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NUCLEAR RECEPTORS

Alternative activation
A detailed study of the orphan receptor Nurr1, a regulator implicated 
in neurodegenerative diseases, reveals a new way for ligands to control 
their transcriptional activity.

KRISTEN YOUNG AND SEAN FANNING

Between 10 to 20% of all FDA-approved 
drugs target a single class of proteins 
that is critical to human development and 

physiology across all tissues (Weikum et  al., 
2018; Dhiman et  al., 2018). Known as nuclear 
receptors, these master regulators can attach to 
DNA to coordinate transcriptional programs that 
modify cellular fitness or function (Nettles and 
Greene, 2005). They are often activated when 
specific ligands such as metabolites or hormones 
directly bind onto them at dedicated sites or 
‘pockets’ (Olefsky, 2001).

Many nuclear receptors, and in particular many 
‘orphan’ nuclear receptors for which an endog-
enous ligand has yet to be identified, are also 
involved in disease (de Vera, 2018). Estrogen 
receptors, for instance, can alter the transcrip-
tion of thousands of genes in breast cancer cells 
(Frasor et al., 2003).

Another example is Nurr1, an orphan nuclear 
receptor critical for the development and main-
tenance of the neurons that produce dopamine 
(Zetterström et  al., 1997). This receptor has 
been implicated in dementia, Alzheimer’s and 
Parkinson’s disease, as well as other neurodegen-
erative disorders (Jeon et al., 2020; Chu et al., 
2002; Decressac et  al., 2013). As the expres-
sion of Nurr1 diminishes with age, reactivating 
its production has potential as a therapy against 
these conditions (Moutinho et  al., 2019). Yet 

designing small molecules that specifically target 
Nurr1 has been difficult so far, as the canonical 
‘pocket’ which normally welcomes ligands is 
absent on this receptor (Wang et al., 2003).

An alternative approach may be to target 
RXRα, a nuclear retinoid receptor which has also 
been highlighted as a drug target for Alzhei-
mer’s and Parkinson’s diseases. Nurr1 and RXRα 
bind together to form heterodimers that result 
in Nurr1 transcriptional activity being repressed 
(Aarnisalo et  al., 2002; Cramer et  al., 2012; 
Friling et al., 2009). In turn, several RXRα ligands 
and targeted small molecules can modulate the 
activity of Nurr1, but exactly how this phenom-
enon takes place remained unclear (Scheepstra 
et  al., 2017). Now, in eLife, Xiaoyu Yu, Jinsai 
Shang and Douglas Kojetin, who are based at 
Scripps Research, report using a comprehensive 
suite of biophysical and structural approaches to 
reveal how RXRα ligands promote the transcrip-
tional activation of Nurr1 (Yu et al., 2023).

First, the team used reporter gene assays to 
examine how RXRα as well as various ligands 
affect Nurr1 transcription in neuronal cells. The 
experiments showed that the transcriptional 
activity of the receptor was reduced by the simple 
presence of the RXRα ligand binding domain; it 
was also unaffected or slightly decreased while 
exposed to RXRα antagonists, but enhanced in a 
graded fashion when the receptor was exposed 
to ligands which normally activate RXRα or the 
RXRα-Nurr1 heterodimer.

The classic model of transactivation involves 
an activating ligand stabilizing certain receptor 
conformations, which then promotes the recruit-
ment of a repertoire of coregulator proteins that 
enhance gene expression (Nettles and Greene, 
2005). To examine whether this mechanism could 
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explain their results, Yu et al. tracked the mole-
cules using a biochemical FRET assay. However, 
the experiments showed that Nurr1 transacti-
vation does not in fact correlate with a ligand-
induced increase in coactivators binding to RXRα; 
this suggests that another, non-classical process 
is involved instead.

To further investigate how Nurr1 is activated 
via RXRα ligands, Yu et al. relied on a technique 
known as isothermal titration calorimetry to 
precisely dissect the binding dynamics of these 
various molecules. The experiments revealed that 
an increase in Nurr1 transactivation is linked to a 
weakening of the RXRα-Nurr1 heterodimer. More 
precisely, the analyses show that the formation of 
the heterodimer releases energy, and is therefore 
a more stable, favored state; the binding of the 
ligands onto RXRα, on the other hand, increases 
the disorder in the system and makes the forma-
tion of the heterodimer more difficult.

Next, Yu et al. delved deeper into how exactly 
Nurr1 becomes activated after the binding of 
RXRα ligands onto the RXRα-Nurr1 heterodi-
mers. For this, they used nuclear magnetic reso-
nance, which allows them to observe RXRα and 
Nurr1 in their various configurations. The data 
revealed that in the presence of the most effec-
tive RXRα ligands, Nurr1 shifts from being part 
of a heterodimer towards existing on its own. 
The team further interrogated these results by 
using size-exclusion chromatography, a ‘molec-
ular sieve’ approach which sorts out molecules 
based on their size. This showed that the RXRα 
ligands that are the most effective at activating 
the orphan receptor favored both Nurr1 existing 

on its own and four RXRα coming together to 
form homotetramers. Together, these findings 
point towards RXRα ligands activating Nurr1 
by ejecting it from the heterodimer, and then 
keeping it on its own by ‘trapping’ RXRα inside 
oligomers (Figure 1).

Taken together, these results reveal an alterna-
tive mode of activation for nuclear receptors, one 
that goes beyond classic regulation mechanisms 
which require a ligand to occupy the main binding 
pocket. It is worth noting that the most effective 
Nurr1 activator was BRF110, an RXRα ligand that 
has shown therapeutic promise in mouse models 
of Alzheimer’s and Parkinson’s disease (Spathis 
et  al., 2017). Future work should explore the 
details of this new mechanism, as well as how 
to harness it to better investigate and ultimately 
control the transcriptional activity of Nurr1 and 
other nuclear receptors that form heterodimers 
with RXRα.
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Figure 1. Nurr1 activation may result from selected RXRα ligands disrupting RXRα-Nurr1 heterodimers. 
When activated, the orphan nuclear receptor Nurr1 (blue) attaches to DNA response elements (known as 
NBRE) through its DNA-binding domain (DBD) to promote the transcription of genes that help to regulate the 
activity of dopaminergic neurons. Previous work has shown that the ligand-binding domain (LBD) of Nurr1 has 
atypical characteristics which point towards the receptor not being directly activated by ligands. Nurr1 can form 
heterodimers with another nuclear receptor, RXRα, which reduces its transcriptional activity (red arrow). The work 
by Yu et al. shows that the binding of certain RXRα agonists leads to the activation of Nurr1. They propose a model 
by which the ligands destabilise the Nurr1-RXRα heterodimer, leading to four RXRα receptors assembling into 
a tetramer that prevents reassembly with Nurr1, and Nurr1 existing as a monomer with increased transcriptional 
activity (green arrow).
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