
Soudi, Jahani et al. eLife 2023;12:RP88604. DOI: https://doi.org/10.7554/eLife.88604 � 1 of 38

Repeatability of adaptation in sunflowers 
reveals that genomic regions harbouring 
inversions also drive adaptation in 
species lacking an inversion
Shaghayegh Soudi1†, Mojtaba Jahani1,2†, Marco Todesco2,3,4, Gregory L Owens5, 
Natalia Bercovich2, Loren H Rieseberg2, Sam Yeaman1*

1Department of Biological Sciences, University of Calgary, Calgary, Canada; 
2Department of Botany, University of British Columbia, Vancouver, Canada; 3Michael 
Smith Laboratories, University of British Columbia, Vancouver, Canada; 4Irving 
K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, 
Canada; 5Department of Biology, University of Victoria, Victoria, Canada

Abstract Local adaptation commonly involves alleles of large effect, which experience fitness 
advantages when in positive linkage disequilibrium (LD). Because segregating inversions suppress 
recombination and facilitate the maintenance of LD between locally adapted loci, they are also 
commonly found to be associated with adaptive divergence. However, it is unclear what fraction of 
an adaptive response can be attributed to inversions and alleles of large effect, and whether the 
loci within an inversion could still drive adaptation in the absence of its recombination-suppressing 
effect. Here, we use genome-wide association studies to explore patterns of local adaptation in 
three species of sunflower: Helianthus annuus, Helianthus argophyllus, and Helianthus petiolaris, 
which each harbour a large number of species-specific inversions. We find evidence of significant 
genome-wide repeatability in signatures of association to phenotypes and environments, which 
are particularly enriched within regions of the genome harbouring an inversion in one species. This 
shows that while inversions may facilitate local adaptation, at least some of the loci can still harbour 
mutations that make substantial contributions without the benefit of recombination suppression in 
species lacking a segregating inversion. While a large number of genomic regions show evidence of 
repeated adaptation, most of the strongest signatures of association still tend to be species-specific, 
indicating substantial genotypic redundancy for local adaptation in these species.

eLife assessment
This is a valuable comparative study of adaptation across multiple species. The results provide a 
solid example of the application of genotype–environment associations to demonstrate that local 
adaptation is repeatable.

Introduction
The genetic basis of local adaptation is sometimes highly repeatable, with examples of large effect 
genes driving responses in multiple species, such as FT affecting flowering time in numerous plants 
(Izawa, 2007; Auge et al., 2019) or Mc1r driving colour polymorphisms in vertebrates (Manceau 
et al., 2010; Rosenblum et al., 2014). Local adaptation can also be repeated for polygenic traits, with 
significant patterns of similar association found across many loci for comparisons of conifers (Yeaman 
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et al., 2016), maize and its wild relative teosinte (Tittes et al., 2021; Wang et al., 2021), and Bras-
sicaceae (Bohutínská et al., 2021), to name a few. While we have a growing number of examples of 
repeatability in the basis of adaptation, it is also interesting to know if species use different genes 
to adapt to the same selection pressure. Genotypic redundancy – the potential for many genotypes 
to yield a given phenotype – is one critical factor affecting the repeatability of adaptation, as high 
redundancy would be expected to result in lower repeatability (Yeaman et al., 2018). Another critical 
factor affecting repeatability is shared standing variation, whether present due to introgression or 
incomplete lineage sorting. In either case, variants shared among lineages are much more likely to 
contribute to a repeated response than new mutations (MacPherson and Nuismer 2018; Ralph and 
Coop 2015). Consistent with this, Bohutínská et al., 2021 found that repeatability was negatively 
related to phylogenetic distance. While we are now accumulating more studies about the repeat-
ability of adaptation, we still have very few examples and much remains unknown about the relative 
importance of these factors (Yeaman, 2022).

Inversions have been implicated in local adaptation in many species (Wellenreuther and Bernat-
chez, 2018), likely due to their effect to suppress recombination among inverted and non-inverted 
haplotypes, and thereby maintain linkage disequilibrium (LD) among beneficial combinations of locally 
adapted alleles (Rieseberg, 2001; Noor et al. 2001; Kirkpatrick and Barton, 2006). This has been 
approached by models studying the establishment of inversions that capture combinations of locally 
adapted alleles present as standing variation (e.g. Kirkpatrick and Barton, 2006), as well as models 
examining the accumulation of locally adapted mutations within inversions (e.g. Schaal et al., 2022). 
If there is variation in the density of loci that can potentially contribute to local adaptation, inversions 

eLife digest In plants, like in humans, DNA is arranged into sections known as genes that are in 
turn organised into structures called chromosomes. Mutations that modify the activity of these genes 
can help plant species to adapt to a new environment or to extreme conditions such as drought. 
However, successful adaptation often requires changes in many different genes. If these sets of genes 
are located close to each other on the same chromosome, any mutations will likely be passed onto the 
next generation together. If the genes are located further away, or even on different chromosomes, 
they may instead be inherited separately so that the next generation does not benefit as much from 
the adaptation.

A chromosome inversion – when a segment of chromosome breaks off and reattaches the other 
way around – can increase the likelihood that sets of mutations on the same chromosome will be 
inherited together. Many previous studies have found that chromosome inversions tend to drive the 
ability of species to adapt to different environments by keeping together mutations that affect the 
same characteristics. However, it is not clear how inversions affect the repeatability of the adaptation, 
that is, if another group of closely related plants faced the same challenge in their environment would 
they evolve in the same way, or would they evolve a new response?

To address this question, Soudi, Jahani et al. used a genetics approach known as a genome wide 
association study to explore how three closely related species of sunflower have adapted to their 
respective environments. Two of the species grow in various environments across the centre and 
west of the USA that are often hot and dry, whereas the third species is restricted to the more humid 
coastal plain of Texas, USA.

The experiments found that a few key genes had changed in all three sunflower species. However, 
each species also had mutations in a larger set of unique genes that were not changed in the other 
species. Regions of chromosomes harbouring inversions in one of the species tended to have more 
of the key genes within them, compared to other genomic regions. This was also true for species that 
did not have inversions in those regions. This demonstrates that genes in regions affected by chro-
mosome inversions can still help plants adapt to changes in the environment even in the absence of 
inversions.

Sunflowers are widely grown for their edible oily seeds. In the future, some of the key genes iden-
tified in this work may be useful candidates for plant breeding to improve the resilience of sunflowers 
to drought, high temperatures and other environmental challenges.

https://doi.org/10.7554/eLife.88604
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would be expected to preferentially establish and be retained in regions harbouring a high density of 
such loci (and this expectation would hold for both the capture and accumulation models). We would 
also expect to see stronger signatures of repeated local adaptation in such high-density regions. 
Despite mounting evidence of their importance in adaptation, it is unclear how inversions may covary 
with repeatability of adaptation among species. A fundamental parameter of importance in these 
models is the relationship between migration rate and strength of selection on individual alleles, 
which may not make persistent contributions to local adaptation without the suppressing effects of 
recombination if selection is too weak (Yeaman and Whitlock, 2011; Bürger and Akerman, 2011). 
If most alleles have small effects relative to migration rate and can only contribute to local adapta-
tion via the benefit of the recombination-suppressing effect of an inversion, then we would expect 
little repeatability at the site of an inversion – other species lacking the inversion would not tend to 
use that same region for adaptation because selection would be too weak for alleles to persist. On 
the other hand, if some loci are particularly important for local adaptation and regularly yield muta-
tions of large effect, with these patterns being conserved among species, repeatability within regions 
harbouring inversions may be substantial. Thus, studying whether adaptation at the same genomic 
region harbouring an inversion is observed in other species lacking the inversion can give insights 
about the underlying architecture of adaptation, and the evolution and maintenance of inversions.

Figure 1. Sampling sites and phylogenetic relationship among surveyed species. (A) Sampling locations of wild 
sunflower populations studied in this study, and (B) phylogenetic relationship of the four (sub-)species. Numbered 
brackets represent the six pairwise comparisons performed in this study.

https://doi.org/10.7554/eLife.88604
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Here, we explore the repeatability of local adaptation in three species of sunflowers, Helianthus 
annuus, Helianthus argophyllus, and Helianthus petiolaris (Figure 1), which harbour large regions of 
suppressed recombination (‘haploblocks’), most of which are inversions, and are often associated with 
adaptive traits (Todesco et al., 2020). H. annuus, the common sunflower, is the closest wild relative of 
cultivated sunflower, which was domesticated from it around 4000 years ago (Blackman et al., 2011). 
Populations of H. annuus are distributed throughout the central and western United States and gener-
ally found on mesic soils, but can grow in a variety of disturbed or extreme habitats, such as semi-
desertic or frequently flooded areas, as well as salt marshes. H. petiolaris, the prairie sunflower, prefers 
sandier soils, and ecotypes of this species are adapted to sand sheets and sand dunes (Ostevik et al., 
2016). Here we include samples from two subspecies: H. petiolaris ssp. petiolaris, which is commonly 
found in the southern Great Plains, and H. petiolaris ssp. fallax, which is limited to more arid regions 
in Colorado, Utah, New Mexico, and Arizona (Heiser et al., 1969). H. petiolaris and H. annuus have 
broad and overlapping distributions throughout the central and western United States and appear to 
have adapted to similar changes in temperature, moisture, and photoperiod regimes. There is also 
evidence indicating H. annuus and H. petiolaris have likely been exchanging genes during much of 
their history of divergence (Strasburg and Rieseberg, 2008), although partially isolated by strong 
pre- and post-zygotic barriers (Sambatti et al., 2012). The third species, H. argophyllus, the silverleaf 
sunflower, is found exclusively in the southeast coast of Texas and includes both an early flowering 
ecotype on the coastal barrier islands and a late flowering ecotype inland (Moyers and Rieseberg, 
2016; Todesco et al., 2020). H. argophyllus is thought to have undergone cycles of sympatry and 
allopatry with H. annuus and H. petiolaris over time, but currently only overlaps with H. annuus, with 
thus overlap likely being a recent event (Heiser, 1951).

Using broad sampling across the ranges of these species (Figure  1) and sequencing data first 
published by Todesco et al., 2020, we study the genomic basis of local adaptation by conducting 
genome-wide scans for associations with climatic and soil environmental variables and phenotypes 
measured in a common garden. An inherent problem in studying the basis of local adaptation is 
accounting for the covariance between genome-wide population genetic structure and environment. 
When the selection pressure driving local adaptation tends to parallel a main axis of demographic 
expansion or isolation by distance, neutral alleles will have spatial patterns resembling those of causal 
alleles. Methods that do not correct for population structure have large numbers of false positives 
because allele frequencies at neutral loci tend to correlate with the environment more than expected 
by chance (Lotterhos and Whitlock, 2014). By contrast, methods that use structure correction tend 
to suffer from false negatives because the causal loci have similar patterns of allele frequency variation 
as the genomic background, and so their statistical signatures are decreased (DeRaad et al., 2021; 
Booker et  al., 2023a). When a non-corrected approach is applied to multiple species, the false-
positive problem can be mitigated when testing for loci that contribute to repeated adaptation as the 
same gene should not tend to be a false positive in multiple species more often than expected by 
chance (Yeaman et al., 2016). Here we use a conventional genome-wide association study (GWAS) 
approach with structure correction to study the basis of phenotypes, which vary both within and 
among populations, and use an uncorrected approach to test association to environment, which only 
varies among populations (as all individuals within the same population have the same value of envi-
ronmental variable). For the environmental association portions of the study, we also explore the 
effect of structure correction in some analyses to contrast the false-negative vs. false-positive problem 
inherent in each approach. We apply these approaches individually to H. annuus, H. argophyllus, and 
the two H. petiolaris subspecies, and make pairwise and higher-order comparisons among combina-
tions of these four lineages to study repeatability.

Our overall aim is to characterize the extent of repeatability of local adaptation for different traits 
and environments and explore the importance of inversions and other factors that may drive differ-
ences in repeatability. This analysis builds upon the work of Todesco et al., 2020, which focused on 
the evolution of haploblocks within each species, but did not systematically study patterns of repeat-
ability in signatures of association among species. We begin by using the strength of correlations 
between environment and phenotypes measured in a common garden to identify which environ-
mental variables are likely driving local adaptation within each species, and use an index to quan-
tify the relative similarity in these patterns among pairs of species (see Appendix 1—figure 1 for a 
schematic overview of methods and research questions). We then conduct genome-wide association 

https://doi.org/10.7554/eLife.88604
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tests to identify regions most strongly associated with phenotypes and environments within each 
species. To assess the similarity in these association statistics among species, we use methods similar 
to Yeaman et al., 2016 to identify regions of the genome that exhibit greater similarity in signatures 
of association among pairs of lineages than expected by chance, which are likely driven by repeated 
adaptation using the same genes (but not necessarily the same alleles). We then explore how the 
number and total size of these regions of repeated association covary with the index of similarity in 
environmental importance. We also explore whether these regions of repeated association tend to 
covary with patterns of shared standing variation and test if they are enriched within previously identi-
fied haploblocks to explore the role of inversions in adaptation. We then identify candidate genes that 
show particularly strong signatures of repeated association across multiple lineages. Finally, based 
on the number of signatures of association that are shared vs. non-shared among lineages, we esti-
mate the number of regions genome-wide that could potentially contribute to local adaptation for 
each variable and phenotype, which is related to the genotypic redundancy. Taken together, our 

Figure 2. The range of environmental and phenotypic variation in the studied species. Variation in environment (A) and phenotype (B) for the studied 
species, along the two largest axes of a principal component analysis (PCA). Violin plots show two examples of variation in environment (Hargreaves 
reference evapotranspiration index; Eref) and phenotype (Days to Flower; DTF) within and among the taxa (C, D).

https://doi.org/10.7554/eLife.88604
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results show that local adaptation in sunflowers tends to involve both strong repeatability at a small 
number of genes, often associated with inversions, coupled with high redundancy and non-repeated 
responses across a much larger number of loci.

Results
Local adaptation at the phenotypic level
The four taxa vary considerably in the breadth of environmental variation spanned by their respec-
tive ranges, with H. annuus spanning the widest niche and H. argophyllus spanning the narrowest 
(Figure 2A). Using the correlation between phenotype and environment as a metric of the strength 
of local adaptation on individual traits, we observe strong correlations for many combinations 
(Appendix 1—figure 2), suggesting that local adaptation is quite pronounced for some traits. To 
quantify the similarity among pairs of species in the strength of local adaptation at the phenotypic 
level (and to later compare this to results at the genomic level), we calculate an index we refer to as 
the similarity in phenotype–environment correlation (SIPEC), which is maximized when both species 
have strong correlations (in either direction) between a phenotype and environmental variable (see 
‘Materials and methods’). For each environmental variable, we take the maximum value of SIPEC 
across all phenotypes as a relative measure of the importance of the variable for driving local adap-
tation in both species (such that when SIPEC is low, the variable is not a strong driver of phenotypic 
adaptation in at least one of the two species). We find the largest values of SIPEC for temperature vari-
ables and the smallest values for soil types, and generally find higher values for comparisons between 
the petiolaris subspecies (Appendix 1—figure 3).

Genome-wide analysis of repeated local adaptation
To search for regions of the genome driving repeated adaptation in multiple taxa, we first identified 
windows of the genome within each species that showed strong signatures of association to either 
phenotype (GWAS; with structure correction) or environment (GEA; without structure correction), 
referred to as ‘top candidate’ windows. To identify windows of repeated association (WRAs) between 
pairs of species, we then assessed whether top candidate windows identified in one focal taxon also 
tended to be enriched for strong signatures of association to the same environment or phenotype 
in each of the other taxa (using the null-W test, which tends to be more sensitive than just finding 
the overlap between the top candidate windows; see ‘Materials and methods’). As recombination 
rate can affect the sensitivity of these kinds of window-based genome scans (Booker et al., 2020), 
the identification of WRAs was conducted after binning windows by recombination rate, although 
in many cases we did not observe substantial differences in the null distributions among these bins 
(e.g. Appendix 1—figure 4). This analysis revealed many windows with signatures of repeated asso-
ciation, with the strongest repeated signature found for number of frost-free days (NFFD; Figure 3A; 
Appendix 1—figure 4), but also showed that many of the windows with the strongest association in 
one species did not have strong signatures in other species (Figure 3B).

Under the null hypothesis that all regions of the genome evolve neutrally due to drift and inde-
pendently in each species, ~5% of the top candidate windows identified in one species would be 
expected to fall into the tail of the null distribution of another species (i.e. be classified as WRAs). 
While we find significantly more WRAs than the 5% expected by chance, ranging from 6.3 to 44.1% 
(mean = 14.5%; Appendix 1—figure 5), multiple factors can violate the assumptions of this test and 
increase the proportion of windows classified as WRAs. Most importantly, similarity in signatures of 
association can be driven by shared ancestral variation or ongoing introgression, and this must always 
be considered as an alternative explanation. It is clear that most regions of the genome harbour some 
shared standing variation between all six pairwise comparisons of the taxa, whether due to segre-
gating ancestral variation or introgression, based on an index quantifying the proportion of shared to 
non-shared SNPs in each window (Appendix 1—figure 6). However, we do not find consistent differ-
ences in the amount of shared standing variation within windows when comparing WRAs with the rest 
of the genome (Appendix 1—figure 6). Thus, while introgression may make subtle contributions to 
WRAs, a lack of increased shared standing variation in the significant windows suggests that it is not 
a primary driver of these patterns.

https://doi.org/10.7554/eLife.88604
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A second source of inflation in the number of WRAs is due to hitchhiking: if a given locus is a true 
positive driving adaptation, LD with other windows in tight physical linkage will result in spurious 
correlations causing them to also be classified as WRAs increasing the genome-wide proportion 
above 5%, and this effect will be particularly exaggerated in haploblocks. To control for this, we 
binned neighbouring WRAs together that exhibited high LD (>95th percentile) over short spans of 
the genome (<1 cM) in either species, yielding regions we refer to as clusters of repeated association 

Figure 3. Signatures of association for number of frost-free days (NFFD) in the four taxa on chromosome 15 (A) and genome-wide (B). Panel (A) shows 
windows of repeated association (WRAs; coloured bars) for comparisons between the focal species, H. annuus, and each of the other three taxa, with 
the haploblocks in H. annuus shaded in violet and the regions with significant PicMin hits as vertical orange lines. Panel (B) shows the value of the top 
candidate index for each of the 1000 windows with the strongest signatures of association in at least one species (approximately top 2% of genome-
wide windows). Rows are ordered using hierarchical clustering to group windows with similar patterns across multiple species, illustrating the extent of 
overlap/non-overlap in the windows with strongest signatures in each species (i.e. position in the figure does not reflect chromosomal position).

https://doi.org/10.7554/eLife.88604
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(CRAs). While this clustering method should provide a partial control for the effect of hitchhiking, we 
note that the number of CRAs cannot be taken as a reliable estimate of the number of independent 
targets of natural selection. Instead, we treat the number and size of these CRAs as proxies for the 
relative genome-wide similarity in association between each pair of species, and conduct downstream 
analyses to test hypotheses about the factors driving local adaptation.

CRAs varied in number and size across the six pairwise-species comparisons, with particularly large 
CRAs identified at the sites of known haploblocks (Todesco et al., 2020). For CRAs identified for 
phenotypic associations, their extent ranged from 168 clusters spanning 48,524,903  bp (covering 
only 1.6% of the genome) in H. argophyllus-H. pet. petiolaris to a maximum of 1667 clusters spanning 
426,409,647 bp (14.2% of the genome) in H. pet. petiolaris-H. pet. fallax (Appendix 1—figure 7). 
CRAs identified for environmental variables tended to be more numerous and cover a larger region 
of the genome, varying from 1154 clusters comprising 15% of the total genome for H. argophyllus-H. 
pet. fallax up to 2260 distinct clusters covering 29% of the genome between H. petiolaris subspecies 
(Appendix 1—figure 8). The large extent of the genome covered by CRAs is mainly driven by their 
occurrence within many different haploblocks, which tend to be unique to each species and cover 
substantial portions of their genomes (Todesco et al., 2020). Genes within CRAs tend to be enriched 
for a large number of GO terms spanning many different categories (Appendix 1—figures 9 and 10). 
When we use an approach that corrects for population structure in the genotype–environment asso-
ciation tests (BayPass), we find substantially reduced numbers of CRAs (Appendix 1—figure 11). This 
reduction is likely due to reduced power to detect true positive causal loci when population structure 
covaries with environment, as true positives do not ‘stand out’ relative to the genomic background 
(Booker et al., 2023a). While single-species association tests without correction for population struc-
ture typically yield large numbers of false positives, the null-W test comparing association results 
across species accounts for the chance that the same region is a false positive in both species (Yeaman 
et al., 2016).

Repeated association in the genome reflects patterns at the 
phenotypic level
If natural selection is driving repeated patterns of local adaptation in the genomes of two species, 
we should see greater similarity for associations with environmental variables that are also strongly 
associated with phenotypic variation in both species. Consistent with this prediction, we found that 
environmental variables with a high maximum SIPEC index (i.e. high correlation between environment 
and some axis of phenotypic variation in both species; Appendix 1—figure 3) also tended to have a 
larger number of CRAs (Figure 4), with higher repeatability at both the phenotype and genome level 
for temperature-related variables and much lower repeatability for soil-related variables (with similar 
patterns for mean SIPEC index; Appendix 1—figure 12). Unfortunately, given the non-independence 
of environmental variables there is pseudo-replication in these data so it is not possible to conduct a 
formal significance test of these patterns. In all cases, the number of CRAs exhibited a weak negative 
relationship with the index of standing variation, with environmental variables that had the greatest 
number of CRAs having the lowest relative amounts of shared standing variation (Appendix 1—figure 
13). This suggests that the observed similarity in patterns of association among species is not being 
strongly driven by incomplete lineage sorting or introgression, as we would expect a positive relation-
ship between the index of shared standing variation and the number of CRAs. We found similar but 
weaker patterns in the association between SIPEC and size of CRAs (Appendix 1—figure 14). The 
weakening of these patterns relative to those for number of CRAs may reflect comparatively greater 
contribution of haploblocks driving patterns with size rather than number (i.e. if a particularly large 
haploblock is a CRA, then that variable will have a particularly large value relative to its actual impor-
tance for local adaptation).

Overlap of signatures of repeated association with low recombination 
haploblocks
Inversions can facilitate local adaptation by suppressing recombination between locally adapted 
alleles within the inverted vs. ancestral haplotypes (Kirkpatrick and Barton, 2006). If a given species 
exhibits a signature of association to environment at a segregating inversion, it is interesting to test 
whether similar signatures of association are found in other species that lack a segregating inversion at 

https://doi.org/10.7554/eLife.88604
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the same region of the genome. This would suggest that particularly strong selection is acting on loci 
in this region, as signatures of association can still evolve even without the recombination suppressing 
effect of the inversion. While not all of the low-recombination haploblocks identified by Todesco 
et al., 2020 have been validated as inversions, for simplicity we treat each haploblock as represen-
tative of a segregating inversion. The majority of these haploblocks are present as segregating vari-
ation in only one of the three species, but when they occur in H. petiolaris, they tend to be found as 
segregating variation within both subspecies. Thus, if we find significant enrichment of the regions of 

Figure 4. Relationship between maximum similarity in phenotype–environment correlation (SIPEC) and number of clusters of repeated association 
(CRAs). SIPEC was calculated for each phenotypic principal component analysis (PCA) axis, with the maximum taken across the axes that cumulatively 
explain 95% of the phenotypic variance for each environment. Each panel (A-F) shows a comparison between a pair of species indicated above, and 
includes both a linear model fit to the data within the panel (coloured lines), and a linear model fit to all data simultaneously (black lines) for comparison. 
Note that because environmental variables are correlated, these points are not independent and therefore represent a source of pseudoreplication, 
preventing formal statistical tests of this relationship.

https://doi.org/10.7554/eLife.88604
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repeated association (WRAs and CRAs) within haploblocks, this suggests that both the species with 
a segregating inversion and the species lacking an inversion are using this region of the genome to 
drive local adaptation. As a first test of this relationship, we assessed two-way contingency tables 
for whether top candidate windows within a species were also significant WRA (WRA/non-WRA) and 
whether they fell within haploblocks (yes/no). This approach controls for the potential enrichment of 

Figure 5. Enrichment of signatures of repeated association within genomic regions harbouring a haploblock in one of the two compared lineages. Each 
panel shows the proportion of top candidate windows that fall within haploblocks for windows with significant signatures of repeated association by the 
null-W test (windows of repeated association [WRAs]) vs. those with non-significant signatures (non-WRAs), with a different focal species plotted in each 
panel (A-D). Comparisons of H. petiolaris petiolaris vs. H. petiolaris fallax are omitted as they share segregating haploblocks. Each point corresponds 
to the results for a single phenotype or environment, with dark shading used for cases where the deviation from random for the contingency table is 
significant by a permutation test (p<0.05), and lighter shading indicating a non-significant result. Note that because many environmental variables and 
phenotypes are correlated with each other, these points are not independent and therefore represent a source of pseudoreplication, preventing formal 
statistical tests of the overall relationship within each panel.

https://doi.org/10.7554/eLife.88604
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top candidate windows within haploblocks relative to the rest of the genome and asks if the propor-
tion of WRAs within haploblocks is even higher than non-WRA top candidate windows. For most 
phenotypes and environments, we found that the proportion of WRAs occurring within haploblocks 
was much higher than the proportion of non-WRAs occurring within haploblocks (Figure 5). Across 
all species comparisons and environmental/phenotypic variables, a total of 310 contrasts showed 
significant enrichment for WRAs in haploblocks compared to only 23 contrasts showing a signifi-
cantly higher proportion of non-WRAs in haploblocks (note that because of non-independence of 
the phenotypes and environmental variables, there is pseudo-replication inherent in these estimates). 
In H. argophyllus, while non-WRA top candidates tended to fall within haploblocks less commonly 
than in the other taxa, WRAs tended to be very strongly enriched within haploblocks (Figure 5B). As 
a follow-up, we also tested whether CRAs were enriched within haploblocks (without controlling for 
whether top candidate windows also tended to be enriched), also finding strongly significant enrich-
ment of CRAs within haploblocks for many traits and environments (Appendix 1—figure 7C and D). 
Broad patterns revealed by these analyses are similar as both show that genomic regions harbouring 
haploblocks tend to be enriched for signatures of association to environment in species lacking the 
haploblock. It is noteworthy that few significant signatures of enrichment in haploblocks were found 
for H. petiolaris petiolaris vs. H. petiolaris fallax (Appendix 1—figure 7C and D), perhaps because 
extensive introgression across non-locally adapted regions of the genome obscures true signal.

Multi-species signatures of repeated association
As a complement to the pairwise analyses described above, we also conducted an analysis using 
PicMin, which simultaneously considers any number of lineages to identify genes with particularly 
strong and repeated signatures of association (Booker et al., 2023b). After identifying significant 
windows clustering together those <1 Mbp apart, we found a total of 145 regions that were signifi-
cant for at least one environmental variable or phenotype (at False Discovery Rate (FDR) < 0.1 applied 
within each variable). The largest number of significant regions for environment was found with the 
NFFD variable (20 with FDR < 0.1; 44 with FDR < 0.2) and for phenotypes with total leaf number, a 
measure of developmental timing of flowering (9 with FDR < 0.1; 19 with FDR < 0.2). Considering 
the 720 individual 5000 bp windows with FDR < 0.2 for at least one variable, 387 (53.8%) are within 
500 bp of a genic region, representing a 2.3× enrichment relative to the rate for windows that were 
not significant hits using PicMin (23.3% of other windows fall within 500 bp of a genic region; Χ2 test 
p<10–15).

Estimating the number of potentially adaptive loci
Even for the environment with the highest repeatability (NFFD), most of the strongest signals of asso-
ciation are found in only one lineage (Figure 3B). Unfortunately, while the null-W test provides strong 
support and controls false positives when identifying repeated association, regions of the genome 
with strong associations in only a single species may include a large (and unknown) number of false 
positives. Thus, while it is biologically interesting to know how much adaptation is non-repeated 
among species, it is difficult to quantify with certainty (Booker et al., 2023b; Booker et al., 2023a). 
Under the assumption that at least some of the non-repeated signatures of association are true 
positives, this implies that there is considerable genotypic redundancy, with many different ways for 
these species to adaptively respond to variation in the same environment. To estimate the number of 
windows that could potentially contribute to local adaptation for each variable (Leff), we modified the 
method of Yeaman et al., 2018 to partially account for the effect of linkage among nearby windows 
(see ‘Materials and methods’). This method assumes that the windows with signatures of association in 
each species are a random draw from a larger number of potentially contributing windows (Leff), which 
can be inferred based on the ratio of shared vs. non-shared windows with strong association signa-
tures (see ‘Materials and methods’). We find that estimates of Leff tend to be large, always well over 
1000 windows regardless of the trait or environment (Appendix 1—figure 15A). There are numerous 
sources of error that affect the estimation of Leff, which will tend to be overestimated due to linkage 
(Appendix 1—figure 15A) or when many signatures of association are false positives (see Appendix 
1), and will be underestimated when some repeatability is due to shared standing variation (Yeaman 
et al., 2018). Even after controls for linkage and assuming a high false-positive rate of 80%, estimates 
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of Leff remain in the hundreds even for the variable with the lowest value of Leff (Eref; Appendix 1—
figure 15C and D).

Discussion
Despite its critical importance in shaping the architecture of adaptation, little is known about the 
extent of genotypic redundancy underlying different traits (Barghi et al., 2020; Láruson et al., 2020; 
Yeaman, 2022). Here, we have shown evidence of significant repeatability in the basis of local adapta-
tion (Figures 4 and 5), but also an abundance of species-specific, non-repeated signatures (Figure 3; 
Appendix 1—figure 14). In particular, we find that regions of the genome that harbour inversions in 
one species also tend to be strongly enriched for signatures of association in other species lacking 
the inversion (Figure 5). Taken together, this suggests that local adaptation in these species is highly 
flexible – different species apparently use quite different sets of loci to adapt to the same environment 
– yet still involves some component that has minimal redundancy, with inversions playing a particularly 
important role. Some of the ‘usual suspects’ show up in the set of significantly repeated loci identified 
by PicMin: in addition to the homologs of the FT (FLOWERING LOCUS T) gene reported by Todesco 
et al., 2020, we also found hits for several other genes involved in circadian regulation and flowering 
time, including PRR3 (Para et al., 2007), TOE1 (Aukerman and Sakai, 2003), and PHYC (Takano 
et al., 2005; Chen et al., 2014), which is known to regulate photoperiodic responses in Arabidopsis 
accessions (Balasubramanian et al., 2006). Other top hits included genes involved in plant develop-
ment and auxin transport (PIN3 [Keuskamp et al., 2010], ARF4 [Pekker et al., 2005], and MN [Bhatia 
et al., 2016]), and plant immunity (CRK13 [Acharya et al., 2007] and PRR2 [Cheval et al., 2017]).

The increased repeatability found in regions of the genome that harbour inversions in only one 
species is particularly interesting. Inversions are commonly associated with local adaptation (Wellen-
reuther and Bernatchez, 2018), likely because they reduce the rate at which recombination breaks up 
combinations of co-selected alleles (Kirkpatrick and Barton, 2006), which perhaps facilitates contri-
butions by alleles that would be individually too weakly selected to overcome swamping by migration 
(Bürger and Akerman, 2011; Yeaman and Whitlock, 2011; Schaal et  al., 2022). Evidence here 
suggests these regions still tend to contribute to adaptation in the species lacking the recombination-
suppressing effect of an inversion, consistent with a strong effect of selection relative to migration 
on at least one locus in the region (rather than adaptation exclusively via many alleles of small effect; 
Yeaman, 2022). As an example, chromosome 15 harbours a large (72 Mbp) haploblock in H. annuus 
that is strongly associated with NFFD, and also shows some signatures of association in the other taxa, 
with particularly strong signatures of association on either side of the haploblock in H. argophyllus 
(Figure 3A). Interestingly, loci of repeated association identified by PicMin within this region include 
two genes whose homologs are known to regulate responses to cold: COLD-RESPONSIVE PROTEIN 
KINASE 1,CRPK1 (Liu et  al., 2017) and LATE ELONGATED HYPOCOTYL, LHY (Mizoguchi et  al., 
2002; Dong et al., 2011). It seems likely that strong selection relative to migration is therefore acting 
upon several loci in this region, and in many others harbouring inversions.

The observed repeatability associated with inversions further supports the local adaptation model 
as an explanation for the long-term persistence of segregating inversions (at least in sunflower), rather 
than mechanisms based on dominance or meiotic drive (Rieseberg, 2001). If there is variation across 
the genome in the density of loci with the potential to be involved in local adaptation, then the estab-
lishment and maintenance of inversions would be biased towards regions harbouring a high density 
of such loci under this model. If the genomic basis for local adaptation is conserved amongst species, 
then these same regions are more likely to have high repeatability. Thus, our observation of genomic 
regions harbouring inversions also being enriched for WRAs is consistent with this general model 
for inversion evolution. Unfortunately, our observations do not provide much insight into whether 
inversions evolve through the capture (e.g. Kirkpatrick and Barton, 2006) or accumulation (e.g. 
Schaal et al., 2022) type of model as either model would be consistent with our results. Most of the 
sunflower inversions are >1 My old, and therefore predate any current local adaptation patterns, but 
likely do not predate the genes underlying local adaptation (which appear to be shared among the 
species we studied). As for the alleles underlying local adaptation, they may be younger than the 
inversions, but as our work suggests, these regions are prone to harbouring locally adaptive alleles, so 
it is possible that they also harboured other ancestral locally adaptive alleles. While many studies have 
demonstrated the importance of inversions for adaptation (Wellenreuther and Bernatchez, 2018; 
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Hager et al., 2022), to our knowledge only two other studies have documented the involvement of 
the same loci making contributions in the absence of the recombination-suppressing effect of the 
inversion (Lee et al., 2017; Coughlan and Willis, 2019). This also highlights how comparative studies 
of a species lacking an inversion may help identify which genes are driving adaptation in another 
species with an inversion, as segregating inversions tend to have extensive LD that prevents identifi-
cation of any potential targets of natural selection within them.

While our results suggest a large number of loci can potentially contribute to adaptation, implying 
high redundancy (Figure 3B; Appendix 1—figure 14), there are several factors that complicate infer-
ence. Separating the effects of drift and selection to detect signatures of local adaptation is notori-
ously difficult because population structure often covaries with features of the environment that drive 
adaptation (Lotterhos and Whitlock, 2014; Hoban et al., 2016; DeRaad et al., 2021). As found 
by other analyses (Yeaman et al., 2016; DeRaad et al., 2021), when we use structure correction in 
our genotype–environment association tests, we find many fewer signatures of repeated association 
(Appendix 1—figure 7 vs. Appendix 1—figure 11), likely due to the reduced power of BayPass 
to detect true positives when the environment covaries with population structure (Booker et  al., 
2023a). Here, we have side-stepped the issues involved in correction for population structure by 
instead relying on comparisons among species to identify loci with associations more extreme than 
expected by chance in multiple species, using the null-W and PicMin tests. This assumes that most 
loci in the genome are not involved in local adaptation, so that the relatively small proportion that 
are driving adaptation can therefore be picked out due to their tendency to fall into the tail of the 
distribution of association statistics in at least one other species (which would only occur at the rate 
of random chance under a purely neutral model). While this approach should be relatively robust for 
identifying loci with repeated patterns of adaptation, there is no way to formally estimate significance 
of associations found in only a single species, many of which may be false positives due to covariation 
of population structure and environment. However, even if we assume that 80% of the observed non-
repeated loci are false positives, we still find that estimates of the effective number of loci contributing 
to adaptation (Leff) are in the hundreds (Appendix 1—figure 15C). As we are unable to detect loci of 
small effect due to the limited power, but these loci still likely make important contributions to heri-
tability, our estimates of Leff will also be biased downwards by excluding these potentially important 
drivers. Finally, it is also difficult to exclude the contribution of introgression or incomplete lineage 
sorting to the observed signatures of repeated association. If a locus tended to be highly introgressed 
between two species in a restricted region of their range, it is possible it could also covary with envi-
ronment and therefore result in a signature of repeated association that would be mistakenly inter-
preted as adaptation. While it is difficult to preclude this from our analysis, regions of the genome 
with signatures of repeated association do not tend to have higher levels of shared standing variation 
than background regions (Appendix 1—figure 6), suggesting that this is not a broad explanation for 
our observations. If anything, shared standing variation would be expected to increase repeatability 
of adaptation (MacPherson and Nuismer, 2017), adding further weight to the inference that there is 
high genotypic redundancy in these species.

In general, we find that temperature is the strongest driver of repeated adaptation at both the 
phenotypic and genomic levels. We quantified local adaptation at the phenotypic level using correla-
tions between traits measured in common gardens and the home environment of the population 
they were sampled from. Across all phenotypes, these correlations tended to be strongest and most 
similar among species for temperature variables, particularly in comparisons among H. annuus and 
H. petiolaris subspecies (Appendix 1—figure 3). We see similar patterns of repeatability reflected in 
the genome, where temperature variables also tend to have the greatest repeatability (Figure 4). The 
similarity in these phenotypic and genomic signatures is consistent with an effect of strong selection 
as other artefactual or drift-based explanations for repeatability would not be expected to reflect 
patterns found at the phenotypic level. It should be noted that the reduced importance of soil vari-
ables in the SIPEC index might be partly driven by the fact that all traits were measured on above-
ground features due to the difficulty of getting non-disruptive phenotypic measurements for roots.

Taken together, these results suggest that some fraction of the genome contributes to adapta-
tion with low redundancy and high repeatability (which tends to be enriched within genomic regions 
where there exist inversions in at least one species), while the remainder of the adaptive response is 
driven by loci with high redundancy and species-specific contributions. Theoretical models of adaptive 
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evolution necessarily involve simplified representations of genetics: population genetic approaches 
explore cases where strong selection deterministically drives a change in allele frequency at one or 
a few loci (usually without epistasis), whereas quantitative genetic approaches make the infinitesimal 
assumption that phenotypic change can be realized through small frequency changes at many loci 
(Barton et al., 2017; Barghi et al., 2020; Yeaman, 2022). Such models implicitly make quite different 
assumptions about redundancy: if a population genetic model of directional selection includes no 
epistasis, then it is implicitly assuming there is no redundancy as every locus can increase fitness and 
no locus can affect the potential of another locus to increase fitness. On the other hand, quantita-
tive genetic models implicitly assume complete redundancy as the loci driving trait variation have 
interchangeable effects. Given that differences in redundancy result in quite different evolutionary 
dynamics (Hollinger et  al., 2019; Yeaman, 2022), it is important to re-evaluate the behaviour of 
theoretical models in light of what we can learn about redundancy from empirical data. Our results 
suggest that adaptation is a complex process that does not map cleanly onto the assumptions of either 
approach. At least some component of trait variation experiences sufficiently strong selection and has 
low enough redundancy to drive the significant signatures of repeatability above the random null that 
we observe here. On the other hand, most of the strongest signatures of association are specific to a 
single species, implying high redundancy for most of the genome, even if there are still some detect-
able signatures of repeatability. Such observations may be consistent with classifying loci into ‘core’ 
and ‘peripheral’ sets similar to the omnigenic model, but would involve classification based on redun-
dancy rather than gene expression, as advocated by Boyle et al. (2017). Theoretical models adopting 
a two-class representation of the genetic basis of trait variation may provide more realism than models 
assuming a simpler distribution, and perhaps yield new insights about qualitatively different dynamical 
behaviour. Given the difficulty of rigorously quantifying the contribution of alleles of small effect and 
loci contributing to local adaptation in only one species, it remains an open question what propor-
tion of adaptive response is governed by loci with dynamical behaviour that follow the infinitesimal 
assumption. This could perhaps be quantified explicitly by decomposing heritabilities for traits driving 
local adaptation, as has been done for standing variation in humans (Visscher et al., 2017), but this 
would require a considerable increase in sample size as methods such as GCTA (Yang et al., 2011) 
do not yield accurate estimates at the sample sizes used here. Future work could perhaps resolve this 
question using multi-generational crossing designs to break up the LD that tends to accompany local 
adaptation, allowing a more accurate parsing of the effect sizes of genomic regions and the contribu-
tion by repeated vs. redundant components of adaptive trait variation.

Materials and methods
Data collection, common garden, and phenotyping
Seed samples were collected from 151 wild sunflower populations covering most of their native distri-
butions during the summer of 2015 (H. annuus: 61 populations for GWAS and 71 populations for 
GEA; H. petiolaris fallax: 23 populations; H. petiolaris petiolaris: 18 populations; and H. argophyllus: 
30 populations, Figure 1 and Supplementary file 1). Seeds from 10 additional populations of H. 
annuus for the GEA analysis had been previously collected in the summer of 2011. Sample seeds were 
obtained from randomly chosen mothers and were first germinated in a greenhouse for 2 wk, later 
moved to an open-sided greenhouse for acclimation. Phenotypic data were collected throughout 
the growing season, as detailed in Supplementary file 1. Extensive records of developmental and 
morphological traits throughout the growth of the plants including leaves, stem, and seeds were 
collected and digitally imaged to extract relevant phenotypic data.

Similarity in phenotype–environment correlation (SIPEC)
Locally adapted traits tend to exhibit strong correlations between environment and common-garden 
phenotype. To estimate which environmental variables are driving local adaptation for the same pheno-
type in pairs of species, we calculate an index of the similarity in phenotype–environment correlation, 
SIPEC = ‍

(��r1
�� +

��r2
��) ��r1

�� ��r2
��
‍ where r1 and r2 are the Pearson correlations between the environment 

and phenotype in the first and second species, respectively. This SIPEC index is maximized when the 
correlation between a phenotype and an environmental variable is large in both species regardless 
of the direction, so it does not differentiate phenotypically convergent vs. divergent patterns of local 
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adaptation (e.g. increasing temperature causing an increase in flowering time in one species and a 
decrease in the other), and provides a means of estimating the relative importance of an environment 
driving local adaptation in both species in a similar way across all measured phenotypes. To account 
for non-independence among traits, for each pair of species we fit a PCA to all measured phenotypes 
and use the principal components that collectively explain 95% of the variance, and calculate SIPEC 
on the correlations of each of these axes with environment. For comparisons including H. argophyllus, 
95% of the variance was typically explained by 8–10 PC axes (out of 28 or 29 phenotypes), whereas 
for comparisons among other taxa this included 21 or 22 PC axes (out of 65 or 66 phenotypes). We 
then report the maximum and mean value of SIPEC for each environmental variable across these 
phenotypic PCA axes.

Tests of SNP association with environment (GEA) and phenotype 
(GWAS)
A total of 39 environmental variables (21 climatic variables, 3 geographic variables, 15 soil variables; 
Supplementary file 1) were used for the genotype–environment association analysis (GEA). We 
refer to the climatic, soil, and geographic variables collectively as the ‘environmental variables’ for 
simplicity. Soil data were collected by taking 3–5 soil samples collected at each population from 
across the area in which seeds were collected and submitted to Midwest Laboratories Inc (Omaha, 
NE) for analysis. Climate data for each population were collected over a 30-year period (1961–1990) 
from geographic coordinates of the locations where the samples were collected using the software 
package Climate NA (Wang et al., 2012). We used the package BayPass version 2.1 (Gautier, 2015), 
which provides a re-implementation of the Bayesian hierarchical model, and explicitly accounts for the 
covariance structure among the population allele frequencies that originate from the shared history of 
the populations through the estimation of the population covariance matrix. This renders the identi-
fication of SNPs subjected to selection less sensitive to the confounding effect of population demog-
raphy (Gunther and Coop, 2013). Population structure was estimated by choosing a random and 
unlinked set of 10,000 SNPs and running BayPass under the core model (i.e. no covariates). Then 
the Bayes factors (BF) were calculated running BayPass under the STD covariate model to evaluate 
association of SNPs with environmental variables (i.e. adjusting for population structure). For each 
SNP, the Bayes factor (denoted BFis as in Gautier, 2015) was presented in deciban units (db) via the 
transformation 10 log10 (BF). BFis relies on the importance sampling algorithm proposed by Gunther 
and Coop, 2013 and uses MCMC samples obtained under the core model. To produce a narrower set 
of outlier loci, we followed the popular Jeffreys’ rule (Jeffreys, 1961) that identified outlier loci with 
BF ≥ 10. As genome scan methods that correct for population structure can remove some potential 
signals of local adaption when there is covariation between the demographic history of the species 
and the environmental variables or phenotypic traits of interest, we also calculated Spearman’s rank 
correlation (ρ, uncorrected GEA) between population allele frequencies for each SNP and each envi-
ronment variable.

GWAS analysis was performed on 86, 30, and 69 developmental and morphological traits in H. 
annuus, H. argophyllus, and H. petiolaris, respectively (Supplementary file 1). In total, 29 variables 
were measured in all three focal species and 39 were measured only in H. annuus and in H. petiolaris 
subspecies (Supplementary file 1). Seed and flower traits could not be collected for H. argophyllus 
since most plants of this species flowered very late in our common garden and failed to form fully 
developed inflorescences and set seeds before temperatures became too low for their survival. Popu-
lation structure was controlled for in GWAS by including the first three principal components as covari-
ates, as well as an identity-by-state (IBS) kinship matrix calculated by EMMAX (Kang et al., 2010). 
We ran each trait GWAS using EMMAX (v07Mar2010), as well as the EMMAX module in EasyGWAS 
(Grimm et al., 2017). For every SNP/peak above the Bonferroni significance threshold, candidate 
genes were selected within a 100 kb interval centred in the SNP with the lowest p-value, or within the 
boundaries of the GWAS peak, whichever was larger. All variants used for association were initially 
filtered for VQSR 90% tranche, and then further filtered to only include bi-allelic SNPs genotyped 
in ≥90% of samples and with a minor allele frequency ≥3%.

Identification of top candidate windows
We calculated the bottom 0.05 quantiles for the p-values from association tests, Spearman’s rank 
correlation (uncorrected GEA), and GWAS (corrected and uncorrected), yielding two 5% cutoffs. For 
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each environmental and phenotypic variable, we identified all outlier SNPs as those that fell below 
the respective 5% cutoff. For BayPass, we considered SNPs with BF ≥ 10 as outlier SNPs. For each 
5 kb window that we defined across the whole genome, we counted the number of outlier SNPs (a) 
and the total number of SNPs (n). To identify top candidate windows for each variable, we compared 
the number of outlier SNPs per each 5 kb window to the 0.9999 quantile of the binomial expectation 
where the expected frequency of outlier SNPs per window is calculated as ‍ρ =

∑
ai/ni‍ (summation 

over all 5 kb windows), calculating ‍ρ‍ independently for each environmental and phenotype variable 
and excluding windows with 0 outliers from the calculation of ‍ρ‍ (as per Yeaman et al., 2016). We also 
calculated a top candidate index using the same approach to categorize outliers, obtaining a p-value 
for a binomial test for the number of SNPs per window given an expected proportion of outliers (‍ρ‍; 
this p-value is not exact due to non-independence of SNPs, so we refer to this as an index).

Identifying outlier SNPs detected by genome scans from genome-wide distribution without 
accounting for local recombination rate variation can promote false-positive signals in recombination 
cold spots (i.e. low recombination regions) and be overly conservative in recombination hot spots (i.e. 
high recombination regions) (Booker et al., 2020). Therefore, to account for local recombination rate 
variation, all genomic windows were binned by their estimated recombination rates into five equally 
sized bins (bin1: 0–20% quantile; bin2: 20–40% quantile; bin3: 40–60% quantile; bin4: 60–80% quan-
tile; bin5: 80–100% quantile). For each recombination bin, we estimated expected frequency of SNPs 
per window (‍ρ‍) and calculated cutoff separately. Windows falling above the threshold were identified 
as top candidate windows.

Genome-wide survey of repeatability (null-W test)
To explore repeatable genomic signatures of adaptation for each of the six pairwise contrasts among 
the four taxa (Figure 1), we used the method developed by Yeaman et al., 2016 with some modifi-
cations. A common approach is to identify candidates for adaptation independently in each species 
and then examine the overlap between these lists; however, this approach is quite stringent and may 
miss many interesting signals. The null-W test is more sensitive as it takes the list of top candidates 
from one species and tests whether they tend to show more extreme signatures of association than 
expected by chance. The null-W test is especially favourable when LD increases divergence of SNPs in 
tight linkage with causal SNPs but does not raise the test values enough for a window to be classified 
as an outlier according to the binomial test. For each top candidate window that we identified for each 
focal species in a pair, we refer to the same window in the other species as ‘top candidate ortholog’. 
The null distribution for each focal species and variable was constructed by randomly sampling 10,000 
background SNPs from non-top candidate ortholog windows. For each non-top candidate window, 
we then estimated the test statistic (W) for the Wilcoxon signed-rank test vs. the 10,000 background 
SNPs. This resulted in a null distribution representing the differences between the 10,000 background 
SNPs and the non-top candidate ortholog windows. These were then standardized to Z-scores using 
the method in Whitlock and Schluter, 2020:

	﻿‍

Z = 2W − n1n2√
n1n2

(
n1 + n2 + 1

)
/3

‍�
(1)

where n1 and n2 are the sample sizes being compared. In order to control for heterogeneity in recom-
bination rate and its possible effects on the null distribution, we estimated null distribution for each 
recombination bin separately (five in total, see above). We then compared the p-values and BFs for 
each focal top candidate window to the 10,000 background SNPs, calculating the W statistics and 
converting into a Z-score. Empirical p-values were then calculated by comparing the Z-score for 
each top candidate window to the null distribution. When individual windows had values of W that 
exceeded the bounds of the null distribution, their empirical p-value was set to the reciprocal of the 
number of genes in the null distribution. For each species pair, we refer to the windows identified as 
significant by this test as ‘windows of repeated association’ or WRAs.
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Linkage disequilibrium and detection of clusters of repeated 
association
LD among adjacent genomic windows can result in statistical non-independence and similar GEA/
GWAS signatures across many windows. To identify the most significant WRAs and group neighbouring 
windows with similar signatures of repeatability into a single CRA, we used the following approach in 
each pairwise contrast, and for each environmental variable and phenotype: for each variable, empir-
ical p-values for all WRAs were converted to q-values to adjust for false discovery, then beginning 
with the first significant WRA along the chromosome (i.e., with q < 0.05), we compared it to the next 
closest significant WRA by calculating the squared Pearson correlation coefficient (r2) on the allele 
frequencies across all pairs of SNPs and compared this estimate to a null distribution. To construct the 
null distribution, we generated a distribution of LD measurements between 10,000 randomly chosen 
windows with the same physical distance as between two significant WRAs (excluding all WRAs from 
the null distribution). If the r2 between the two neighbouring significant WRAs was greater than the 
95th percentile of the null distribution, we clustered these two windows together. This process was 
repeated successively with the next closest neighbouring significant WRA, walking out along the 
chromosome until one of two stopping criteria was reached: (1) the LD between the last two windows 
did not exceed the 95% of the tail distribution or (2) the distance between the initial window and 
the current window next to it was larger than 1 cM, based on the linkage map from Todesco et al., 
2020. When the first round of clustering stopped due to either of these two criteria, all the clustered 
windows were removed from the dataset and the process started with the second smallest empirical 
p-value. By doing this way, each significant WRA will only appear in a single CRA.

Estimating an index of shared standing variation
As genotype calling was conducted separately for each species (due to computational concerns), we 
estimated the amount of shared standing variation based on counts of shared vs. non-shared SNPs. If 
two species are evolving independently, the number of shared SNPs should follow a hypergeometric 
distribution, so we used an approach similar to the C-scores (Yeaman et al., 2018) to calculate the 
difference between the observed number of shared SNPs and the expectation, scaled by the standard 
deviation of the hypergeometric. Because of noise and a relatively small number of SNPs per window, 
we applied this approach on a sliding-window basis, including the five flanking windows upstream and 
downstream of each focal window the calculation of its index of shared standing variation.

Correspondence between regions of repeated association and 
chromosomal rearrangements
To assess the extent of overlap between regions of the genome with repeated signatures of associ-
ation and previously identified low-recombination haploblocks, we used two approaches. Firstly, for 
each pairwise species contrast and variable, we constructed a contingency table for the number of 
top candidates that were significant WRAs vs. non-significant WRAs (by the null-W test), and that did 
vs. did not fall within a haploblock. We calculated the Pearson’s χ2 statistic on this table and then 
permuted the location of haploblocks throughout the genome to construct a null distribution of χ2 
statistics, and calculated the p-value as the proportion of the null that exceeded the observed χ2 
statistic (to account for non-independence of nearby WRAs), which is presented in Figure 5. Secondly, 
we compared observations of the length and number of overlapping regions to expectations based 
on a randomization approach. For each pair of species, we kept the position of each CRA constant and 
randomized the position of haploblocks 10,000 times to build a null distribution. By keeping the posi-
tion of the CRAs constant, we maintained the architecture of adaptation independent from chromo-
somal rearrangements. We assessed significance by testing whether the observed overlaps between 
CRAs and haploblocks were more extreme than the 95th percentile of the tail of null distribution, 
which is presented in Appendix 1—figure 7. Details about identifying chromosomal rearrangements 
can be found in Todesco et al., 2020.

Identifying repeated signatures of association across all taxa
As a complement to the pairwise analysis, we used PicMin (Booker et al. 2022a) to identify windows 
of the genome with strong signatures of association in multiple (sub-) species. For each environmental 
variable, association signatures for each window are ranked genome-wide and PicMin identifies 

https://doi.org/10.7554/eLife.88604
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windows with extreme ranks in multiple species. We ran the analysis once with each of the two 3-way 
comparisons involving one petiolaris subspecies (i.e. H. annuus, H. argophyllus, and either H. pet. 
petiolaris or H. pet. fallax) to control for repeatability arising from similar patterns in the two petiolaris 
subspecies (due to high introgression/shared standing variation).

Evaluating genotypic redundancy using C-scores
Genome-wide quantification of the repeatability of association statistics provides insights into the 
amount of genotypic redundancy underlying a trait or environmental adaptation, and can be assessed 
using the C-score approach (Yeaman et al., 2018). Briefly, for a given trait or environment, the set 
of association test scores within each species is classified into ‘associated’ or ‘non-associated’ using 
the binomial top candidate approach. For a given pair of species (i = 1, 2), the observed number 
of associated windows in each species (a1, a2) can be compared to the number of windows that are 
associated in both species (ab) and the total number of windows being analysed (ax). Under a null 
hypothesis where all windows in the genome have equal potential to be involved in adaptation (i.e. 
associated with the trait or environment), the expected number of windows associated in both species 
will be described by a hypergeometric distribution, with the expectation ‍

−ab = a1a2/ax‍ . The difference 
between the observed and expected amount of overlap in association scores can be quantified as a 
C-score by scaling the difference by the standard deviation of the hypergeometric (i.e. a C-score of 
2 means that the observed amount of overlap is 2 standard deviations above the expectation under 
randomness).

We assess the C-scores for each phenotype and environment trait by classifying the top 0.5% of 
all 5 kb windows within each species as ‘associated’ (ai; based on the binomial top candidate index), 
and begin by calculating the C-score obtained when ax is set to the union of ai across all four focal 
species/sub-species (i.e. only those windows associated in at least one species are included in ax, a 
number much lower than the total number of windows in the genome). This yields a negative C-score 
as a random draw from such a small number of windows tends to yield many more overlapping asso-
ciations by chance than the observation. When the C-score = 0, it means that the observed overlap 
between the pair of taxa being considered is consistent with a random draw of their respective ‘asso-
ciated’ windows from an overall pool of ax windows. Thus, by adding rows to the matrix with ‘non-
associated’ scores for all four species/sub-species until finding the matrix that yields C-score = 0, we 
can estimate the effective number of loci that contributed to variation for the trait or environment 
being considered (Leff), under the assumption that all such ax = Leff windows had an equal chance of 
contributing to the associations.

To run the C-score analysis on LD-clustered windows, we ran the following algorithm for each trait/
environmental variable: for each species, we identified all CRAs that also had a top candidate index in 
top 0.5%. In most cases, a large cluster with associated windows in one species corresponds to either 
no clusters or a small cluster in another species. To harmonize cluster boundaries across species, we 
bin any overlapping clusters together to their maximum extent and take the average top candidate 
index for each cluster in each species as either (a) the mean across all windows that were ‘associated’ 
in that species or (b) the average across all windows associated in any species, if no windows were 
associated in that species. This yields a matrix that can be submitted to the hypergeometric C-score 
analysis.
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Appendix 1

Additional methods
Whole-genome re-sequence data alignment and variant calling
DNA was extracted from leaf tissues (these are the same individuals examined in the previous study, 
see Todesco et al., 2020 for details). Briefly, all libraries were sequenced at the Genome Quebéc 
Innovation Center on HiSeq2500, HiSeq4000, and HiSeqX instruments to produce paired end, 150 bp 
reads (Illumina, San Diego, CA). Libraries with a low number of reads were re-sequenced to increase 
genome coverage. After quality filtering (see below), a total of 60.7 billion read pairs were obtained. 
Illumina adapters and poor quality reads were hard-clipped using Trimmomatic (v0.36) (Bolger et al., 
2014). Reads were then aligned to the H. annuus XRQv1 genome (HanXRQr1.0-20151230; Badouin 
et al., 2017) using NextGenMap (v0.5.3; Sedlazeck et al., 2013). PCR duplicates were marked and 
removed using picard MarkDuplicates 2.9.3. Genomic regions containing transposable elements 
(~3/4 of the sunflower genome) were excluded to reduce computational time and improve variant 
quality. Genotyping for each species was performed independently as joint genotyping on the whole 
ensemble of samples was computational impractical. GATK’s VariantRecalibrator (v4.0.1.2; Van der 
Auwera and O’Connor, 2000), which filters variants in the call set according to a machine learning 
model inferred from a small set of ‘true’ variants, was used to remove low-quality calls and produce a 
dataset of a more manageable size. In the absence of an externally validated set of known sunflower 
variants to use as calibration, we computed a stringently filtered set from top-N samples with highest 
sequencing coverage for each species (N = 67 for cultivated sunflower and N = 20 for wild sunflower 
species). The stringency of the algorithm in classifying true/false variants was adjusted by comparing 
variant sets produced for different parameter values (tranche 100.0, 99.0, 90.0, 70.0, and 50.0). For 
each cohort, results for tranche = 90.0 were chosen for downstream analysis, based on heuristics: 
the number of novel SNPs identified, and improvements to the transition/transversion ratio (towards 
GATK’s default target of 2.15).

Remapping sites to the HA412-HO reference genome
As described with details by Todesco et al., 2020, haploblock analysis highlighted contig ordering 
issues with the XRQv1 reference assembly (see below). To overcome this, all sites were transferred 
to a new reference, HA412-HOv2, which used Hi-C for contig and scaffold ordering (Belton et al., 
2012; Marie-Nelly et al., 2014). To do this, the 200 bp of reference sequence flanking each site in 
XRQv1 were extracted and aligned to HA412-HOv2 using BWA (Li, 2013). These alignments were 
filtered for mapping quality >40 and the HA412-HOv2 position for the variant site was extracted. 
Since all remapped sites were not in repetitive regions and had passed VQSR filtering, remapping 
success rate was high (96–98%). Whenever mapping suggested two different variants on the XRQv1 
genome were in the same position on the HA412-HOv2 genome, likely due indels and imprecise 
alignment, one site was shifted by 1 bp so that they did not overlap. Remapping was preferred 
to de novo read alignment and variant calling against the HA412-HOv2 assembly because of the 
prohibitive amount of computational time that would have required.

Gene Ontology enrichment analysis of regions with repeated association
Genes that overlapped with CRAs associated with environmental and phenotypic variables were 
screened for enrichment of Gene Ontology (GO) terms. GO annotations for Arabidopsis thaliana 
genes from the TAIR database were mapped onto their sunflower homologs and a custom database 
of sunflower GO annotations was constructed. The R package TOPGO (Alexa and Rahnenfuhrer, 
2023) was used to analyse the set of candidate genes to determine which categories were most 
overrepresented. Significance for each individual GO identifier was computed with Fisher’s exact 
test and significant GO terms were identified at an FDR of 1%. GO functional enrichment analysis 
was performed in the categories biological process (BP), cellular component (CC), and molecular 
function (MF).

Additional results
GO-enrichment analysis
To investigate the functional associations of genes overlapping with the WRA, we performed GO 
analysis using TopGO package in R. GO terms with corrected p-values<0.05 were considered 
significantly enriched. Appendix  1—figures 9 and 10 provide a list of GO terms that are over-
represented in our gene set. GO components and processes associated with membrane assembly, 

https://doi.org/10.7554/eLife.88604
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transport through the endomembrane system, mRNA, and growth are significantly enriched in this 
analysis.

Appendix 1—figure 1. Schematic overview of methods and primary research questions.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 2. Strength of phenotype–environment correlations across all traits for four different types of 
environmental variables in each of the sunflower species and subspecies. Black points show individual values, and 
grey points show binned density.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 3. Maximum similarity in phenotype–environment correlation (SIPEC) for pairs of taxa, across 
soil-, temperature-, and precipitation-related environmental variables. The maximum value of SIPEC for each 
environment is calculated across all phenotypic principal component analysis (PCA) axes that cumulatively explain 
95% of the variance.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 4. The effect of recombination rate on width of the null-W distribution for the number of 
frost-free days (NFFD) variable for Helianthus annuus and H. argophyllus. Recombination bins represent the 
0th–20th percentile, 20th–40th percentile, etc.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 5. Proportion of top candidate windows that are significant hits under the null-W test 
(windows of repeated association), for pairs of taxa, across precipitation (A), soil (B), and temperature (C) 
environmental variables.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 6. Index of shared standing variation for windows of repeated association (WRAs) vs. top 
candidates that were not significant under the null-W test. The index of shared standing variation reflects the 
proportion of SNPs that are shared vs. non-shared among species and provides an indicator of the likely extent 
of introgression, which does not appear to differ substantially among the windows of the genome with significant 
(p<0.05; red lines) vs. non-significant (p>0.05; black lines) null-W test results. Panels A-F show the values for each of 
the six pairwise comparisons among species, as indicated above each panel.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 7. Number and size of clusters of repeated association (CRAs) and their overlap with 
haploblocks. Total size and total number of CRAs detected among six studied pairs on each linkage group 
across all phenotypes by Genome-Wide Association (GWAS) (A), and Genotype-Environment Association (GEA) 
(B). Hatching areas indicate the total size and number of clusters residing within chromosomal rearrangements. 
Heat maps present proportion of CRAs by number (C) and size (D) per each phenotype variable and environment 
variable overlapping with chromosomal rearrangements. Stars in indicate overlaps between CRAs and haploblocks 
happen significantly different from chance (p-value ≤ 0.05). Grey cells in the heat maps indicate no data is available 
for that comparison and variable.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 8. Total size and number of convergent clusters in different pairs for each analysis type. The 
total size of convergent clusters (A) and total number of convergent clusters (B) identified among different pairs 
surveyed in the present study using association genetic approaches that corrected population structure versus 
those that did not correct across all environmental variables (GEA) and corrected GWAS.

Appendix 1—figure 9. Bar graph of Gene Ontology (GO) enrichment analysis for phenotype (A) and 
precipitation-related variables (B). Bar plot depicts the significant enriched GO terms within categories: biological 
process, cellular component, and molecular function. Y-axis represents the GO term, and the X-axis represents the 
enrichment significance, respectively.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 10. Bar graph of Gene Ontology (GO) enrichment analysis for soil (A) and temperature-
related variables (B). Bar plot depicts the significant enriched GO terms within categories: biological process, 
cellular component, and molecular function. Y-axis represents the GO term, and the X-axis represents the 
enrichment significance.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 11. Effect of structure correction on number and size of clusters of repeated association 
(CRAs) and their overlaps with inversions. Total size and total number of CRAs detected among six studied pairs 
on each linkage group across all environmental variables by corrected GEA (A). Hatching areas indicate the total 
size and number of clusters residing within haploblocks. Heat maps present proportion of CRAs overlapping with 
haploblocks by number (B) and size (C) for each phenotype and environmental variable (climate and soil). Stars 
indicate cases where observed overlaps between CRAs and haploblocks happen significantly more than expected 
by chance (p-value ≤ 0.05). Grey cells in the heat maps indicate no data is available for that comparison and 
variable.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 12. Relationship between mean similarity in phenotype-environment correlation (SIPEC) and 
number of clusters of repeated association (CRAs). SIPEC was calculated for each phenotypic principal component 
analysis (PCA) axis with the mean calculated across the axes that cumulatively explain 95% of the phenotypic 
variance for each environment. Each panel (A-F) shows a comparison between a pair of species indicated above, 
and includes both a linear model fit to the data within the panel (coloured lines), and a linear model fit to all data 
simultaneously (black lines) for comparison. Note that because environmental variables are correlated, these points 
are not independent and therefore represent a source of pseudoreplication, preventing formal statistical tests of 
this relationship.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 13. Relationship between index of shared standing variation and number of clusters of 
repeated association (CRAs). Panels A-F show the values for each of the six pairwise comparisons among species, 
as indicated above each panel, with lines showing linear model fits for data within each panel.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 14. Relationship between mean similarity in phenotype–environment correlation (SIPEC) and 
size of clusters of repeated association (CRAs). SIPEC was calculated for each phenotypic principal component 
analysis (PCA) axis with the mean calculated across the axes that cumulatively explain 95% of the phenotypic 
variance for each environment. Each panel (A-F) shows a comparison between a pair of species indicated above, 
and includes both a linear model fit to the data within the panel (coloured lines), and a linear model fit to all data 
simultaneously (black lines) for comparison. Note that because environmental variables are correlated, these points 
are not independent and therefore represent a source of pseudoreplication, preventing formal statistical tests of 
this relationship.

https://doi.org/10.7554/eLife.88604
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Appendix 1—figure 15. Estimates of effective number of loci in pairwise contrasts among species. Panel (A) 
shows a comparison of estimates of the effective number of loci (Leff) when calculated with vs. without linkage 
disequilibrium (LD)-clustering for the environmental variables from the six pairwise contrasts among lineages. 
Panel (B) shows the effect of structure correction using BayPass on Leff. Panels (C) and (D) show the estimation of Leff 
for the variable with the lowest average value (Hargreaves reference evapotranspiration; Eref) under different false-
positive rates for just the windows with non-repeated signatures (C) or for all windows (D).

https://doi.org/10.7554/eLife.88604

	Repeatability of adaptation in sunflowers reveals that genomic regions harbouring inversions also drive adaptation in species lacking an inversion
	eLife assessment
	Introduction
	Results
	Local adaptation at the phenotypic level
	Genome-wide analysis of repeated local adaptation
	Repeated association in the genome reflects patterns at the phenotypic level
	Overlap of signatures of repeated association with low recombination haploblocks
	Multi-species signatures of repeated association
	Estimating the number of potentially adaptive loci

	Discussion
	Materials and methods
	Data collection, common garden, and phenotyping
	Similarity in phenotype﻿–﻿environment correlation (SIPEC)
	Tests of SNP association with environment (GEA) and phenotype (GWAS)
	Identification of top candidate windows
	Genome-wide survey of repeatability (null-W test)
	Linkage disequilibrium and detection of clusters of repeated association
	Estimating an index of shared standing variation
	Correspondence between regions of repeated association and chromosomal rearrangements
	Identifying repeated signatures of association across all taxa
	Evaluating genotypic redundancy using C-scores

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References
	﻿Appendix 1﻿
	Additional methods
	Whole-genome re-sequence data alignment and variant calling
	Remapping sites to the HA412-HO reference genome
	Gene Ontology enrichment analysis of regions with repeated association

	Additional results
	GO-enrichment analysis




