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Abstract The defensive–offensive associations between algae and herbivores determine marine 
ecology. Brown algae utilize phlorotannin as their chemical defense against the predator Aplysia 
kurodai, which uses β-glucosidase (akuBGL) to digest the laminarin in algae into glucose. Moreover, 
A. kurodai employs Eisenia hydrolysis-enhancing protein (EHEP) as an offense to protect akuBGL 
activity from phlorotannin inhibition by precipitating phlorotannin. To underpin the molecular mech-
anism of this digestive–defensive–offensive system, we determined the structures of the apo and 
tannic acid (TNA, a phlorotannin analog) bound forms of EHEP, as well as the apo akuBGL. EHEP 
consisted of three peritrophin-A domains arranged in a triangular shape and bound TNA in the 
center without significant conformational changes. Structural comparison between EHEP and EHEP–
TNA led us to find that EHEP can be resolubilized from phlorotannin precipitation at an alkaline pH, 
which reflects a requirement in the digestive tract. akuBGL contained two GH1 domains, only one 
of which conserved the active site. Combining docking analysis, we propose the mechanisms by 
which phlorotannin inhibits akuBGL by occupying the substrate-binding pocket, and EHEP protects 
akuBGL against this inhibition by binding with phlorotannin to free the akuBGL pocket.

eLife assessment
This important study presents convincing evidence on how the sea slug Aplysia kurodai optimizes 
its digestion of brown algae, in a classical predator-prey 'arms race' at the molecular level. The 
experimental protein structures and enzyme assays provide support for the claims of how A. kurodai 
avoids inhibition by algal compounds, and also hold promise for biotechnological applications.

Introduction
Over millions of years of evolution, predators have successfully coevolved with their prey to maintain an 
ecological balance (Becklin, 2008). In marine habitats, interactions between algae and marine herbi-
vores dominate marine ecosystems. Most algae are consumed by marine herbivores (Jormalainen 
and Honkanen, 2008). They produce secondary metabolites as a chemical defense to protect them-
selves against predators. In brown algae Eisenia bicyclis, laminarin is a major storage carbohydrate, 
constituting 20–30% of algae dry weight. The sea hare Aplysia kurodai, a marine gastropod, preferen-
tially feeds on E. bicyclis with its 110 and 210 kDa β-glucosidases (akuBGLs), hydrolyzing the laminarin 
and releasing large amounts of glucose. Interestingly, such a feeding strategy has attracted attention 
for producing glucose as a renewable biofuel source (Enquist-Newman et al., 2014). However, to 
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protect themselves against predators, brown algae produce phlorotannin, a secondary metabolite, 
thereby reducing the digestion by A. kurodai by inhibiting the hydrolytic activity of akuBGLs. As 
the 110 kDa akuBGL is more sensitive to phlorotannin than the 210 kDa BGL (Tsuji et al., 2017), we 
focused on the 110 kDa akuBGL in this study (hereafter, akuBGL refers to 110 kDa akuBGL).

To counteract the antipredator adaptations of algae, herbivores use diverse approaches, such as 
detoxification, neutralization, defense suppression, and physiological adaptations (Erb and Reymond, 
2019). A. kurodai inhibits the phlorotannin defense of brown algae through Eisenia hydrolysis-
enhancing protein (EHEP), a protein from their digestive system that protects akuBGL activity from 
phlorotannin inhibition (Tsuji et al., 2017). Previous studies have shown that incubating E. bicyclis 
with akuBGL in the presence of EHEP results in increased glucose production because EHEP binds to 
phlorotannin and forms an insoluble complex (Tsuji et al., 2017).

The akuBGL–phlorotannin/laminarin–EHEP system exemplifies the digestion process of A. kurodai 
as well as the defense and antidefense strategies between E. bicyclis and A. kurodai. Although the 
defense/antidefense strategy has been established, the detailed molecular mechanism of this inter-
play remains unknown. Furthermore, phlorotannin inhibition hinders the potential application of 
brown algae as feedstocks for enzymatically producing biofuel from laminarin. Thus, understanding 
the underlying molecular mechanisms will be beneficial for the application of this system in the biofuel 
industry.

Despite the potential use of laminarin hydrolytic enzymes in the biofuel industry, only a few 
BGLs of glycoside hydrolases belonging to the GH3 and GH1 family are known to hydrolyze lami-
narin (e.g., Talaromyces amestolkiae BGL (Méndez-Líter et  al., 2018), Ustilago esculenta BGL 
(Nakajima et  al., 2012), and Vibrio campbellii BGL (Wang et  al., 2015) from the GH3 family 
and Saccharophagus degradans 2-40T BGL (Kim et  al., 2018) from the GH1 family). GH3 is a 
multidomain enzyme family characterized by N-terminal (β/α)8 (NTD) and C-terminal (β/α)6 (CTD) 
domains, with or without auxiliary domains (Mohsin et al., 2019); the nucleophile aspartate and 
the acid/base glutamate residues exist in the NTD and CTD, respectively. In contrast, the members 
of the GH1 family generally share a single (β/α)8-fold domain (hereafter referred to as the GH1 
domain [GH1D]), and the two glutamic acid catalytic residues are located in the carboxyl termini of 
β-strands 4 and 7. Therefore, the two families may use different substrate recognition and catalytic 
mechanisms for laminarin. Intriguingly, although akuBGL possesses laminarin hydrolytic activity 
and belongs to the GH1 family, its molecular weight is considerably higher than that of other GH1 
members. Sequence analysis has indicated that akuBGL consists of ≥2 GH1Ds. Because no struc-
tural information of BGL active on polysaccharides is available, the catalytic mechanism toward 
laminarin remains unclear.

There is limited information on EHEP, a novel cysteine-rich protein (8.2% of the amino acid 
content), because no structurally or functionally homologous protein exists in other organisms. EHEP 
was predicted to consist of three peritrophin-A domains (PADs) with a cysteine-spacing pattern of 
CX15CX5CX9CX12CX5–9C. The PADs consist of peritrophic matrix proteins, which have been proposed 
to play an important role in detoxifying ingested xenobiotics (Hegedus et al., 2009). For instance, 
Aedes aegypti intestinal mucin 1 (AeIMUC1) consists of a signal peptide followed by three PADs with 
an intervening mucin-like domain; its expression is induced by blood feeding. AeIMUC1-mediated 
blood detoxification during digestion is completed by binding to toxic heme molecules (Devenport 
et al., 2006). Despite the similar domain organization of EHEP and AeIMUC1, their functions and 
binding partners are different, implying their different characteristics. However, the characteristics 
of the EHEP–phlorotannin insoluble complex remain unknown; moreover, it remains unclear why and 
how EHEP protects akuBGL from phlorotannin inhibition.

In this study, we determined the structures of the apo and tannic acid (TNA, phlorotannin analog) 
bound forms of EHEP (EHEP, EHEP–TNA), as well as akuBGL, all isolated from A. kurodai. The struc-
ture of EHEP consists of three PADs arranged in a triangular shape, with TNA bound at the surface of 
the triangle center. A structural comparison of EHEP and EHEP–TNA revealed no significant changes 
in conformation upon TNA binding, implying that EHEP maintains its structure when precipitated 
with TNA. Then, we found the conditions to resolubilize EHEP–TNA precipitate for EHEP recycling. 
The obtained akuBGL structure suggests that only one GH1D (GH1D2) possesses laminarin hydrolytic 
activity; subsequently, ligand-docking experiments demonstrated that TNA/phlorotannin has a higher 
docking score than laminarin. Our results revealed the mechanisms by which EHEP protects akuBGL 
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from phlorotannin inhibition and how phlorotannin inhibits the hydrolytic activity of akuBGL, providing 
structural support for the potential application of brown algae in biofuel production.

Results
Effects of TNA on akuBGL activity with or without EHEP
Phlorotannin, a type of tannin, is a chemical defense metabolite of brown algae. It is difficult to isolate 
a compound from phlorotannins because they are a group of polyphenolic compounds with different 
sizes and varying numbers of phloroglucinol units (Cassani et al., 2020), such as eckol, dieckol, and so 
on (Imbs and Zvyagintseva, 2018). Previous studies have reported that the phlorotannin-analog TNA 
has a comparable inhibitory effect on akuBGL to phlorotannin (Tsuji et al., 2017). Hence, we used TNA 
instead of phlorotannin to explore phlorotannin binding with EHEP and akuBGL. This activity assay 
system involves multiple equilibration processes: akuBGL ⇋ substrate, akuBGL ⇋ TNA, and EHEP 
⇋ TNA. First, we confirmed TNA inhibition of akuBGL activity and clarified the protective effects of 
EHEP from TNA inhibition. The inhibition experiments showed that the galactoside hydrolytic activity 
of akuBGL decreased with increasing TNA concentration, indicating that TNA inhibits akuBGL activity 
in a dose-dependent manner (Figure 1A, Figure 1—figure supplement 1A). Approximately 70% 
akuBGL activity was inhibited at a TNA concentration of 40 μM. Moreover, protection ability anal-
ysis revealed that EHEP protects akuBGL activity from TNA inhibition in a dose-dependent manner, 
as indicated by the recovery of the inhibited akuBGL activity with increasing EHEP concentration 
(Figure 1B, Figure 1—figure supplement 1B). Approximately 80% of akuBGL activity was recovered 
at an EHEP concentration of 3.36 μM.

Overall structure of EHEP
Considering the lack of known homologous proteins of EHEP, we determined the structure of EHEP 
using the native-SAD method at a resolution of 1.15 Å, with an Rwork and Rfree of 0.18 and 0.19, respec-
tively (Table 1). The residues A21–V227 in purified EHEP (1–20 aa were cleaved during maturation) 
were built, whereas two C-terminal residues were disordered. The structure of EHEP consists of three 
PADs: PAD1 (N24–C79), PAD2 (I92–C146), and PAD3 (F164–C221), which are linked by two long 

Figure 1. Galactoside hydrolytic activity of akuBGL toward 2.5 mM ortho-nitrophenyl-β-galactoside. Activity (%) is shown as the fold increase relative to 
akuBGL without the addition of tannic acid (TNA) or Eisenia hydrolysis-enhancing protein (EHEP). (A) The hydrolytic activity of akuBGL (0.049 μM) with 
TNA at different concentrations. (B) The hydrolytic activity of akuBGL (0.049 μM) with 40 μM TNA and EHEP at different concentrations. The average 
and standard deviation of the relative activity were estimated from three independent replicates (N = 3). Asterisks in the top of error bars indicated 
significant (p<0.005) differences by t-test in comparison with 0 μM TNA (A) or 0 μM EHEP and no TNA (B).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. High-performance liquid chromatography (HPLC) profiles of akuBGL activity toward ortho-nitrophenyl-β-galactoside.

https://doi.org/10.7554/eLife.88939
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loops, LL1 (Q80–N91) and LL2 (R147– G163), and arranged in a triangular shape (Figure 2A). These 
three PADs share a similar structure, with a root-mean-squared difference (RMSD) of 1.065 Å over 
46 Cα atoms and only ~20.3% sequence identity (Figure 2B, C). The three PADs share a canonical 
CBM14 fold consisting of two β-sheets containing three N-terminal and two C-terminal antiparallel 
β-strands. Additionally, two small α-helices were appended to the N- and C-terminus in PAD1 and 
PAD3 but not in PAD2 (Figure 2B).

Table 1. X-ray data collection and structure-refinement statistics.

EHEP1 EHEP2 EHEP–TNA akuBGL

Data collection

Beamline PF BL17A
Spring 8
BL-41XU PF BL17A PF BL1A

Wavelength (Å) 0.9800 1.0000 0.9800 1.0000

Resolution range (Å) 46.56–1.15 (1.20–1.15) 47.02–1.4 (1.45–1.4) 46.84–1.9 (1.97–1.9)
49.65–2.7
(2.80–2.7)

Space group P212121 P212121 P212121 P62

Unit-cell parameters
a, b, c (Å) 42.2, 65.3, 66.5 40.6, 65.6, 67.5 42.5, 65.4, 67.2 191.7, 191.7, 112.6

Completeness (%) 93.4 (75.8) 99.30 (97.98) 99.9 (99.7) 99.9 (99.1)

Redundancy 6.6 (6.1) 6.4 (5.8) 6.4 (6.4) 10.7 (10.9)

Average I/σ(I) 19.28 (1.97) 14.34 (3.41) 15.39 (1.83) 10.69 (2.57)

Rmeas(%)* 7.3 (90.5) 8.6 73.7 (55.3) 8.9 (89.4) 19.4 (83.0)

CC1/2 (%) 99.9 (70.4) 99.8 (86.2) 99.9 (73.7) 99.5 (84.2)

Molecules/
asymmetric unit 1 1 1 2

Refinement

Rwork
†/Rfree

‡ (%) 18.19/18.91 16.57/18.39 19.87/23.54 18.39/21.98

No. of atoms 1955 1861 1732 15,595

No. of residues 1600 1573 1580 15,256

No. of water 
molecules 343 273 87 96

No. of ligands 12 15 67 243

RMSD from ideality

Bond length (Å) 0.005 0.006 0.008 0.004

Bond angle (°) 0.84 0.84 0.91 0.65

Ramachandran plot 
(%)

Favored 99.02 98.54 98.52 96.16

Allowed 0.98 1.46 1.48 3.74

Outliers 0.00 0.00 0.00 0.11

PDB accession code 8IN3 8IN4 8IN6 8IN1

The highest resolution shell is shown in parentheses.
*Rmeas = Σhkl{N(hkl)/[N(hkl) − 1]}1/2 Σi|Ii(hkl) − <I(hkl)> |/ΣhklΣi|Ii(hkl), where Ii(hkl) is the ith observation of the 
intensity of reflection hkl and 〈I(hkl)〉 is the mean over n observations.
†Rwork = Σhkl||Fobs(hkl)| − |Fcalc(hkl)||/Σhkl|Fobs(hkl)|.
‡Rfree was calculated with an approximate 5% fraction of randomly selected reflections evaluated from refinement.

https://doi.org/10.7554/eLife.88939
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Although the Dali server (Holm and Rosenström, 2010) did not provide similar structures using the 
overall structure of EHEP as the search model, six structures showed similarities with a single PAD of 
EHEP. These structures were the members of the PAD family, including the chitin-binding domain of 
chitotriosidase (PDB ID 5HBF) (Fadel et al., 2016), avirulence protein 4 from Pseudocercospora fuli-
gena [PfAvr4 (PDB ID 4Z4A)] (Kohler et al., 2016) and Cladosporium fulvum [CfAvr4 (PDBID 6BN0)] 
(Hurlburt et al., 2018), allergen Der p 23 (PDB ID 4ZCE) (Mueller et al., 2016), tachytitin (PDB ID 
1DQC) (Suetake et al., 2000), and allergen Blot 12 (PDB ID 2MFK), with Z-scores of 4.7–8.4, RMSD 
values of 1.2–2.8 Å, and sequence identity of 19–37%. The highest sequence disparity was detected 
in PAD2, whereas the greatest structural differences were noted in PAD3. The CNo1X15CNo2X5CNo3X9C-
No4X12CNo5X5–9CNo6 motif (superscripts and subscripts indicate the cysteine number and number of resi-
dues between adjacent cysteines, respectively) in each PAD of EHEP formed three disulfide bonds 
between the following pairs: CNo1–CNo3, CNo2–CNo6, and CNo4–CNo5 (Figure 2B). Such rich disulfide bonds 
may play a folding role in the structural formation of EHEP, with >70% of the backbone in a loop 
conformation. A similar motif with disulfide bonds was observed in tachycitin (Suetake et al., 2000), 
PfAvr4 (Kohler et al., 2016), CfAvr4 (Hurlburt et al., 2018), and the chitin-binding domain of chiti-
nase (Fadel et al., 2016). Although these proteins share a highly conserved core structure, they have 
different biochemical characteristics. For example, the chitin-binding domain of human chitotriosi-
dase, Avr4, and tachycitin possess chitin-binding activity, but the critical residues for chitin binding 
are not conserved (Fadel et al., 2016; Hurlburt et al., 2018; Madland et al., 2019), indicating that 
they employ different binding mechanisms. In contrast, EHEP and allergen Der p 23 do not possess 
chitin-binding activity (Tsuji et al., 2017; Mueller et al., 2016). Thus, the PAD family may participate 
in several biochemical functions.

Figure 2. Eisenia hydrolysis-enhancing protein (EHEP) structure. (A) Cartoon representation of EHEP. The three peritrophin-A domains (PADs) are 
colored green, light blue, and pink, respectively. Linker long loop1 (LL1) and loop2 (LL2) are colored yellow and blue. (B) Structural superposition of the 
three PAD domains of EHEP. The three domains are colored as in (A). The disulfide bonds are shown as yellow sticks. (C) Sequence alignment of three 
PAD domains. Alignment was performed by CLUSTALW and displayed with ESPript3.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Acetylation modification of Eisenia hydrolysis-enhancing protein (EHEP).

Figure supplement 1—source data 1. recomEHEP and Eisenia hydrolysis-enhancing protein (EHEP) activity.

https://doi.org/10.7554/eLife.88939
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Modification of EHEP
Consistent with the molecular weight results obtained using MALDI–TOF MS (Sun et al., 2020), the 
apo structure2 (1.4  Å resolution) clearly showed that the cleaved N-terminus of Ala21 underwent 
acetylation (Figure 2—figure supplement 1A), demonstrating that EHEP is acetylated in A. kurodai 
digestive fluid. N-terminal acetylation is a common modification in eukaryotic proteins. Such acetyla-
tion is associated with various biological functions, such as protein half-life regulation, protein secre-
tion, protein–protein interaction, protein–lipid interaction (Silva and Martinho, 2015), metabolism, 
and apoptosis (Hollebeke et al., 2012). Furthermore, N-terminal acetylation may stabilize proteins 
(Lange and Overall, 2011). To explore whether acetylation affects the protective effects of EHEP on 
akuBGL, we used the E. coli expression system to obtain the unmodified recomEHEP (A21–K229). We 
measured the TNA-precipitating assay of recomEHEP. The results revealed that recomEHEP precip-
itated after incubation with TNA at a comparable level to that of natural EHEP (Figure 2—figure 
supplement 1B), indicating that acetylation is not indispensable for the phlorotannin-binding activity 
and stabilization of EHEP. Future studies are warranted to verify the exact role of N-terminal acetyla-
tion of EHEP in A. kurodai.

TNA binding to EHEP
To understand the mechanism by which TNA binds to EHEP, we determined the structure of EHEP 
complexed with TNA (EHEP–TNA) using the soaking method. In the obtained structure, both 2Fo–Fc 
and Fo–Fc maps showed the electron density of 1,2,3,4,6-pentagalloylglucose, a core part of TNA 
missing the five external gallic acids (Figure 3A, Figure 3—figure supplement 1). Previous studies 
have shown that acid catalytic hydrolysis of TNA requires a high temperature of 130°C (Jie Fu et al., 
2015); even with a polystyrene-hollow sphere catalyst, a temperature of 80°C is required (Luo et al., 
2018). Therefore, the five gallic acids could not be visualized in the EHEP–TNA structure, most likely 
due to the structural flexibility of TNA.

The apo EHEP and EHEP–TNA structures were highly similar, with an RMSD value of 0.283 Å for 
207 Cα atoms (Figure 3—figure supplement 1B). However, the superposition of the two structures 
showed a decrease in the loop part of EHEP–TNA. TNA binding caused a slight increase in the α-helix 
and β-sheet contents of PAD2 and PAD3 (Figure 3—figure supplement 1B). In the EHEP–TNA struc-
ture, the residues C93–Y96 of PAD2 folded into an α-helix and each β-sheet of the first β-strand in 
PAD3 elongated by incorporating one residue in the first (G176) and second β-sheets (S186) and three 
residues in the third β-sheet (H197MP199).

The EHEP–TNA structure revealed that TNA binds to the center of the triangle formed by the three 
PADs, a positively charged surface (Figure 3A and Figure 3—figure supplement 1C). The binding 
pocket on the EHEP surface was formed by the C-terminal α-helix of PAD1, the N-terminal α-helix of 
PAD2, and the middle part (loop) of PAD3 assisted by two long linker loops (LL1 and LL2). TNA was 
primarily bound to EHEP via hydrogen bonds and hydrophobic interactions (Figure 3B). Gallic acid1, 
4, and 6 interacted with EHEP via hydrogen bonds and additional hydrophobic contacts, whereas 
gallic acid2 and 3 only interacted hydrophobically with EHEP. The 3-hydroxyl groups of gallic acid1 
and 6 individually formed a hydrogen bond with the main chain of G74 and the side chain of N75 in 
PAD1. The main chain of Y96 and P199 in PAD2 and PAD3 formed hydrogen bonds with the gallic 
acid4. Additionally, some hydrogen bonds were formed between TNA and water molecules. TNA 
binding was also stabilized by hydrophobic interactions between the benzene rings of gallic acid and 
EHEP. For instance, gallic acid4 and 6 are stacked with P201 and P77, respectively; moreover, gallic 
acid3 and 4 are stacked with P199.

The EHEP–TNA structure clearly showed that TNA binds to EHEP without covalent bonds, and 
the binding does not induce significant structural changes; thus, we attempted to recover EHEP from 
EHEP–TNA precipitates by adjusting the pH. As hypothesized, resolubilization of the EHEP–phloro-
tannin precipitate is pH dependent (Figure 3C). The EHEP–TNA precipitate did not resolubilize at 
pH 7.0; however, after incubating for >1 hr at pH 7.5, the precipitate started resolubilizing. Most of 
the precipitate rapidly resolubilized at an alkaline pH (≥8.0) after incubation for 15 min. Furthermore, 
the resolubilized EHEP had the same elution profile as that of the natural EHEP (Figure 3D) in SEC, 
suggesting that resolubilized EHEP maintained the native structure and its phlorotannin-precipitate 
activity (Figure 3—figure supplement 1D).

https://doi.org/10.7554/eLife.88939
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Two domains of akuBGL
To reveal the structural basis of akuBGL recognition of laminarin and its inhibition by TNA, we 
attempted to determine its structure. We soaked crystals in TNA as well as various substrate solutions 
but finally obtained the optimal resolution using crystal soaking in TNA. There was no electron density 
of TNA or something similar in the 2Fo–Fc and Fo–Fc map of the obtained structure; thus, we consid-
ered this structure as the apo form of akuBGL.

Figure 3. Structure of Eisenia hydrolysis-enhancing protein (EHEP)–tannic acid (TNA). (A) The overall structure of EHEP–TNA. (A) The overall structure 
of EHEP–TNA. EHEP and TNA are shown by the cartoon and stick model, respectively. EHEP is colored as in Figure 1. The C and O atoms of TNA are 
colored lemon and red, respectively. (B) Interaction of TNA (ball-stick in the same color as (A)) with EHEP (cartoon in the same color as (A)) in EHEP–TNA 
structure. The residues of EHEP in contact are labeled and shown by a ball-stick with N, O, and S atoms in blue, red, and brown, respectively. The C and 
O atoms of TNA are colored the same as (A), lemon, and red, respectively. Dashed lines show hydrogen bonds. The water molecules stabilizing TNA 
were shown as light orange spheres. (C) Effect of pH on resolubilization of an EHEP–eckol precipitate. Buffers with pH 9.0, 8.0, 7.5, and 7.0 are presented 
as hollow square, solid circle, hollow circle, and solid square, respectively. (D) The EHEP–eckol precipitate was dissolved in 50 mM Tris–HCl (pH 8.0) and 
analyzed using a gel filtration column of Sephacryl S-100.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Eisenia hydrolysis-enhancing protein (EHEP)–tannic acid (TNA) structure and structural comparisons.

Figure supplement 1—source data 1. Resolubilized Eisenia hydrolysis-enhancing protein (EHEP) activity.

https://doi.org/10.7554/eLife.88939
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Two akuBGL molecules were observed in an asymmetric unit (MolA and MolB). These molecules 
lacked the N-terminal 25 residues (M1–D25), as confirmed by N-terminal sequencing analysis of puri-
fied natural akuBGL. This N-terminal fragment was predicted to be a signal peptide using the web 
server SignalP-5.0. The residues L26–P978 were constructed in MolA and MolB with glycosylation, 
whereas the remaining C-terminal residues (A979–M994) could not be visualized as they were disor-
dered. The electron density map of Fo–Fc revealed N-glycosylation at three residues, that is, N113, 
N212, and N645 (Figure  4—figure supplement 1A, B). N-glycosylation of GH enzymes prevents 
proteolysis and increases thermal stability (Amore et al., 2017; Han et al., 2020b). Additionally, a 
study on β-glucosidase Aspergillus terreus BGL demonstrated that N-glycosylation of N224 affected 
the folding stability, even when it is located close to a catalytic residue (Wei et al., 2013). In akuBGL, 
all N-glycosylation sites were present on the surface, far from the catalytic site. Therefore, we spec-
ulate that akuBGL glycosylation does not affect its activity. Except for the difference in visualized 

Figure 4. Structure of akuBGL. (A) Overall structure. The GH1D1 (light blue) and GH1D2 (cyan) domains are linked 
by a long loop (linker loop) colored in pink. The N-linked glycans were shown in the orange stick. (B) Residues 
superposition of the glycone-binding site (GBS) and catalysis-related residue (CR) site of the domains GH1D1 
(cyan), GH1D2 (light blue) with β-glucosidase structures from termite Neotermes koshunensis (NkBGL, gray PDB 
ID 3VIH) (Jeng et al., 2012), β-glucosidase from rice (OsBGL, gray, PDB ID 2RGL) (Chuenchor et al., 2008), and 
β-glucosidase from Bacillus circulans sp. Alkalophilus (gray, PDB ID 1QOX) (Hakulinen et al., 2000). Only the 
residue numbers of GH1D1 (cyan), GH1D2 (light blue), and NkBGL (gray) are shown for clarity.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. akuBGL structure.

Figure supplement 1—source data 1. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) 
of recomGH1D1.

Figure supplement 2. Structural comparison of BGLs.

Figure supplement 3. The model of GH1D2 docking with the substrate laminaritetraose.

https://doi.org/10.7554/eLife.88939
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glycans resulting from glycosylation, MolA and MolB were similar, with an RMSD value of 0.182 for 899 
Cα atoms; therefore, we used MolA for further descriptions and calculations.

The structure of akuBGL consisted of two independent GH1 domains, GH1D1 (L26–T494) and 
GH1D2 (D513–P978), linked by a long loop (D495–Y512) (Figure  4A). There was little interaction 
between GH1D1 and GH1D2, only in a buried surface area comprising 2% of the total surface (708.9 
Å2) (Figure 4—figure supplement 1C). GH1D1 and GH1D2 have a sequence identity of 40.47% and 
exhibit high structural similarity with an RMSD value of 0.59 Å for 371 Cα atoms (Figure 4—figure 
supplement 2A, upper panel).

Glucosidases of the GH1 family utilize a retaining mechanism with two glutamic acids to catalyze 
glucoside hydrolysis. In general, the distance between the two catalytic oxygen atoms of the side 
chain of two glutamic acids is approximately 5  Å (Hayashi et  al., 2007). Sequence and structure 
alignment of GH1D1 and GH1D2 of akuBGL with other members of the GH1 family revealed that 
the second glutamate is conserved (E404), but the first glutamate is replaced by D192 in GH1D1. 
The oxygen atoms of the side chains between D192 and E404 of GHD1 were 8.4 Å apart. In contrast, 
GH1D2 conserved two glutamic acids (E675 and E885) at the carboxyl termini of β-strands 4 and 7; 
the distance between the oxygen atoms of the E675 and E885 side chains was 5.1 Å (Figure 4—figure 
supplement 2A bottom panel), similar to that of Neotermes koshunensis BGL (NkBGL, PDB ID 3VIH) 
(Jeng et al., 2012), Nannochloropsis oceanica BGL (NoBGL, PDB ID 5YJ7) (Dong et al., 2021), and 
Spodoptera frugiperda BGL (PDB ID 5CG0) (3.9–4.9 Å) (Tamaki et al., 2016). Furthermore, regarding 
the two other conserved essential regions for β-glucosidase activity, namely, the glycone-binding site 
(GBS) and catalysis-related residues (CR), GH1D1 conserved neither GBS nor CR, whereas GH1D2 
conserved both (Figure 4B). Altogether, we suggest that GH1D1 does not possess catalytic activity. 
We expressed and purified the recombinant GH1D1, which did not show any hydrolytic activity 
toward O-PNG (Figure 4—figure supplement 1D, E), although we could not rule out the effect of 
N-glycosylation.

Structural comparison of GH1D2 with other BGLs, including NkBGL (PDB ID 3VIH) (Jeng et al., 
2012), rice (Oryza sativa L.) BGL (OsBGL, PDB ID 2RGL) (Chuenchor et al., 2008), and microalgae 
NoBGL (PDB ID 5YJ7) (Dong et  al., 2021), revealed the characteristics of each active pocket 
(Figure 4—figure supplement 2B). OsBGL and NoBGL have deep, narrow, and straight pockets, 
whereas GH1D2 and NkBGL have broad and crooked pockets. Such active pocket shapes reflect the 
substrate preferences of OsBGL and NoBGL; they hydrolyze laminaribiose with no detectable activity 
toward laminaritetraose (Dong et al., 2021; Opassiri et al., 2003). Furthermore, the difference in the 
features of large active pockets between NkBGL and GH1D2, wherein GH1D2 often possesses an 
auxiliary site with several aromatic residues bound to the carbohydrate via CH–π interactions (Hudson 
et al., 2015), may explain their substrate specificity. NkBGL efficiently hydrolyzes laminaribiose and 
cellobiose but has weak hydrolytic activity toward laminarin (Ni et al., 2007). In contrast, the GH1D2 
of akuBGL has similar activity levels toward cellobiose and laminarin (Tsuji et al., 2013). Therefore, the 
GH1D2 of akuBGL may recognize larger substrates than that of other BGLs. Laminarin typically has a 
curved conformation; accordingly, narrow- and straight-shaped pockets are incompatible for binding. 
Furthermore, we docked GH1D2 with laminaritetraose, wherein the four glucose units formed exten-
sive contacts with GH1D2. Hydrogen bonds are involved in the catalytic residues E675. In addition, 
several aromatic residues, such as W631, F677, W681, F689, Y819, Y846, W857, and W935, formed 
CH–π stacking interactions (Figure 4—figure supplement 3). Some interacting residues belonged to 
GBS and CR sites, such as E675, W631, Y819, and W935. Additionally, the docking structure revealed 
that the +3 and +4 glucose of laminaritetraose are located at the auxiliary binding site and that atom 
O1 of the +4 glucose is positioned outside the pocket (Figure 4—figure supplement 3), implying 
that the auxiliary binding site with several aromatic residues (F677 and W681) of GH1D2 facilitates 
laminarin binding.

Inhibitor binding of akuBGL
As we could not obtain the complex structure of akuBGL with TNA, we performed docking calculations 
of akuBGL GH1D2 with TNA to explore the inhibition mechanism. The docking model of akuBGL–
TNA showed that seven gallic acid rings of TNA formed an extensive hydrogen bond network with 
akuBGL in the binding pocket (Figure 5). The hydroxyl groups of TNA formed hydrogen bonds with 
the residues N552, E675, D735, K739, K759, Q840, T844, D852, and K859 of GH1D2. Moreover, 

https://doi.org/10.7554/eLife.88939
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Figure 5. Docking model of akuBGL with tannic acid (TNA). (A) Detailed interaction between akuBGL and TNA in 
the docking model. TNA is shown in the green stick model. The hydrogen bonds are shown as dashed lines. (B) A 
2D diagram of the interaction between akuBGL and TNA shown in (A). The hydrogen bonds are shown as dashed 
lines, and the hydrophobic contacts as circular arcs.

Figure 5 continued on next page

https://doi.org/10.7554/eLife.88939
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benzene rings showed hydrophobic interactions with several hydrophobic residues. In particular, 
stable π–π stacking was observed between TNA and residues F547, W631, F689, Y846, W857, and 
W935. Among these residues, the conserved E675 was the catalytic residue, and W631, W935, and 
E934 contributed to GBS and CR sites.

In addition, we performed a docking calculation of GH1D2 with the characteristic inhibitors eckol 
and phloroglucinol (Jung et al., 2010). The binding mechanisms of eckol and phloroglucinol were 
similar to those of TNA but with different contact residues (Figure 5—figure supplement 1). For 
eckol, the six hydroxyl groups formed hydrogen bonds with residues E675, D735, E737, K759, E885, 
and E934. Additionally, residues W631, F677, F689, Y819, W857, W935, F943, and W927 formed 
π–π stacking interactions with eckol. For phloroglucinol, the three hydroxyl groups formed hydrogen 
bonds with E675, E885, and E934, whereas residues W631, F689, Y819, W857, W935, and W927 
formed π–π stacking interactions with the benzene ring.

The docking scores of the inhibitors TNA, eckol, and phloroglucinol were −8.8, −7.3, and −5.7 kcal/
mol, respectively, whereas the substrate laminaritetraose had a docking score of −6.6 kcal/mol. The 
docking scores corroborated well with the inhibition activity toward akuBGL, that TNA had a more 
robust inhibition activity than phloroglucinol (Tsuji et al., 2017), indicating that the docking results are 
reasonable. In summary, the three inhibitors interacted with akuBGL through similar binding mecha-
nisms to occupy the substrate-binding site, suggesting a reversible competitive inhibition mechanism.

Discussion
In marine habitats, the ecological interactions between brown algae and herbivores dominate 
marine ecosystems (Amsler and Fairhead, 2005). The akuBGL–phlorotannin/laminarin–EHEP system 
represents the feeding defense–offense associations between A. kurodai and brown algae. We 
focused on this system to understand the molecular mechanism at the atomic level. In contrast to 
most GH1 BGLs containing one catalytic GH1 domain, akuBGL consists of a noncatalytic GH1D1 and 
a catalytic GH1D2. The noncatalytic GH1D1 may act as a chaperone for GH1D2, as we successfully 
overexpressed GH1D1 but failed to do the same for GH1D2. Such multi-GH1D assembly and a similar 
function have been suggested in β-glucosidase CjCEL1A of Corbicula japonica (Sakamoto et  al., 
2009) and glycosidase LpMDGH1 of the shipworm Lyrodus pedicellatus (Sabbadin et  al., 2018). 
CjCEL1A has two tandem GH1Ds with a sequence identity of 43.41% (Sakamoto et al., 2009). Two 
catalytic glutamic acids and the residues related to substrate binding are conserved in the second 
GH1D, whereas the first GH1 domain lacks these conserved residues and may play a role in folding 
the catalytic domain. LpMDGH1 consists of six GH1Ds, among which GH1D2, 4, 5, and 6 contain the 
conserved residues for activity, whereas others do not contain these residues and might be involved 
in protein folding or substrate interactions (Sabbadin et al., 2018). Future assays of GH1D2 and its 
inactive mutants are the complement to validate the molecular mechanism of akuBGL.

BGLs have different substrate preferences in the degree of polymerization and type of glycosidic 
bond. In general, BGLs prefer to react with mono-oligo sugars over polysaccharides. For instance, 
OsBGL, NoBGL, and NkBGL hydrolyze disaccharides (cellobiose and laminaribiose) but display no 
or weak activity toward polysaccharides (cellulose and laminarin) (Dong et al., 2021; Opassiri et al., 
2003; Ni et al., 2007). The structure of GH1D2 explained the substrate preference for the polysaccha-
ride laminarin. GH1D2 contains an additional auxiliary site composed of aromatic residues (Figure 4—
figure supplement 2B) in the substrate entrance pocket, which putatively enables it to accommodate 
a long substrate, contributing to akuBGL activity toward laminarin, as supported by docking calcula-
tions (Figure 4—figure supplement 3). In addition, docking analysis of akuBGL GH1D2 with inhibitors 
(TNA, phlorotannin, eckol, and phloroglucinol) revealed that these inhibitors bind to the substrate-
binding site via hydrogen bonds and hydrophobic interactions similar to laminarin. Such binding 
mechanisms suggest the presence of competitive inhibition to occupy the binding site, consistent 
with previous research (Tsuji et al., 2017). Future kinetic experiments are required to quantitatively 
validate the competitive inhibition of phlorotannin against akuBGL.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The models of GH1D2 docking.

Figure 5 continued

https://doi.org/10.7554/eLife.88939
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EHEP, expressed in the midgut of A. kurodai, was identified as an antidefense protein, protecting 
the hydrolysis activity of akuBGL from phlorotannin inhibition (Tsuji et al., 2017). Such an ecolog-
ical balance also exists between plants and their predatory mammals and insects. Similar to brown 
algae, plants use the toxic secondary metabolite tannins as their defense mechanism against pred-
ators, constituting 5%–10% of the dry weight of leaves. In vertebrate herbivores, tannins reduce 
protein digestion (Barbehenn and Peter Constabel, 2011). In phytophagous insects, tannins may 
be oxidized in the alkaline pH of the insect midgut and cause damage to cells (Marsh et al., 2020). 
The evolution of plant–herbivore survival competition has led to the development of remarkably 
unique adaptation strategies. Mammals feeding on plants that contain tannin may overcome this 
defense by producing tannin-binding proteins, proline-rich proteins, and histatins (Shimada, 2006; 
De Smet and Contreras, 2005). Proline constitutes at least 20% of the total amino acid content in 
proline-rich proteins; for some species, the proportion of proline reaches 40%. Histidine constitutes 
25% of the total amino acid content in histatins. Both proline-rich proteins and histatins are unfolded 
proteins with random coils in solution. In caterpillars, the oxidation damage of tannin is reduced 
by the low oxygen level. Some insects use the peritrophic membrane to transport tannins into 
the hemolymph, where they are excreted (War et al., 2020). Additionally, the peritrophic envelop 
protects insects from tannins by forming an impermeable barrier to tannins (Barbehenn and Peter 
Constabel, 2011). A. kurodai uses a similar strategy to mammals by secreting the tannin-binding 
protein EHEP. Although EHEP has a completely different amino acid composition with proline-rich 
proteins and histatins, EHEP also binds to phlorotannin. Therefore, EHEP may be a specific coun-
teradaptation that allows A. kurodai to feed on brown algae, as there are no homologous proteins 
in other organisms.

The three PADs of EHEP are arranged in a triangular shape, forming a large cavity on the surface at 
the triangle center to provide a ligand-binding site. EHEP has a positively charged surface at a pH of 
<6.0, whereas the surface becomes negatively charged at a pH of >7.0 (Figure 3—figure supplement 
1C). Meanwhile, TNA has a pKa of 4.9–8 (Lin et al., 2009; Ge et al., 2019; Yi et al., 2011), showing 
minor negative charges at an acidic pH and the highest negative charge at a pH of >7.0 (Dultz et al., 
2021). Therefore, TNA binds to EHEP at a pH of <6.0 (pH of crystallization = 4.5) but shows charge 
repulsion with EHEP at a pH of >8.0. Altogether, TNA is protonated and behaves as a hydrogen bond 
donor when the pH is below its pKa, whereas when the pH is above its pKa, TNA is deprotonated 
and the hydrogen bonding cannot be maintained. As losing hydrogen bonds and increasing repulsive 
forces at a pH >8.0, the precipitated EHEP–TNA could dissolve in the buffer of pH >8.0. This pH-in-
duced reversible interaction also occurred in other proteins, such as BSA, pepsin, and cytochrome C 
(Han et al., 2020a). The phlorotannin members share a similar structure with TNA; thus, we speculate 
that the EHEP–phlorotannin complex also exhibits a pH-induced reversible interaction. In vivo, the pH 
of the digestive fluid of A. kurodai is approximately 5.5 (Tsuji et al., 2017), which favors the binding of 
EHEP to phlorotannin. In the alkaline hindgut (Lemke et al., 2003), the EHEP–phlorotannin disassoci-
ates (Figure 6), and the phlorotannin is subsequently excreted from the anus.

Based on the EHEP–TNA structure and docking models of akuBGL–inhibitor/substrate, we proposed 
a mechanism of phlorotannin inhibition on akuBGL activity and EHEP protection from phlorotannin 
inhibition (Figure 6). Because laminarin lacks the benzene rings essentially to form CH–π stacking 
interactions with EHEP, the EHEP can be considered not bind with laminarin. In the absence of EHEP, 
phlorotannin occupies the substrate-binding site of akuBGL, inhibiting the substrate from entering the 
active site and resulting in no glucose production. In the presence of EHEP, it competitively binds to 
phlorotannin, freeing the akuBGL pocket. Then, the substrate can enter the active pocket of akuBGL, 
and glucose can be produced normally. The digestive fluid of A. kurodai contains EHEP at a high 
concentration (>4.4 µM) (Tsuji et al., 2017), which is slightly higher than the concentration of EHEP 
(3.36 µM) that protects akuBGL activity (Figure 1B). The high concentration of EHEP allows A. kurodai 
to feed on phlorotannin-rich brown algae. The balance between phlorotannin inhibition and protec-
tion is controlled by the concentrations of phlorotannin and EHEP in vivo. The kinetic analysis of the 
akuBGL–phlorotannin/laminarin–EHEP system will provide detailed reaction parameters.

The akuBGL–phlorotannin/laminarin–EHEP system represents the digestive–defensive–offensive 
associations between algae and herbivores. Our study presented the molecular mechanism of this 
system at the atomic level, providing a molecular explanation for how the sea hare A. kurodai utilizes 
EHEP to protect akuBGL activity from phlorotannin inhibition. Furthermore, such a feeding strategy 

https://doi.org/10.7554/eLife.88939
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has attracted attention for producing glucose as a renewable biofuel source, so our studies provide a 
molecular basis for the biofuel industry applications of brown algae.

Materials and methods
EHEP and akuBGL preparation
Natural EHEP (22.5 kDa) and akuBGL (110 kDa) were purified from A. kurodai digestive fluid as previ-
ously described (Tsuji et al., 2017). For crystallization, we added one step for purification of EHEP by 
size-exclusion chromatography using a HiLoad 16/60 Superdex 75 column (GE, America) equilibrated 

Figure 6. Proposed molecular mechanisms. Proposed molecular mechanisms of tannic acid (TNA) inhibition of akuBGL activity and Eisenia hydrolysis-
enhancing protein’s (EHEP) protective effects of akuBGL in akuBGL–phlorotannin/laminarin–EHEP system (light purple triangle). The digestive tract 
of A.kurodai consists of foregut (blue), midgut (purple), and hindgut (blue) (top). The bar chart above depicts the pH of the digestive tract, with pink 
denoting acid and blue denoting alkalinity.

https://doi.org/10.7554/eLife.88939
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in 20 mM MES [2-(4-morpholino) ethanesulfonic acid]–NaOH buffer (pH 6.5). Collected EHEP was then 
concentrated to 15–25 mg/ml using Vivaspin-4 10K columns (Sartorius, Göttingen, Germany). For the 
akuBGL, we exchanged the buffer from 20 mM Tris–HCl pH 7.0–20 mM Bis-Tris pH 6.0 with Amicon-
Ultra (molecular weight cut-off of 50 kDa) and concentrated to 11 mg/ml.

To verify whether the chemical modification indicated by the previous study (Sun et al., 2020) 
affects the function of EHEP, we prepared recombinant EHEP (recomEHEP) without the N-terminal 
signal peptide (1–20 aa) and the chemical modification (Sun et al., 2020). EHEP cDNA was obtained 
via reverse transcription-polymerase chain reaction using the total RNA of A. kurodai as the template. 
The reamplified fragment was digested and ligated to a plasmid derived from pET28a (Novagen, 
Darmstadt, Germany). The primers used were shown in Supplementary file 1. The resulting plasmid 
encoding recomEHEP with an N-terminal hexahistidine-tag was transformed into E. coli B834(DE3) 
pARE2 cells. The cells were cultured in lysogeny broth (LB) medium with the antibiotics kanamycin 
(25  mg/l) and chloramphenicol (34  mg/l) until the optical density at 600  nm (OD600) reached 0.6. 
Subsequently, overexpression was induced by adding 0.5 mM isopropyl-β-D-thiogalactopyranoside 
for 20 hr at 20 ℃. The cells were harvested by centrifugation at 4000 × g, resuspended in a buffer 
containing 50 mM Tris–HCl pH 7.4, 300 mM NaCl, DNase, and lysozyme, and disrupted by sonica-
tion. The insoluble part was removed by centrifugation at 40,000 × g for 30 min at 4°C. We loaded 
the supernatant onto a 5-ml HisTrap HP column (GE, America). The recomEHEP was eluted using 
increasing concentrations of imidazole (0–500 mM). The purified proteins were dialyzed against a solu-
tion containing 50 mM Tris–HCl pH 7.4 and 50 mM NaCl and subsequently loaded onto a HiTrap Q 
HP column (GE, America) and eluted by a linear gradient of a solution containing 50 mM Tris–HCl and 
1 M NaCl. Fractions containing recomEHEP were concentrated and then purified using a gel filtration 
column (HiLoad 16/60 Superdex 75 pg) (GE, America) equilibrated with 20 mM sodium acetate pH 
6.0 and 100 mM NaCl. We collected the fractions containing recomEHEP and concentrated them to 
2.1 mg/ml using Amicon (Merck, America).

DNA encoding akuBGL without a signal peptide was codon optimized (GENEWIZ, China) for over-
expression in E. coli. The cDNA encoding the GH1D1 domain was subcloned into a modified pET-32a 
vector (Invitrogen, America) with an N-terminal TrxA tag and a 6×His tag, followed by a TEV protease 
recognition site. The primers used were shown in Supplementary file 1. The plasmid pET-32a-GH1D1 
was electorally transformed into E. coli origami2 cells. We grew the cells in LB medium supplemented 
with 100 µg/ml of ampicillin at 37°C until the OD600 reached 0.6. Then, the cultures were cooled and 
induced with 0.5 mM isopropyl-β-d-thiogalactopyranoside at 20°C for 16 hr. After resuspending the 
harvested cells in a buffer containing 50 mM Tris–HCl (pH 7.4), 250 mM NaCl, and 5% glycerol, we 
disrupted the cells by sonication. The cell lysate was centrifugated at 40,000 × g for 30 min at 4°C. 
The supernatant was filtered by 0.45 μm membrane and then loaded onto a HisTrap HP column (GE, 
America). After washing with lysis buffer supplemented with 20 mM imidazole, the recomGH1D1 was 
eluted linearly from the column with lysis buffer supplemented with 500 mM imidazole. The fractions 
containing recomGH1D1 were added with TEV protease at a ratio of 1:10 and dialyzed against a 
buffer containing 50 mM Tris (pH 7.4), 50 mM NaCl, and 2 mM DTT at 4°C overnight. Then, we puri-
fied the recomGH1D1 by a HisTrap HP column again (GE, America) and collected the flowthrough. 
Finally, we purified the recomGH1D1 by size-exclusion chromatography on a HiLoad 16/60 Superdex 
200  pg column (GE, America) equilibrated with a buffer containing 20  mM Bis-Tris (pH 6.0). The 
recomGH1D1 was concentrated to 1.5 mg/ml by centrifugation using Amicon-Ultra (molecular weight 
cut-off of 10 kDa).

N-terminal sequencing of akuBGL
We performed an N-terminal sequencing of purified akuBGL using the Edman degradation method. 
akuBGL was separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), 
followed by electrophoretic transfer onto a PVDF (polyvinylidene fluoride) membrane (GE, America). 
The membrane was subsequently stained with Ponceau S solution. The band corresponding to akuBGL 
was excised and analyzed using a PPSQ-53A Protein sequencer (Shimadzu, Japan) at the Instrumental 
Analysis Service of Hokkaido University.

Effects of TNA on akuBGL activity with or without EHEP
Due to the yellow color of TNA, which affects absorbance at 420 nm of the reaction product o-nitro-
phenol of akuBGL, we used high-performance liquid chromatography (HPLC) to measure the akuBGL 
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activity in the reaction system containing TNA. Ortho-nitrophenyl-β-galactoside (ONPG) was used 
as a substrate to measure akuBGL activity. The reaction system (100  μl) included 2.5  mM ONPG, 
49 nM akuBGL, and different TNA concentrations (0, 20, 40, and 60 μM) in a reaction buffer (50 mM 
CH3COONa pH 5.5, 100 mM NaCl, and 10 mM CaCl2). After incubation for 10 min at 37°C, 100 μl of 
methanol was added to each sample to terminate the reaction. Then, the mixture was centrifuged for 
10 min at 15,000 × g at 4°C and the supernatant was used for analyzing akuBGL activity via HPLC. To 
measure the protective effect of EHEP on akuBGL, we added different amounts of EHEP (1.68, 3.36, 
and 5.04 μM) to the reaction system (2.5 mM ONPG, 49 nM akuBGL, 40 μM TNA, 50 mM CH3COONa 
pH 5.5, 100 mM NaCl, and 10 mM CaCl2).

RecomGH1D1 activity assay
We measured simply the activity of the recomGH1D1 using a spectrophotometer because the reac-
tion product, o-nitrophenol, is yellow. The reaction system (100 μl) included 2.5 mM ONPG, 49 nM 
akuBGL or recomGH1D1 in a reaction buffer (50 mM CH3COONa pH 5.5, 100 mM NaCl, and 10 mM 
CaCl2). After incubation for 10 min at 37°C, the reaction was terminated by adding 100 μl of 500 mM 
Na2CO3. The absorbance at 420 nm was measured using a SpectraMax spectrophotometer (Molecular 
Devices, Japan).

Binding assay for recomEHEP with TNA
We measured the binding activity of recomEHEP using precipitation analysis in the same method as 
natural EHEP, as previously described (Tsuji et al., 2017). Briefly, recomEHEP or EHEP was incubated 
with TNA at 25℃ for 90 min and centrifuged for 10 min at 12,000 × g at 4℃. Then, we washed the 
precipitates twice and resuspended them in an SDS–PAGE loading buffer for binding analysis.

Resolubilization of the EHEP–eckol precipitate
A mixture of 2 mg of EHEP and 0.4 mg of eckol was incubated at 37°C for 1 hr, followed by centrif-
ugation at 12,000 × g for 10 min, and the supernatant was removed. The sediment was dissolved in 
a 50 mM Tris–HCl buffer at different pH (7.0–9.0), and the absorbance at 560 nm was measured over 
time. After checking the elution peak by SDS–PAGE, the resolubilized EHEP was analyzed by a Seph-
acryl S-100 HR column (2.0 × 110 cm). Moreover, the eckol-/dieckol-binding activity of resolubilized 
EHEP was assessed, as mentioned above in this section.

Crystallization and data collection
The crystallization, data collection, and initial phase determination of EHEP were described previ-
ously (Sun et al., 2020). As EHEP precipitates when bound to TNA, we could not cocrystallize EHEP 
with TNA. Therefore, we used the soaking method to obtain the EHEP–TNA complex. Owing to 
the poor reproducibility of EHEP crystallization, we used a co-cage-1 nucleant (Yao and Li, 2020), a 
metal–organic framework (Matsuzaki et al., 2014) to prepare EHEP crystals for forming the complex 
with TNA. Finally, we obtained high-quality EHEP crystals under the reservoir solution containing 
1.0  M sodium acetate and 0.1  M imidazole (pH 6.5) with co-cage-1 nucleant (Yao and Li, 2020). 
Subsequently, we soaked the EHEP crystals in a reservoir solution containing 10 mM TNA at 37℃ 
for 2 days; then, they were maintained at 20℃ for 2 weeks. Next, we soaked the EHEP crystals in a 
reservoir solution containing 10 mM phloroglucinol. For data collection, the crystal was soaked in a 
cryoprotectant solution containing 20% (vol/vol) glycerol along with the reservoir solution. Diffraction 
data were collected under a cold nitrogen gas stream at 100 K using Photon Factory BL-17 (Tsukuba, 
Japan) or Spring 8 BL-41XU (Hyogo, Japan).

For akuBGL crystallization, the initial crystallization screening was performed using the sitting-
drop vapor-diffusion method with Screen Classics and Classics II crystallization kits (QIAGEN, Hilden, 
Germany) and PACT kits (Molecular Dimensions, Anatrace, Inc) at 20℃. Crystallization drops were set 
up by mixing 0.5 μl of the protein solution with an equal volume of the reservoir solution. The initial 
crystals were obtained under condition no. 41 (0.1 M sodium acetate pH 4.5 and 25% polyethylene 
glycol [PEG] 3350) of Classics II, no. 13 (0.1 M MIB buffer [25 mM sodium malonate dibasic monohy-
drate, 37.5 mM imidazole, and 37.5 mM boric acid] with pH 4.0 and 25% PEG 1500), and no. 37 (0.1 M 
MMT buffer [20 mM DL-malic acid, 40 mM MES monohydrate, and 40 mM Tris] with pH 4.0 and 25% 
PEG 1500) of PACT. After optimization by varying the buffer pH and precipitant concentration and 
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adding co-cage-1 nucleant (Yao and Li, 2020), the optimal crystals were obtained using 0.1 M sodium 
acetate pH 4.5 and 20% PEG 3350 as a reservoir solution at a protein concentration of 5.4 mg/ml with 
a co-cage-1 nucleant (Yao and Li, 2020). Diffraction data were collected under a cold nitrogen gas 
stream at 100 K using Photon Factory BL-1A (Tsukuba, Japan) after cryoprotection by adding glycerol 
to a 20% final concentration into the reservoir solution. The optimal resolution of diffraction data was 
obtained by soaking a crystal with 5 mM TNA in the reservoir buffer at 37℃ for 4 hr.

All datasets were indexed, integrated, scaled, and merged using XDS/XSCALE program (Kabsch, 
2010). Statistical data collection and process are summarized in Table 1.

Structure determination and refinement
For EHEP structure determination, after initial phasing via the native-SAD method (Sun et al., 2020; 
Yu et al., 2020), the model was obtained and refined with auto-building using Phenix AutoBuild of the 
PHENIX software suite (Adams et al., 2010). The obtained native-SAD structure was used as a model 
for rigid body refinement using ​phenix.​refine (Afonine et al., 2012) of the PHENIX software suite 
with the native data at a high resolution of 1.15 Å. The structure of EHEP was automatically rebuilt 
using Phenix AutoBuild of the PHENIX software suite again (Adams et al., 2010). Several rounds of 
refinement were performed using ​phenix.​refine of the PHENIX software suite (Adams et al., 2010), 
alternating with manual fitting and rebuilding using COOT program (Emsley and Cowtan, 2004). The 
final refinement statistics and geometry are shown in Table 1.

The structure of the EHEP–TNA complex was determined by the molecular replacement (MR) 
method using the EHEP structure as a search model with Phaser of the PHENIX software suite (McCoy 
et al., 2007). The electron density block of TNA was clearly shown in both 2Fo–Fc and Fo–Fc maps. 
Subsequently, the TNA structure was manually constructed, followed by several rounds of refinement 
using ​phenix.​refine (Adams et al., 2010), with manual fitting and rebuilding using COOT (Emsley and 
Cowtan, 2004). We also determined the structure of phloroglucinol-soaked crystals at a resolution 
of 1.4 Å by the MR method using the refined EHEP structure as a search model with ​phenix.​phaser. 
However, no electron density block of phloroglucinol was obtained. Therefore, we referred to this 
structure as the apo form (apo structure2). The final refinement statistics and geometry are shown in 
Table 1.

We determined the structure of akuBGL by the MR method using Phaser of the PHENIX software 
suite (McCoy et  al., 2007). We used one GH domain (86–505 aa) of β-klotho (PDB entry: 5VAN) 
(Lee et al., 2018) as the search model. The GH domain of β-klotho shares 30% sequence identity 
with akuBGL. Four GH domains of two molecules were found in an asymmetric unit and rebuilt with 
Phenix_autobuild of Phenix software suite (Adams et al., 2010). Finally, refinement of akuBGL struc-
ture was performed as described for EHEP.

Docking studies of akuBGL with phlorotanins and laminarins
We used the Schrodinger Maestro program to perform docking studies (Sastry et al., 2013). First, 
we superimposed the structure of the OsBGL mutant complexed with cellotetraose (PDB ID 4QLK; 
Pengthaisong and Ketudat Cairns, 2014) onto that of akuBGL GH1D2 to define the ligand position 
in the ligand-binding cavity. Then, we modified the structure of the akuBGL GH1D2 using the wizard 
module to remove water molecules and add hydrogen atoms for docking. The 2D structures of the 
inhibitory ligands, including TNA, phloroglucinol, and eckol, were downloaded from PubChem (Wang 
et al., 2009) and further converted to 3D structures using the LigPrep module of the Schrodinger 
Maestro program. The structure of the substrate laminaritetraose was extracted from the Zobellia 
galactanivorans β-glucanase–laminaritetraose complex structure (PDB ID: 4BOW; Labourel et  al., 
2014). Then, a receptor grid was constructed in the center of the ligand-binding cavity. We performed 
docking using the Glide standard precision mode without any constraints. The optimal binding pose 
was determined using the lowest Glide score, and the docked structures were analyzed using PyMol.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sun XM, Ye YX, Kato 
K, Yu J, Yao M

2023 Eisenia hydrolysis-
enhancing protein from 
Aplysia kurodai

https://www.​rcsb.​org/​
structure/​8IN3

RCSB Protein Data Bank, 
8IN3

Sun XM, Ye YX, Kato 
K, Yu J, Yao M

2023 Eisenia hydrolysis-
enhancing protein from 
Aplysia kurodai

https://www.​rcsb.​org/​
structure/​8IN4

RCSB Protein Data Bank, 
8IN4

Sun XM, Ye YX, Kato 
K, Yu J, Yao M

2023 Eisenia hydrolysis-
enhancing protein from 
Aplysia kurodai with tannic 
acid

https://www.​rcsb.​org/​
structure/​8IN6

RCSB Protein Data Bank, 
8IN6

Sun XM, Ye YX, Kato 
K, Yu J, Yao M

2023 beta-glucosidase protein 
from Aplysia kurodai

https://www.​rcsb.​org/​
structure/​8IN1

RCSB Protein Data Bank, 
8IN1
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