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Abstract The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic 
reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory 
substitution has been reported following complete vestibular loss, the capacity of the central vestib-
ular system to compensate for partial peripheral vestibular loss remains to be determined. Here, 
we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and 
partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining 
of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but 
not type II, hair cells correlates with functional impairments. The decrease in VOR performance is 
paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where 
VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Compar-
ison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain 
reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed 
that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility 
of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in 
pathologies with fluctuating peripheral vestibular malfunction.

eLife assessment
This paper provides a fundamental expansion of vestibular compensation into transient and partial 
dysfunction, as well as insights into the adaptation of visual reflexes in this process. The conclusions 
are convincingly supported with paired histological and behavioral measurements, which are addi-
tionally modeled for further interpretation. This work would be of interest to neuroscientists working 
in multisensory integration and recovery mechanisms.

Introduction
The vestibular system is well-preserved amongst vertebrates, participating in essential functions such 
as balance, postural control and, together with the optokinetic system, gaze stabilization (Straka 
et al., 2016; Wibble et al., 2022). Beyond these recognized roles, vestibular signals also contribute 
to cognitive processes for example spatial orientation and navigation (Cullen, 2019), or body 
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representation (Lopez et al., 2012; Facchini et al., 2021). Because of its involvement in many basic 
functions important in our daily life, vestibular pathologies affecting the inner ear are associated with 
a significant deterioration of the well-being of patients (Möhwald et  al., 2020) and represent an 
important public health concern (Agrawal et al., 2009; Agrawal et al., 2013).

Research on post-lesion plasticity following permanent vestibular loss has shed light on the neural 
plastic mechanisms that follow a chronic unilateral or bilateral vestibular lesion, a process referred as 
“vestibular compensation” (Brandt et al., 1997; Cullen et al., 2010; Beraneck and Idoux, 2012). The 
compensation taking place after the lesion is known to involve dynamical multisensory reweighting of 
proprioceptive and visual inputs and of internal efferent copies (Cullen et al., 2010; Sadeghi et al., 
2012; Sadeghi and Beraneck, 2020). While total and permanent lesions offer the experimental 
opportunity to characterize drastic cellular and molecular changes triggered by the total silencing of 
the vestibular endorgans, they imperfectly mimic clinical situations where peripheral vestibular func-
tion loss is only partial and/or transient (Bisdorff et al., 2009; Lopez-Escamez et al., 2015; Brandt 
and Dieterich, 2017). To better model fluctuating inner ear function, protocols based on subchronic 
exposure to an ototoxic substance, 3,3′-iminodiproprionitrile (IDPN) were first introduced in the rat 
(Seoane et al., 2001; Sedó-Cabezón et al., 2014; Sedó-Cabezón et al., 2015; Martins-Lopes et al., 
2019) and more recently in the mouse (Greguske et  al., 2019). Subchronic exposure to IDPN in 
drinking water at low doses allowed for progressive ototoxicity, leading to a partial and largely revers-
ible loss of function. Although the subchronic IDPN protocol was shown to cause postural and loco-
motor deficits (Martins-Lopes et al., 2019), its effects on the gaze stabilizing reflexes, namely the 
vestibulo-ocular and optokinetic reflexes, have not yet been described.

The primary objective of the present study is first to assess how subchronic exposure to IDPN 
may affect the function of the different vestibular endorgans. To that end, we took advantage of our 
recently described methodology (Simon et al., 2020; Simon et al., 2021) using canal-specific and 
otolith-specific tests. Quantification of the vestibulo-ocular reflexes is a sensitive and specific method 
to assess the functionality of the sensory-motor vestibular pathway; it is the most used test in clinics, 
and highly correlates to quality-of-life reports in patients suffering from acute peripheral diseases 
(Möhwald et al., 2020).

The secondary objective is to determine whether visual substitution occurs following transient and 
partial vestibular loss. Optogenetic stimulation of the vestibular pathway demonstrated the recruit-
ment of circuits involved in visual processing at the midbrain, thalamic and cortical regions (Leong 
et al., 2019). Recent imaging studies in rodents have shown that acute vestibular loss triggers brain-
wide adaptive plasticity in circuits known to be involved in visual processing (Zwergal et al., 2016; 
Grosch et  al., 2021). In addition, it was previously shown that OKR plasticity is triggered during 
vestibular compensation following a permanent vestibular lesion (Faulstich et  al., 2006; Nelson 
et al., 2017).

We report that 6 weeks of IDPN subchronic treatment affects both the canal- and otolith-dependent 
vestibulo-ocular reflexes and that organ-specific loss of type I hair cells (HC) correlates with indi-
vidual mice’s impairments. We show that optokinetic adaptive compensation is frequency-specific and 
delayed with respect to the VOR changes. OKR changes occur at the frequencies where physiologi-
cally the vestibular inputs dominate visuo-vestibular gaze stabilization. We demonstrate that despite 
the significant recovery of their vestibulo-ocular reflexes, the visuo-vestibular integration remains 
notably impaired in some IDPN-treated mice. We suggest that the ‘noisiness’ of the recovered vestib-
ular signal affects their capacity to optimally combine visual and vestibular responses. Overall, these 
results shed light on the dynamic of multisensory reweighting in patients suffering from fluctuating 
peripheral vestibular malfunction.

Results
Effects of the subchronic treatment of IDPN on the canal- and otolith-
dependent VOR
To investigate the effects of the IDPN on vestibulo-ocular reflexes (VOR), animals were exposed to the 
ototoxic compound in the drinking water for six weeks (Treatment period), followed by 6 weeks of stan-
dard drinking water without IDPN (Washout period). The VOR were quantified every two weeks using 
canal-specific and otolith-specific tests. Horizontal sinusoidal rotations in the dark were performed 
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and oculomotor responses were recorded using video-oculography (Figure 1A) to study the impact 
of IDPN treatment on the canal-dependent angular VOR (aVOR). Typical raw aVOR traces are shown in 
Figure 1B. At week 6 (W6), the amplitude of the eye movements was distinctly reduced compared to 
W0, while at W12 the amplitude of the response appeared partially restored. The dynamics of decrease 
and recovery of the mean aVOR gain over the course of the protocol are reported in Figure 1C for 
both IDPN (n=21) and SHAM (n=22) groups. The evolution over time of the aVOR gain is significantly 
different for the two groups of mice (ANOVA Weeks x Group interaction, F(6,246)=29,949, p<10–4). 
Before treatment, both groups responded similarly to the sinusoidal stimulations and their aVOR gain 
remained unchanged through 2 weeks of treatment (W2). However, starting W4 the aVOR gain of 
IDPN group significantly decreased with respect to W0 (Newman-Keuls post hoc test: IDPN W0 vs 
W4 p<10–4, see Table 1) and was significantly lower compared with the SHAM group (W4, IDPN vs 

Figure 1. Effects of subchronic IDPN on canal- and otolithic- dependent VOR. (A) Illustration of the angular horizontal vestibulo-ocular reflex (aVOR) 
set-up. All tests are performed in complete dark. (B) Examples of velocity aVOR traces in response to table rotations (1 Hz at 30°/s) recorded in the 
dark in an IDPN mouse before (W0, corresponding gain of 0.785; VAF of 0.98), after 6 weeks of treatment (W6, gain: 0.14; VAF: 0.61) and 6 weeks 
of washout (W12, gain:0.48; VAF: 0.92). Right movement is represented up. (C) Mean aVOR gain of SHAM (n=22) and IDPN (n=21) mice during the 
protocol (repeated measures ANOVA). (D) Illustration of the ocular- counter roll (OCR) set-up. (E) Examples of raw OCR traces at W0, W6 and W12 in 
a IDPN mouse recorded in the dark. Tilt to the right is represented up (positive values). (Left) eye elevation is represented up. (F) Mean OCR gain of 
SHAM (n=14) and IDPN (n=13) mice (mix-model ANOVA). We note that there was a significant difference between SHAM and IDPN during the initial 
measurements at W0. However, at this time point mice were not yet separated into different groups. This incidental difference completely disappeared 
on the measurement performed at W2. (*p<0.05; **p<0.01; ***p<0.001). Error bars represent ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Effects of subchronic IDPN on canal- and otolithic- dependent VOR.

Figure supplement 1. Effects of subchronic IDPN on canalar- and otolith-dependent VOR.

https://doi.org/10.7554/eLife.88819
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SHAM p<10–4). The aVOR gain of the IDPN group 
remained lower compared to SHAM through the 
rest of the protocol (W6 IDPN vs SHAM p<10–4., 
W8 IDPN vs SHAM p<10–4, W10 IDPN vs SHAM 
p<10–4, W12 IDPN vs SHAM p<10–4) with a 
minimum reached at W6 corresponding to ~2/3 
of aVOR loss (IDPN W4 vs W6 p<10–4, IDPN W6 
vs W8 p=0.043762). At the end of the 6 weeks of 
washout, the mean aVOR significantly improved 
(IDPN W6 vs W12 p<10–4) to levels observed at 
W4 (IDPN W4 vs W12 p=0.561969). Notably, the 
amplitude and dynamic of gain changes were 
similar for all frequencies >0.2 Hz (see Figure 1—
figure supplement 1A). However, at the lowest 
frequency tested (0.2  Hz), aVOR gain decrease 
reached significance only at W6.

aVOR responses were further modified by significant phase leads that affected all frequencies 
starting W6 (Figure 1—figure supplement 1B, ANOVA repeated measures Weeks x Group Interac-
tions F(6, 246)=14.528, p<10–4). Overall, canalar responses remained unaffected until week 2, but the 
amplitude and/or timing of the aVOR was abnormal from week 4 until the end of the protocol, despite 
a significant recovery of angular VOR responses observed during the washout period.

To determine whether otolith-dependent VOR was also affected by IDPN treatment, ocular-counter 
roll responses (OCR) were tested during static lateral inclination in the range ± 40° (OCR; Figure 1D). 
Examples of raw traces and quantification of the response are shown in Figure 1E, and mean gain 
of the OCR of each group is plotted in Figure 1F (n=13  IDPN, n=14 SHAM). The modulations of 
responses amplitude were significantly different between IDPN and SHAM groups (ANOVA repeated 
measures Weeks x Group Interaction F(6, 150)=7.7411 p<10–4). We note that there was a significant 
difference between SHAM and IDPN during the initial measurements at W0, before any treatment. 
However, at this timepoint mice were not yet separated into different groups. This incidental differ-
ence completely disappeared on the measurement performed at W2 (W2 IDPN vs SHAM p=0.8135). 
While the gain of the SHAM group stays in a 0.5–0.6 range over the whole duration of the protocol, 
the responses of the IDPN group significantly decreased at W4 compared to the SHAM group (W4 
IDPN vs SHAM p<10–4). This decrease was larger at W6 (IDPN W4 vs W6 p=0.023) and stayed signifi-
cantly different from the SHAM group until W8. At W10 and W12, the OCR of IDPN group recovered 
to a level comparable to the SHAM group (W10 IDPN vs SHAM p=0.1262, W12 IPDN vs SHAM 
p=0.3385).

Sub-chronic treatment of IDPN was also investigated through the dynamic Off Vertical Axis Rota-
tion (OVAR) test (Figure 1—figure supplement 1C), which primarily reflects maculo-ocular (domi-
nantly otolithic) responses integrated by central vestibular pathways. The maculo-ocular reflex (MOR) 
bias decreased significantly compared to the SHAM group (ANOVA Weeks x Group, F(6, 132)=10.076, 
p<10–4) starting W2 of treatment (W2 IDPN vs SHAM p=0.0018), demonstrating that ototoxicity 
already affected the vestibular system at this early time point. The maximal decrease was reached 
at W6 (W6 IDPN vs SHAM p=0.00012) and recovery led to normal responses at W12 (W12 IDPN vs 
SHAM p=0.4709).

Comparison of otolith- and canal-dependent plasticity in individuals
To compare the dynamic of canal- and otolith-dependent VOR alterations, the paired VOR and OCR 
gains measured in individuals from the IDPN group (n=13) are plotted together (Figure 2). Alteration 
in canal- and otolith-dependent responses followed a very similar time course (OCR vs aVOR at 1 HZ 
on Figure 2A; similar patterns were obtained with the other tested frequencies (not shown)).

To investigate further the organ-specific responses, the individual values of VOR gain at 1  Hz 
(left panel) and OCR slope (right panel) are plotted in Figure 2B. These plots show the variability 
of the responses observed in different individuals. 2/3 of the mice had aVOR responses lowered by 
more than 50%, while 1/3 had milder aVOR impairments. In most cases, however, the aVOR gain 
decreased notably between W4 and W6 and started to recover from W8 (compare individual slopes 

Table 1. Statistics table of the aVOR gain for the 
IDPN-treated group.

W0 W2 W4 W6 W8 W10 W12

ns *** *** *** *** *** W0

ns *** *** *** *** *** W2

*** *** *** *** ns ns W4

*** *** *** * *** *** W6

*** *** *** * *** *** W8

*** *** ns *** *** ns W10

*** *** ns *** *** ns W12

https://doi.org/10.7554/eLife.88819
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in Figure  2B). Similarly, OCR gains were variable between individuals. However, the dynamic of 
the variations in otolith-dependent responses followed a pattern comparable to that of the canal-
dependent changes.

To determine whether the changes in canal- and otolith-dependent responses were propor-
tional, individual variations in gain since pre-treatment of the aVOR and OCR were compared at W6 
(Figure 2C) and W12 (Figure 2D). At W6, there was a significant correlation between the amplitude of 
the changes observed in aVOR and OCR, such that canalar and otolithic loss of function was propor-
tional (slope of regression line: 0.5586). Despite the general recovery, this significant correlation was 
preserved at W12: the recovery in canal-dependent responses was proportional to the recovery in 
otolith-dependent responses (slope of regression line: 0.5566). Overall, these results suggest that the 
subchronic IDPN treatment similarly affects the vestibulo-ocular reflexes that depend on semi-circular 
canals and on the otolithic organs, respectively.

Figure 2. Comparison of the dynamics of canalar and otolithic loss of function. (A) Evolution of the Mean Gain of the aVOR (1 Hz) and OCR responses 
of IDPN mice (n=13) during the treatment and washout periods. (B) Individual gains for 1 Hz aVOR (left) and OCR (right) of the 13 IDPN mice, identified 
with similar symbols. The grey symbols in the left panel correspond to aVOR gain values associated with VAF <0.5. (C, D) Individual ΔaVOR gains as a 
function of individual ΔOCR gains at W6 (C) and W12 (D) compared to W0, for SHAM (n=14) and IDPN (n=13) mice. The linear regression corresponds to 
IDPN values is represented, as well as the 50% confidence interval of each group (shaded areas). The symbols for each animal are the same in panels B, 
C, and D. (*p<0.05; **p<0.01; ***p<0.001). Error bars represent ± SEM.

The online version of this article includes the following source data for figure 2:

Source data 1. Comparison of the dynamics of canalar and otolithic loss of function.

https://doi.org/10.7554/eLife.88819
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Effects of the IDPN exposure on the number of hair cells in the 
vestibular epithelia
To correlate the vestibular loss of function to the structural changes induced by the ototoxic compound, 
vestibular epithelia were dissected and labelled to assess the number of hair cells (HC) in the organs. 
One horizontal semi-circular canal and one utricule were harvested at W6 for n=7 IDPN and n=4 SHAM, 
and at W12 for n=8 IDPN and n=4 SHAM, and each organ epithelium was divided into the central 
and peripheral region to differentiate the possible participation of zone- and organ-specific HC to the 
vestibular function. Vestibular HC were labelled with type-specific immunomarkers in both endorgans 
(Figure 3). Confocal immunostaining data are presented in Figure 3A1 for the horizontal semi-circular 
canals and Figure 3C1 for the utricule. Six-week long treatment of IDPN exposure led to a significant 
reduction in the labelling of type I HC in the canal crista (quantified in Figure 3A2, Non parametric 
Kruskal-Wallis test, SHAM vs IDPN Spp1, p=0.0322; SHAM vs IDPN CASPR1, p=0.0268; Figure 3—
figure supplement 1A1 and B1 for the peripheral zones) and in the otolith macula (Figure 3C2, Non 
parametric Kruskal Wallis test SHAM vs IDPN Spp1, p=0.0279; SHAM vs IDPN CASPR1, p=0.0343). 
However, the treatment did not alter type II HC-specific labelling as the number of Calre + cells in 
the IDPN group was similar to the SHAM in all regions of either vestibular endorgans (Figure 3A2, 
canal crista, Calre: Non parametric Kruskal-Wallis test IDPN vs SHAM, p>0.9999; Figure 3C2, otolith 
macula, Calre: SHAM vs IDPN, P>0.9999). Importantly, the total number of HC marked with Myo7a 
(labelling both type I and type II HC) was not significantly different between the IDPN-treated mice 
and the SHAM, suggesting that the alteration of type I HC is not associated with cell loss. Moreover, 
at W12 the number of type I HC labelled in the IDPN-treated mice was no longer significantly different 
from the SHAM group in either endorgans (Figure 3A3 for crista; Figure 3C3 for macula). The count 
of type II-specific markers and of non-specific HC markers was not statistically different between 
SHAM and IDPN either, so that overall no difference persisted at W12, indicating a structural recovery 
at the end of the washout period.

To determine how the loss of HC correlates with organ-specific functional tests, the numbers of 
type I and II HC in the central region of the horizontal semi-circular canals are plotted as a function of 
the mean aVOR gain for mice at W6 and W12 (Figure 3B1). Both markers of type I HC (CASPR1 and 
Spp1, left panels) were significantly correlated with the aVOR gain (linear regression, Spp1: r2=0.5128, 
p=0.0001; CASPR1: r2=0.4948, p=0.0002), whereas the rather constant number of type II HC in the 
ampulla did not correlate with the variation observed in aVOR function. Finally, to determine if the 
correlation was due to the recovery occurring between W6 and W12, the number of CASPR + cells of 
IDPN mice counted at W12 are plotted as a function either of the individual aVOR gain at W12 (pink 
squares) or aVOR gain at W6 (black circles), paired by an arrow (Figure 3B2). The recovery of the 
vestibular function between W6 and W12 induces a shift toward the W12 linear regression, reinforcing 
the notion that the recovery of function was related to the increase in the number of hair cells with 
normal expression of biochemical markers.

The numbers of type I HC and II HC found in the striolar region of the utricule are similarly plotted 
in relation to the OCR gain (linear regression, Spp1: r2=0.6011, p<0.0001; CASPR1: r2=0.6342, 
p<0.0001, Figure 3D1). Again, the otolithic function correlated with the number of type I HC, and not 
type II HC in the central region. Furthermore, the correlation found between the otolithic function and 
the number of type I HC related to the increase in the number of hair cells after the recovery period 
(Figure 3C2). A similar correlation between organ-specific function and the number of type I HC was 
also found in the peripheral regions of these organs (see Figure 3—figure supplement 1C1, C2 for 
the SCC, and Figure 3—figure supplement 1D1, D2 for the utricule).

Taken together, comparison at W6 and W12 of non-specific HC and type I-specific HC markers 
suggest that the ototoxic effect induces a transient biochemical alteration of type I HC rather than a 
definitive hair cell degeneration. Overall, IDPN-induced alteration of canal and otolith functions are 
correlated with the ototoxic effect on type I, and not type II, HC in the central and peripheral zones 
of vestibular endorgans.

Effects of the subchronic treatment of IDPN on the optokinetic reflex
To determine the effects of the subchronic treatment of IDPN on the optokinetic reflex (OKR), mice 
were tested with sinusoidal rotations of a virtual drum (Figure 4A). An example of raw traces of the 
evoked horizontal eye movements is shown in Figure 4B for different timepoints (0.5 Hz at 10 deg.s–1 

https://doi.org/10.7554/eLife.88819
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Figure 3. Immuno-labelling of HC in the central regions of the horizontal SCC ampulla and striolar region of the utricule Macula. (A, C) Immunolabelling 
of type I HC (Spp1 + and CASPR1+), type II HC (Calre +), or all HC (Myo7a) for the SHAM, IDPN W6 and IDPN W12 groups in the central ampulla of the 
horizontal canal (A1) and central utricular maculae (C1). Cell count at W6 and W12 in the central horizontal ampulla (A2 and A3) and central utricular 
maculae (C2 and C3) for individual mice (Kruskal Wallis test). (B1, D1) Individual number of central Spp1 + type I HC, CASPR1 + type I HC and Calre + 

Figure 3 continued on next page
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optokinetic stimulation). The mean OKR gain for all tested frequencies is plotted in Figure 4C for 
SHAM (n=12) and IDPN-treated mice (n=12). The mean OKR gain of IDPN mice was significantly 
different from the mean OKR gain of SHAM mice at W8 (interaction between Weeks and Group 
F(6,132)=2.9845, p=0.0091; IDPN W0 vs W8, p=0.0216, see Table 2 and Figure 4—figure supple-
ment 1) where it reached its peak (IDPN W0 vs W8, p=0.00037). The gain stayed significantly larger 
compared to the SHAM through the end of the washout period (W12 IDPN vs SHAM, p=0.046).

To determine whether this OKR modulation was frequency-specific, the gain of the 5 tested 
frequencies was compared for W0, W6, W8 and W12 (Figure 4D). There was at W0 no difference 
between SHAM and IDPN mice (Figure 4D, left panel, W0). At W6, there was a significant difference 
between the gain of the IDPN and SHAM groups limited to the frequencies 0.5 and 1 Hz (W6 IDPN 
vs. SHAM, 0.5 Hz, p=0.013117; W6 IDPN vs. SHAM, 1 Hz, p<10–4). At W8, the gains measured at 
frequencies above 0.2 Hz were significantly increased compared to the SHAM group (W8 IDPN vs. 
SHAM, 0.33 Hz, p=0.027687; 0.5 Hz, p=0.0025; 1 Hz, p=0.00015). At W12, the gain remained high for 
both 0.5 and 1 Hz, whereas the gain at 0.33 Hz was no longer significantly larger than the SHAM group 
(W12 IDPN vs. SHAM, 0.33 Hz, ns; 0.5 Hz, p=0.0069; 1 Hz, p=0.00078). Globally, responses at higher 
frequencies (0.33, 0.5, and 1 Hz) were significantly increased (ANOVA Weeks x Group x Frequencies 
interaction, F(24, 528)=6.5870, p<10–4), whereas responses at the lowest frequencies (0.1 and 0.2 Hz) 
were not significantly modulated. Additionally, these changes in gain for frequencies >0.2 Hz were 
not accompanied by changes in the timing (phase) of the OKR (Figure 4E; ANOVA, Weeks x Group x 
Frequencies interaction, p=0.3802).

Relation between VOR decrease and optokinetic increase
To correlate the changes in vestibular pathway with the frequency-specific changes observed in the 
optokinetic pathway, we compared the responses in aVOR and OKR obtained at the frequencies 
that were common between the 2 tests (i.e 0.2 Hz, 0.5 Hz and 1 Hz) for n=12 SHAM and n=12 IDPN 
treated mice by comparing the increase in the OKR and decrease in VOR relative to W0 (Δmean gain, 
see Figure 5). To determine whether the changes in VOR and OKR were proportional, we compared 
the paired decrease and increase in the mean ΔaVOR and ΔOKR gain after 8 weeks of treatment, 
when the difference between the 2 reflexes peaked (Figure 5A). The vast majority (n=11/12) of IDPN-
treated mice showed a decrease in aVOR and an increase in OKR (top left quadrant corner, Figure 5B), 
which was not the case for SHAM mice (blue squares). However, there was no correlation between 
the amplitude of the VOR decrease and the amplitude of the OKR increase, that is mice that had the 
greatest VOR loss did not show the largest OKR increase (slope in the regression line: 0.27, p=0.0834).

To determine whether the parallel changes in OKR and VOR are frequency-specific, Figure 5C 
compares the gains measured at W0 and W8 for each frequency. At 0.2 Hz, there was a significant 
decrease in aVOR (IDPN W0 vs. W8 0.2 Hz p<10–4); however, the OKR was not modified. On the 
other hand, at 0.5 and 1 Hz significant VOR decreases (IDPN W0 vs. W8, 0.5 Hz, p<10–4; 1 Hz, p<10–4) 
were accompanied by a significant OKR increase (IDPN W0 vs. W8, 0.5 Hz, p<10–4; 1 Hz, p<10–4). To 
examine this frequency-selective increase, the percentage of change in the OKR gain is plotted as a 
function of the vestibular weight, determined as the ratio between the aVOR and aVOR +OKR values 
at week 0. The vestibular weight therefore represents the frequency-dependent relative influence 
of the vestibular signal on gaze stabilization. Figure 5D shows that at week 8, the change in the 
OKR occurred at the frequencies for which the vestibular weight is dominant (>50%), and that the 
increase in OKR was positively correlated with the vestibular weight among frequencies (slope of the 

type II HC, or all HC(Myo7a) as a function of the aVOR gain (B1) or OCR gain (D1) at W6 (circle) and W12 (squares) groups. The linear regressions 
correspond to all individuals (n=23 mice). (B2, D2) Comparison of the number of CASPR1 type I HC as a function of the aVOR (B2) gain or OCR gain 
(D2) at W6 (black and circle) and at W12 (pink and square) for each IDPN mice of the W12 group (n=8). Note that all points are shifted toward the 
regression line (redrawn from respectively B1 and D1), indicating that the number of cells at W12 better correlates with the recovered aVOR. (*p<0.05; 
**p<0.01; ***p<0.001). Error bars represent ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Immuno-labelling of HC in the central regions of the horizontal SCC ampulla and striolar region of the utricule Macula.

Figure supplement 1. Effects of the IDPN on the number of HC in the peripheral regions of the horizontal SCC ampulla and extrastriolar utricule 
Macula.

Figure 3 continued
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regression line: 1.235, r²=0.6299, p<0.0001). Overall, these results suggest that the increase in OKR 
gain observed at high frequencies could correspond to a ‘visual substitution’ occurring primarily in the 
range where the vestibular inputs are normally dominating gaze stabilization.

Visuo-vestibular interactions following alteration of vestibular inputs
To investigate whether OKR increase did constitute a ‘visual substitution’ that maintained optimal 
gaze stabilization at light despite vestibular loss, we investigated how IDPN-treated mice integrated 
vestibular and visual inputs. To this end, a session of combined visual and vestibular stimulation (aVOR 
in light, here referred as Combined Gaze Response or CGR condition) was performed at W6 and at 
W12 (n=19 IDPN; n=12 SHAM). A model (see Materials and methods) was implemented to predict 

Figure 4. Effects of subchronic IDPN treatment on the OKR. (A) Illustration of the optokinetic reflex (OKR) set-up. (B) Example of raw traces of an OKR 
recorded in response to stimulation at 0.5 Hz at a peak velocity of 10°/s before (W0), after 4 weeks of IDPN treatment (W4), 2 weeks (W8) and 6 weeks 
of washout (W12). All traces are from the same individual. (C) Mean OKR gain of IDPN (n=12) and SHAM (n=12) mice (repeated measures ANOVA). 
(D) OKR gain and (E) phase for IDPN (n=12) and SHAM (n=12) for each frequency at W0, W6, W8 and W12 (repeated measures ANOVA). (*p<0.05; 
**p<0.01; ***p<0.001). Error bars represent ± SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of the IDPN on optokinetic reflex amplitude and timing.

https://doi.org/10.7554/eLife.88819
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the theoretical CGR (visuo-vestibular) gain and 
phase from aVOR and OKR (unimodal) measured 
values. The model was first optimized to correctly 
predict the average SHAM CGR gains and phases 
(Figure 6A) from their individual aVOR and OKR 
responses, and then applied to the individual 
IDPN data. The predicted and observed CGR 
gain (Model factor) were compared for each treat-
ment group (ANOVA Group x Model, F(1,29) = 
12.236, p=0.0013): as expected, model predic-
tions for SHAM well-matched experimental data 
(Post-hoc Newman-keuls, SHAM MODEL vs 
SHAM CGR, p=0.41). When applied to IDPN mice 
the model predicted that their CGR gain should 

Table 2. Statistics table of the OKR gain for the 
IDPN-treated group.

W0 W2 W4 W6 W8 W10 W12

ns ns ns *** ns ns W0

ns ns ns *** ** ns W2

ns ns ns ns ns ns W4

ns ns ns * ns ns W6

*** *** ns * ns ns W8

ns ** ns ns ns ns W10

ns ns ns ns ns ns W12
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Figure 5. Comparison of the IDPN treatment on OKR and aVOR. (A) Mean Δ aVOR and Δ Gain OKR for 0.2, 0.5, and 1 Hz for IDPN (n=12) and SHAM 
(n=12) mice. (B) Individual ΔOKR gains as a function of individual ΔaVOR gains. The 50% confidence interval of each group is represented in the shaded 
areas. (C) aVOR and OKR gains of IDPN mice (n=12) at W0 and W8 for frequencies of 0.2, 0.5, and 1 Hz (repeated measures ANOVA). (D) Percentage 
of the individual vestibular weight (inset), as a function of the percentage of the individual OKR gains change for IDPN (n=12). The linear regression 
corresponds to all values (n=36). (*p<0.05; **p<0.01; ***p<0.001). Error bars represent ± SEM.
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be lower compared to SHAM (shaded blue and red areas on Figure 6A and B, Post-hoc Newman-
keuls, SHAM MODEL vs IDPN MODEL, p=0.00176), suggesting that even an optimal combination 
of unimodal responses could not restore completely normal CGR in IDPN-treated mice. The CGR 
gains observed for IDPN-treated mice actually revealed how their visuo-vestibular responses were 
not only reduced compared to SHAM (compare solid blue and red lines in Figure 6A–B, Post-hoc 
Newman-keuls, SHAM CGR vs IDPN CGR, p=0.00055), but were even inferior to the prediction of 
the model (compare solid red line and shaded red area in Figure 6B, Post-hoc Newman-keuls, IDPN 
MODEL vs IDPN CGR, p=0.00041). This suggests that the IDPN-treated mice sub-optimally combined 
their residual/compensated vestibular and visual reflexes to stabilize gaze. Figure 6C illustrates the 
relationship between the measured CGR gain and the prediction of the model for all tested frequen-
cies. For SHAM animals, CGR gain values were positioned along the unity line that represents a 
close match between predicted and measured CGR (mean ± SEM: SHAM MODEL 0.8255±0.053; 
SHAM CGR 0.8375±0.042). For IDPN-treated mice, the responses formed two subgroups that did 

Figure 6. Visuo-Vestibular interactions following IDPN treatment. (A) aVOR, OKR, CGR data (CGR) and predicted CGR (MODEL) gains (left panel), and 
CGR phase (data and model, right panel), for the SHAM mice (n=12) at W6 and W12. (B) aVOR, OKR, CGR data (CGR) and predicted CGR (MODEL) 
gains for the IDPN mice (n=19) at W6 and W12. (C) Comparison of the predicted versus measured CGR for all frequencies tested. The dotted line at 45° 
represents a perfect match between prediction and data (optimal CGR). (D) aVOR, OKR, and CGR values of the IDPN mice (n=19) (left panel). Clustering 
analysis (right panel) distinguish two groups based on Delta (CGR-OKR), and a subgroup based on VOR. The horizontal coordinate of each cluster 
(vertical lines) represents the distance between two connected clusters. (E) Δ(CGR-OKR) as a function of the VOR Sweep Amplitude of the Δ+ (green 
triangle), Δ+(-) (green diamonds) and Δ- (orange) IDPN mice. The inset panel represents typical raw cycles representative of the three subgroups. (F) 
Delta (CGR-OKR) as a function of the VOR reproducibility of the Δ+ (green triangle), Δ+(-) (green diamonds), and Δ- (orange) IDPN mice. Regression line 
correspond to all values (n=19).

The online version of this article includes the following source data for figure 6:

Source data 1. Visuo-Vestibular interactions following IDPN treatment.

https://doi.org/10.7554/eLife.88819
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not correspond to different frequencies (all frequencies found in either subgroup). The first subgroup 
was intermingled with the SHAM responses, with measured CGR values slightly lower than predicted 
values (MODEL 0.7457±0.028; CGR 0.6644±0.052). The second subgroup represented mice for which 
the measured CGR significantly underperformed the predicted CGR (MODEL 0.4685±0.022; CGR 
0.2005±0.01). To investigate the difference between the two subgroups, the VOR, OKR, and CGR 
values were plotted for the n=19 IDPN mice (Figure 6D). A hierarchical cluster analysis (see methods) 
suggested the presence of two main clusters that differ from the clusters observed considering only 
the aVOR gain (see dendrogram in Figure 6D). The first cluster (Δ+, n=12; in green in Figure 6D, E 
and F) comprised individuals with CGR values higher than OKR (positive values on Δ=CGR OKR), that 
is with gaze stabilization at light better in the presence of vestibular stimulation. The second cluster 
(Δ-, n=7; depicted in orange) is composed of individuals with low CGR (<0.4). IDPN mice from the Δ- 
cluster have degraded responses during bimodal visuo-vestibular stimulation compared to unimodal 
OKR stimulation (negative value of Δ indicates CGR responses lower than OKR responses). Notably, 
this degraded CGR is not solely a consequence of a low VOR gain, as some Δ+mice identified by the 
second differentiation of the clustering analyses (depicted with grey diamond symbols in Figure 6D, 
and indicated as Δ+(-)) also showed low unimodal VOR gain responses.

We reasoned that the worsening of the gaze responses in the bimodal condition compared to the 
OKR-only condition could be a consequence of a poorly reliable, noisy vestibular signal. Based on 
a cycle-to-cycle sweep analysis, two additional features of the VOR responses were quantified (see 
methods): the mean amplitude of the raw sweep during VOR stimulation and the VOR response repro-
ducibility between sweeps. The mean VOR raw sweep amplitude could not statistically differentiate 
Δ- and Δ+(-) mice (Figure 6E, orange triangle vs green diamonds p=0.0857), suggesting that vestib-
ular signal of comparable amplitude improved or deteriorated the CGR response in the Δ+(-) and Δ- 
mice, respectively. On the other hand, the VOR reproducibility clearly discriminated Δ- and Δ+(-) mice 
(Figure 6F, orange triangle vs green diamonds, p=0.0001). There was a strong correlation between 
the inter-sweep reproducibility and the capacity of the mice to stabilize gaze in presence of vestibular 
inputs at light. This result suggests that the incapacity of the Δ- group to compute optokinetic signals 
in the presence of vestibular stimulation could relate to the poor reliability of the vestibular signal. 
Overall, these data suggest that in some situations the presence of a degraded vestibular signal of 
significant amplitude (panel 6E) but poorly reliable (panel 6 F) can be detrimental to properly stabilize 
gaze in presence of visual and vestibular inputs.

Discussion
IDPN as a model of partial and transitory loss of vestibular function
IDPN has long been established as an ototoxic compound targeting vestibular HC in the different 
vestibular endorgans of rats (Llorens et al., 1993; Llorens et al., 1994b; Llorens and Demêmes, 
1994a) and later in guinea-pig, frogs, and mice (Soler-Martín et al., 2007; Greguske et al., 2019). 
Its ototoxic vestibular effects were used as a tool to study extraocular muscle development (Bruec-
kner et al., 1999) or more recently to induce permanent vestibular loss in mice (Yang et al., 2019; 
Zeng et al., 2020) and study hair cell regeneration (Sayyid et al., 2019). The sub-chronic, reversible 
protocol used in our study was validated previously in rats (Sedó-Cabezón et al., 2015; Martins-
Lopes et al., 2019; Maroto et al., 2021) and mice (Boadas-Vaello et al., 2017; Greguske et al., 
2019) with postural/locomotor quantification of vestibular loss. We for the first time demonstrate that 
the subchronic protocol leads to a progressive and partly reversible loss of vestibulo-ocular reflexes. 
These previous studies further demonstrated some of the cellular mechanisms associated with the 
progressive loss of postural control: ototoxic effects lead to the early dismantlement of calyceal junc-
tion, followed by synaptic uncoupling, both of which were shown to be reversible, while continuation 
of the IDPN treatment would lead to hair cell extrusion and long-term, permanent lesion. HC loss was 
also demonstrated to occur in a central to peripheral order within vestibular epithelia, and in crista to 
utricule to saccule order (see Sedó-Cabezón et al., 2015). Maroto et al., 2021 convincingly demon-
strated that type I HC show greater sensitivity than type II HC to IDPN subchronic exposure. Given 
these data, a primary goal of the present study was to try to correlate the loss of VOR functions to 
organ-specific, zone-specific, and cell-type-specific effects.

https://doi.org/10.7554/eLife.88819
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Loss and substantial recovery of the vestibular function quantified by VOR measures were found to 
be correlated with the number of type I HC in both canals and otoliths. A parallel was previously estab-
lished between HC integrity and VOR following ototoxic protocols in mice (Cassel et al., 2019; Yang 
et al., 2019; Zeng et al., 2020), but these were established at the population level. Here, we for the 
first time specifically correlated the loss of HC and loss of VOR function both at the individual level and 
in an organ-specific way. aVOR and OCR tests demonstrated a parallel decrease in canal- and otolith-
dependent functions, respectively. The 6-week-long treatment was followed by a 6-week-washout 
period, allowing a significant but partial recovery of the aVOR, and complete recovery of the OCR. 
The individual correlations between these functional tests and the number of HC counted in the 
ampullae and maculae of the mice were found to be particularly significant, both during the trough 
(W6) of VOR function and after the recovery period (W12; Figure 3). We, however, did not find any 
difference between the HC loss in the central vs. peripheral zones of the organs, and can therefore 
not conclude on any putatively differential implication of these areas in the VORs. Effects of the IDPN 
treatment on the aVOR was evidenced by a gain decrease starting W4, later associated with a signifi-
cant phase lead at W6 (Figure 1—figure supplement 1A and B). The dynamic of these changes might 
be related to the amount of HC progressively affected by the treatment. The modifications affected 
all frequencies; however, responses at the lowest tested frequency (0.2 Hz) tended to be less affected 
and to recover first. These results could suggest that type I HC are crucial element to encode both the 
amplitude and timing of the VOR, particularly for the more dynamic stimulations. How IDPN progres-
sively impairs the encoding of information by the HC, and how population-coding influence both VOR 
features in the natural range of head-movements should be the focus of future dedicated studies.

Overall, these organ-specific structure-function correlations confirm that the vestibulo-ocular reflex 
can serve as a proxy indicating the status of the vestibular endorgans. It further validates the use of 
the aVOR and OCR as relevant tests reflecting HC integrity at the level of the ampullae and maculae, 
respectively.

Differential alteration of type I versus type II hair cells
The subchronic treatment affected type I HC more than type II HC, in accordance with previous 
reports (Llorens et al., 1993; Maroto et al., 2021). Susceptibility to IDPN was also reported to vary 
between different mouse strains (Boadas-Vaello et al., 2017; Wilkerson et al., 2018). Interestingly, 
we used a different strain of mice than the one used in a previous subchronic experiment (Greguske 
et al., 2019) and have not observed any type II HC loss either, nor differences between males and 
females (data not shown).

Hence, IDPN treatment induces a loss of cell markers specific to type I HC, with no effects on type II 
markers. Two types of markers were used to identify type I HC. Spp1 targeted a protein located on the 
neck of the hair cell (McInturff et al., 2018), while CASPR1 is located at the calyceal junction of the 
afferent terminal, and has been proven to be necessary for the functionality of the synapse between 
the HC and its connected afferent (Sousa et al., 2009). Although it is not possible to compare for 
one individual the number of cells before and after treatment, the number of cells labelled for either 
of these proteins decreased significantly compared to SHAM group, whose numbers are consistent 
between W6 and W12. The loss of CASPR1 marker induced by IDPN sub-chronic treatment has 
been linked to HC detachment from the calyx terminal and loss of vestibulo-spinal reflexes, and both 
CASPR1 expression and vestibular function recover during washout (Sedó-Cabezón et  al., 2015; 
Greguske et al., 2019; Maroto et al., 2021). Only after a longer IDPN exposure does HC extru-
sion occur, associated with persistent functional deficits. In theory, the loss of vestibular function 
observed in both canal- and otolith-dependent VOR at W6 could be linked to loss of type I HC. In 
adult rodents, however, the regeneration of hair cells leads to the formation of cells with type II HC 
features (González-Garrido et al., 2021), so the recovery of type I cellular markers at W12 is likely 
not a result of cell regeneration. Also, the apparent dramatic loss of CASPR1 and Spp1 HC (90%) at 
W6 was in contrast with the much smaller and not significant loss in Myo7a cells (29%), supporting 
the conclusion that the sensory cells persisted in the epithelium despite CASPR1 loss, and that the 
recovery in the number of type I HC observed at W12 was more likely the result of molecular repair, 
not cell regeneration. In addition, we observed a similar loss of Spp1 marker at W6, normally located 
in the neck of the hair cell. As such the loss of vestibular function could rather be attributed to a 
global disorganization of the synapse and defective hair cell function, associated with a transitory 
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large decrease of the Spp1 and CASPR1 proteins and a smaller decrease in Myo7a. In accordance 
with this hypothesis, the number of Spp1 and CASPR1 positive cells after the washout period at W12 
was not significantly different from the SHAM group and correlated to the recovery of the vestibular 
function observed at W12 for the IDPN mice (Figure  3C2). The altered expression of proteins in 
type I HC induced by the sub-chronic treatment of IDPN seems to be reversible in most individuals. 
One possibility is that definitive extrusion of type I HC occurred in the most susceptible individuals 
that did not show recovery after the end of treatment. This in fact was the case in the 2 individuals 
tested at W12 with immuno-histochemistry: CASPR1 mean value (± S.E.M) of 18.5±5.5 compared 
to 34.5±4.359 for IDPN with recovery and 41.75±1.215 for SHAM. It was previously reported in the 
pigeon that type I HC and calyx afferents take longer (12 weeks) to regenerate following aminogly-
coside toxicity, while type II and boutons endings regenerated in a week (Zakir and Dickman, 2006). 
Similarly, recovered innervation for type I HC was delayed compared to type II HC in mice (Kim et al., 
2022). A longer recovery period could be investigated in the case of the severely-affected mice to 
confirm the absence of recovery in the longer term.

Evidence for the role of type I HC in the vestibulo-ocular pathways
To our knowledge, the direct implication of type I and type II HC in the VOR was never directly tested. 
Type I and type II HC differ by many features, including their anatomical location within the epithelium, 
electrophysiological properties, morphology and innervation by afferents (Eatock and Songer, 2011). 
Seemingly, irregular afferents have been described as predominantly innervating the central area and 
striolar zones of the ampullae and maculae with calyx and dimorphic synaptic contacts, while regular 
afferents make dimorphic and buttons contacts predominantly within the peripheral zones of cristae 
and extrastriolar zones of maculae (Goldberg, 2000; Eatock and Songer, 2011; Contini et al., 2022). 
Afferents with bouton terminals that contact only type II HC have regular discharge, while afferents 
with calyx terminals that contact only type I HC have irregular discharge. However, most regular and 
irregular afferents are fed by both type I and type II HC (Goldberg et al., 1992). Functionally, regular 
afferents recorded in the monkey show a lower detection threshold than irregular afferents (Sadeghi 
et al., 2007), while irregular afferents showing higher gains and phase leads (mouse: Lasker et al., 
2008; Cullen, 2019) would be better optimized for encoding high dynamic stimuli (Cullen, 2019). 
Central VOR neurons receive a mixture of regular and irregular afferent inputs (Goldberg et al., 1987; 
Boyle et al., 1992; Goldberg, 2000), with irregular afferents constituting ~1/3 of their excitatory 
drive (Goldberg et al., 1987; Boyle et al., 1991).

While the role of type I and type II HC in the VOR remains to be determined, previous studies 
have emphasized the importance of the regular afferents and regular central vestibular neurons in 
the vestibulo-ocular pathway. Functional ablation targeting irregular afferents suggested that VOR 
might function normally with only intermediate and regular afferent inputs (Minor and Goldberg, 
1991). Functionally identified VOR neurons (i.e. PVP) were recently demonstrated to have heteroge-
neous discharge variability (high or low), with the most regular units particularly well-suited to faithfully 
encode the compensatory eye movements generated during natural stimulation (Mackrous et al., 
2020).

Based on this literature, it would be tempting to infer that only the most regular and tonic 
elements of the entire vestibular pathway are responsible for the VOR. However, the correspon-
dence between hair cell properties and afferents/central neurons properties is only partial, such 
that the two phasic/irregular and tonic/regular channels for head motion signals are constituted of 
both types I and type II HC (Baird et al., 1988; Goldberg et al., 1990 p.90) and afferents (irregular 
and regular) (Goldberg, 2000; Eatock and Songer, 2011; Beraneck and Straka, 2011). Carey 
et al., 1996 previously reported a better correlation of VOR recovery with type I than with type 
II HC following ototoxic lesions in the chick. Overall, the result of ototoxic studies, including the 
present one, demonstrate a fundamental role of type I HC in the encoding of vestibular signals 
that drive the vestibulo-ocular reflexes, even in the relatively low range (Carriot et al., 2017) of 
head movements tested. It has also been recently shown that both type I and type II HC actually 
contribute to otolithic vestibular evoked potential responses (i.e. vestibulo-spinal pathway), previ-
ously described as mostly type I-specific (Sayyid et al., 2019). Overall, our results are compatible 
with the hypothesis of a convergence of heterogeneous peripheral neural elements at the level 
of central vestibular nuclei, where intrinsic properties of central vestibular neurons (Straka et al., 
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2005; Beraneck and Idoux, 2012) supplemented by network properties (Beraneck et al., 2007; 
Pfanzelt et al., 2008; Beraneck and Straka, 2011) would differentially integrate vestibular signals 
further processed in the different functional pathways (Sadeghi and Beraneck, 2020; Mackrous 
et al., 2020).

Visuo-vestibular interactions after IDPN treatment
OKR plasticity following vestibular loss concerned gain, and not phase, modifications for frequencies 
>0.33 Hz. Previous studies have reported an increase in OKR gain following a permanent vestibular 
lesion for a non-specific range of frequencies (Shinder et al., 2005; Faulstich et al., 2006; Nelson 
et al., 2017). One key to understand the frequency-specific OKR plasticity could be the physiological 
dominance of vestibular inputs in the gaze stabilization process at high frequencies (Faulstich et al., 
2004). The visual inputs could be reweighted and potentiated specifically in the range where the 
vestibular loss has the most impact on gaze stabilization (Figure 5D).

The VOR and OKR work synergistically to stabilize gaze by compensating for head and visual 
surround movements, respectively (França de Barros et al., 2020). If the reflexive eye movements 
are not perfectly compensatory, an error signal (e.g retinal slip) is produced that drives adaptation of 
the VOR (Boyden et al., 2004; Dean and Porrill, 2014; Shin et al., 2014) and OKR (Glasauer, 2007; 
Kodama and du Lac, 2016). In an effort to understand the integration of VOR and OKR (Holland 
et  al., 2020) recently proposed that OKR would account for the retinal slip not compensated by 
VOR. Within that framework, the changes in the OKR could happen preferentially as a function of the 
vestibular weight, that is in the range of movements where the loss of vestibular inputs generates the 
largest retinal slip. While present data are evidence for frequency-specific adaptation, how this relates 
to alteration in vestibular inputs and/or visual feedback signals remains to be determined.

The increase in OKR gain could be seen as a substitution for the decrease in the VOR. However, 
even after VOR recovery, the optimal integration of OKR and VOR (as predicted by our MODEL) 
led to a degraded combined gaze response (CGR) with respect to SHAM mice. Even worse, the 
measured CGR was inferior to the predicted CGR (Figure 6B). This observation suggests that the 
integration of visual and vestibular signals during CGR is more than a mere summation of the gain 
and phase of the two unimodal reflexes, but is also affected by other factors. In fact, a subset of 
the IDPN individuals showed severely degraded bimodal responses, so that their combination of 
VOR and OKR is not only sub-optimal but also less effective than the unimodal (OKR) reflex. A 
sweep-based analysis suggested that in these individuals, the VOR unimodal responses were not 
reliable, i.e the low reproducibility indicates that the same stimuli are unfaithfully encoded into eye 
movements. We interpret this low reproducibility as a sign of noisiness within the VOR pathway that 
would not only preclude the optimal integration of both sensory signals, but also disturb the use of 
retinal information to stabilize the gaze. According to statistical optimality theories, as the Maximum 
Likelihood principle, the decrease in VOR reliability should lead to a reduction in its relative sensory 
weight. This filtering-out of a degraded signal has been shown during visuo-vestibular integration 
for monkey heading perception (Fetsch et al., 2010), or for human object discrimination using visual 
and haptic senses (Ernst and Banks, 2002).Our results suggest that the gaze stabilizing system is 
not able to optimally adapt to the degradation by filtering-out vestibular signals during combined 
visuo-vestibular combination.

The integration of visual and vestibular inputs occurs in several structures, including in the cere-
bellar flocculi (Jang et al., 2020) and brainstem (Carcaud et al., 2017; see review De Zeeuw et al., 
2021). In the case of vestibular loss, most of the defects are expected to concern the central vestibular 
neurons involved in the VOR, which also integrate visual inputs (ES, or eye-sensitive neurons; Beraneck 
and Cullen, 2007). After unilateral neurectomy, vestibular neurons in the Deiters nuclei responded to 
higher frequencies during visual stimulation (Cat: Zennou-Azogui et al., 1994), a change compatible 
with the hypothesis that OKR gain increase partly takes place in the vestibular nuclei. It was shown 
that inhibitory floccular inputs (part of the OKR indirect pathway) and excitatory vestibular inputs 
often colocalized on the dendrites of central vestibular neurons. One possibility is therefore that the 
massive disorganization of vestibular periphery inputs led in the long term to synaptic and intrinsic 
changes at the level of central vestibular neurons (Beraneck and Idoux, 2012; Carcaud et al., 2017), 
thus impairing their capacity to optimally integrate both signals.

https://doi.org/10.7554/eLife.88819
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Conclusions
Balance dysfunction occurs frequently in aging people (85% prevalence above 80; Agrawal et al., 
2013) but also in younger people (prevalence of 35% in the 40-year-old). While animal models often 
use permanent vestibular lesions (Simon et al., 2020), many diseases in fact consist in a gradual, tran-
sient and/or partial loss of vestibular function. For instance Menière’s disease, which represents ~9% 
of all vestibular pathologies in the adult and occurs in the <60 years old, is characterized by recurrent 
episodes with brief (<24 hr) fluctuating symptoms and otherwise normal vestibular function before 
long-term deterioration arises (Lopez-Escamez et al., 2015). Transitory vestibular symptoms are also 
commonly reported in vestibular neuritis where, although symptoms tend to rapidly disappear due to 
vestibular compensation, vestibular function can recuperate up to a year after the initial loss (Welgam-
pola et al., 2019). Gradual and partial vestibular loss is also encountered as a side-effect of some 
ototoxic anti-cancer treatments (prevalence in treated patients ~40%; cisplatin; Paken et al., 2016; 
Prayuenyong et al., 2018). Here, we took advantage of a subchronic ototoxic protocol to determine 
how animals adapt to partial and transitory loss of vestibular hair cells. We show that the loss, and 
then the partial recovery of the VOR, is correlated with the integrity of the type I HC, demonstrating 
for the first time their essential role in the VOR, whether of canalar or otolithic origin. We show that 
sensory (visual) substitution would theoretically compensate for vestibular loss, but that injured mice 
have suboptimal responses when combining visual and vestibular information. Finally, we show that 
this impairment in multisensory integration would be linked to the loss of ‘reliability’ of the vestibular 
signal, degraded by ototoxicity. Overall, these results suggest that transitory peripheral infraction 
have long term consequences, and that the capacity of central vestibular structures to cope (vestib-
ular compensation; Cullen et al., 2010; Beraneck and Idoux, 2012; Lacour et al., 2016) with the 
sensorineural loss might critically depend on the integrity of the neural elements involved. Future 
studies should aim at obtaining information about the degradation of signal transmission following 
IDPN treatment and characterize the amount of peripheral population-coding necessary to preserve 
optimal vestibular function.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Antibody Anti-Myosin 740 VIIa (rabbit polyclonal) Proteus Biosciences Cat#:25–6790 1/400

Antibody Anti-rabbit IgG H+L (donkey polyclonal) Jackson Immuno Research RRID:AB_2340616 1/500

Antibody
Anti-contactin-associated protein (mouse 
monoclonal) Neuromab Cat#:75–001 1/400

Antibody Anti-mouse IgG H+L (donkey polyclonal) Life Technologies RRID:AB_141607 1/500

Antibody Anti-calretinin (guinea-pig polyclonal) Synaptic Systems Cat#: 214 104 1/500

Antibody
Anti-guinea-pig IgG H+L (donkey 
polyclonal) Jackson Immuno Research RRID:AB_2340476 1/500

Antibody Anti-osteopontin (goat polyclonal) R&D Systems Cat#:AF808 1/400

Antibody Anti-goat IgG H+L (donkey polyclonal) Invitrogen RRID:AB_2535853 1/500

Software Spike2
Cambridge Electronic 
Design RRID:SCR_000903

Software Prism GraphPad RRID:SCR_002798

Software ImageJ
National Institutes of 
Health RRID:SCR_003070

Headpost implantation surgery and animal care
Surgical procedures, postoperative care, device fixation and animal surveillance during the protocol 
were performed as described previously in França de Barros et al., 2019 Briefly, 6-weeks-old mice 
anaesthetized with isoflurane gas had their heads shaved with small clippers. Then, lidocaine hydro-
chloride (2%; 2  mg/kg) was injected locally before a longitudinal incision of 1.5  cm was made to 
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expose the skull. Just anterior to the lambda landmark, a small custom-built headpost (3x3 × 5 mm; 
poly lactic acid) was cemented (C&B Metabond; Parkell Inc, Edgewood, NY) and laterally covered with 
resin (Heraeus) for protection. Animals were fully recovered 30 min after the end of the surgery, yet 
buprenorphine (0.05 mg/kg) was provided for postoperative analgesia and they were closely moni-
tored for the following 48 hr.

Subchronic ototoxic exposure
Twenty-eight mice were treated with 3,3′-iminodiproprionitrile (IDPN, Sigma Aldrich, 317306, 90%) 
for 6 weeks (IDPN group) at 30 mM concentration of IDPN in their drinking water at least 72 hr after 
the surgery. After 6 weeks of treatment, a washout period of 6 weeks followed. Previous experiments 
(Greguske et al., 2021) had demonstrated that at these concentrations, ototoxic lesions produced 
by IDPN are largely reversible. The SHAM group was tested the exact same way but was not exposed 
to IDPN in their drinking water. Video-oculography tests were performed before the beginning of the 
treatment and once every two weeks until week 12 (W12), for a total of 7 sessions of tests for each 
mouse.

Experimental groups
3 different batches of mice were used, each composed of both IDPN-treated mice and SHAM. The 
mice of the first one (n=19) were subjected only to vestibular stimulations, to test the effect of IDPN 
on the canal-related or otolith-related VOR responses during the 12 weeks of protocol. The second 
group (n=24), designed to compare the dynamic of VOR and OKR changes was tested with angular 
VOR stimulations, otolithic test, optokinetic (visual) stimulations, and combined vestibular and visual 
stimulation (VOR in light; referred to as Combined Gaze Response or CGR). The third group (n=11) 
designed to correlate ototoxic effects of IDPN on vestibular hair cells (HC) and VOR function was 
tested for canal-related or otolith-related VOR responses, before treatment and after 6 weeks of treat-
ment and immediately used for immunohistochemical assessment of the vestibular sensory epithelia 
(see below). A subset of the second group (n=12 out of 24) was also used for immunohistochemical 
assessment at the end of the 12 weeks of protocol.

Video oculography recording sessions
The recording procedure was similar to the one presented in Carcaud et al., 2017 França de Barros 
et al., 2020. The animals were head-fixed in a custom build Plexiglas tube, and their head was oriented 
in a 30° nose down position to align the horizontal canals to the yaw plane. Their left eye move-
ments were recorded using a non-invasive video oculography system (ETL –200 Iscan, acquisition 
rate 120 Hz, Stahl et al., 2000). Eye, head, and virtual drum (OKR stimulation) position signals were 
digitally recorded (CED mk3 power 1401, acquisition rate 1 kHz) with Spike 2 software. Signals were 
analysed offline in Matlab (Matlab, the MathWorks, Natick, MA, USA; RRID, SCR:001622) program-
ming environment. The restraining apparatus was fixed on a rotation platform on top of an extended 
rig with a servo-controlled motor. Single VOR or OKR recording sessions lasted no longer than 45 min 
in total.

Vestibular stimulations and analysis
All vestibular-specific tests were performed in a temperature-controlled room with all sources of light 
turned off except for computer screens. The turntable was further surrounded with a closed box to 
isolate the animal from remaining light, with a final luminance inside the box <0.02 lux. Myosis was 
induced with topical 2% pilocarpine applied 10 min before experimentation.

Vestibulo ocular reflex in dark (VORd) tests were performed in the dark with the mouse surrounded 
by an opaque black dome (Figure 1A). Sinusoidal angular rotations around the vertical axis were used 
to record the horizontal angular vestibulo-ocular reflex (aVOR), at different frequencies: 0.2, 0.5, 0.8; 
1 and 2 Hz at a peak velocity of 30°/s.

Angular vestibulo-ocular reflex analysis was similar to the one described in Carcaud et al., 2017. 
Segments of data with saccades were excluded from VOR slow-phase analysis. For horizontal sinu-
soidal rotations, at least 10 cycles were analyzed for each frequency. VOR gain and phase were deter-
mined by the least-squares optimization of the equation:

https://doi.org/10.7554/eLife.88819
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where EHv(t) is eye horizontal velocity, g (gain) is a constant value, HHv (t) is head horizontal velocity, 
td is the dynamic lag time (in msec) of the eye movement with respect to the head movement, and Cte 
is an offset. The td was used to calculate the corresponding phase (φ°) of eye velocity relative to head 
velocity. The Variance-Accounted-For (VAF) of each fit was computed as
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where var represents variance, est represents the modeled eye velocity, and EHv represents the actual 
eye horizontal velocity. VAF values for VOR measures were typically between 0.70–1 (>95% of record-
ings), where a VAF of 1 indicates a perfect fit to the data. For IDPN-treated mice, abnormally low 
(<0.10) values of gain associated with VAF  <0.5 were nevertheless included in the gain statistical 
analysis but specifically reported in grey (Figure 2, Figure 1—figure supplement 1). Corresponding 
phase values were not included in the statistical analysis of the aVOR phase.

Static Ocular Counter-roll reflex tests were performed as described in Simon et  al., 2021 by 
measuring the vertical eye movement generated in response to different roll angles. The table was 
moved from left to right in incremental steps of 10° (from 0 to 40°), with static periods of at least 10 s 
between oscillations (Figure 1D) to record the stabilized eye elevation and declination. The OCR 
gain corresponds to the slope of the linear regression of the vertical eye angle vs. the head tilt angles 
(Oommen and Stahl, 2008).

Off vertical axis rotation (OVAR) tests were performed with the vestibular turntable tilted with a 
17° off-axis angle following the methodology described in Beraneck et al., 2012 Idoux et al., 2018. 
50°/s continuous stimulations were performed in a counter-clockwise and then clockwise direction. 
OVAR generates a continuous change in the head tilt angle, compensated through a maculo-ocular 
reflex (MOR) by the generation of a horizontal nystagmus compensating for the table constant rota-
tion. This oculomotor response was quantified following the methodology described in Idoux et al., 
2018. First, quick-phases were identified and removed. During rotations, the velocity of horizontal 
slow phases is modulated (modulation, μ) around a constant bias (β). Both parameters (μ and β) were 
calculated from the sinusoidal fit of eye horizontal slow-phase velocity using the least-squares optimi-
zation of the equation:

	﻿‍ SP
(
t
)

= β + µ · sin
[
2π · f0 ·

(
t + td

)]
‍�

where SP(t) is slow-phase velocity, β is the steady-state bias slow phase velocity, μ is the modulation of 
eye velocity, f0 is the frequency of table rotation, td is the dynamic lag time (in msec) of the eye move-
ment with respect to the head movement. The bias (Maculo-ocular reflex Bias) is reported here as the 
main index of the MOR response (Hess and Dieringer, 1990; Beraneck et al., 2012).

Optokinetic reflex tests and analysis
Horizontal optokinetic stimulations were performed as previously described in França de Barros 
et al., 2020. The mice were placed under a semi-opaque plastic dome and all sources of light were 
turned off. The projected stimulation consisted of a randomly distributed white dots pattern on a 
black background image (250000 white dots, max width 0.075°). The optokinetic sinusoidal stimula-
tions were tested at 0.1, 0.2, 0.33, 0.5 and 1 Hz at a peak velocity of 10°/s. The gain and phase were 
obtained by the same least-squares optimization method described above for the aVOR. To prevent 
putative cross effects between visual and vestibular stimulations, VOR and OKR test sessions were 
performed on separate days.

Combined visual and vestibular stimulations
Combined visual and vestibular stimulations measuring the combined gaze reflex (CGR) consisted 
of horizontal vestibular stimulations while projecting the fixed dotted pattern used for OKR on the 
surrounding dome. Horizontal angular sinusoidal rotations were performed at frequencies of 0.2, 0.5 
and 1 Hz with a peak velocity of 30°/s. The CGR gain and phase quantifications were performed 
following the same methodology as for aVOR. To avoid interference, these were performed on 

https://doi.org/10.7554/eLife.88819
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n=8 SHAM and n=12 IDPN after the end of the VOR and OKR test sessions on W12. To test the effects 
at W6, a specific group of mice (n=4 SHAM and n=7 IDPN) was tested at W0 and W6.

A simple model has been developed to predict for each individual and for three stimulation 
frequencies (0.2, 0.5, and 1 Hz) the theoretical CGR response gain and phase were given the same 
two parameters observed for their unimodal VOR and OKR responses. The experimental VOR and 
OKR gain and phase are used to compute the sinusoid representing the two unimodal responses. The 
gain and phase of the CGR sinusoid resulting from adding the VOR and OKR sinusoids are quantified 
by measuring its peak-to-peak amplitude and by identifying the time-lag that maximizes its cross-
correlation with the sinusoidal stimulus (note that the sum of two sinusoids with the same period, even 
if with different phases, is always a sinusoid). Independently of the mouse, the unimodal VOR and OKR 
sinusoids are shifted in time before their summation, in order to improve, on average, the fit between 
predicted and observed CGR responses for SHAM mice. The two optimal shift parameters, one for 
VOR and one for OKR, obtained for each frequency, are then used also for all IDPN-treated mice.

To identify subpopulations of IDPN-treated mice, we computed an agglomerative hierarchical 
cluster tree on a dataset composed of individual aVOR gain and Δ (calculated as CGR-OKR gain). The 
classification method used unweighted average Euclidean distance between clusters.

To describe the mice VOR responses without any assumption about their sinusoidal nature the two 
following characteristics have been quantified: the reproducibility of the ocular response to the vestib-
ular stimulation and the amplitude of the raw eye movements generated by the vestibular stimula-
tion. These analyses were performed on the slow phases horizontal eye trajectories, EHp(t), recorded 
during each sweep of stimulation.

The reproducibility index, Rep, was obtained by computing the matrix of correlation coefficient, 
Ri,j, between each couple (i,j), of the N selected sweeps, and then computing the mean of all above-
diagonal elements of the matrix as reported in the following equation (this choice aims at considering 
only once each Ri,j, since Rj,i=Ri,j and to exclude diagonal elements, Ri,i = 1).

	﻿‍
Rep =

∑N−1
i=1

∑N
j=i+1 Ri,j

N
(
N − 1

)
/2 ‍�

The amplitude, Amp, of the raw eye movements was quantified by computing for each sweep how 
much on average, during a stimulation cycle, the eye moved horizontally away from its average posi-
tion (σEHp). Before averaging this parameter over all the sweep, it had to be squared. Finally, to have a 
parameter value in degrees, the root mean squared of the mean was computed.

	﻿‍
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√∑N
i=1 σ

2
EHp

N ‍�

Immunolabelling of the vestibular HC
Two groups of mice (n=11 at W6 and n=12 at W12) were used to perform immunofluorescence anal-
ysis on hair cells in the vestibular endorgans. Mice were anaesthetized with an overdose of intraper-
itoneal injection of ketamine hydrochloride (10%)/xylazine (5%) and decapitated. The histology was 
done following the protocol established by Lysakowski et al., 2011, as described previously (Maroto 
et al., 2021). The vestibular epithelia (one horizontal canal and one utricule) were dissected and fixed 
for 1 h in a 4% solution of paraformaldehyde (PFA). PFA was washed twice with phosphate-buffered 
saline (PBS) and the samples were then embedded in a cryoprotective solution (34.5% glycerol, 30% 
ethylene glycol, 20% PBS, 15.5% distilled water) to be stored at –20°. Before the immunochemistry, 
samples were put at room temperature and rinsed twice in PBS. While under slow agitation, the 
samples were incubated twice, first for 1 hr with a 4% Triton X-100 (Sigma Aldrich) in PBS to permea-
bilise and a second time for 1 hr in 0.5% Triton X-100 1% fish gelatin (CAS #9000-70-8, Sigma-Aldrich) 
in PBS to block. The incubation with the primary antibodies was then performed in 0.1 M Triton X-100, 
1% fish gelatin in PBS at 4° for 24 hr. After rinsing, the second antibodies were incubated in the same 
conditions. The 2nd antibodies were rinsed and the vestibular epithelia were mounted on slides with 
fluoromount (F4680, Sigma-Aldrich) and were visualised with a confocal microscope Zeiss LSM880 
(with an objective of 63 x NA:1.4). To properly analyse the whole vestibular epithelium, Z-stacks of 
0.5  μm were obtained and observed with ImageJ (National Institute of Mental Health, Bethesda, 
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Malyland, USA). The primary antibodies used were rabbit anti-Myosin VIIa (Myo7a) (Proteus Biosci-
ences, #25–6790), mouse anti-contactin-associated protein (CASPR1) (Neuromab #75–001), guinea pig 
anti calretinin (Synaptic Systems #214–104) and goat anti-osteopontin (Spp1) (R&D Systems #AF808). 
Their respective secondary antibodies were Dylight 405 donkey anti-rabbit igG H+L (Jackson Immuno 
Research #711-475-152), Alexa Fluor 488 donkey anti-mouse IgG H+L (Life Technologies #A21202), 
Alexa Fluor donkey anti-guinea-pig IgG H+L (Jackson ImmunoResearch #706-605-148) and Alexa 
Fluor 555 donkey anti-goat IgG H+L (Invitrogen #A21432).

HC counts were obtained from square areas (67.5x67.5 µm) of the central and peripheral parts of 
two vestibular organs (horizontal semi-circular canal and utricle) in the W6 group and the W12 group. 
The areas for counting were obtained from the same location within the epithelium in all animals. The 
global number of HC was assessed with the cytoplasmic labelling of the anti-Myo7a antibody (Hasson 
et al., 1997). Type I HC were labelled using two different antibodies: anti-Spp1 in the neck of the 
type I HC (McInturff et al., 2018) and the presence of anti-CASPR1 in the calyceal junctions of the 
calyx (Sousa et al., 2009). Type II HC were distinguished by the colocalization of Myo7a and calretinin 
(Maroto et al., 2021).

Statistical analysis
For both OKR and VOR stimulations, the effect of the protocol on the gain and phase were statistically 
tested by performing repeated measures ANOVA. The treatment (SHAM or IDPN) was considered 
as between individual independent factor with the Weeks (W0, W2, W4, W6, W8, W10, W12) and 
the Frequencies (0.1, 0.2, 0.33, 0.5 and 1 Hz for the OKR; 0.2, 0.5, 0.8, 1 and 2 Hz for the VOR) were 
considered as within individual independent factors. The main effects of those factors and their inter-
actions were tested and reported. In the case of the OCR and OVAR, mix-model ANOVA was used 
with only Weeks considered as within factors. For the CGR, measured at W6 and W12, mix-model 
ANOVA was used with the Frequencies and Model (Measured or Model CGR) used as within factors. 
For the comparison between the OKR and VOR Δ gain, a repeated measures ANOVA was applied on 
the Δ gain (Wx-W0) with the stimulation modality (OKR or VOR) as between individual independent 
factor and the Weeks as within individual independent factor. For the correlation between OCR and 
VOR, as well as the measured and theoretical CGR gain a linear regression model was fitted.

The effect of IDPN exposure on the HC count was reported with a Kruskal Wallis test. For all anal-
yses the significance threshold was set at P<0.05 and Newman Keuls post hoc test was performed if 
the main effect or an interaction was found significant.
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