5 years of our dataset (2016–2020), the overall self-citation rates were 3.98% (95% CI: 3.87%, 
4.07%) for First Authors, 8.15% (95% CI: 7.98%, 8.30%) for Last Authors, and 14.41% (95% CI: 13.99%, 
14.74%) for Any Authors (Table 1). In all fields, the Last Author self-citation rates were significantly 
higher than that of First Author self-citation rates (p=2.9e-4). Neuroscience had a significantly lower 
self-citation rate than Neurology and Psychiatry for First, Last, and Any Authors (p’s=2.9e-4). We found 
no significant difference between Neurology and Psychiatry for First Author (p=0.144) and Last Author 
(p=0.123) self-citation rates. Any Author self-citation rates were significantly higher in Neurology than 
Psychiatry before correction but nonsignificant after correction (p=0.010). When determining fields 
by each author’s publication history instead of the journal of each article, we observed similar rates of 
self-citation (Appendix 2—table 1). The 95% confidence intervals for each field definition overlapped 
in most cases, except for Last Author self-citation rates in Neuroscience (7.54% defined by journal 
vs. 8.32% defined by author) and Psychiatry (8.41% defined by journal vs. 7.92% defined by author).

Although there is no clear rule for what levels of self-citation are ‘acceptable,’ a histogram of self-
citation rates (Figure 1a) and a table of self-citation percentiles (Appendix 2—table 2) both provide 
insight into the self-citation levels that are typical in the Neuroscience literature.

Temporal trends in self-citation rates
Furthermore, self-citation rates have changed since 2000 (Figure 1). For example, First Author self-
citation rates were 6.22% (95% CI: 5.97%, 6.47%) in 2000 and 3.68% (95% CI: 3.53%, 3.81%) in 2020. 
First Author self-citation rates decreased at a rate of –1.21% per decade (95% CI: –1.30%, –1.12%), 
Last Author self-citation rates decreased at a rate of –0.18% per decade (95% CI: –0.31%, –0.05%), 
and Any Author self-citation rates increased at a rate of 0.32% per decade (95% CI: 0.05%, 0.55%). 
Corrected and uncorrected p values for the slopes are available in Appendix 2—table 5. Further 
details about yearly trends in self-citation rate by field are presented in Figure 1—figure supplement 
1 and Appendix 2—table 3.

Author seniority and self-citation rate
We also considered that the self-citation rate might be related to seniority. To test this, we calculated 
each author’s ‘academic age’ as the years between the publication of their first paper (in any author 

Figure 2. Average self-citation rates for each academic age in years 2016–2020. (a) Self-citation rate vs. academic age for both First and Last Authors. 
Shaded regions show 95% confidence intervals obtained via bootstrap resampling. (b) Comparison of self-citation rates by academic age for First and 
Last Authors. For a given academic age, a single point is plotted as (x=First Author self-citation rate for authors of academic age a, y=Last Author 
self-citation rate for authors of academic age a). The dashed line represents the y=x line, and the coloring of the points from dark to light represents 
increasing academic age.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Average of normalized self-citation counts for each academic age in years 2016–2020.

https://doi.org/10.7554/eLife.88540
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position) and the current paper. For example, if the Last Author of a 2017 paper published their first 
paper in 1995, their academic age would be 22. We averaged the self-citation rates across each 
academic age, only including those ages with at least 50 papers in the dataset, and found marked 
increases in self-citation rate with greater academic age (Figure 2a). For instance, at 10 years, the 
self-citation rate for First Authors is about 5%, while this number increases to over 10% at 30 years. 
Academic age appears to be a more robust indicator of self-citation than authorship position; for 
a given academic age, First Author and Last Author self-citation rates are comparable (Figure 2b). 
Analyzing self-citations as a fraction of publication history exhibited a similar trend (Figure 2—figure 
supplement 1). First Authors were even more likely than Last Authors to self-cite when normalized by 
prior publication history.

Geographic location and self-citation rate
In addition, we used the country of the affiliated institution of each author to determine the self-citation 
rate by institution country over the last 5 years (2016–2020). We averaged First Author and Last Author 
self-citation rates by country and only included countries with at least 50 papers. This analysis is distinct 
from country self-citation rate because we calculated self-citation at the level of the author, then aver-
aged across countries. In contrast, previous studies have operationalized country self-citation rates as 
when authors from one country cite other authors from the same country (Bardeesi et al., 2021). The 
results are shown on a map of the world using GeoPandas Jordahl, 2020; Figure 3 and also presented 
in Appendix 2—table 4. Self-citation rates in the highest self-citing countries double that of the lowest 
for the First and Last Authors. For instance, the First Author self-citation rate in Italy is 5.65%, while in 
China, it is 2.52%. We also investigated the distribution of the number of previous papers and journal 
impact factor across countries (Figure 3—figure supplement 1). Self-citation maps by country were 
highly correlated with maps of the number of previous papers (Spearman’s r=0.576, p=4.1e-4; 0.654, 
p=1.8e-5 for First and Last Authors). They were significantly correlated with maps of average impact 
factor for Last Authors (0.428, p=0.014) but not Last Authors (Spearman’s r=0.157, p=0.424). Thus, 
further investigation is necessary with these covariates in a comprehensive model.

Self-citation rates by subtopic
We next investigated how self-citation rate varies within subfields of Neuroscience research. Based on 
Scopus abstract data for papers from 2016 to 2020, we developed a topic model using latent Dirichlet 
allocation (LDA). In LDA, each abstract is modeled as a distribution of topics, and each topic contains 
probabilities for many different words.

We assigned each paper to the topic with the highest probability to determine ‘subtopics’ for each 
paper. The topic number was chosen as 13 with a parameter search (Figure 4—figure supplement 
1). Based on the most common words of each topic (Figure 4—figure supplement 2), we assigned 
13 overall themes: (1) Aging and development, (2) Animal models, (3) Cellular, (4) Clinical research, (5) 
Clinical trials, (6) Dementia, (7) Depression and anxiety, (8) Functional imaging, (9) Mechanistic, (10) 
Pain, (11) Schizophrenia, (12) Social Neuroscience, (13) Stroke. We then computed self-citation rates 
for each of these topics (Figure 4) as the total number of self-citation in each topic divided by the total 
number of references in each topic, and results with seven topics are also presented (Figure 4—figure 
supplement 3; Figure 4—figure supplement 4).

We generally found that clinical trial research had the highest self-citation rates for First Authors at 
6.07% (95% CI: 5.90%, 6.22%), whereas mechanistic research had the lowest self-citation rate at 3.10% 
(95% CI: 3.05%, 3.15%). For Last Authors, self-citation rates were highest for Dementia research at 
10.34% (95% CI: 10.10%, 10.57%) while Social Neuroscience had the lowest self-citation rate at 6.34% 
(95% CI: 6.25%, 6.42%). For Any Author, Clinical trials once again had the highest self-citation rate at 
20.99% (95% CI: 20.59%, 21.28%), and Social Neuroscience had the lowest self-citation rate at 10.71% 
(95% CI: 10.55%, 10.71%). For Last Author and Any Author self-citation rates, a different number 
of authors per field may explain the differences in self-citation rates (Spearman’s r=0.758, p=0.007; 
r=0.736, p=0.009 for Last and Any Authors, respectively). The same relationship did not hold for First 
Authors (Spearman’s r=−0.033, p=0.929).

Self-citation by gender
Several previous works have explored gender differences in self-citation practices. King et al., 2017 
found that men self-cited 70% more than women from 1991 to 2011, but they did not account for 

https://doi.org/10.7554/eLife.88540
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the number of previous papers that the authors had due to limitations of the dataset. More recent 
works demonstrated that gender differences in self-citation largely disappear when accounting for 
the number of possible works an author may self-cite (i.e. number of previous publications) (Dworkin 
et al., 2020; Mishra et al., 2018; Azoulay and Lynn, 2020). While (Dworkin et al., 2020) specifically 

Figure 3. Self-citation rates by country for First and Last Authors from 2016 to 2020. First Author data are presented in (a), and Last Author data are 
shown in panel (b). Only countries with >50 papers were included in the analysis. Country was determined by the affiliation of the author.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mean impact factor by country for (a) First Authors and (b) Last Authors.

https://doi.org/10.7554/eLife.88540
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explored citation by gender in the Neuroscience literature, we expand the analysis to a wider range of 
journals to better represent field-wide self-citation rates (63 journals versus five in the previous work).

For each paper, we assigned a probability of a particular name belonging to a woman or a man 
using the Genderize.io API. We retained only authors with >80% probabilities. There are clear limita-
tions to these types of packages, as described by Dworkin et al., 2020, because they assume genders 
are binary, and they do not account for authors who identify as nonbinary, transgender, or intersex. As 
such, the terms ‘women’ and ‘men’ indicate the probability of names being that gender as opposed 
to a specific author identifying as a man or woman. Despite these limitations, we believe these tools 
can still help broadly uncover gender differences in self-citation rates.

We calculated the proportion of men and women First and Last Authors since 2000 (Figure 5a). 
Although the authorship proportions have begun to converge to be equal by gender, the gender 
disparity among the Last Authors was more notable than among the First Authors. Men and women 
were nearly equally represented as First Authors in 2020 (48.60% women). Based on linear fits, we 
estimated that men and women would be equally represented as Last Authors in 2043 (95% CI: 2040, 
2046).

In 2016–2020, there were significant differences between First Author self-citation rates of men 
and women. First authors who were men had average self-citation rates of 4.54% (95% CI: 3.99%, 
5.08%), while women authors had average self-citation rates of 3.39% (95% CI: 3.03%, 3.76%), which 
is significantly different (p=2.9e-4). Similarly, in 2020, Last Authors who were men had significantly 
higher self-citation rates than those who were women (p=2.9e-4), with self-citation rates of 8.53% 
(95% CI: 7.78%, 8.96%) and 7.42% (95% CI: 6.84%, 8.13%), respectively.

In addition, men persistently had higher self-citation rates than women since 2000 (Figure 5b), 
though the gap has slowly decreased. Linear fits were used to estimate that self-citation rates for men 
and women would be equal for First Authors in the year 2044 (95% CI: 2036, 2056) and equal for the 
Last Authors in 2040 (95% CI: 2030, 2061). Furthermore, we calculated the ratio of men to women self-
citations over the past two decades (Figure 5c). For First Authors, men have consistently cited them-
selves more than women by 27.27–55.57% depending on the year. Among Last Authors, there was a 
steep decrease in 2002, but since then, men have cited themselves 11.41–43.00% more than women.

Seniority may account for gender differences in self-citation rate, as there are gender disparities in 
faculty positions and ranks (Ginther and Hayes, 1999; Deutsch and Yao, 2014; Li et al., 2021; Casad 
et al., 2021). To explore the effect of seniority, we investigated self-citation rates by academic age and 

Figure 4. Self-citation rates by topic. Results are presented for (a) First, (b) Last, and (c) Any Authors. Topics were determined by Latent Dirichlet 
Allocation. Confidence intervals of the average self-citation rate are shown based on 1000 iterations of bootstrap resampling.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. LDA perplexity on training and validation data for a different number of topics.

Figure supplement 2. Topic word clouds for 13 topics.

Figure supplement 3. Topic word clouds for seven topics.

Figure supplement 4. Self-citation rates by topic for seven topics.

https://doi.org/10.7554/eLife.88540
https://genderize.io/
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Figure 5. Gender disparities in authorship and self-citation. (a) Proportion of papers written by men and women 
First and Last Authors since 2000. (b) Average self-citation rates for men and women First and Last Authors. (c) 
Ratio of average self-citation rates of men to women for First and Last Authors. (d) Self-citation rates by academic 
age for men and women authors, where the dashed line represents men and the solid line women. (e) Ratio of 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.88540
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gender (2016–2020). Gender differences for the same academic age emerged early in an academic 
career and were relatively persistent throughout most of the career (Figure 5d–e). For instance, in 
the previous five years (2016–2020), there were 10,155 papers by early-career women authors and 
10,694 by early-career men authors. Women authors had 600,262 references and 13,426 self-citations 
(2.24% self-citation rate), while men authors had 617,881 references and 18,399 self-citations (2.98% 
self-citation rate). This equated to a 33.13% higher self-citation rate for men than women during the 
first ten years of their careers (p=2.9e-4).

We considered two factors that might contribute to the gender discrepancy in self-citation rate by 
academic age: the number of papers published for authors of a given academic age, which is greater 
for men at all career stages (Mishra et al., 2018; Azoulay and Lynn, 2020; Larivière et al., 2013; 
West et al., 2013), and the self-citation rate for a given number of papers. We compared the number 
of papers for men and women at a given academic age (Figure 5f–g) and found that men had a higher 
number of papers. This trend started early in the career (academic age ≤ 10 years), where men had 
significantly more papers than women (p=2.9e-4). For example, at an academic age of 10 years, men 
were authors on an average of 42.32 (s.d.: 1.76) papers, and women authored 30.09 (s.d.: 0.96) papers 
on average. In addition, we divided the number of papers into groups (Figure 5—figure supplement 
1) and computed self-citation rate by gender for each group. Although the effect was small, men had 
significantly higher self-citation rates for 0–9 papers (p=7.8e-4) and 10–19 papers (p=0.034). All other 
differences were not statistically significant. Clearly, accounting for covariates may affect perceived 
differences in raw self-citation rates. Thus, we further investigate the role of gender by adjusting for 
various other covariates in Sections 2.9 and 2.10.

Furthermore, we explored topic-by-gender interactions (Figure 5—figure supplement 2). In short, 
men and women were relatively equally represented as First Authors, but more men were Last Authors 
across all topics. Self-citation rates were higher for men across all topics.

Exploring effects of covariates with generalized additive models
Investigating the raw trends and group differences in self-citation rates is important, but several 
confounding factors may explain some of the differences reported in previous sections. For instance, 
gender differences in self-citation were previously attributed to men having a greater number of prior 
papers available to self-cite (Dworkin et al., 2020; Mishra et al., 2018; Azoulay and Lynn, 2020). 
As such, covarying for various author- and article-level characteristics can improve the interpretability 
of self-citation rate trends. To allow for inclusion of author-level characteristics, we only consider First 
Author and Last Author self-citation in these models.

We used generalized additive models (GAMs) to model the number and rate of self-citations for 
First Authors and Last Authors separately. The data were randomly subsampled so that each author 
only appeared in one paper. The terms of the model included several article characteristics (article 
year, average time lag between article and all cited articles, document type, number of references, 
field, journal impact factor, and number of authors), as well as author characteristics (academic age, 
number of previous papers, gender, and whether their affiliated institution is in a low- and middle-
income country). Model performance (adjusted R2) and coefficients for parametric predictors are 
shown in Table 2. Plots of smooth predictors are presented in Figure 6.

First, we considered several career and temporal variables. Consistent with prior works (Mishra 
et al., 2018; Azoulay and Lynn, 2020), self-citation rates and counts were higher for authors with a 
greater number of previous papers. Self-citation counts and rates increased rapidly among the first 
25 published papers but then more gradually increased. Early in the career, increasing academic age 

self-citation rates of men to women by academic age. (f) Number of papers by academic age for men and women, 
where the dashed line represents men and the solid line women. (g) Ratio of average number of papers of men to 
women by academic age. In all subplots, 95% confidence intervals of the mean were calculated with 1000 iterations 
of bootstrap resampling.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Self-citation rates by number of papers for women and men.

Figure supplement 2. Topic and gender interactions.

Figure 5 continued
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was related to greater self-citation. There was a small peak at about five years, followed by a small 
decrease and a plateau. We found an inverted U-shaped trend for average time lag and self-citations, 
with self-citations peaking approximately 3 years after initial publication. In addition, self-citations 
have generally been decreasing since 2000. The smooth predictors showed larger decreases in the 
First Author model relative to the Last Author model (Figure 6).

Then, we considered whether authors were affiliated with an institution in a low- and middle-income 
country (LMIC). LMIC status was determined by the Organisation for Economic Co-operation and 
Development. We opted to use LMIC instead of affiliation country or continent to reduce the number 
of model terms. We found that papers from LMIC institutions had significantly lower self-citation 
counts (–0.138 for First Authors, –0.184 for Last Authors) and rates (–12.7% for First Authors, –23.7% 
for Last Authors) compared to non-LMIC institutions. Additional results with affiliation continent are 
presented in Appendix 3—table 1. Relative to the reference level of Asia, higher self-citations were 
associated with Africa (only three of four models), the Americas, Europe, and Oceania.

Among paper characteristics, a greater number of references was associated with higher self-
citation counts and lower self-citation rates (Figure 6). Interestingly, self-citations were greater for a 
small number of authors, although the effect diminished after about five authors. Review articles were 
associated with lower self-citation counts and rates. No clear trend emerged between self-citations 
and journal impact factor. In an analysis by field, despite the raw results suggesting that self-citation 
rates were lower in Neuroscience, GAM-derived self-citations were greater in Neuroscience than in 
Psychiatry or Neurology. Field-based results were comparable when defining fields by each author’s 
publication history instead of the journal of each article. The most notable difference was in Neuro-
science, where authors had relatively higher self-citation rates using author-based rather than journal-
based definitions of field (Appendix 3—table 2).

Finally, our results aligned with previous findings of nearly equivalent self-citation rates for men 
and women after including covariates, even showing slightly higher self-citation rates in women. Since 
raw data showed evidence of a gender difference in self-citation that emerges early in the career but 
dissipates with seniority, we incorporated two interaction terms: one between gender and academic 

Table 2. Coefficients and P values for parametric terms in the models.
Separate models were created for First and Last Authors. Models were also made for self-citation counts, self-citation rates, and the 
number of previously published papers. Quantile-quantile plots are presented in Figure 6—figure supplement 1. Results from 100 
random resamplings are presented in Figure 6—figure supplement 2. Please note that model covariates were not included in the 
multiple comparisons correction in Appendix 2—table 5. *p<0.05, **p<1e-5, ***p<1e-10.

Count Rate Number of papers

First Author Last Author First Author Last Author First Author Last Author

Adjusted R2 0.508 0.351 0.347 0.204 0.565 0.400

Deviance explained 50.1% 38.6% 40.8% 25.4% 72.5% 55.7%

Intercept 0.046** (p=1.1e-6) 0.748*** (p<2e-16)
–3.64*** 
(p<2e-16) –2.93*** (p<2e-16) 2.296*** (p<2e-16) 3.727*** (p<2e-16)

Field

Neurology –0.093*** (p<2e-16) –0.025* (p=0.046)
–0.131*** 
(p<2e-16) –0.062** (p=1.4e-6) 0.026* (p=3.7e-4)

0.068*** 
(p=4.0e-15)

Neuroscience 0.147*** (p<2e-16) 0.184*** (p<2e-16)
0.112*** 
(p<2e-16) 0.186*** (p<2e-16)

–0.195*** 
(p<2e-16) –0.122*** (p<2e-16)

Psychiatry 0 0 0 0 0 0

Low-middle income country 
status

No 0 0 0 0 0 0

Yes –0.116** (p=1.1e-7) –0.241*** (p<2e-16)
–0.127** 
(p=1.0e-7) –0.237*** (p<2e-16) 0.071* (p=2.2e-5) 0.010 (p=0.605)

Gender

Woman 0 0 0 0 0 0

Man –0.009 (p=0.253) –0.033* (p=0.002)
–0.026* 
(p=0.004) –0.047* (p=5.8e-5) 0.246*** (p<2e-16) 0.248*** (p<2e-16)

Document type

Article 0 0 0 0 0 0

Review –0.042**(p=0.001) –0.139*** (p<2e-16)
–0.064** 
(p=7.8e-6) –0.143*** (p<2e-16) 0.152*** (p<2e-16) –0.019* (p=0.047)

https://doi.org/10.7554/eLife.88540
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age and a second between gender and the number of previous papers. Results remained largely 
unchanged with the interaction terms (Appendix 3—table 3).

Reconciling differences between raw data and models
The raw and GAM-derived data exhibited some conflicting results, such as for gender and field of 
research. To further study covariates associated with this discrepancy, we modeled the publication 

Figure 6. Smooth predictors for generalized additive models presented in Table 2. Models for (a) First Authors and self-citation counts, (b) Last Authors 
and self-citation counts, (c) First Authors and self-citation rates, (d) Last Authors and self-citation rates, (e) First Authors and publication history, (f) Last 
Authors and publication history. The number in parentheses on each y-axis reflects the effective degrees of freedom. All p values were p<2e-16 except 
year citing for Last Authors for the count (p=5.0e-5) and rate (p=0.176) models.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Quantile-quantile plots for all models.

Figure supplement 2. Values for parametric terms in models across 100 random resamplings.

https://doi.org/10.7554/eLife.88540
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history for each author (at the time of publication) in our dataset (Table 2). The model terms included 
academic age, article year, journal impact factor, field, LMIC status, gender, and document type. 
Notably, Neuroscience was associated with the fewest number of papers per author. This explains 
how authors in Neuroscience could have the lowest raw self-citation rates by highest self-citation 
rates after including covariates in a model. In addition, being a man was associated with about 0.25 
more papers. Thus, gender differences in self-citation likely emerged from differences in the number 
of papers, not in any self-citation practices.

Self-citation code
We provide code for authors to evaluate their own self-citation rates at the following link: https://​
github.com/mattrosenblatt7/self_citation (copy archived at Rosenblatt, 2025). Please note that this 
code requires access to Scopus, which may be available through your institution. The code may also 
be adapted for journal editors to evaluate the author self-citation rates of published articles in their 
journal.

As an example, we also investigated self-citation rates for a particular author, in this case Dustin 
Scheinost. Dr. Scheinost permitted us to use his name and self-citation data in this work. We show a 
histogram of self-citations by paper (Figure 7a), the self-citation rates over time (Figure 7b), and the 
histogram of Any Author self-citation rates for all of Dr. Scheinost’s papers (Figure 7c). Furthermore, 
these methods can be extended to evaluate self-citation rates at the level of a country, institute, or 
journal. For instance, we compared self-citation rates in Nature Neuroscience to the overall field of 
Neuroscience (Figure 7d). In general, Last Author and Any Author self-citation rates were higher in 

Figure 7. Self-citation tool outputs. Self-citation rates for a single author (a) across all papers, (b) by year, and (c) for all authors of their papers. (d) Self-
citation rate for a single journal is shown compared to the average in Neuroscience from 2000-2020.

https://doi.org/10.7554/eLife.88540
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Nature Neuroscience compared to the field. First Author self-citation rates used to be lower in Nature 
Neuroscience (e.g. Year 2000) but are now approximately equal to that of the field.

Discussion
This work analyzed self-citation rates in 100,347 peer-reviewed Neurology, Neuroscience, and Psychi-
atry papers, with over five million total citations, to dissect the factors associated with self-citation 
practices.

Temporal trends in self-citation rates
Increasing collaborations and expanding author lists in recent years likely explains the increase in 
Any Author self-citation rates. A more concerning trend is the decrease in First Author relative to 
Last Author self-citations since 2000. In the Neurosciences, First Authors are typically early-career 
researchers (e.g. graduate students, postdoctoral fellows) who perform the majority of the experi-
ments and analysis, whereas Last Authors are typically professors who oversee the project and secure 
funding. As a result, these changes in citation practices could make it harder for early-career scien-
tists to advance in their academic careers, warranting further investigation and monitoring. Another 
possible explanation is that an increasing number of early career researchers are leaving academia 
(Langin, 2022). Thus, early-career researchers may be less incentivized to self-promote (e.g. self-cite) 
for academic gains compared to 20 years ago. A third, more optimistic explanation is that principal 
investigators (typically Last Authors) are increasingly self-citing their lab’s papers to build up their 
trainee’s citation records for an increasingly competitive job market.

Differences between early- and late-career researchers’ self-citation practices is not surprising 
because, as one continues in their career, they contribute to more papers and are more likely to cite 
themselves. In addition, researchers may often become more specialized throughout their career, 
which may necessitate higher self-citation rates later in the career. However, these results demonstrate 
a ‘snowball effect’, whereby senior authors continually accumulate a disproportionate number of self-
citations. For example, an author with 30 years of experience cites themselves approximately twice 
as much as one with 10 years of experience on average. Both authors have plenty of works that they 
can cite, and likely only a few are necessary. As such, we encourage authors to be cognizant of their 
citations and to avoid unnecessary self-citations.

Geographic differences in self-citation rates
There are several possible explanations for differences in self-citation by geographic region, including 
broader cultural differences or academic culture differences. For instance, an analysis of management 
journals previously found that self-citation rates of authors from individualist cultures were higher than 
that of authors from collectivist cultures (Deschacht and Maes, 2017). In addition to broader cultural 
norms affecting the tendency to self-cite, differences in academic norms likely play a major role as 
well. Researchers in the United States, for example, reported feeling more pressure to publish papers 
within their organizations compared to researchers from other countries (van Dalen and Henkens, 
2012). The pressure to publish stems from pressure to advance one’s career. Similar pressures that 
vary by geographic region may drive researchers to unnecessarily self-cite to improve their citation 
metrics and make them more competitive candidates for hiring, promotion, and funding.

In addition, low- and middle-income countries were associated with fewer self-citations, even after 
considering numerous covariates. Decreased self-citations may diminish the visibility of researchers 
from LMIC relative to their peers from non-LMIC. Thus, future research should explore the mechanism 
behind the decreased self-citations.

While hiring and promotion almost universally depend on citation metrics to some extent, an 
example of a recent policy in Italy demonstrates how rules regarding hiring and promotion can influ-
ence self-citation behavior. This policy was introduced in 2010 and required researchers to achieve 
certain citation metrics for the possibility of promotion, which was followed by increases of self-citation 
rates throughout Italy (Seeber et al., 2019). Ideally, authors, institutions, journals, and policymakers 
would work together to establish self-citation guidelines and discourage a ‘game the system’ mindset. 
However, requiring all institutions and countries to follow similar values regarding citation metrics is 
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not practical, so awareness of possible differences in metrics by geographic region due to self-citation 
differences is the next best alternative.

Field differences in self-citation rates
Initially, it appeared that self-citation rates in Neuroscience are lower than Neurology and Psychi-
atry, but after considering several covariates, the self-citation rates are higher in Neuroscience. This 
discrepancy likely emerges because authors in Neuroscience journals in our dataset tended to be 
more junior (fewer number of previous papers, slightly lower academic age) compared to Neurology 
and Psychiatry, giving the illusion of lower field-wide self-citation rates. The field-wide differences in 
self-citation rate likely depend on both necessity and opportunity. In some research fields, a researcher 
may need to reference several of their previous works to properly explain the methodology used in 
the present study, thus having a high necessity of self-citation. Depending on the nature of the work 
across various fields, researchers may publish more or less frequently, which will affect their number of 
previous works and thus their opportunity to self-cite.

In addition, while not included in the model to limit the number of terms, the 13 subtopics under 
examination had different raw self-citation rates, and ‘acceptable levels’' of self-citation may vary 
depending on the subfield. For example, clinical trials had the highest self-citation rate, which may 
relate to the relatively high number of authors per paper in clinical trial research or the fact that clinical 
trial research often builds upon previous interventions (e.g. Phase 1 or 2 trials). Overall, these field and 
subfield differences highlight the importance of editors and researchers understanding common self-
citation rates in their specific fields to ensure that they are not unnecessarily self-citing.

Self-citation rates by gender
The higher self-citation rate of men compared to women, without considering other covariates, aligns 
with the previous self-citation literature (Dworkin et al., 2020; King et al., 2017; Mishra et al., 2018; 
Azoulay and Lynn, 2020). Similar to prior works (Dworkin et al., 2020; Mishra et al., 2018; Azoulay 
and Lynn, 2020), we found that the largest difference in self-citing is explained by the number of 
previous papers (i.e. number of citable items) as opposed to differences in self-citation behavior itself. 
This result overall points toward a more general underrepresentation of women in science, such as in 
publication counts (Larivière et al., 2013; West et al., 2013), collaboration networks (Zeng et al., 
2016; Li et al., 2022), awards (Melnikoff and Valian, 2019), editorial boards (Palser et al., 2022), 
and faculty positions (Smith, 1993; Nguyen et al., 2021; Wapman et al., 2022). We confirmed this 
idea by modeling the number of previous papers for each author. Women had significantly fewer 
papers than men after considering multiple covariates, such as academic age. In other words, women 
have a lower self-citation rate than men in the Neuroscience literature because they are not given the 
same opportunity, such as through prior publications, to self-cite. Establishing field-wide influence and 
scientific prominence may be most crucial in early career stages, since soon thereafter decisions will 
be made about hiring, early-career grants, and promotion. Thus, future work should further consider 
the downstream effects of differences in the number of publications by gender.

Limitations
There were several notable limitations of this study. First, our analyses were restricted to the top-
ranked Neurology, Neuroscience, and Psychiatry journals, and the generalizability of these findings 
to a wider variety of journals has yet to be determined. Citations of a journal’s articles directly affect 
the journal’s impact factor. As such, it is possible that the selection of journals based on high impact 
factor skews the results toward higher self-citation rates compared to the entire field of Neurosci-
ence. Yet, we found minimal effect of impact factor in our models. Second, we calculated differences 
between Neurology, Neuroscience, and Psychiatry journals by assigning each journal to only one field 
(Appendix 1—table 1). As some journals publish across multiple fields (e.g. both Neuroscience and 
Psychiatry research), this categorization provides a gross estimate of differences between fields. Third, 
we reported averages of self-citation rates across various groups (e.g. academic ages), but there is a 
wide inter-author and inter-paper variability in self-citation rate. Fourth, as described above, we evalu-
ated gender differences with gender assignment based on name, and this does not account for nonbi-
nary, transgender, or intersex authors. Fifth, selecting subtopics using LDA was subjective because we 
assigned each subtopic name based on the most common words. Sixth, our modeling techniques are 
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not useful for prediction due to the inherently large variability in self-citation rates across authors and 
papers, but they instead provide insight into broader trends. In addition, these models do not account 
for whether a specific citation is appropriate, as some situations may necessitate higher self-citation 
rates. Seventh, the analysis presented in this work is not causal. Association studies are advantageous 
for increasing sample size, but future work could investigate causality in curated datasets. Similarly, 
this study falls short in several potential mechanistic insights, such as by investigating citation appro-
priateness via text similarity or international dynamics in authors who move between countries. Yet, 
this study may lay the groundwork for future works to explore causal estimands (Lundberg et al., 
2021). Eighth, authors included in this work may not be neurologists, neuroscientists, or psychia-
trists. However, they still publish in journals from these fields. Ninth, data were differentially missing 
(Appendix 1—table 3) due to Scopus coverage and gender estimation. Differential missingness could 
bias certain results in the paper, but we hope that the dataset is large enough to reduce any potential 
biases. Tenth, while we considered academic age, we did not consider cohort effects. Cohort effects 
would depend on the year in which the individual started their career. Finally, our analysis does not 
account for other possible forms of excessive self-citation practices, such as coercive induced self-
citation from reviewers (Ioannidis, 2015). Despite these limitations, we found significant differences 
in self-citation rates for various groups, and thus we encourage authors to explore their trends in self-
citation rates. Self-citation rates that are higher than average are not necessarily wrong, but suggest 
that authors should further reflect on their current self-citation practices.

Self-citation policies
According to The Committee on Publication Ethics (COPE), ‘citations where the motivations are 
merely self promotional…violates publication ethics and is unethical’ (COPE Council, 2019). Exces-
sive and unnecessary self-citations can possibly be limited by using appropriate citation metrics that 
cannot be easily ‘gamed’ (Seeber et al., 2019; Ioannidis, 2015). Furthermore, while COPE suggests 
that journals and editors should make policies about acceptable levels of self-citation (COPE Council, 
2019), many journals have no such policy. For example, only 24.71% of General Surgery Sanfilippo 
et al., 2021a and 14.29% of Critical Care (Sanfilippo et al., 2021b) journals had policies regarding 
self-citation, most of which were policies discouraging ‘excessive’ or ‘inappropriate’ self-citations. 
Although the self-citation policies in the investigated journals had no significant effect on self-citation 
rate (Sanfilippo et al., 2021a; Sanfilippo et al., 2021b), a more appropriate consideration might 
be whether these policies significantly reduce excessive self-citations. Self-citation practices are not 
typically problematic, but excessive self-citations may falsely establish community-wide influence 
(Szomszor et al., 2020). As such, we believe that the self-citation summary statistics presented in 
this work could serve as a useful guide in identifying potential cases of excessive self-citation. In 
practice, there should be more nuance than a binary threshold of acceptable/unacceptable levels of 
self-citation, as some fields may have atypical self-citation patterns (Szomszor et al., 2020) or specific 
articles may require high levels of self-citation.

Conclusions
Overall, we identified trends in self-citation rates by time, geographic region, gender, and field, 
though the extent to which this reflects an underlying problem that needs to be addressed remains an 
open question. We do not intend to argue against the practice of self-citation, which is not inherently 
bad and in fact can be beneficial to authors and useful scientifically (Fowler and Aksnes, 2007; Ioan-
nidis, 2015). Yet, self-citation practices become problematic when they are different across groups or 
are used to ‘game the system’. Future work should investigate the downstream effects of self-citation 
differences to see whether they impact the career trajectories of certain groups. We hope that this 
work will help to raise awareness about factors influencing self-citation practices to better inform 
authors, editors, funding agencies, and institutions in Neurology, Neuroscience, and Psychiatry.

Methods
We collected data from the 25 journals with the highest impact factors, based on Web of Science 
impact factors, in each of Neurology, Neuroscience, and Psychiatry. Some journals appeared in the 
top 25 list of multiple fields (e.g. both Neurology and Neuroscience), so 63 journals were ultimately 
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included in our analysis. We recognize that limiting the journals to the top 25 in each field also limits 
the generalizability of the results. However, there are tradeoffs between breadth of journals and depth 
of information. For example, by limiting the journals to these 63, we were able to look at 21 years of 
data (2000–2020). In addition, the definition of fields are somewhat arbitrary. By restricting the jour-
nals to a set of 63 well-known journals, we ensured that the journals belonged to Neurology, Neuro-
science, or Psychiatry research. It is also important to note that the impact factor of these journals has 
not necessarily always been high. For example, Acta Neuropathologica had an impact factor of 17.09 
in 2020 but 2.45 in 2000. To further recognize the effects of impact factor, we decided to include an 
impact factor term in our models.

Dataset collection
The data were downloaded from the Scopus API in 2021–2022 via http://api.elsevier.com and http://
www.scopus.com. We obtained information about research and review articles in the 63 journals from 
2000 to 2020. We downloaded two sets ​of.​csv files: (1) an article database and (2) a reference data-
base. For each year/journal, the article database contains last names and first initials of the authors, 
title, year, and article EID (a unique identifier assigned by Scopus) of all research and review articles. 
The reference database contains the same information for all articles referenced by any article in the 
article database.

Python code using Pybliometrics API
We used the Pybliometrics API (Rose and Kitchin, 2019) to access citation information for each entry 
in the article database. First, we used the article EID to retrieve a detailed author list, which included 
full names and Scopus Author IDs, and a list of references for each article. For each reference, we 
extracted the list of Scopus Author IDs. To count as a self-citation, we required that the Scopus Author 
IDs matched exactly.

Our self-citation metrics included First Author, Last Author, and Any Author self-citation rates. 
For First (Last) Author self-citation rates, we computed the proportion of reference papers on which 
the citing First (Last) author is also an author. We considered papers with only a single author as 
both First Author and Last Author self-citations. For Any Author self-citation rates, we found the 
proportion of papers for which at least one of the citing authors (any authorship position) was also 
an author. For the analyses in this paper, we reported total (or weighted average) self-citation rates 
for different groups. For example, in Figure 1, the reported self-citation rate for the year 2000 is the 
total number of self-citations in 2000 across all papers divided by the total number of references in 
2000 across all papers.

Other data we collected from Scopus and Pybliometrics included the affiliation of the authors, the 
number of papers published by the First and Last Authors before the current paper, and academic 
age of the First and Last Authors, which we defined as the time between the author’s first publication 
and their current publication.

Table 3. Data exclusions.
Each cell shows the number of articles or citations remaining after exclusion, as well as the percentage that were dropped by the 
exclusion criteria.

First Author Last Author

# Articles # Citations # Articles # Citations

Prior to exclusions 157,287 8,438,733 157,287 8,438,733

Missing covariates: remaining (% dropped) 133,403 (15.18%) 7,392,638 (12.40%) 132,806 (15.56%) 7,379,581 (12.55%)

Missing citation data: remaining (% dropped) 133,256 (0.11%) 6,773,293 (8.38%) 132,667 (0.10%) 6,769,081 (8.27%)

Extreme values (citation level): remaining (% dropped) 126,938 (4.74%) 6,390,129 (5.66%) 126,168 (4.90%) 6,396,015 (5.51%)

Extreme values (article level): remaining (% dropped) 115,205 (9.24%) 5,794,926 (9.31%) 114,622 (9.15%) 5,801,367 (9.30%)

Data available for First and Last Authors 100,347 Articles; 5,061,417 citations
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Data exclusions and missingness
Data were excluded across several criteria: missing covariates, missing citation data, out-of-range 
values at the citation pair level, and out-of-range values at the article level (Table 3). After downloading 
the data, our dataset included 157,287 articles and 8,438,733 citations. We excluded any articles with 
missing covariates (document type, field, year, number of authors, number of references, academic 
age, number of previous papers, affiliation country, gender, and journal). Of the remaining articles, 
we dropped any for missing citation data (e.g. cannot identify whether a self-citation is present due 
to lack of data). Then, we removed citations with unrealistic or extreme values. These included an 
academic age of less than zero or above 38/44 for First/Last Authors (99th percentile); greater than 
266/522 papers for First/Last Authors (99th percentile); and a cited year before 1500 or after 2023. 
Subsequently, we dropped articles with extreme values that could contribute to poor model stability. 
These included greater than 30 authors; fewer than 10 references or greater than 250 references; and 
a time lag of greater than 17 years. These values were selected to ensure that GAMs were stable and 
not influenced by a small number of extreme values.

In addition, we evaluated whether the data were not missing at random (Appendix 1—table 3). 
Data were more likely to be missing for reviews relative to articles, for Neurology relative to Neuro-
science or Psychiatry, in works from Africa relative to the other continents, and for men relative to 
women. Scopus ID coverage contributed in part to differential missingness. However, our exclusion 
criteria also contribute. For example, Last Authors with more than 522 papers were excluded to help 
stabilize our GAMs. More men fit this exclusion criteria than women.

Country affiliation
For both First and Last Authors, we found the country of their institutional affiliation listed on the 
publication. In the case of multiple affiliations, the first one listed in Scopus was used. We then calcu-
lated the total First Author and Last Author self-citation rate by country, only including countries 
that had at least 50 First Author or Last Author papers in these select journals from 2016 to 2020. 
We then projected the self-citation rates onto a map using Geopandas (Jordahl, 2020), specifi-
cally using the map with coordinate systems EPSG:6933 (https://epsg.io/6933). We determined 
whether a country was considered a low- and middle-income country based on the Organisation 
for Economic Co-operation and Development’s list (https://wellcome.org/grant-funding/guidance/​
low-and-middle-income-countries).

Topic modeling
Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Hoffman et al., 2010) was implemented with the 
Gensim package Rehurek and Sojka, 2010 in Python. LDA is a generative probabilistic model that 
is commonly used in natural language processing to discover topics in a large set of documents. In 
LDA, each document is modeled as a distribution of latent topics, and each topic is represented as a 
distribution of words. Based on the data provided, in this case abstracts from all articles in our dataset 
from 2016 to 2020, the model finds distributions of topics and words to maximize the log likelihood 
of the documents. Further details about LDA are available in Blei et al., 2003; Hoffman et al., 2010; 
Rehurek and Sojka, 2010.

For our implementation, we first removed all special characters and numbers from the abstract 
data. Then, we lemmatized the words using the Natural Language Toolkit (Bird et al., 2009). We 
excluded words that appeared in less than 20 documents, words that appeared in over 50% of the 
documents, common stop words (e.g. ‘the’, ‘you’, etc.), and some additional words that we felt would 
not meaningfully contribute to the topic model (e.g. ‘associated’, ‘analysis’, ‘effect’, etc.). In addition, 
we allowed for bigrams (two consecutive words) and trigrams (three consecutive words) in the model, 
as long as they appeared at least 20 times in the dataset.

Our total corpus included 41,434 documents with 16,895 unique tokens (words + bigrams + 
trigrams). We used 90% of the corpus to train our LDA model, and left out 10% to evaluate the 
perplexity, where a lower perplexity demonstrates better performance, as described in Blei et al., 
2003. For the a-priori belief on document-topic distribution, we used Gensim’s ‘auto’ option. We 
trained models with a number of topics ranging from 2 to 20, passing through the entire train corpus 
30 times for each number of topics we evaluated. The number of topics was picked based on two eval-
uation metrics. First, we selected 13 topics as the topics that seemed most meaningful, as assessed 
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qualitatively by word clouds for each topic. Second, we selected seven topics as the number of topics 
with the lowest validation perplexity.

Finally, we assigned each paper a discrete topic by choosing the topic with highest probability. 
Since we do not necessarily care about the generalization of this model and are instead using it to 
determine topics of a specific set of papers, we determined topics on the same data on which the 
model was trained.

Name gender probability estimation
To compute gender probabilities, we submitted given names of all First and Last Authors to the ​
Genderize.io API. Each name was assigned a probability of a name belonging to a woman or man, 
and we only used names for which Genderize.io assigned at least an 80% probability. Details about 
the Genderize.io database used to calculate probabilities is available at this link: https://genderize.​
io/our-data.

There are clear limitations to probabilistically assigning genders to names with packages such as ​
Genderize.io, as described in Dworkin et al., 2020, because they assume genders are binary and 
do not account for authors who identify as nonbinary, transgender, or intersex. As such, the terms 
‘women’ and ‘men’ indicate the probability of a name being that gender and not that a specific author 
identifies as a man or woman. However, these tools are still useful to explore broad trends in self-
citation rates for women and men.

Self-citation rate for a particular author
We also calculated the self-citation rate for a particular author, in this case Dr. Dustin Scheinost, in 
Figure  5—figure supplement 1. Here, we defined Scheinost-Scheinost self-citation rates as the 
proportion of references with Dr. Scheinost as one of the authors. Notably, Dr. Scheinost can be in any 
author position on the citing or cited article. In Figure 5—figure supplement 1c, we calculated the 
Any Author self-citation rate for all of Dr. Scheinost’s papers.

Confidence intervals
Confidence intervals were computed with 1000 iterations of bootstrap resampling at the article level. 
For example, of the 100,347 articles in the dataset, we resampled articles with replacement and 
recomputed all results. The 95% confidence interval was reported as the 2.5 and 97.5 percentiles of 
the bootstrapped values.

We grouped data into exchangeability blocks to avoid overly narrow confidence intervals or overly 
optimistic statistical inference. Each exchangeability block comprised any authors who published 
together as a First Author / Last Author pairing in our dataset. We only considered shared First/Last 
Author publications because we believe that these authors primarily control self-citations, and other-
wise exchangeability blocks would grow too large due to the highly collaborative nature of the field. 
Furthermore, the exchangeability blocks do not account for co-authorship in other journals or prior 
to 2000.

P values
P values were computed with permutation testing using 10,000 permutations, with the exception 
of regression p values and p values from model coefficients. For comparing different fields (e.g. 
Neuroscience and Psychiatry) and comparing self-citation rates of men and women, the labels were 
randomly permuted by exchangeability block to obtain null distributions. For comparing self-citation 
rates between First and Last Authors, the first and last authorship was swapped in 50% of exchange-
ability blocks.

In total, we made 40 comparisons (not including the models of self-citation). All p values described 
in the main text were corrected with the Benjamini/Hochberg (Benjamini and Hochberg, 1995) false 
discovery rate (FDR) correction. With 10,000 permutations, the lowest p value after applying FDR 
correction is p=2.9e-4, which indicates that the true point would be the most extreme in the simulated 
null distribution. Further details about each comparison and p values can be found in Appendix 3—
table 4.

Exploring effects of covariates with generalized additive models
For these analyses, we used the full dataset size separately for First and Last Authors (Appendix 2—
table 2). This included 115,205 articles and 5,794,926 citations for First Authors, and 114,622 articles 
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and 5,801,367 citations for Last Authors. We modeled self-citation counts, self-citation rates, and 
number of previous papers for First Authors and Last Authors separately, resulting in six total models.

We found that models could be computationally intensive and unstable when including author-
level random effects because in many cases there was only one author per group. Instead, to avoid 
inappropriately narrow confidence bands, we resampled the dataset such that each author was only 
represented once. For example, if Author A had five papers in this dataset, then one of their five 
papers was randomly selected. The random resampling was repeated 100 times as a sensitivity anal-
ysis (Figure 6—figure supplement 2).

For our models, we used generalized additive models from mgcv’s ‘gam’ function in R Wood, 2017. 
The smooth terms included all the continuous variables: number of previous papers, academic age, 
year, time lag, number of authors, number of references, and journal impact factor. The linear terms 
included all the categorical variables: field, gender affiliation country LMIC status, and document 
type. We empirically selected a Tweedie distribution (Dunn and Smyth, 2005) with a log link function 
and P=1.2. The p parameter indicates that the variance is proportional to the mean to the p power 
(Wood, 2017). The p parameter ranges from 1 to 2, with P=1 equivalent to the Poisson distribution 
and P=2 equivalent to the gamma distribution. For all fitted models, we simulated the residuals with 
the DHARMa package, as standard residual plots may not be appropriate for GAMs (Hartig, 2022). 
DHARMa scales the residuals between 0 and 1 with a simulation-based approach (Hartig, 2022). 
We also tested for deviation from uniformity, dispersion, outliers, and zero inflation with DHARMa. 
Non-uniformity, dispersion, outliers, and zero inflation were significant due to the large sample size, 
but small in effect size in most cases. The simulated quantile-quantile plots from DHARMa suggested 
that the observed and simulated distributions were generally aligned, with the exception of slight 
misalignment in the models for the number of previous papers. These analyses are presented in 
Figure 6—figure supplement 1 and Appendix 3—table 4.

In addition, we tested for inadequate basis functions using mgcv’s ‘​gam.​check()’ function 
(Wood, 2017). Across all smooth predictors and models, we ultimately selected between 10 and 20 
basis functions depending on the variable and outcome measure (counts, rates, papers). We further 
checked the concurvity of the models and ensured that the worst-case concurvity for all smooth 
predictors was less than 0.8.

Journal-based vs. author-based field sensitivity analyses
We refined our field-based analysis to focus only on authors who could be considered neuroscientists, 
neurologists, and psychiatrists. For each author, we examined the number of articles they had in each 
subfield, as defined by Scopus. We considered 12 subfields that fell within Neurology, Neuroscience, 
and Psychiatry, which are presented in Appendix 1—table 2. For both First Authors and Last Authors, 
we excluded them if any of their three most frequently published subfields did not include one of 
the 12 subfields of interest. If an author’s top three subfields included multiple broader fields (e.g., 
both Neuroscience and Psychiatry), then that author was categorized according to the field in which 
they published the most articles. Among First Authors, there were 86,220 remaining papers, split 
between 33,054 (38.33%) in Neurology, 23,216 (26.93%) in Neuroscience, and 29,950 (34.73%) in 
Psychiatry. Among Last Authors, there were 85,954 remaining papers, split between 31,793 (36.98%) 
in Neurology, 25,438 (29.59%) in Neuroscience, and 28,723 (33.42%) in Psychiatry.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation practices such that papers from 
women and other minority scholars are under-cited relative to the number of such papers in the field 
(Bertolero et al., 2020; Dworkin et al., 2020; Chatterjee and Werner, 2021; Fulvio et al., 2021; 
Mitchell et al., 2013; Maliniak et al., 2013; Caplar et al., 2017; Dion et al., 2018; Wang et al., 
2021). Here, we sought to proactively consider choosing references that reflect the diversity of the 
field in thought, form of contribution, gender, race, ethnicity, and other factors. First, we obtained 
the predicted gender of the First and Last Author of each reference by using databases that store 
the probability of a first name being carried by a woman (Dworkin et al., 2020; Zhou et al., 2020). 
By this measure (and excluding self-citations to the First and Last Authors of our current paper), our 
references contain 12.53% woman(first)/woman(last), 19.27% man/woman, 13.17% woman/man, and 
55.03% man/man. This method is limited in that (a) names, pronouns, and social media profiles used 
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to construct the databases may not, in every case, be indicative of gender identity and (b) it cannot 
account for intersex, non-binary, or transgender people. Second, we obtained predicted racial/ethnic 
category of the First and Last Author of each reference by databases that store the probability of a first 
and last name being carried by an author of color (Ambekar et al., 2009; Sood and Laohaprapanon, 
2018). By this measure (and excluding self-citations), our references contain 7.46% author of color 
(first)/author of color(last), 17.45% white author/author of color, 14.81% author of color/white author, 
and 60.29% white author/white author. This method is limited in that (a) names, Census entries, and 
Wikipedia profiles used to make the predictions may not be indicative of racial/ethnic identity, and (b) 
it cannot account for Indigenous and mixed-race authors, or those who may face differential biases 
due to the ambiguous racialization or ethnicization of their names. We look forward to future work 
that could help us to better understand how to support equitable practices in science.
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Appendix 1
Study information

Appendix 1—table 1. All journals included in this analysis by field, sorted alphabetically.
We categorized each journal as belonging to Neurology, Neuroscience, or Psychiatry. While we 
recognize that some journals belong to overlapping fields (e.g., Neurology and Neuroscience), we 
attempted to select the most relevant field for each journal.

Field Journals (2020 Impact Factor)

Neurology

Acta Neuropathologica (17.09); Alzheimer’s and Dementia (21.57); Alzheimer’s Research 
and Therapy (6.98); Annals of Neurology (10.42); Brain (13.50); Brain Stimulation 
(8.96); Epilepsy Currents (7.5); JAMA Neurology (18.30); JNNP (10.28); Journal of 
Headache and Pain (7.28); Journal of Stroke (6.97); Lancet Neurology (44.18); Molecular 
Neurodegeneration (14.20); Movement Disorders (10.34); Nature Reviews Neurology 
(42.94); Neuro-Oncology (12.30); Neurology (9.91); Neurology: Neuroimmunology 
and NeuroInflammation (8.49); Neuropathology and Applied Neurobiology (8.09); 
Neurotherapeutics (7.62); npj Parkinson’s Disease (8.65); Pain (6.96); Sleep Medicine 
Reviews (11.61); Stroke (7.91); Translational Stroke Research (6.83)

Neuroscience

Annual Review of Neuroscience (12.45); Behavioral and Brain Sciences (12.58); Brain, 
Behavior, and Immunity (7.22); Frontiers in Neuroendocrinology (8.61); Journal of 
Neuroinflammation (8.32); Journal of Pineal Research (13.01); Nature Human Behaviour 
(13.66); Nature Neuroscience (24.88); Nature Reviews Neuroscience (34.87); Neuron 
(17.17); Neuroscience and Biobehavioral Reviews (8.99); Neuroscientist (7.52); Progress 
in Neurobiology (11.69); Trends in Cognitive Sciences (20.23); Trends in Neurosciences 
(13.84)

Psychiatry

Acta Psychiatrica Scandinavica (6.39); Addiction (6.53); American Journal of Psychiatry 
(18.11); Biological Psychiatry (13.38); Bipolar Disorders (6.74); Body Image (6.41); British 
Journal of Psychiatry (9.32); Clinical Psychological Science (7.17); Depression and 
Anxiety (6.51); Epidemiology and Psychiatric Sciences (6.89); Evidence-Based Mental 
Health (8.54); JAACAP (8.83) JAMA Psychiatry (21.60); JCPP (8.98); Journal of Abnormal 
Psychology (6.67); Journal of Behavioral Addictions (6.76); Molecular Psychiatry (15.99); 
Neuropsychopharmacology (7.86); Psychological Medicine (7.72); Psychotherapy and 
Psychosomatics (17.66); Schizophrenia Bulletin (9.31); The Lancet Psychiatry (26.48); 
World Psychiatry (49.55)

Appendix 1—table 2. Mapping of subfields to fields.

Field Scopus-defined Subfields

Neurology Neurology; Neurology (clinical)

Neuroscience

Cognitive Neuroscience; Neuroscience (all); Cellular and Molecular Neuroscience; 
Behavioral Neuroscience; Neuropsychology and Physiological Psychology; Developmental 
Neuroscience; Neuroscience (miscellaneous)

Psychiatry Biological Psychiatry; Psychiatric Mental Health; Psychiatry and Mental Health

Appendix 1—table 3. Data missingness.

Ratio of prevalence in missing to non-missing data

First Author Last Author

Document type

Article 0.994

Review 1.029

Field

Neurology 1.204

Neuroscience 0.888

Psychiatry 0.900

Appendix 1—table 3 Continued on next page
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Ratio of prevalence in missing to non-missing data

Continent

Africa 1.308 1.329

Americas 0.973 0.979

Asia 1.562 1.570

Europe 0.909 0.908

Oceania 0.926 0.914

Low-middle income country status

No 0.972 0.976

Yes 1.615 1.608

Gender

Woman 0.864 0.922

Man 1.089 1.026

Appendix 1—table 3 Continued
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Appendix 2
Additional descriptive analyses

Appendix 2—table 1. Comparisons of self-citation rates whether defining field by paper or by 
author.

Field Field definition First Author Last Author

Neurology

By journal
4.54
(4.36, 4.70)

8.87
(8.52, 9.14)

By author
4.33
(4.14, 4.47)

9.07
(8.71, 9.36)

Neuroscience

By journal
3.41
(3.30, 3.51)

7.54
(7.36, 7.73)

By author
3.62
(3.47, 3.74)

8.32
(8.13, 8.51)

Psychiatry

By journal
4.29
(4.11, 4.43)

8.41
(8.16, 8.60)

By author
4.45
(4.24, 4.60)

7.92
(7.58, 8.16)

Appendix 2—table 2. Percentiles of self-citation rates in articles from 2016 to 2020.

Percentile
First Author self-citation 
rate (%)

Last Author self-citation 
rate (%)

Any Author self-citation rate 
(%)

1% 0.00 0.00 0.00

5% 0.00 0.00 0.00

10% 0.00 0.00 2.38

25% 0.00 2.44 6.67

50% 2.86 7.14 13.51

75% 7.69 13.79 22.72

90% 15.00 21.95 33.33

95% 20.83 28.21 41.18

99% 35.71 41.94 58.33

Appendix 2—table 3. Correlations between year and self-citation rate and corresponding slopes by 
field.

Correlation Slope (% per decade)

Neurology

First Author –0.86 (-0.92,–0.77) –0.71 (-0.87,–0.54)

Last Author 0.43 (0.09, 0.67) 0.30 (0.05, 0.53)

Any Author 0.87 (0.80, 0.93) 1.68 (1.19, 2.08)

Neuroscience

First Author –0.96 (-0.98,–0.94) –1.40 (-1.51,–1.28)

Last Author –0.90 (-0.95,–0.85) –0.94 (-1.10,–0.77)

Any Author –0.82 (-0.91,–0.70) –0.80 (-1.06,–0.56)

Psychiatry

First Author –0.95 (-0.97,–0.92) –1.30 (-1.48,–1.15)

Last Author 0.51 (0.28, 0.68) 0.36 (0.17, 0.53)

Any Author 0.66 (0.41, 0.80) 0.76 (0.36, 1.06)

https://doi.org/10.7554/eLife.88540
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Appendix 2—table 4. First Author and Last Author self-citation rates by affiliation country of the 
author for papers from 2016–2020.
95% confidence intervals obtained via bootstrap resampling are included in parentheses. Only 
countries with at least 50 papers were included in the analysis.

Country First Author Self-citation Rate Last Author Self-citation Rate

Argentina 3.04 (2.59, 3.42) 7.11 (5.72, 8.35)

Australia 4.82 (4.51, 5.07) 7.54 (6.96, 7.93)

Austria 4.62 (3.68, 5.20) 8.73 (7.24, 9.62)

Belgium 4.61 (4.10, 5.04) 7.58 (6.58, 8.21)

Brazil 2.92 (2.60, 3.21) 6.37 (5.54, 6.98)

Canada 4.43 (4.23, 4.61) 7.85 (7.55, 8.13)

Chile 3.79 (2.87, 4.67) 8.37 (5.37, 9.57)

China 2.52 (2.31, 2.74) 4.84 (4.51, 5.20)

Czech Republic 3.84 (2.64, 4.93) 4.85 (3.67, 6.16)

Denmark 4.45 (4.07, 4.76) 8.51 (7.69, 9.09)

Finland 5.34 (4.82, 5.79) 8.86 (8.08, 9.56)

France 3.83 (3.63, 4.01) 7.32 (6.97, 7.62)

Germany 4.79 (4.63, 4.95) 8.61 (8.37, 8.83)

Greece 4.36 (3.63, 5.05) 5.91 (4.56, 6.99)

Hong Kong 4.72 (3.32, 5.87) 6.83 (5.74, 8.15)

Hungary 5.10 (4.03, 5.98) 6.44 (5.31, 7.55)

India 3.29 (2.50, 3.96) 5.00 (3.77, 5.89)

Ireland 3.67 (3.20, 4.11) 8.12 (6.93, 8.96)

Iran 1.87 (1.24, 2.42) 3.78 (2.40, 4.90)

Israel 4.68 (4.20, 5.11) 9.00 (8.16, 9.70)

Italy 5.65 (5.35, 5.90) 8.08 (7.57, 8.46)

Japan 5.25 (4.87, 5.55) 8.05 (7.59, 8.43)

South Korea 2.93 (2.50, 3.28) 5.47 (4.92, 5.95)

Mexico 5.92 (3.56, 7.21) 7.01 (4.76, 8.11)

Netherlands 3.97 (3.81, 4.16) 7.92 (7.41, 8.29)

New Zealand 5.34 (4.44, 6.11) 6.52 (5.60, 7.31)

Norway 4.90 (4.23, 5.39) 8.83 (7.43, 9.88)

Poland 3.98 (3.27, 4.63) 6.31 (5.21, 7.36)

Portugal 2.85 (2.31, 3.26) 5.42 (4.39, 6.27)

Singapore 3.80 (2.60, 4.77) 7.54 (4.23, 9.13)

South Africa 3.44 (2.47, 4.40) 4.77 (3.79, 5.89)

Spain 4.47 (4.20, 4.72) 7.83 (7.35, 8.25)

Sweden 4.89 (4.53, 5.24) 9.03 (8.66, 9.42)

Switzerland 4.55 (4.26, 4.85) 7.72 (7.31, 8.18)

Taiwan 4.17 (3.07, 5.01) 6.66 (4.62, 8.02)

Turkey 3.51 (2.72, 4.18) 2.79 (2.20, 3.38)

Appendix 2—table 4 Continued on next page
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Country First Author Self-citation Rate Last Author Self-citation Rate

United Kingdom 5.02 (4.84, 5.18) 8.88 (8.57, 9.10)

United States 5.09 (4.99, 5.17) 8.97 (8.84, 9.08)

Appendix 2—table 5. P values for all 44 comparisons performed in this study.
P values are corrected for multiple comparisons with the Benjamini/Hochberg false discovery rate 
(FDR) correction with 𝛼=0.05. For P values determined by permutation testing, 10,000 permutations 
were used. Significant values (Pcorrected <0.05) are marked with an asterisk in the “Finding” column.

Comparison Method Uncorrected P Corrected P Finding

First vs Last Author self-citation (all fields) permutation 1e-4 2.9e-4 * Last >First

First vs Last Author self-citation (Neurology) permutation 1e-4 2.9e-4 * Last >First

First vs Last Author self-citation 
(Neuroscience) permutation 1e-4 2.9e-4 * Last >First

First vs Last Author self-citation (Psychiatry) permutation 1e-4 2.9e-4 * Last >First

First Author: Neurology vs. Neuroscience permutation 1e-4 2.9e-4 * Neurology >Neuroscience

First Author: Neuroscience vs. Psychiatry permutation 1e-4 2.9e-4 * Psychiatry >Neuroscience

First Author: Neurology vs. Psychiatry permutation 0.095 0.144 No significant difference

Last Author: Neurology vs. Neuroscience permutation 1e-4 2.9e-4 * Neurology >Neuroscience

Last Author: Neuroscience vs. Psychiatry permutation 1e-4 2.9e-4 * Psychiatry >Neuroscience

Last Author: Neurology vs. Psychiatry permutation 0.078 0.123 No significant difference

Any Author: Neurology vs. Neuroscience permutation 1e-4 2.9e-4 * Neurology >Neuroscience

Any Author: Neuroscience vs. Psychiatry permutation 1e-4 2.9e-4 * Psychiatry >Neuroscience

Any Author: Neurology vs. Psychiatry permutation 0.005 0.010 * Neurology >Psychiatry

Slope over the years: First Author correlation 2.1e-15 9.2e-14 * m=–1.21 % / decade

Slope over the years: Last Author correlation 0.074 0.123 No significant correlation

Slope over the years: Any Author correlation 0.012 0.024 No significant correlation

Country-level self-citation rate and  
number of previous papers: First Author correlation 1.5e-4 4.1e-4 *Spearman’s r=0.576

Country-level self-citation rate and  
number of previous papers: Last Author correlation 8.0e-7 1.8e-5 *Spearman’s r=0.654

Country-level self-citation rate and 
 impact factor: First Author correlation 0.347 0.424 No significant correlation

Country-level self-citation rate and 
 impact factor: Last Author correlation 0.007 0.014 *Spearman’s r=0.428

First Author: Spearman’s correlation between  
topic self-citation and number of authors correlation 0.915 0.929 No significant correlation

Last Author: Spearman’s correlation between  
topic self-citation and number of authors correlation 0.003 0.007 *Spearman’s r=0.758

Any Author: Spearman’s correlation between  
topic self-citation and number of authors correlation 0.004 0.009 *Spearman’s r=0.736

Men vs. Women, First Author self-citation 
rate, 2020 permutation 1e-4 2.9e-4 * Men >Women

Men vs. Women, Last Author self-citation 
rate, 2020 permutation 4e-4 0.001 * Men >Women

Early career men vs. women, self-citation rate permutation 1e-4 2.9e-4 * Men >Women

Early career men vs. women, number of 
papers permutation 1e-4 2.9e-4 * Men >Women

Appendix 2—table 4 Continued
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Comparison Method Uncorrected P Corrected P Finding

Early career men vs. women 
self-citation rate by number of 
papers 0–9 papers permutation 3.0e-4 7.8e-4 * Men >Women

10–19 permutation 0.019 0.034 * Men >Women

20–29 permutation 0.174 0.248 No significant difference

30–39 permutation 0.855 0.918 No significant difference

40–49 permutation 0.035 0.062 No significant difference

50–59 permutation 0.888 0.929 No significant difference

60–69 permutation 0.508 0.588 No significant difference

70–79 permutation 0.272 0.342 No significant difference

80–89 permutation 0.175 0.248 No significant difference

90–99 permutation 0.399 0.475 No significant difference

100–149 permutation 0.929 0.929 No significant difference

150–199 permutation 0.824 0.906 No significant difference

200–249 permutation 0.264 0.342 No significant difference

250–299 permutation 0.196 0.269 No significant difference

300–399 permutation 0.264 0.342 No significant difference

400–499 permutation 0.716 0.808 No significant difference

≥ 500 permutation 0.075 0.123 No significant difference

Appendix 2—table 5 Continued
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Appendix 3
Additional model-based analyses

Appendix 3—table 1. Models with affiliation continent instead of low- and middle-income country 
terms.
*P<0.05, **P<1e-5, ***P<1e-10.

Count Rate

First Author Last Author First Author Last Author

Adjusted R2 0.507 0.354 0.347 0.208

Deviance 
explained 50.1% 38.9% 40.9% 25.7%

Intercept –0.096** (P=4.3e-8) 0.467*** (P<2e-16)
–3.817*** 
(P<2e-16) –3.222*** (P<2e-16)

Field

Neurology –0.089*** (P<2e-16) –0.021 (P=0.098)
–0.124*** 
(P<2e-16) –0.058** (P=6.4e-6)

Neuroscience 0.150*** (P<2e-16) 0.200*** (P<2e-16)
0.120*** 
(P<2e-16) 0.204*** (P<2e-16)

Psychiatry 0 0 0 0

Continent

Africa 0.162 (P=0.069) 0.211* (P=0.027) 0.290* (P=0.001) 0.357* (P=2.1e-4)

Americas 0.125*** (P=3.1e-15) 0.309*** (P<2e-16)
0.162*** 
(P<2e-16) 0.320*** (P<2e-16)

Asia 0 0 0 0

Europe 0.162*** (P<2e-16) 0.256*** (P<2e-16)
0.198*** 
(P<2e-16) 0.270*** (P<2e-16)

Oceania 0.170*** (P=4.7e-12) 0.187** (P=1.7e-10)
0.231*** 
(P<2e-16) –.234*** (P=5.0e-14)

Gender

Woman 0 0 0 0

Man –0.003 (P=0.703) –0.024* (P=0.026) –0.017 (P=0.059) –0.036* (P=0.002)

Document type

Article 0 0 0 0

Review –0.047** (P=1e-4)
–0.139*** 
(P<2e-16)

–0.073** 
(P=9.7e-7) –0.146*** (P<2e-16)

Appendix 3—table 2. Coefficients for field when defining fields based on the publication history of 
authors rather than the journal.
*P<0.05, **P<1e-5, ***P<1e-10.

Field Count Rate Number of papers

First Author Last Author First Author Last Author First Author Last Author

Neurology (by 
journal)

–0.093*** 
(P<2e-16)

–0.025* 
(P=0.046)

–0.131*** 
(P<2e-16)

–0.062** 
(P=1.4e-6)

0.026* 
(P=3.7e-4)

0.068*** 
(P=4.0e-15)

Neurology (by 
author)

–0.091*** 
(P=2.9e-16)

–0.002 
(P=0.85)

–0.154*** 
(P<2e-16)

–0.054* 
(P=2.2e-4)

–0.016* 
(P=0.034)

0.042* 
(P=1.7e-5)

Neuroscience (by 
journal)

0.147*** 
(P<2e-16)

0.184*** 
(P<2e-16)

0.112*** 
(P<2e-16)

0.186*** 
(P<2e-16)

–0.195*** 
(P<2e-16)

–0.122*** 
(P<2e-16)

Neuroscience (by 
author)

0.248*** 
(P<2e-16)

0.357*** 
(P<2e-16)

0.191*** 
(P<2e-16)

0.312*** 
(P<2e-16)

–0.340*** 
(P<2e-16)

–0.253*** 
(P<2e-16)

Psychiatry (by 
journal) 0 0 0 0 0 0

Psychiatry (by 
author) 0 0 0 0 0 0
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Appendix 3—table 3. Models with interaction terms for between gender/academic age and 
gender/number of previous papers.
*P<0.05, **P<1e-5, ***P<1e-10.

Count Rate Number of papers

First Author Last Author First Author Last Author First Author Last Author

Adjusted R2 0.509 0.353 0.349 0.204 0.565 0.4

Deviance 
explained 50.1% 38.6% 40.9% 25.4% 72.5% 55.7%

Intercept
0.034* 
(P=0.001)

0.748*** 
(P<2e-16)

–3.645*** 
(P<2e-16)

–2.926*** 
(P<2e-16)

2.306*** 
(P<2e-16)

3.724*** 
(P<2e-16)

Field

Neurology
–0.094*** 
(P<2e-16)

–0.026* 
(P=0.045)

–0.132*** 
(P<2e-16)

–0.062** 
(P=1.3e-6)

0.026* 
(P=3.8e-4)

0.068*** 
(P=3.8e-15)

Neuroscience
0.146*** 
(P<2e-16)

0.185*** 
(P<2e-16)

0.112*** 
(P<2e-16)

0.186*** 
(P<2e-16)

–0.195*** 
(P<2e-16)

–0.122*** 
(P<2e-16)

Psychiatry 0 0 0 0 0 0

Low-middle 
income 
country status

No 0 0 0 0 0 0

Yes
–0.118** 
(P=7.4e-8)

–0.242*** 
(P<2e-16)

–0.128** 
(P=8.0e-8)

–0.237*** 
(P<2e-16)

0.073* 
(P=1.4e-5) 0.009 (P=0.628)

Gender

Woman 0 0 0 0 0 0

Man
0.019 
(P=0.107)

–0.031* 
(P=0.023)

–0.001 
(P=0.911)

–0.048* 
(P=0.001)

0.223*** 
(P<2e-16)

0.254*** 
(P<2e-16)

Document 
type

Article 0 0 0 0 0 0

Review
–0.040* 
(P=0.001)

–0.139*** 
(P<2e-16)

–0.063* 
(P=1.3e-5)

–0.142*** 
(P<2e-16)

0.151*** 
(P<2e-16)

–0.019* 
(P=0.046)

Appendix 3—table 4. Tests for uniformity, outliers, and dispersion in models. 

Tests were performed using the DHARMa package in R. Uniformity: Asymptotic one-sample 
Kolmogorov-Smirnov test. DHARMa outlier test based on exact binomial test with approximate 
expectations. DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated. 
DHARMa zero-inflation test via comparison to expected zeros with simulation under H0=fitted 
model.

Count Rate Number of papers

First Author Last Author First Author Last Author First Author Last Author

Uniformity
D=0.010 
(P=3.1e-6)

D=0.016 
(P=1.4e-9)

D=0.030 
(P<2.2e-16)

D=0.041
(P<2.2e-16)

D=0.097
(P<2.2e-16)

D=0.078
(P<2.2e-16)

Outliers

0.009 outlier 
frequency 
(P=1.2e-5)

0.010 outlier 
frequency 
(P=5.0e-4)

0.011 outlier 
frequency 
(P=4.0e-14)

0.009 outlier 
frequency 
(P=0.004)

0.013 outlier 
frequency 
(P<2.2e-16)

0.012 outlier 
frequency 
(P<2.2e-16)

Dispersion

dispersion 
= 1.358 
(P<2.2e-16)

dispersion = 1.211 
(P<2.2e-16)

dispersion = 1.251 
(P<2.2e-16)

dispersion = 1.058 
(P<2.2e-16)

dispersion = 1.775 
(P<2.2e-16)

dispersion = 1.258 
(P<2.2e-16)

Zero Inflation
ratio = 0.977 
(P<2.2e-16)

ratio = 0.858 
(P<2.2e-16)

ratio = 0.913 
(P<2.2e-16)

ratio = 0.806 
(P<2.2e-16)

ratio = 0.250 
(P<2.2e-16)

ratio = 0.173 
(P<2.2e-16)
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