
Codol et al. eLife 2023;12:RP88591. DOI: https://doi.org/10.7554/eLife.88591 � 1 of 24

MotorNet, a Python toolbox for 
controlling differentiable biomechanical 
effectors with artificial neural networks
Olivier Codol1,2*, Jonathan A Michaels1,3,4, Mehrdad Kashefi1,3,4, 
J Andrew Pruszynski1,2,3,4, Paul L Gribble1,2,3

1Western Institute for Neuroscience, University of Western Ontario, Ontario, Canada; 
2Department of Psychology, University of Western Ontario, Ontario, Canada; 
3Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, 
University of Western Ontario, Ontario, Canada; 4Robarts Research Institute, 
University of Western Ontario, Ontario, Canada

Abstract Artificial neural networks (ANNs) are a powerful class of computational models for 
unravelling neural mechanisms of brain function. However, for neural control of movement, they 
currently must be integrated with software simulating biomechanical effectors, leading to limiting 
impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effec-
tors are not generally differentiable, constraining researchers to reinforcement learning algorithms 
despite the existence and potential biological relevance of faster training methods. To address 
these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily 
complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined 
motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of 
use, a high-level user-friendly application programming interface, and a modular architecture to 
allow for flexibility in model building. MotorNet requires no dependencies outside Python, making 
it easy to get started with. For instance, it allows training ANNs on typically used motor control 
models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. 
MotorNet is built on PyTorch and therefore can implement any network architecture that is possible 
using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial 
intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share 
their own improvements, such as new effector and network architectures or custom task designs. 
MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate 
computational projects for new researchers by providing a standalone, ready-to-go framework, and 
speed up efforts of established computational teams by enabling a focus on concepts and ideas 
over implementation.

eLife assessment
This work will be of interest to the motor control community as well as neuroAI researchers inter-
ested in how bodies constrain neural circuit function. The authors present "MotorNet", a useful 
software package to train artificial neural networks to control a biomechanical model of an effector. 
The manuscript provides solid evidence that MotorNet is easy to use and can reproduce past results 
in the field, both at the neural and behavioural levels. Validation is limited to planar arm-like plants 
or point-masses, so future work exploring three-dimensional movements and other types of plants 
would strengthen the impact of the tool.

Tools and Resources

*For correspondence: 
codol.olivier@gmail.com

Competing interest: See page 
21

Funding: See page 21

Preprint posted
23 February 2023
Sent for Review
27 April 2023
Reviewed preprint posted
23 June 2023
Reviewed preprint revised
07 March 2024
Reviewed preprint revised
16 July 2024
Version of Record published
30 July 2024

Reviewing Editor: Juan Alvaro 
Gallego, Imperial College 
London, United Kingdom

‍ ‍ Copyright Codol et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.88591
mailto:codol.olivier@gmail.com
https://doi.org/10.1101/2023.02.17.528969
https://doi.org/10.7554/eLife.88591.1
https://doi.org/10.7554/eLife.88591.2
https://doi.org/10.7554/eLife.88591.3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Codol et al. eLife 2023;12:RP88591. DOI: https://doi.org/10.7554/eLife.88591 � 2 of 24

Introduction
Research on the neural control of movement has a long and fruitful history of complementing empir-
ical studies with theoretical work (Lindsay, 2022). Consequently, a wide variety of computational 
model classes have been proposed to explain empirical observations, such as equilibrium point control 
(Feldman and Levin, 1995; Flanagan et al., 1993; Gribble and Ostry, 2000; Won and Hogan, 1995), 
optimal control (Shadmehr and Krakauer, 2008; Todorov, 2004), and parallel distributed processing 
models (Fetz, 1993; Gomi and Kawato, 1993; Jordan and Rumelhart, 1992; Lillicrap and Scott, 
2013), commonly known as artificial neural networks (ANNs). Although ANNs were formalized many 
decades ago, they gained in popularity only recently following their rise to prominence in machine 
learning (ML; LeCun et al., 2015), as their greater explanatory power and biological realism provide 
significant advantages against alternative model classes (Gershman and Ölveczky, 2020; Lillicrap 
et al., 2019; Richards et al., 2019; Saxe et al., 2021).

For neural control of movement, production of theoretical work using ANN models may be viewed 
as a two-step effort: (1) building a realistic simulation environment that mimics the behaviour of bodily 
effectors and (2) implement the policy ANNs themselves to train on the environment. Many open-
source platforms achieve each of these steps individually, such as MuJoCo (Todorov et al., 2012) 
or OpenSim (Delp et al., 2007; Seth et al., 2018) for building environments, and JAX, PyTorch, or 
TensorFlow for building and training policy ANNs. However, approaches using these platforms lead 
to two important impracticalities.

First, the user must rely on two different software platforms, one for the environment and one for 
the policy ANN. Communication between platforms is not built-in, requiring users to produce custom 
code to link the policy ANN software with the software implementing the simulation of the environ-
ment. This forces significant overhead cost to initiate computational projects and creates barriers 
to research teams who lack the technical background to build those custom pipelines. A current 
remedy to this issue is gymnasium (Chinnaiya et al., 2023), a Python toolbox that provides an inter-
face between policies and environments.

However, gymnasium constrains the user to reinforcement learning algorithms (Fujimoto et al., 
2018; Lillicrap et al., 2019; Mnih et al., 2015) despite the existence and potential biological rele-
vance of faster training methods such as backpropagation (Lillicrap et al., 2020; Whittington and 
Bogacz, 2017). The inability to use backpropagation to train policies represents the second impracti-
cality. To date, this has been circumvented by training separate ANNs such as multi-layer perceptrons 
or recurrent neural networks (RNNs) as ‘forward models’ approximating the behaviour of effectors 
that are normally implemented in a separate software package (e.g., Lillicrap and Scott, 2013; 
Willett et al., 2021). This approach does not address the need for custom pipelines, and remains a 
slow, cumbersome process when iterating over many different policies and environments, because 
new approximator ANNs must be trained each time.

Solving the issues described above requires both the policy and environment to rely on the 
same software (no-dependency requirement), and for the environment to allow for backpropaga-
tion through itself (differentiability requirement) so that typical gradient-based algorithms may be 
employed. Ideally, the solution would also be open source, modular for flexibility of coding and focus 
on ideas, and have reasonable training speeds on commercially available computers.

We developed MotorNet with these principles in mind. MotorNet is a freely available open-source 
Python toolbox (https://motornet.org) that allows for the training of ANNs to control arbitrarily complex 
and biomechanically realistic effectors to perform user-defined motor tasks. The toolbox requires no 
dependency besides standard Python toolboxes available on pip or Anaconda libraries. This greatly 
facilitates its use on remote computing servers as no third-party software needs to be installed. The envi-
ronments are fully differentiable, enabling fast and efficient training of ANNs using standard gradient-
based methods. It is designed with ease of installation and ease of use in mind, with a high-level and 
user-friendly application programming interface (API). Its programming architecture is modular to allow 
for flexibility in model building and task design. Finally, MotorNet is built on PyTorch, which makes 
innovation in ML readily available for use by MotorNet as they are implemented and released by the 
PyTorch Foundation. Here, we focus on illustrating the scientific use and relevance of the toolbox (the 
why), rather than the underlying API through coding snippets (the how), as the latter is more efficiently 
showcased via interactive, easily updatable online tutorials. The interested reader may consult the full 
API documentation, including interactive tutorials on the toolbox website at https://motornet.org.

https://doi.org/10.7554/eLife.88591
https://motornet.org
https://motornet.org


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Codol et al. eLife 2023;12:RP88591. DOI: https://doi.org/10.7554/eLife.88591 � 3 of 24

Results
Training an ANN to perform a centre-out reaching task against a curl 
field
A canonical experimental paradigm in the study of neural control of movement is the centre-out 
reaching task with a ‘curl field’ applied at the arm’s endpoint by a robot arm (Conditt et al., 1997; 
Shadmehr and Mussa-Ivaldi, 1994). In this paradigm, visual targets are placed around a central 
starting position in a horizontal plane. Participants must move the handle of a robot arm from the 
starting position to the target that appears on a given trial. During the reaching movement, the robot 
applies forces at the handle that scale linearly with the velocity of the hand and push in a lateral direc-
tion. This leads the central nervous system to adapt by modifying neural control signals to muscles 
to apply opposite forces to counteract and nullify the lateral forces produced by the robot. Finally, 
removal of the curl field leaves an opposite after-effect (Shadmehr and Mussa-Ivaldi, 1994). This 
paradigm is well suited to assess the functionality of MotorNet because it is well understood and 
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Figure 1. Controlling an arm-like effector in a centre-out reaching task with a curl field. (a) Schematic of the environment (containing the effector) and 
policy. (b) Endpoint trajectories of centre-out reaching movements in a null and curl field, for a policy recurrent neural network (RNN) that is untrained 
(naive) and then trained to reach in that curl field. The effector was as defined in Kistemaker et al., 2010. (c) Different variables over time during a 
rightward reaching movement.

https://doi.org/10.7554/eLife.88591
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extensively documented, and highlights physical, biomechanical, and control properties of human 
behaviour.

We specified a one-layer RNN composed of 50 gated recurrent units (GRUs; Cho et al., 2014) to 
control a two degrees of freedom (DoF), six muscle planar arm model (arm26; Figure 1a; Kistemaker 
et al., 2006; Kistemaker et al., 2010). The muscles were rigid-tendon, Hill-type muscle models, with 
‘shoulder’ mono-articular flexors/extensors, ‘elbow’ mono-articular flexors/extensors, and a bi-ar-
ticular pair of muscles producing flexion or extension at both joints (see Methods sections ‘Arm26 
model’ and ‘Model’).

Training the model above took about 13  min on a 2022 Mac Studio with an M1 Max central 
processing unit (Apple Inc, Cupertino, CA, USA). Because the arm26 effector and the centre-out 
reaching task are particularly common in the motor control literature, they are included in the toolbox 
as pre-built objects. Consequently, one can re-create the effector instance and the corresponding 
environment in one line of code for each. Note however that users can easily declare their own custom-
made effector and environment objects if desired by subclassing the base Effector and Environment 
class, respectively (see below for more details on base classes and subclassing).

Including the implementation of the policy RNN and training routine, the above example can 
be reproduced with a few lines of code (see tutorial notebooks online), illustrating the ease of use 
of MotorNet’s API. Once the model is trained, it can produce validation results via a forward pass 
(Figure 1b, c), which can then be saved and analysed afterwards. The results the model produces 
include joint and cartesian states (positions, velocities), muscle states (lengths, velocities, activa-
tions, forces), musculo-tendon states (lengths, velocities), efferent actions (i.e., time-varying muscle 
drive), and afferent feedback responses (proprioceptive, visual), as well as any activity states from the 
network if applicable (Figure 1c). Note that actions are different from muscle activations, in that they 
are input signals to the ordinary differential equation that produces muscle activation (see Methods; 
Millard et al., 2013; Thelen, 2003).

Structure of MotorNet
Functionally, a MotorNet model can be viewed as a differentiable environment that can directly 
employ outputs from a policy ANN as action signals. The environment contains an effector, which 
is actuated according to the action input and in turn outputs information that may be fed back to 
the ANN (Figure 2). This closed-loop cycle repeats for each timestep. By default, ‘visual’ feedback 
consists of a vector indicating endpoint cartesian coordinates, while ‘proprioceptive’ feedback 

Neural Network
(Policy)

Vision

Proprioception

Action

Arbitrary
Input

Figure 2. Conceptual organization of a MotorNet model. A policy artificial neural network (ANN) receives 
arbitrary input as well as recurrent connections from itself and sends action signals to an effector embedded 
in an environment, which in turn sends sensory feedback information. Typically, this feedback will be visual and 
proprioceptive, and can contain feedback-specific time delays Δp and Δv. Gaussian noise can be added to the 
recurrent connection, action signal, and proprioceptive and visual feedback, with specific standard deviation σh, σu, 
σp, and σv.

https://doi.org/10.7554/eLife.88591
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consists of a ‍2m‍-element vector of muscle length and velocity, with ‍m‍ the number of muscles of the 
effector. Noise may be added in various parts of the model, such as on descending action signals or on 
feedback signals. Finally, time delays may be added to feedback signals before they reach the policy 
ANN. Importantly, the policy ANN may be any PyTorch network, and the MotorNet environments are 
designed to match standard gymnasium API conventions. That is, it is not necessary to create a policy 
by sub-classing a MotorNet Policy object.

Running flow
At runtime, a more detailed representation of the information flow best describes how a MotorNet 
model behaves (Figure 3a). Models are based on five object classes: Skeleton, Muscle, Effector, Envi-
ronment, and Policy objects (Table 1). Each object has its own base class, from which the user can 
create a custom subclass if desired. MotorNet comes with a set of pre-built subclasses for each, which 
implement commonly used computational model formalizations (Table 1).

Environment objects are the entry point of the model (Figure 3a). They take arbitrary action inputs, 
which are then passed on to the Effector object. Effector objects are essentially wrapper objects that 
hold the Muscle and Skeleton objects and handle coordination of information flow between them 
(Figure 3a, b), as well as concomitant numerical integration to ensure numerical stability. They pass 
the action signals to the Muscle object, which computes forces in return. The Effector will adjust 
those forces using geometry-dependent moment arms (see section ‘Biomechanical properties of the 
effector’ for details) and send the resulting generalized forces to the Skeleton object. These gener-
alized forces will actualize the Skeleton’s joint state, which the Skeleton will return to the Effector 
object alongside the equivalent cartesian state. The Effector will then return the actuated states to 
the Environment object.

Finally, the Environment object will return an observation vector that contains arbitrarily processed 
information about the states of the Environment and Effector objects. These can usually be passed 
on to the policy ANN as input to perform the next forward pass. The Environment may maintain a 
delay buffer, which stores state information for a certain time (according to the Δp and Δv parameters, 
Figure 2), allowing the observation vector to be fed time-delayed state information. The Environment 
also outputs an information dictionary, which contains all the instantaneous (i.e., non-delayed) states 
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Figure 3. Implementation of MotorNet. (a) Information flow of a MotorNet model during runtime. (b) Declarative structure of a MotorNet object. Each 
object instance is held in memory as an attribute of another according to this hierarchical representation, except for the Muscle, and Skeleton instances.
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from the Environment, Effector, Skeleton, and Muscle objects. This allows the user to monitor the true 
state of the MotorNet model at each timestep.

Object structure
The classes presented above rely on each other to function correctly. Consequently, they must be 
declared in a sensible order, so that each object instance retains as attribute the object instances on 
which they rely. This leads to a hierarchical class structure, where each instance lives in the computer 
memory in a nested fashion with other instances, as laid out in Figure 3b. Note that this does not 
mean that each class is a subclass of the class that contains it, but that each contained class is saved 
as an attribute of the container class. The outermost class is an Environment object, which itself is 
a subclass of gymnasium’s Env class. The Environment, Effector, Skeleton, and Muscle objects are 
also ​torch.​nn.​Module subclasses. The Policy objects are distinct, in that they do not hold any other 
MotorNet object as attribute. This independence allows users to create their own neural networks 
without having to rely on MotorNet’s Policy object, which allows for more freedom for the user to 
design any policy that PyTorch can create.

Biomechanical properties of the effector
The modular structure detailed above allows MotorNet to flexibly compute detailed biomechan-
ical properties of Effector objects, such as arbitrary muscle paths (Nijhof and Kouwenhoven, 
2000), geometry-dependent moment arms (Murray et  al., 1995; Sherman et  al., 2013), non-
linear muscle activations, and passive force production from muscle stretch (Cheng, 2000; Millard 
et al., 2013; Thelen, 2003). This enables training ANNs on motor tasks whose dynamics are highly 
non-linear and close to biological reality. In this section, we illustrate some of these biomechan-
ical properties implemented by MotorNet effectors using specific examples. These properties are 
well characterized in the biology and are often implemented in realistic biomechanical simulation 
software.

Table 1. Overview of Python base classes and their respective pre-built subclasses in MotorNet.
GRU: gated recurrent unit.

Subclass Description

Skeleton

PointMass A skeleton with one bone of null length evolving in a plane.

TwoJointArm
A planar, two-segment skeleton with one hinge joint between the segments and the 
remaining end of one segment anchored to the world space.

Muscle

ReluMuscle
An actuator that produces forces according to a linear piece-wise function of activation. The 
lower bound of force production is 0.

RigidTendonHillMuscle
A Hill-type muscle according to the formalization in Kistemaker et al., 2010, adjusted for 
rigid-tendon dynamics.

RidigTendonHillMuscleThelen
A Hill-type muscle according to the formalization in Thelen, 2003, adjusted for rigid-
tendon dynamics.

CompliantTendonHillMuscle A Hill-type muscle according to the formalization in Kistemaker et al., 2010.

Effector

ReluPointMass24 A planar (2D) PointMass with four ReluMuscle actuators.

RigidTendonArm26 A TwoJointArm with six RigidTendonHillMuscle actuators.

CompliantTendonArm26 A TwoJointArm with six CompliantTendonArm26 actuators.

Environment

CentreOutReach A centre-out reaching task.

DelayedReach A reaching task where movement initiation is signified by the appearance of a ‘go’ cue.

DelayedMultiReach
A reaching task where movement initiation is signified by the appearance of a ‘go’ cue, and 
several targets appear in sequence for each trial.

Policy PolicyGRU
An RNN network comprising a user-defined number of layers containing a user-defined 
number of GRUs.

https://doi.org/10.7554/eLife.88591
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Assessing moment arms with a simple point-mass effector
The geometrical path – fixation body(s) and fixation point(s) on that body – of each Muscle object 
can be declared by the user, allowing for arbitrary linkage between muscles and bones (see Methods 
section ‘Biomechanical properties of the effector’, Nijhof and Kouwenhoven, 2000). Using geometric 
first principles (Sherman et  al., 2013), the Effector object can then calculate the moment arm of 
forces produced, which is defined for each muscle as the change in value of the DoF of the skeleton 
for a given change in the muscle’s length (Murray et al., 1995; Sherman et al., 2013). In lay terms, 
this is the capacity of a muscle to produce a torque on a joint based on the muscle’s pulling angle on 
the bones forming that joint. The relationship between pull angle and torque can intuitively be under-
stood using a door as an example: it is easier to push a door when pushing with an angle orthogonal 
to that door than in a near-parallel angle to that door.

Moment arms generally vary depending on the positional configuration of the Effector. To illus-
trate this, let us consider a simple case of a point-mass skeleton (one fixation body) with four muscles 
attached to it in a ‘X’ configuration (Figure 4a). When the point-mass is positioned in the centre of 
the workspace space (red position in Figure 4a, b), any muscle pulling will change the position of the 
point-mass equally in the ‍x‍ dimension and in the ‍y‍ dimension. Note that ‍x‍ and ‍y‍ are the DoFs of the 
point-mass skeleton since they do not have hinge joints. In contrast, if the point-mass is positioned 
below the central position (‍x = 0, y = −0.9‍; black position in Figure 4a), a pull from for example, the 
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Figure 4. Geometrical properties of an Effector object. (a) Schematic of a point-mass in two positional configurations within a square workspace. 
The point-mass Skeleton was linked to four muscles in a ‘X’ configuration. (b) Moment arm values for the lower left muscle for each of the positional 
configurations represented in (a), with respect to x and y. (c) Complete moment arm function over the position space for each muscle (columns) and with 
respect to each degrees of freedom (DoF). The upper and lower rows indicate the moment arm with respect to the x and y positions, respectively. (d) 
Moment arms of a mono-articular extensor muscle on an arm26. (e) Moment arms of a bi-articular flexor muscle on an arm26. (f) Passive drift in endpoint 
position of an arm26 similar to Figure 1c due to passive force developed by overstretch Hill-type muscles.
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lower left muscle will produce a greater change in the ‍x‍ dimension than in the ‍y‍ dimension because 
of the different muscle alignment (Figure 4b).

The moment arm can then be calculated for all possible positions in the workspace, as represented 
by the solid black square in Figure 4a. This can be done for each of the four muscles, and each of 
the two DoFs, resulting in eight moment arms (Figure 4c). We can see that each moment arm forms 
a slightly bent hyperplane. Importantly, for each hyperplane the diagonal with constant moment arm 
lines up with the path formed by the muscle when the point-mass is at the centre of the workspace. 
For instance, the moment arm of the upper right muscle is identical when the point-mass is in position 
(‍x = 1, y = 1‍) and in position ‍

(
−1,−1

)
‍. This is true both with respect to the ‍x‍ DoF (Figure 4c, upper 

row, leftmost axis) and with respect to the ‍y‍ DoF (Figure 4c, lower row, leftmost axis). Note also that 
muscles whose shortening leads to an increase in the DoF considered – or inversely whose length-
ening leads to a decrease in the DoF – express negative moment arms. For instance, a shortening of 
the lower right muscle would lead to an increase in the ‍x‍ DoF and a decrease in the ‍y‍ DoF. Or more 
plainly, a pull from the lower right muscle would bring the point-mass closer to the lower right corner 
of the workspace. This leads to the negative moment arm of that muscle with respect to ‍x‍ (Figure 4c, 
upper row) and positive moment arm with respect to ‍y‍ (lower row).

Moment arms with a two-joint arm
To consider a more complex effector, we assessed the moment arm of two muscles wrapping around a 
two-joint arm skeleton. We first assessed a mono-articular muscle, that is, a muscle that spans only one 
joint – here, the elbow. As expected, the moment arm of that muscle with respect to the shoulder joint 
is always null (black arrows, Figure 4d) regardless of the joint configuration since the muscle does not 
span that joint. In contrast, the moment arm with respect to the elbow joint varies as the elbow joint 
angle changes. Finally, as expected from an extensor muscle, the moment arm is positive, indicating 
that the elbow angle would decrease as the muscle shortens.

In comparison, a bi-articular muscle’s moment arm is non-zero with respect to both joints (Figure 4e). 
This also leads the moment arms with respect to each joint to show a small interaction as the other 
joint’s angle changes, as indicated by a slight ‘bend’ in the hyperplane (black arrows, Figure 4e). 
Finally, as expected for a bi-articular flexor muscle, the moment arms are negative with respect to 
both joints, indicating that muscle shortening would result in an increase in joint angle.

Passive drift with Hill-type muscles
Finally, we assessed the positional drift induced by passive forces of Hill-type muscle models (Millard 
et al., 2013; Thelen, 2003) in an arm26 effector model. We initialized the model’s starting position at 
fixed intervals across the range of possible joint angles, resulting in a grid of 21-by-21 possible starts. 
We then simulated the effector with null inputs for 200 ms and plotted the drift in the arm’s endpoint 
position from its original position. Because the model received no input, all forces produced are due 
to the passive component of the Hill-type muscles, which occurs when the muscle is stretched beyond 
its slack length (Cheng, 2000; Millard et al., 2013; Thelen, 2003). We can see that drift is negligible 
at the centre of the joint space but starts to increase towards the edge (Figure 4f), indicating that 
the associated joint configurations lead to overstretched muscle lengths and resulting in passive force 
production. Note that since this phenomenon is dependent on the slack length value of each muscle, 
which is user-defined, the presence of passive drift is dependent on the user’s modelling choices.

Training ANNs to produce naturalistic behaviour
Now that we can implement biomechanically realistic effectors, we next assessed whether a policy 
ANN can learn a complex control policy to move those effectors using backpropagation (Jordan and 
Rumelhart, 1992; Rumelhart et al., 1986). A typical way to ensure the computation learnt by an ANN 
is functionally meaningful is to test its out-of-distribution generalization. To assess this, we trained a 
one-layer RNN with ‍n = 110‍ GRUs controlling an arm26 model to perform reaching movements in 
0.8 s simulations using the following paradigm. Starting positions and targets were randomly drawn 
from a uniform distribution across the full joint space. Movements were to be delayed until the occur-
rence of a visual ‘go’ cue randomly drawn from a uniform distribution spanning the full simulation 
window. The appearance of the go-cue reached the RNN as input after a delay corresponding to 
the visual feedback delay, which was set at ‍∆v = 50‍ ms (Figure 2; Dimitriou et al., 2013; Pruszynski 

https://doi.org/10.7554/eLife.88591
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et al., 2010). In half of trials, no go-cue was provided (catch trial), in which case the task effectively 
reduced to a postural control task. A 100-ms endpoint mechanical perturbation, whose orientation, 
magnitude, and time were also randomly drawn occurred in half of trials, independently of whether 
the trial was a catch trial or not. Importantly, the perturbation magnitude was drawn from a uniform 
distribution ranging between 0 and 4 N. If the perturbation occurred during a catch trial, the distri-
bution ranged between 0 and 8 N. Therefore, the training protocol used for this task largely differed 
from section ‘Training an ANN to perform a centre-out reaching task against a curl field’ in that the 
networks are exposed to a wide range of mechanical perturbations with varying characteristics.

The network was trained using the following loss:

	﻿‍
L =

∑T
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T
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With ‍L‍ the global loss including a kernel regularization term with penalty coefficient ‍λ = 10e−6‍, and 
‍W ‍ the kernel weight matrix of the RNN’s hidden layer. The operators ‍∥·∥1‍ and ‍∥·∥2‍ indicate the L1 and 
L2 vector norm, respectively. ‍Lt‍ is the instantaneous loss at time ‍t‍, with coefficients ‍α = 2,β = 5, γ = 0.1‍. 

‍L
p
t ‍ is the positional penalty at time ‍t‍, with ‍xt, x∗t ‍ the position and desired position (target) vector, respec-

tively, and ‍r = 0.01‍ the target radius. ‍Lm
t ‍ is the muscle activation penalty at time ‍t‍, with ‍ut, f ‍ two vectors 

representing muscle activations at time ‍t‍ and maximum isometric force, respectively. Finally, ‍Lh
t ‍ is the 

network hidden activity penalty at time ‍t‍, with ‍ht‍ the ‍n‍-elements vector of GRU hidden activity, ‍ḣt‍ 
its time derivative, and ‍κ = 0.05‍. While superficially this loss appears complex, a direct relationship 
to biology can be drawn for all terms. Essentially, this loss enforces the control policy to be learned 
using a simple, straightforward rule (get to the target), while promoting low metabolic cost from 
network input connectivity (cost on kernel norm), from the muscles (cost on activation, scaled by 
muscle strength), and from network activity (cost on hidden activity and its derivative to discourage 
oscillatory regimes).

Behavioural performance on a training set can be seen in Figure 5a, with trials with a large pertur-
bation (‍> 3N‍) highlighted in blue. This illustrates the rich variability of the training set, encouraging 
the RNN to learn computationally potent and generalizable solutions to the control problem given the 
sensorimotor feedback provided (Figure 2). Despite this variability, the loss value decreased smoothly 
(Figure 5b).

We tested the model’s behavioural output in 0.8  s simulations with a centre-out reaching task. 
Eight targets were positioned in 45 degrees increments and 10  cm away from a starting position 
corresponding to a shoulder and elbow angle of 45 and 90 degrees, respectively (Figure 5c). The 
RNN reached to each of these targets following a visual go-cue at 100 ms. 70 ms after the ‘go’ cue was 
‘perceived’ (i.e., 70 ms plus the visual feedback delay), a mechanical perturbation was applied at the 
arm’s endpoint and orthogonally to the reaching direction. This perturbation could be either within-
distribution (±3 N) or out-of-distribution (±6 N) or null (no perturbation). In all cases, the RNN could 
correct for the mechanical perturbation, reach to the target, and stabilize (Figure 5c).

Next, we tested the RNN in a postural control task, where it had to bring the arm’s endpoint back 
to the target following a mechanical perturbation (Pruszynski et al., 2014). No go-cue was provided. 
We applied perturbations in either of the four cardinal directions (0°, 90°, 180°, and 270°) at 170 ms 
plus visual delay after the trial started. Again, the set of perturbations for testing outputs included 
within-distribution magnitudes (±6 N) and out-of-distribution magnitudes (±12 N). In all cases, the 
RNN could integrate the sensorimotor information to bring the arm’s endpoint back into the target 
(Figure 5d). Interestingly, in some cases this led to an oscillatory trajectory (e.g., for a rightward +12 N 

https://doi.org/10.7554/eLife.88591
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Figure 5. A MotorNet model can learn a control policy that generalizes to out-of-distribution perturbations. (a) Example endpoint trajectories 
produced by a network after training. (b) Loss function over training iterations, with a batch size of 1024. (c) Trajectories in a centre-out reaching task 
with mechanical perturbations applied at the arm’s endpoint 120 ms after the ‘go’ cue. The perturbations were orthogonal to the reaching axis passing 
from the starting position to the target. o.o.d.: out-of-distribution. (d) Same as (c) for a postural control task. In this task, the network was not provided 
with a target and therefore only had to remain in the starting position against the perturbations. Mechanical perturbations were in the vertical (left) or 
horizontal (right) axis. (e) Muscle activation over time for two trajectories in (c) (black and blue lines) and a trajectory in (g) (green line). BE: bi-articular 
extensor; BF: bi-articular flexor; EE: elbow extensor; EF: elbow flexor; SE: shoulder extensor; SF: shoulder flexor. (f) Reaching task as in (c) for a network 
never exposed to mechanical perturbations during training. (g) Postural task as in (d) for the same network as in (f). Perturbations were in the vertical 
(top) or horizontal (bottom) axis.
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perturbation, Figure 5d), indicating that perturbations beyond a given magnitude remain increasingly 
challenging to control for.

Finally, we compared muscle activations for an upward reach with no perturbation to that of an 
identical reach with a −6 N perturbation (Figure 5e). We can see that muscle activations are similar 
before the occurrence of the perturbation, and remain similar immediately after, indicating a time 
delay in the response. The fastest responses occurred for the bi-articular muscles and the shoulder 
extensor muscle. Other muscles, particularly the shoulder flexor, showed very delayed or non-existent 
changes in muscle activation. This illustrates that the RNN’s response to a perturbation is not a mere 
stimulus-driven reactive response, but an integrated response that can delay or withhold the produc-
tion of counteracting forces if necessary. Note that for the non-perturbed movement (black line in 
Figure 5e), we can observe the canonical tri-phasic muscle activation pattern reported in empirical 
studies (Wierzbicka et al., 1986).

To assess how the existence of sensorimotor feedback impacted the control policy acquired by 
the policy network, we trained a second, identical network to perform the same task but with no 
mechanical perturbation during training (perturbation-free). Interestingly, following the same amount 
of training, the model with a perturbation-free network can handle perturbations during reaching rela-
tively well, even up to ±6 N (Figure 5f). We can compare muscle activations for an upward reach with a 
−6 N perturbation to that of the same movement in the network trained with perturbations (Figure 5f, 
green versus blue lines). Even though kinematics appeared superficially similar (Figure  5c, f), this 
comparison shows that muscle activations tend to differ in response to a perturbation (Figure 5e), 
suggesting that the perturbation-free network might learn a slightly different control policy. Testing 
the perturbation-free network on the postural task shown in Figure 5d emphasizes this difference 
(Figure 5g). The perturbation-free network is much less capable of stabilizing against the forces than 
its perturbation-trained counterpart.

Therefore, even though the mere existence of a sensorimotor feedback input can help handle 
simple perturbations (Figure 5f), exposing the model to perturbations during training does provide 
the network with additional information to learn a more robust control policy. Overall, these simula-
tions show that MotorNet can train ANNs to reliably find a control policy for the effector. Importantly, 
the resulting networks learn generalizable control policies that integrate sensorimotor feedback into 
its computation. This also illustrates the importance of the training procedure to which the network is 
exposed to produce these control policies (Driscoll et al., 2022).

Effector geometry defines preference distribution of firing rates: a 
replication study
Finally, to assess MotorNet’s capacity to replicate established results in the literature, we sought to 
reproduce key observations from Lillicrap and Scott, 2013. In that study, the authors show that 
training an RNN to perform a simple centre-out reaching task using an arm model similar to the arm26 
in Figure 1a results in the RNN neurons displaying a preferential movement direction (PMD) where 
they are more likely to fire. The distribution of PMDs was asymmetrical, with a greater proportion 
of neurons firing for reaches around 135 and 325  degrees, matching empirical observations from 
non-human primate electrophysiological recordings in the primary motor cortex (Scott et al., 2001). 
Next, they showed that this asymmetrical representation of PMDs during reaching movements did 
not occur when RNNs were trained to control an effector that lacked the geometrical properties of an 
arm such as illustrated in Figure 4c–e and section ‘Training an ANN to perform a centre-out reaching 
task against a curl field’. Specifically, they compared the PMD distribution of RNN neurons controlling 
a point-mass (no geometry) against that of an arm26 (geometry present).

We sought to reproduce the two results outlined above. First, we trained an RNN composed of 
90 GRUs in a single layer to control for an arm26 (Figure 6a see Methods section ‘Effector geometry 
defines preference distribution of firing rates: a replication study’). Because our RNN employs GRUs 
instead of a multi-layer perceptron, 90 units were sufficient to efficiently train the network to perform 
the task, as opposed to up to 1000 perceptron nodes in the original study. We also increased the 
number of targets from 8 to 24 to obtain a finer resolution over movement direction in our analyses 
(Figure 6b).

Following training, we first ensured that muscle activation patterns in the arm26 effector were like 
those reported in the original study (Figure 6d). Regarding network activity, we observed a great 

https://doi.org/10.7554/eLife.88591
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variety of activation patterns over movement direction (Figure  6f). Some GRUs showed a prefer-
ence for timing (e.g., neuron A4, C5), while others showed a strong preference for reaching direction 
that was sustained over time (neuron C3, A2). Finally, most neurons showed a mixed preference for 
encoding time and reaching direction (neuron C8, A8). This heterogeneous set of responses matches 
empirical observations in non-human primate primary motor cortex recordings (Churchland and 
Shenoy, 2007; Michaels et al., 2016) and replicate similar visualizations from previously published 
work (Fortunato et al., 2024; Lillicrap and Scott, 2013; Safaie et al., 2023).

We then assessed each GRU’s PMD using linear regression (see methods) and sorted them based 
on their PMD before plotting the tuning curve of each neuron. The resulting colormap (Figure 6e, left 
panel) yields a ‘ridge’ of maximal activity whose peak varies across reach angle, forming a crooked 
line, illustrating a representational bias. This crooked ridge line was not observed in an RNN trained to 
control for a point-mass effector instead using an identical training procedure and analysis (Figure 6e, 
right panel). We replicated this procedure with seven more RNNs for each model, resulting in a total 
of eight RNNs trained on an arm26 and eight RNNs trained on a point-mass. We determined each 
GRU’s PMD and averaged the resulting polar histogram across each RNN (Figure 6c). The same bias 

a

b

c

d

e

f

Figure 6. The distribution of preferential movement direction (PMD) tuning is sensitive to the geometry of the effector. (a) Schematic of the two models 
compared. The recurrent neural networks (RNNs) and their architecture were identical, but the effector differed, with one RNN controlling a two-joint 
arm26 (left) and the other controlling a point-mass (right). (b) Centre-out reaching trajectories to 24 targets for the arm26 (left) and point-mass (right) 
model. (c) Distribution of PMDs for the arm26 (left) and point-mass (right) model. The PMDs were determined by regression of each gated recurrent 
unit’s (GRU) hidden activity averaged over time against reach angle (see Methods for details). (d) Normalized muscle activations across reaching angles 
and for the 300 ms following the ‘go’ cue for the arm26 model. (e) Normalized β coefficients of the regression models used for (c). The GRUs were 
ordered according to the angle of their maximum β value. Note that the ‘ridge’ of maximum β yields roughly a straight line for the point-mass model, 
while it yields a crooked line for the arm26, indicative of a representation bias. (f) Hidden activity over time and across reaching angles for a random 
sample of GRUs in the arm26 model.
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was reproduced invariably for the RNNs controlling an arm26 effector (Figure 4d, e, 6a), while it 
failed to arise for those controlling a point-mass (Figure 4a–c, 6a). Therefore, these results mimic the 
observations made in the original study (Lillicrap and Scott, 2013), specifically, that RNNs controlling 
an effector with no arm-like geometrical properties will not result in the biased PMD representation 
during reaching movements commonly observed in non-human primate electrophysiological studies 
(Scott et al., 2001; Scott and Kalaska, 1997).

Discussion
Iterating quickly through the model development cycle
In the field of ML, an established best practice is to iterate quickly around a cycle of (1) formulating an 
idea, (2) implementing that idea in functionally efficient code, and (3) testing the idea through running 
the simulations. The results of the simulations can then be leveraged to adjust the idea, thus closing 
the loop, and enabling iterative refinement of a model. This [idea → code → test → idea] cycle is 
reminiscent of the [hypothesis → design task → test → hypothesis] cycle in empirical work, also known 
as the hypothetico-deductive method. An important practice in ML is to ensure that one iteration of 
that cycle is quick enough, because producing an efficient model may require many such iterations. 
Based on this framework, a way to view MotorNet is to improve iteration speed through this cycle. The 
modular architecture of MotorNet enables users to alter specific aspects of the model while keeping 
everything else identical. Therefore, user capacity to proceed through the ‘implementation’ step is 
enhanced.

Advantages
Expandability
MotorNet naturally allows users to create and tune objects to fit individual requirements. This makes 
the toolbox easily expandable to add novel models that are not pre-built in the original distribution. 
This flexibility will likely vary depending on the goal (Figure 7). Some extensions only require adjusting 
parameter values of existing object classes, such as editing the Arm26 Skeleton class to match the arm 
of a non-human primate. Other extensions will require subclassing, such as creating an Effectorfor an 
eyeball, which might require special geometric properties building on the point-mass Skeleton object 
(Table 1). Conversely, effectors that stray away from typical vertebrate effectors will likely prove more 
challenging, such as an octopus arm, because they do not rely on bones. Importantly, while all these 

Figure 7. MotorNet is expandable. MotorNet allows for new features to be implemented through subclassing.

https://doi.org/10.7554/eLife.88591
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extensions vary in the difficulty of their implementation, each has the capacity to fit and work harmo-
niously within the framework of the MotorNet architecture.

Open source
Typically, when motor control researchers want to create canonical models, they must implement their 
own version of said model based on methodological descriptions of previously published scientific 
articles. However, because MotorNet is open source, individual contributions can easily be shared 
online for the benefit of others. For instance, if a researcher creates a Muscle class with a parametriz-
able pennation angle (Millard et al., 2013; Thelen, 2003), future researchers and team will not have 
to re-create their own implementation of the same object anymore. This also allows more dynamical 
peer-checking, avoiding dissemination of errors and improving consistency of model implementa-
tions. In other words, MotorNet will be able to benefit from community-driven incremental work 
through open-source practices.

Innovation scalability
For the past several years, ML has been standing out as one of the most dynamic research fields, 
achieving breakthroughs and successfully scaling innovative work towards solving everyday problems. 
It would be challenging for MotorNet to keep up with the pace of ML innovation to provide users 
with implementations of the latest architectures and algorithms. Rather, we rely on PyTorch to build 
policies. This ensures that any innovation in model design quickly finds its way to a viable MotorNet 
implementation, because PyTorch capabilities allow for fast adaptation aligned with progress in ML. 
Generally, MotorNet is built with the following logic in mind: anything PyTorch can build, MotorNet 
should be able to use as a policy.

gymnasium-compliant interfacing
The MotorNet Environment class is a subclass of gymnasium’s Env base class and abides by its asso-
ciated API (Chinnaiya et al., 2023). Consequently, MotorNet environments are by design compatible 
with any Python toolbox that works with gymnasium, which is a standard and popular interfacing 
toolbox to link reinforcement learning agents with environments. It is very well documented and 
widely used, which will ensure that users who wish to employ reinforcement learning to control 
MotorNet environments will be able to do so relatively effortlessly.

Limitations
Collision physics
Typical biomechanical software distributions implement some form of collision physics in their physics 
engine (Delp et al., 2007; Seth et al., 2018; Todorov et al., 2012). This is not the case for MotorNet.

Complex biomechanical features
Some biomechanical software distributions such as OpenSim propose a large array of joint types such 
as hinge joints or rotational joints, and complex muscle paths such as wrap points that trigger only 
when the muscle collides with them (Delp et al., 2007; Seth et al., 2010; Seth et al., 2018). While 
these features increase the realism of a biomechanical model, MotorNet does not yet implement 
these types of features. In practice, this constrains what types of effectors MotorNet can realistically 
implement and adding some of these features is under consideration.

Future considerations
As an open-source, freely available Python toolbox, MotorNet is subject to change over time. Some 
of the limitations outlined above are considered as future routes for improvement. Additionally, we 
hope that individual contributions will help refine and extend the capabilities of the toolbox as well. 
In this section, we outline prospective improvements for implementation and release in the main 
distribution.

https://doi.org/10.7554/eLife.88591
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Spinal Compartment
It is becoming increasingly evident that spinal contribution plays a prominent role in motor control 
beyond the typically considered spinal reflex (Reschechtko and Pruszynski, 2020; Weiler et  al., 
2019). One may consider that supraspinal control interacts with spinal contribution to define a motor 
control policy (Loeb, 2021). Within MotorNet, this suggests that a policy’s latent dynamics will be 
significantly impacted by the presence of a spinal compartment. Consequently, it may be worthwhile 
to implement one such spinal compartment to explore the consequences of such biological design, 
especially with regard to upstream computation (Cisek, 2019). Importantly, this compartment may 
be designed as a module within the controller downstream from the ANN, that instantiates arbitrarily 
detailed computation according to empirical studies. This could include processing of top–down and/
or bottom–up information as a movement unfolds (Reschechtko and Pruszynski, 2020) with appro-
priate time delays in place. Ultimately, the scientific question at hand will dictate the complexity desid-
erata for the spinal compartment implementation. Interestingly, this two-module design within the 
controller leans towards the more general concept of modular architectures, which can be powerful 
for understanding multi-region interactions within the central nervous system (Michaels et al., 2020).

Modular policies
A deeply established idea in neuroscience is that distinct regions will perform different computa-
tions, and thus that a complex system may not be considered as a uniform, fully connected network 
(Abbott and Svoboda, 2020; Keeley et al., 2020; Pesaran et al., 2021; Semedo et al., 2020). This 
is also true for the motor control system, where using a modular network architecture with controlled 
communication between each module has been shown to have more explanatory power than a 
non-modular system (Michaels et al., 2020). Therefore, a potential development for MotorNet is to 
include a model class with a modular architecture to study how cross-region networks work to enable 
neural control of the body.

Muscle models
Most published work in motor control relies either on Hill-type muscle models (Bhushan and Shad-
mehr, 1999; Kistemaker et al., 2006; Kistemaker et al., 2010; Nijhof and Kouwenhoven, 2000) or 

Table 2. Skeleton parameters for the arm26 model, taken from Nijhof and Kouwenhoven, 2000.
The skeleton was actuated by six rigid-tendon versions of Hill-type muscle actuators: a shoulder flexor, a shoulder extensor, an elbow 
flexor, an elbow extensor, a bi-articular flexor, and a bi-articular extensor. Their parameter values are defined in Table 3.

Parameter Upper arm Forearm

Mass (kg) 1.82 1.43

Centre of gravity (m) 0.135 0.165

Inertia (kg·m2) 0.051 0.057

Length (m) 0.309 0.333

Table 3. Parameters for the Hill-type muscle actuators used in the arm26, taken from Kistemaker 
et al., 2010.

Muscle Maximum isometric force (N) Tendon length (m) Optimal muscle length (m)

Shoulder flexor 838 0.039 0.134

Shoulder extensor 1207 0.066 0.140

Elbow flexor 1422 0.0172 0.092

Elbow extensor 1549 0.187 0.093

Bi-articular flexor 414 0.204 0.137

Bi-articular extensor 603 0.217 0.127

https://doi.org/10.7554/eLife.88591
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direct torque actuators (Lillicrap and Scott, 2013) similar to the ReLu muscle that MotorNet provides. 
However, despite its popularity, even the more-detailed Hill-type muscle remains a phenomenological 
model of real muscle behaviour, which can easily show its limits when trying to understand how the 
brain controls movement (Blum et al., 2020). Alternative muscle model formalizations exist, such as 
the Distribution-Moment muscle model (Zahalak, 1981), which may be worth implementing within 
MotorNet as well.

Methods
General modelling design
This section describes modelling elements that were used for several models in this study. For all 
models, the timestep size was 0.01 s, and a proprioceptive delay of ‍∆p = 20‍ ms and visual delay of 
‍∆v = 50‍ ms were used (Figure 2). Effectors were actuated using numerical integration with the Euler 
method.

Arm26 model
The arm26 model used in this study is available online on the open-source toolbox code under the 
RigidTendonArm26 Effector class. It is briefly described below for convenience.

The skeleton of the arm26 models are according to the formalization proposed in Gomi and 
Kawato, 1997, equations 1, 3, 5–7. Parameter values are as in Table 2.

The full formalization of the Hill-type muscles can be found in Thelen, 2003, equations 1–7, and 
with the parameter values used in that study. When different parameters were provided for young and 
old subjects, the values for young subjects were used (Thelen, 2003, Table 1). While in custom-made 
Effector objects the moment arms of each muscle are computed based on geometric first principles 
(Figure 4d–f; Sherman et al., 2013), in the RigidTendonArm26 class the moment arms are approxi-
mated as described in Kistemaker et al., 2010, equations A10–A12, with parameters for this study 
defined in Table 4.

Point-mass model
The point-mass model used in this study is available online on the open-source toolbox code under 
the ReluPointMass24 Effector class. It is briefly described below for convenience.

The point-mass had a mass of ‍m = 1‍ kg. Its actuation followed an ordinary differential equation such 
that ‍x = f/m‍ with ‍x, f ‍ the two-element cartesian acceleration vector at time ‍t‍ and the two-element 
force vector applied at time ‍t‍, respectively.

The forces were produced by four linear muscle actuators, whose formalization is available online 
on the open-source toolbox code under the ReluMuscle muscle class. Each muscle’s force production 

‍f ‍ is a linear piecewise function of its activation ‍a‍, scaled by its maximum isometric force ‍fmax = 500‍ N:

Table 4. Parameters used to compute moment arms in the arm26 models with moment arm approximation, taken from Kistemaker 
et al., 2010.

Muscle ‍a0‍ ‍a1e‍ ‍a1s‍ ‍a2e‍

Shoulder flexor 0.151 0 −0.03 0

Shoulder extensor 0.2322 0 0.03 0

Elbow flexor 0.2859 −0.014 0 −4.0e−3

Elbow extensor 0.2355 0.025 0 −2.2e−3

Bi-articular flexor 0.3329 −0.016 −0.3 −5.7e−3

Bi-articular extensor 0.2989 0.03 0.03 −3.2e−3

https://doi.org/10.7554/eLife.88591
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The activation function was the same as for the Hill-type muscles used in the arm26 model, and can 
be found in Thelen, 2003, equations 1 and 2.

The four muscles were fixed to the point-mass in a ‘X’ configuration (Figures 4a and 6a) with the 
first fixation point for the upper right, lower right, lower left, and upper left muscle being, respectively 
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mass, therefore moving in general coordinates alongside the point-mass (Figure 4a).

Policy network architecture
All policy networks used in this study consisted of one layer of GRUs with a sigmoid recurrent activa-
tion function and a ‍tanh‍ activation function. Kernel and recurrent weights were initialized using Glorot 
initialization (Glorot and Bengio, 2010) and orthogonal initialization (Hu et al., 2020), respectively. 
Biases were initialized at 0.

The GRU layer was fully connected to an output layer of perceptron nodes with a sigmoid activa-
tion function. The output layer contains one node per descending action signal, or equivalently one 
node per muscle. The output layer’s kernel weights were initialized using a random normal distribution 
with a standard deviation of 0.003, and its bias was initialized at a constant value of −5. Because the 
output activation function is a sigmoid, this initial bias forces the output of the policy to be close to 0 
at the start of initialization, ensuring a stable initialization state.

For all networks used in this study, a two-element vector of ‍
(
x, y

)
‍ cartesian coordinates for the start 

position and target position were provided as input, alongside a go-cue, resulting in a five-element 
input vector. The go-cue was a ‘step’ signal whose value changed from 1 to 0 when the movement 
should be initiated.

General training design
During training, the models reached from a starting position drawn from a random uniform distribu-
tion across the full joint space to a target position drawn from a random uniform distribution as well. 
The occurrence time of the go-cue was drawn from a random uniform distribution across the full simu-
lation duration. In 50% of simulations, no go-cue was provided (i.e., a catch trial) to ensure the network 
learnt to wait for the go-cue and avoided any anticipatory activity. The desired position ‍x∗‍ was set 
to be the start position until the go-cue was provided, at which point ‍x∗‍ was defined as the target 
position. Note that the go-cue was treated as a visual signal. Therefore, while the desired position ‍x∗‍ 
was updated immediately as the go-cue was provided (with no time delay), the network was informed 
of the go-cue occurrence via a change in the target position input and go-cue input only following 
the visual feedback delay ‍∆v‍. Depending on the models, additional training manipulations were also 
applied, as described in the sections below.

Centre-out reaches task against a curl field
Model
The effector type used to learn to reach against a curl field was an arm26 model as described in 
section ‘Arm26 model’. The policy was as described in section ‘Policy network architecture’, with the 
GRU layer containing ‍n = 50‍ units.

Training
The model was trained according to the procedure in section ‘General training design’ 
with the loss described in Equation 1, using a kernel regularization ‍λ = 10e−6‍, coefficients 

‍α = 2,β = 5, γ = 0.1,κ = 0.05‍, and target radius ‍r = 0.01‍ m. The model was trained on 7680 batches 
with a batch size of 64, on simulations of 1 s.

The model was trained according to section ‘General training design’, except that the go-cue time 
was fixed at 100 ms from the start of the simulation. Following initial training, the model was then 

https://doi.org/10.7554/eLife.88591
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tested against a null field and external forces to produce the ‘naive’ behaviour shown in Figure 1b, 
c. Following testing, training was then resumed, but employing the curl-field, fixed starting position, 
and set of eight targets used in testing. 50% simulations were still catch trials, as in the initial training 
session. This second training session lasted 768 batches with a batch size of 64. Finally, following 
this second training session, the model was tested again, to produce the ‘adapted’ behaviour of 
Figure 1b.

Testing
The model was tested in 1 s simulations against a null field, and against external forces applied at the 
arm’s endpoint that produced a counter-clockwise curl field:

	﻿‍

ft = b


 0 −1

1 0


 ẋt

‍�
(2)

With ‍̇xt‍ the two-element cartesian velocity vector at time ‍t‍, and ‍b = 8‍ a scalar defining the strength 
of the curl field. In the null field, we have ‍b = 0‍.

The testing procedure consisted of eight centre-out reaches from a fixed starting position at a 
shoulder and elbow angle of 45° and 90°, respectively, to eight target positions 10 cm away and 
distributed in increments of 45° around the starting position (Figure 1b). This set of simulations were 
repeated against a null field and against the curl field in Equation 2, resulting in a total of 16 reaches. 
For all testing simulations, the go-cue time was fixed at 100 ms from the start of the simulation and 
no catch trials were employed.

Biomechanical properties of the effector
The point-mass model used was as described in section ‘Point-mass model’. The arm26 model used 
was as described in section ‘Arm26 model’, except that the moment arms were not approximated 
based on the parameters of Table  4, but computed based on the geometry of the muscle paths 

a b
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Figure 8. Coordinate frames for declaring muscle paths in MotorNet. (a) MotorNet handle muscle paths using coordinate frames relative to the bone 
on which a fixation point is. The world space is indexed as the fixation body ‘0’ and its coordinate frame is the general coordinate system. (b) Schematic 
illustration of the muscle paths used for the arm26 model with no moment arm approximation described in section ‘Biomechanical properties of the 
effector’ and Table 5, for a shoulder and elbow angle of 45° and 90°, respectively.
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(Nijhof and Kouwenhoven, 2000; Seth et al., 2010; Sherman et al., 2013). Accordingly, the muscle 
paths were manually declared by defining how many fixation points each muscle has, and on which 
bone and where on each bone each point fixes.

MotorNet handles declaration of these paths using a relative reference frame for each fixation 
point (Seth et al., 2010). Specifically, a fixation point on a bone will have two coordinates. The first 
coordinate defines how far along the bone the point is, from the bone’s origin, for example, the 
shoulder for the upper arm (Figure 8). The second coordinate defines how far the point deviates from 
the bone orthogonally. If the fixation point is an anchor point, that is, it is not fixed on a bone but on 
the world space, then general coordinates  ‍

(
x, y

)
‍ are used (colour-coded in green in Figure 8). These 

anchor points are important to ensure that the effector can be actuated with respect to the environ-
ment. The full set of coordinates defining the model’s muscle paths are indicated in Table 5 and are 
derived from Nijhof and Kouwenhoven, 2000.

Training ANNs to produce naturalistic behaviour
Model
The two models used to produce Figure 5 were arm26 models as described in section ‘Arm26 model’. 
For both models, the policy was as described in section ‘Policy network architecture’, with the GRU 
layer containing ‍n = 110‍ units. In addition, excitation and GRU hidden activity noise were added, with 
values ‍σu = 10e−3,σh = 10e−4

‍, respectively.

Training
The models were trained with the loss described in Equation 1, using a kernel regularization ‍λ = 10e−6‍, 
coefficients ‍α = 2, β = 5, γ = 0.1, κ = 0.05‍, and target radius ‍r = 0.01‍ cm. The model was trained on 
27,000 batches of size 1024, on simulations of 800 ms.

In one of the two models, which we refer to as the ‘perturbation-free’ model, the training proce-
dure was as described in section ‘General training design’. In the second model, which we refer to 
as the ‘perturbation-trained’ model, a 100-ms endpoint mechanical perturbation was added to the 
training procedure. The perturbation occurred in 50% of trials, independently of whether the trial was 
a catch trial or not, and its orientation and time were randomly drawn as well. The magnitude of the 
perturbation was drawn from a uniform distribution ranging between 0 and 4 N. If the perturbation 
occurred during a catch trial, the distribution ranged between 0 and 8 N.

Table 5. Muscle paths for the arm26 model with no moment arm approximation.

Muscle Fixation point Fixation body First coordinate ‍x‍ (m) Second coordinate ‍y‍ (m)

SF

1 0 (world) −0.15 0.03

2 1 (upper arm) 0.094 0.017

SE

1 0 (world) −0.013 −0.07

2 0 (world) 0.05 0

3 1 (upper arm) 0.153 0

EF

1 1 (upper arm) 0.23 0.001

2 2 (forearm) 0.231 0.01

EE

1 1 (upper arm) 0.03 0

2 1 (upper arm) 0.138 −0.019

3 2 (forearm) −0.04 −0.017

BF

1 0 (world) −0.052 0.033

2 2 (forearm) 0.044 0.001

BE

1 0 (world) 0.02 −0.028

2 2 (forearm) −0.04 −0.017

https://doi.org/10.7554/eLife.88591


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Codol et al. eLife 2023;12:RP88591. DOI: https://doi.org/10.7554/eLife.88591 � 20 of 24

Testing
Both the perturbation-trained and -free models were tested in 800 ms simulations in two distinct 
tasks, a centre-out reaching task and a postural task.

In the centre-out reaching task, eight targets were positioned in 45 degrees increments and 10 cm 
away from a starting position corresponding to a shoulder and elbow angle of 45° and 90°, respec-
tively (Figure 5c, g). The visual go-cue was provided at 100 ms following the simulation start. 70 ms 
after the go-cue was ‘perceived’ (i.e., 70 ms plus the visual feedback delay ‍∆v‍), a mechanical pertur-
bation was applied at the arm’s endpoint and orthogonally to the reaching direction. This perturbation 
could be either within-distribution (±3 N) or out-of-distribution (±6 N) or null (no perturbation).

In the postural control task, no go-cue was provided, and the arm’s endpoint was pushed away 
from the start position by the mechanical perturbation at 170 ms plus visual delay ‍∆v‍ after the simula-
tion started. We applied perturbations in either of the four cardinal directions (0°, 90°, 180°, and 270°). 
Again, the set of perturbations for testing outputs included within-distribution magnitudes (±6 N) and 
out-of-distribution magnitudes (±12 N).

Effector geometry defines preference distribution of firing rates: a 
replication study
Models
All arm26 and point-mass effectors used to produce Figure 5 were as described in sections ‘Arm26 
model’ and ‘Point-mass model’, respectively. For all models, the policy was as described in section 
‘Policy network architecture’, with the GRU layer containing ‍n = 90‍ units.

Training
All models were trained with the loss described in Equation 1, using a kernel regularization ‍λ = 10e−6‍, 
coefficients ‍α = 2,β = 5, γ = 0.1,κ = 0.05‍, and target radius ‍r = 0‍. The models were trained on 38,400 
batches of size 64, on simulations of 800 ms. The training procedure was as described in section 
‘General training design’.

Testing
The testing procedure consisted of eight centre-out reaches in 800 ms simulations. Simulations 
started from a fixed position at a shoulder and elbow angle of 45° and 90° for the arm26 models, and 
at an ‍

(
x = 0, y = 0

)
‍ cartesian position for the point-mass models. Reaches were to 24 target positions 

10 cm away and distributed in increments of 15° around the starting position (Figure 6b). For all 
testing simulations, the go-cue time was fixed at 100 ms into the simulation and no catch trials were 
employed.

Analysis
To obtain the PMD of each GRU, we averaged each unit’s hidden activity in a 150-ms time window 
starting when the go-cue was input to the network (i.e., following visual feedback delay ‍∆v‍) for each 
reaching direction independently, and regressed that average to a diagonal design matrix encoding 
the reach direction. The absolute value of the resulting regression coefficients was then normalized 
between 0 and 1, and neurons were sorted according to these normalized coefficients to produce 
Figure 6e.

As mentioned in the results section, we trained eight networks to control an arm26 and eight 
networks to control a point-mass. For each network, we took the count of GRUs whose normalized 
regression coefficient is maximal for each target considered and averaged that count across all eight 
networks to produce Figure 6c.
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