

Meaning-making behavior in a small-brained hominin, *Homo naledi*, from the late Pleistocene: contexts and evolutionary implications

Agustín Fuentes^{1*}, Marc Kissel², Penny Spikins³, Keneiloe Molopyane⁴, John Hawks^{4,5}, Lee R Berger^{4,6,7}

¹Department of Anthropology, Princeton University, Princeton, United States; ²Department of Anthropology, Appalachian State University, Boone, United States; ³Department of Archaeology, University of York, York, United Kingdom; ⁴Centre for the Exploration of the Deep Human Journey, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa; ⁵Department of Anthropology, University of Wisconsin, Madison, United States; ⁶The National Geographic Society, Washington DC, United States; ⁷The Carnegie Institution for Science, Washington DC, United States

*For correspondence: afuentes2@princeton.edu

Competing interest: The authors declare that no competing interests exist.

Funding: See page 14

Sent for Review 05 May 2023 Preprint posted 05 June 2023

Reviewed preprint posted 12 July 2023

Reviewed preprint revised 23 June 2025

Version of Record published 04 September 2025

Reviewing Editor: George H Perry, Pennsylvania State University, State College, United

@ Copyright Fuentes et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

eLife Assessment

This paper discusses the cognitive implications of potential intentional burial, wall engraving creation, and fire as light source use behaviors by relatively small-brained *Homo naledi* hominins. The discussion presented in the paper is **valuable** theoretically in its healthy questioning of prior assumptions concerning the socio-biological constraints of hominin meaning-making behavior. The discussion also contributes practically given that these behaviors have been ascribed to *Homo naledi* in two associated papers. Still, the strength of evidence in this contribution relies on the validity of the conclusions from the two associated papers, which remain actively questioned. The ultimate assessment of this work will vary among individual readers depending on how they view this debate, but if the conclusions from the associated papers hold up, the conclusions in the current paper can be considered **solid**.

Abstract Explorations in the Dinaledi Subsystem of the Rising Star cave system have yielded some of the earliest evidence of a mortuary practice in hominins. Because the evidence is attributable to the small-brained *Homo naledi*, these analyses call into question several assumptions about behavioral and cognitive evolution in Pleistocene hominins. The evidence from the Dinaledi Subsystem, and at other locations across the Rising Star cave system may widen the phylogenetic breadth of mortuary, and possibly funerary, behaviors. These discoveries may also associate the creation of meaning-making and increased behavioral complexity with a small-brained hominin species, challenging certain assertions about the role of encephalization and cognition in hominin and human evolution. We suggest that the hominin socio-cognitive niche is more diverse than previously thought. If true, technological, meaning-making activities, and cognitive advances in human evolution are not associated solely with the evolution of larger-brained members of the genus *Homo*. Evidence for complex behaviors associated with a small-brained hominin suggests that large brains are not solely responsible for the manifestation of human-like behavioral complexity.

Introduction

Contemporary humans engage in shared meaning via vocal, visual, tactile, and scent communication, often involving patterned use of bodies, objects, and materials. Of the very broad range of behaviors that create embedded shared meaning, the only ones that persist in archaeological contexts are those that leave material traces. Examples include aspects of mortuary behavior, engravings or paintings, personal ornaments, and use of ochre or other pigments. Prior to this century, most researchers readily accepted that such material traces could be interpreted as products of meaning-making behaviors when associated with Homo sapiens. But when such traces were associated with Neanderthals or other members of the genus Homo, it was controversial. Previously, some archaeologists argued that the spectrum of behaviors in contemporary humans that involve shared meaning emerged as an integrated package in Late Pleistocene Africa, likely related to the dispersal of 'modern' Homo sapiens throughout the world (e.g. Klein, 1995). This view gave way to a recognition that meaningladen material was used across a wider span of time, at least across part of the Middle Pleistocene (Mcbrearty and Brooks, 2000), and not only by recent humans. In the last two decades, substantial evidence emerged of the extent of material evidence of meaning-laden behavior attributed to Neanderthals and other members of the genus Homo (Kissel and Fuentes, 2018; Kissel and Fuentes, 2021; Colagè and d'Errico, 2025).

Currently, a broad set of data demonstrates that some of these complex behaviors that involve shared meaning were manifested by multiple species and populations of the genus Homo, including Homo heidelbergensis, Homo erectus, and possibly others (Galway-Witham et al., 2019; Kissel and Fuentes, 2018; Kissel and Fuentes, 2021; Scerri and Will, 2023; Colagè and d'Errico, 2025; Figure 1). Engravings of shell, bone, or rock surfaces have been identified in Middle Pleistocene or earlier contexts far from the range of African Homo populations. Some are also likely associated with Homo erectus (Joordens et al., 2014) as well as hominin populations that may have predated early Neanderthals in what is now Europe (Mania and Mania, 1988; Sirakov et al., 2010). Evidence of ochre use occurs in archaeological contexts across Africa and the Levant prior to 350,000 years ago, a time when H. sapiens has not yet been identified there (Ronen et al., 1998; Watts et al., 2016; Dapschauskas et al., 2022). The control of fire by hominins is demonstrated in Early and Middle Pleistocene contexts where most researchers accept that H. erectus was present (Brain and Sillent, 1988; Alperson-Afil, 2008; Goren-Inbar et al., 2004; Hlubik et al., 2019; MacDonald et al., 2021). Mortuary evidences are claimed in association with hominins that predate or are not H. sapiens (Carbonell and Mosquera, 2006). These geographically and temporally varied instances could be the result of taphonomic or dating issues (Püschel et al., 2021), but it is likely, given the increasing diverse temporal and geographic discovery of these behaviors and material that such complex behaviors associated with shared meaning were manifested by multiple populations/species of the genus Homo in addition to Homo sapiens. But how important was brain size to the evolution of these behaviors?

There is substantive evidence that approximately 250–350,000 years ago, *Homo naledi*, a small-brained hominin, transported deceased conspecifics into difficult to access locations in the Rising Star Cave system in what would, in humans, be described as a mortuary behavior (*Berger et al., 2025a*). The use of deep areas of the Rising Star cave system for these behaviors implies considerable social collaboration, coordination, and planning. In the context of the subterranean Dinaledi Subsystem, these activities likely also required a light source, again implicating a depth of planning and coordination. What stands out as a possible contradiction is that *Homo naledi* fossil crania are small. With endocranial volumes ranging between 450 ml and 610 ml, this species overlaps in brain size with australopithecines, having smaller brains on average than *Homo erectus* and much smaller than modern humans or Neanderthals (See *Figure 2* and section Reconsidering brain size).

The information from *H. naledi* cannot be considered in isolation; it joins the broad array of data for meaning-making in Pleistocene hominins (*Kissel and Fuentes, 2018*; *Kissel and Fuentes, 2021*; *Malafouris, 2013*, *Colagè and d'Errico, 2025*). These behaviors reflect social groups that maintained solidarity, social coordination, and cooperation in a mode not evident in living great apes but characteristic of contemporary humans. Here, we offer an analysis of the reported complex behavior in the small-brained *Homo naledi* and suggest a suite of implications this has for our understanding of the relationships between brain size, cognition, complex behavior, and the evolution of the genus *Homo* across the Pleistocene. These implications also query the driving forces behind encephalization and

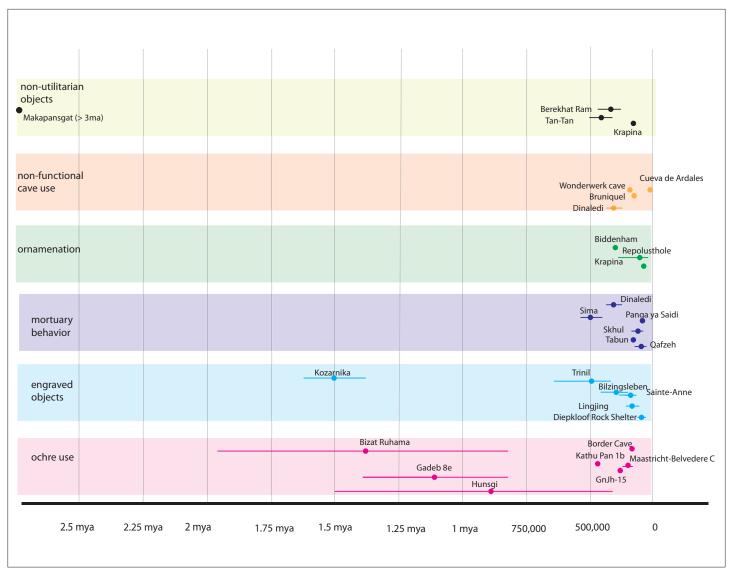
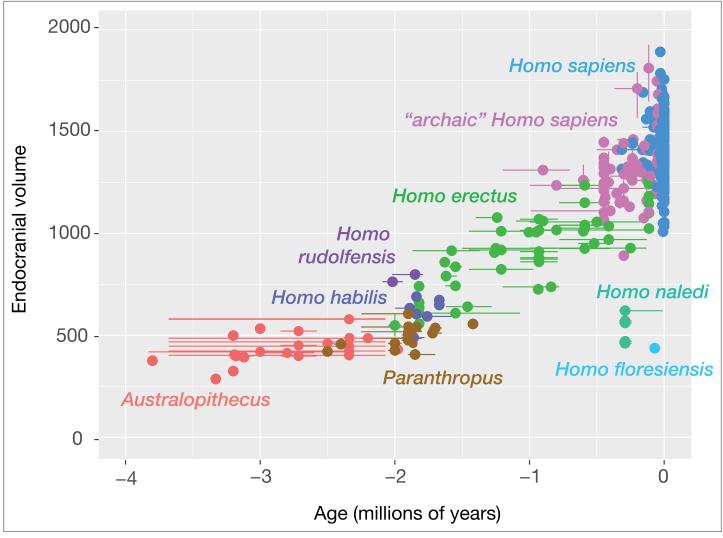



Figure 1. Archaeological evidence of culturally-mediated, meaning-making, behaviors. Dots represent different sites and the error bars are the maximum and minimum dates when available. This table is a sampling of archaeological sites that have been suggested to show signs of what some call 'symbolic behavior.' Delimitating what is and what is not symbolic has been the source of contention for many decades now (Habgood and Franklin, 2008; Mcbrearty and Brooks, 2000; Wadley, 2001; Hopkinson, 2013; Deacon, 1997; Anderson, 2012). Traditionally, archaeologists have defined symbols as objects that have meanings embedded in them. Yet a symbol, by its very nature, must be interpreted within a system of meaning and discerning if something is symbolic becomes difficult without knowing the cultural context within which it has been created (Kissel and Fuentes, 2017). We created this table from the published literature to demonstrate that no matter what we choose to call it, culturally-mediated behaviors predate contemporary humans. Such behaviors are found with Homo erectus (Joordens et al., 2014), Neandertals (Radovčić et al., 2015) and other archaic populations (d'Errico and Nowell, 2000; Sirakov et al., 2010; Li et al., 2019). Data is taken from Jaubert et al., 2016; Chazan and Horwitz, 2009; Martí et al., 2021; Li et al., 2019; Sirakov et al., 2010; Joordens et al., 2014; Mania and Mania, 1988; Texier et al., 2013; Radovčić et al., 2016; Hovers et al., 1997; Raynal and Seguy, 1986; Bednarik, 2006; Bischoff et al., 2007; Ronen, 1976; Pettitt, 2002; Vandermeersch and Bar-Yosef, 2019; Toro-Moyano et al., 2013; d'Errico and Nowell, 2000; Bednarik, 1998; Bednarik, 2003; Radovčić et al., 2015; Clark and Kurashina, 1979; Ronen et al., 1998; Watts et al., 2016; Roebroeks et al., 2012; Bednarik, 2005; d'Errico et al., 2009; Wadley et al., 2020; Deino and McBrearty, 2002; Berger et al., 2023a; and Berger et al., 2023b.

The online version of this article includes the following source data for figure 1:

Source data 1. These are the data used to construct *Figure 1*.

Figure 2. Endocranial volume estimates for hominin cranium. Error bars represent the maximum and minimum ages for specimens when available. See supplemental material for references. *Hawks, 2023*. Endocranial volumes for fossil hominins (dataset): https://doi.org/10.6084/m9.figshare.22743980.

its relationship to the emergence of complex behaviors in hominins and other animals (see *Tattersall*, 2023).

Mortuary behavior as meaning-making

Mortuary behavior has been defined as actions by individuals relating to the death of other individuals. Many kinds of non-human animals have been observed to engage in mortuary behavior upon the death of another individual in the same social group (*Piel and Stewart, 2015*; *Gonçalves and Carvalho, 2019*; *Pettitt and Anderson, 2020*). Mortuary behavior may include the manipulation, inspection, or movement of dead bodies or body parts, or modifying behavior in proximity to dead or dying individuals. Species which manifest strong emotional bonds between individuals, including many primates, elephants, and cetaceans, may continue to interact with a corpse for a period of time after the individual's death. Many such examples involve mothers who continue to carry a dead infant, often for up to a week after death (*Goodall, 1977*; *Boesch and Boesch-Acherman, 2000*; *Biro et al., 2010*; *Fashing et al., 2011*), and in some cases other individuals such as unrelated males have been observed to carry or interact with dead infants (*Merz, 1978*). Species with strong social bonds often exhibit emotional responses to dead or dying individuals, ranging from surprise and fear to prolonged grief (*King, 2013*). Cannibalism is also a form of mortuary behavior observed in some non-human primates.

Scientific examination of mortuary behavior across living species has been limited. *Piel and Stewart, 2015* noted the publication bias related to mortuary behavior in non-human species. Field researchers may hesitate to publish observations that appear to be isolated cases or anecdotes, and as Piel and Stewart point out, almost no studies are negative reports that claim that *no* mortuary behavior occurs in a species. In recent years, a growth in interest in mortuary behavior in nonhuman primates and other social mammals has been fueled by attempts to understand ancestral hominin mortuary practices, including those evidenced in Neanderthals (*Pettitt, 2018*; *Pettitt and Anderson, 2020*; *Pomeroy et al., 2020*). Discussion of the evolutionary background of mortuary behavior in non-human species has focused upon possible adaptive or maladaptive consequences of the behavior (*Piel and Stewart, 2015*). Less attention has been given to the proximate neural, psychological, or social mechanisms that give rise to mortuary behavior in various species.

There are clear differences between the mortuary behavior repertoire of humans and the mortuary behavior observed in many other living primates. In humans, some mortuary behavior is *ritualized*, meaning that the behavior is systematized and repeated. *Funerary behavior* is a category of mortuary behavior which is defined as specific activities relating to the disposal of the dead and to their subsequent commemoration (*Pettitt, 2011*; *Pettitt, 2018*; *Pettitt and Anderson, 2020*). While funerary behavior is not characteristic of other primates or social mammals, human mortuary behaviors do include many patterns that are also seen in some non-human species, such as the temporary curation of corpses or body parts, disposal of corpses without commemoration, dietary or starvation cannibalism, and manipulation of corpses out of curiosity or fear (*Engelke, 2019; Silverman et al., 2021*).

To the extent that human behaviors surrounding death are different from non-human primates, those differences reflect primarily two mechanisms. One dynamic underlying human mortuary behavior is the shared, learned cultural traditions concerning death. These traditions vary extensively across human cultures and may include an understanding of the permanence of death, religious beliefs and practices concerning death, and scientific and practical knowledge about the causes of death. When anthropologists examine funerary practices, they often describe this kind of cultural knowledge (Engelke, 2019; Silverman et al., 2021). Another dynamic involved is an evolved emotional cognition, including emotional self-awareness and regulation. In human cultures, these two dynamics are interconnected: religious rituals help grieving individuals by providing social support for emotional regulation and for processing and resolving relational trauma. Superficially similar instances of mortuary behavior in different cultures or species may sometimes involve different proximate mechanisms. For example, ritual and funerary behavior both involve the learned repetition of behavioral and emotional states (Pettitt, 2018; Silverman et al., 2021). In effect, a shared capacity for culture integrates with complex emotional cognition, involving a depth of emotional bonds, capacities for emotional commitments (which necessarily come alongside grief at loss, and a need to process relational trauma), and complex emotional regulation. Both have been practiced by people with entirely different or even incommensurable cultural traditions concerning death, which differ widely, yet fulfil similar emotional needs. Hence, the interpretation of physical evidence for mortuary behavior should consider the range of cultural and cognitive mechanisms that may be at play and how they interact, which may give rise to different equally plausible explanations for the pattern of evidence.

Rising star evidence and context

The findings from the Rising Star system strongly support a scenario where members of the *H. naledi* community carried the bodies of dead conspecifics to more than 30 meters below the surface, over more than 80 meters of underground passages in a difficult and dangerous subterranean environment (*Berger et al., 2025a; Elliott et al., 2021; van Rooyen et al., 2025*). The available evidence demonstrates some aspects of mortuary behavior manifested by *H. naledi*. Multiple lines of material evidence show that corpses were manipulated, both at the time of death and afterwards. The distribution of skeletal parts across the Dinaledi Subsystem could not have arisen from deposition at a single point of entry to the subsystem with gravity-driven movement of bodies or bones (*Berger et al., 2025a; van Rooyen et al., 2025*). Both the spatial arrangements of skeletal material and the form and composition of sediments rule out water flow or mud flow as mechanisms for transport (*Dirks et al., 2015; Wiersma et al., 2020; Brophy et al., 2021; Berger et al., 2025a*). Movement of remains by *Homo naledi* is the current best hypothesis for the emplacement of bodies or remains. The rapid emplacement of some bodies into sediment prior to decomposition and continued support by sediment through the process

of decomposition, together with evidence of disruption of surrounding sediment layering, all suggest that some bodies were interred within shallow holes and covered before soft tissue decomposition occurred (*Berger et al., 2025a*). Some bodies were manipulated after deposition, as evidenced by the selective reworking of the Puzzle Box area of the Dinaledi Chamber, leading to fragmentation of some skeletal elements, disaggregation of body parts, and commingling of elements from different individuals (*Berger et al., 2025a*). The presence of young children and infants within the sample likely also reflects the manipulation of bodies by other, presumably older, individuals (*Berger et al., 2025a*, *Delezene et al., 2024*).

Many aspects of the mortuary behavior represented by this evidence remain unclear. The evidence does not show whether postmortem manipulation in the Puzzle Box area was deliberate and commemorative in intent, or whether this manipulation was an incidental result of the introduction of subsequent bodies into the Puzzle Box area or other activities in the Dinaledi chamber. Archaeological collection and excavation of remains across the Dinaledi subsystem have revealed varied dispositions of different individuals. Some of the skeletal remains show no evidence of intentional disruption after deposition, while others underwent marked and selective reworking after initial deposition, and other skeletal parts were isolated in long fissure passages (summarized in Berger et al., 2025a). It is unclear whether these differences reflect intentional differences in mortuary behavior, whether they reflect changing traditions over time, or whether they resulted from a lack of precise patterning of mortuary activity. The duration of mortuary activity in the cave system is not known, nor is it known whether the remains in the Lesedi Chamber and in the Dinaledi Subsystem represent activities of the same group, culturally related groups, or unrelated groups. The anatomical evidence also suggests that the sample of H. naledi individuals may be biased with overrepresentation of one sex (Delezene et al., 2024), and it is not known whether this bias was an intentional result of the mortuary behavior. While a majority of the remains associated with mortuary behavior of H. naledi occur within deep cave areas, it is not clear whether this behavior was limited to these spaces or whether the observed evidence may represent only a small part of a more extensive pattern.

The use of deep cave spaces as part of the mortuary behavior of H. naledi provides additional evidence about the social and emotional mechanisms of this species. The subterranean environment used by H. naledi is physically challenging for today's researchers. A longstanding question is whether the system was equally challenging for H. naledi. The journey to the Dinaledi subsystem from any known or reasonably hypothesized incursion point involved strenuous scaling and navigation of complex three-dimensional topography across distance, multiple chambers, passages, climbs, and descents (Elliott et al., 2021; Robbins et al., 2021; Berger et al., 2025a:SOM; van Rooyen et al., 2025). To accomplish this, H. naledi had to coordinate their behavior and collaborate to move the bodies to a specific location inside the Rising Star cave system. Several aspects of the biology of H. naledi suggest that this species may have been better at underground movement than today's humans: Adult Homo naledi individuals had smaller body size than even small-bodied caving team members today (Garvin et al., 2017), and a body plan, including hand morphology, that was more suited for climbing and passing through narrow and restricted cave passages (e.g. Kivell et al., 2015; Feuerriegel et al., 2017; Feuerriegel et al., 2019; Williams et al., 2017; Traynor et al., 2022; Syeda et al., 2025). Still, movement into these spaces would have had high energetic costs and carried some risk for the H. naledi individuals undertaking the behavior. Doing so while carrying a corpse would have entailed additional energetic costs. Given the structural complexity of the cave system layout (Berger et al., 2025a, Elliott et al., 2021; Robbins et al., 2021: van Rooyen et al., 2025), there must have been some form of explicit communication (tactile, vocal, and likely visual) for coordination of movement and actions, and the potential use of fire as a light source, between the H. naledi undertaking the behavior. Such coordination and specific set of actions around the treatment of deceased conspecifics is more methodologically extensive, energetically costly, with higher risk of injury than any reported for other primates and non-human animals to date (King, 2013). This behavior is also more complex and multifactorial than that reported for the one earlier case of hominin mortuary behavior (Sima de Los Huesos, Carbonell and Mosquera, 2006). There are no clear direct fitness benefits nor any indication of particular proximate functional stimuli for this suite of behaviors.

The subterranean environment used by *H. naledi* is not only physically challenging but is also emotionally and physiologically challenging, reflecting a particular engagement with difficult underground spaces not common in the archaeological record of that time. Dark enclosed spaces, where

visual perception is curtailed, can create a state of emotional arousal profoundly affecting perceptual, cognitive, physiological, and social systems (*Zuccarelli et al., 2019*; *Kedar et al., 2021*), even with some form of illumination. It is very likely that *H. naledi* used forms of tactile communication and a range of proprioceptive tactics to navigate and communicate in the Rising Star cave system (e.g. *Dunbar, 2010*; *Waller and Hodgson, 2013*). However, while such modes of social interactions can enable a range of coordination, it is likely that some form of illumination is also necessary to undertake the behavioral patterns reported (e.g. *Pettit, 2022*).

In humans, and other diurnal primates, sensory deprivation through reduced or a lack of consistent visual clues creates a heightened sensitivity to other senses (and thus augments proprioceptive dynamics) as well as prompting experiences of visual disturbances, hallucinations, and disorientation (Hodgson, 2021). Experiences of these types of extreme and unusual environments, though often inducing fear responses, can also facilitate powerful bonding experiences (Steidle et al., 2013). Furthermore, the interoceptive nature of bodily awareness, such as that experienced during traversing a complex cave system enhances empathy (Ernst et al., 2013) which may be augmented and deployed in tactile and vocal communication and coordination. This range of substantive emotional, psychological, and physiological reactions may explain why experiences in deep dark caves are often associated with a sense of the transcendent in contemporary humans (Montello and Moyes, 2012; Kedar et al., 2021) and given the broad range of sensory commonalities across diurnal anthropoids, and especially apes, such experiences likely had comparable impacts on H. naledi and other Pleistocene hominins using subterranean spaces. We argue that careful and coordinated engagement with the dead on several occasions, in these subterranean environments, implies particularly strong social and emotional bonds and some shared understanding of meaning (Pettitt and Anderson, 2020) in the handling of the dead by H. naledi.

As with most examples of Pleistocene mortuary behavior, researchers should be cautious when comparing to modern analogs. Mortuary and funerary behaviors in the past need not map directly to the practices of contemporary or Late Pleistocene humans (see **Berger et al., 2025a**). As recently suggested by **Meneganzin and Killin, 2024**: 26 in a discussion of Neanderthal aesthetics: '...we should not be surprised if the search for Neanderthal aesthetic practices suggestive of an aesthetic sense requires taking a different route, at least sometimes, to the search for (paradigmatic examples of) human aesthetic practices.' This suggestion is likely applicable to a range of Pleistocene hominin behavior. An important point of comparison is the Neanderthal use of deep caves, in certain cases reflecting a substantial duration of activity and repeated use (**Jaubert et al., 2016**; **Baquedano et al., 2023**).

That this high-risk, high-cost, no-overt-direct-fitness-benefit behavior was undertaken repeatedly by multiple members of an H. naledi community indicates a valued, likely cultural, tradition with a social and emotional function. The combination of features in the behavior and the context in which it was undertaken (in deep caves with the likely use of fire for illumination), suggests a level of cognitive/ semiotic meaning-making capacity in H. naledi (e.g. Kissel and Fuentes, 2017; Kissel and Fuentes, 2018; Kissel and Fuentes, 2021) that matches some similar assessments of other populations of the genus Homo during earlier, the same, and later time periods (Figure 1). It is our hypothesis that the repetition of mortuary activities within the Rising Star cave system reflects a form of shared memorialization. This hypothesis emerges from the fact that shared attention and joint action were necessary to generate the evidence within the system, and these actions were repeated over some period of time. The hypothesis of shared memorialization does not depend upon individual interments being repeated with identical steps. What supports the hypothesis is the repeated pattern of cave use and the context and distribution of the remains. The collective practice by H. naledi, coupled with social and emotional investment, helped transform the 'space' of the Dinaledi Chamber and Hill Antechamber to 'place' (Low, 2003) through the pattern of mortuary and possible funerary behavior (e.g. Silverman, 2008).

Some form of mortuary behavior by *H. naledi* is a supported hypothesis (*Berger et al., 2025a*). However, there is substantive criticism of the assertions of cultural burials in the Dinaledi subsystem (see *Berger et al., 2025a, Martinón-Torres et al., 2023; Foecke et al., 2024*). Recently, *Pettit, 2022* laid out the three key criteria for assessing whether or not the *Homo naledi* remains in the Dinaledi subsystem represent actual funerary behavior: (a) Is there an as-yet unmapped entrance into the Dinaledi Chamber? (b) Is there any evidence of artificial lighting in the cave system, and (c) Is

there evidence that it was dead bodies, rather than body parts, that were carried into the chamber? The first query has been repeatedly addressed and no other options for alternative ingress into the Dinaledi Subsystem involving movement across less than 80 meters of structurally complex crevices, chambers, and passages involving a descent to a depth of ~30 meters below the surface have been found or potentially identified (Elliott et al., 2021; Robbins et al., 2021; Berger et al., 2025a; van Rooyen et al., 2025). There is reported evidence of fire use (hearths and charcoal and smoke scarring of surfaces) in the Dinaledi system (see Bower, 2022, but also see Martinón-Torres et al., 2023), but the age of these occurrences has not been reported yet, so its association with H. naledi is currently correlational. However, the correlational support is a reasonable hypothesis given there is no evidence across the last decade of investigation of any habitual activity by ancient or recent Homo sapiens in the Dinaledi Subsystem orin proximal spaces such as the Dragon's Back Chamber or Lesedi Chamber. Articulated skeletal elements do make up a substantive percentage of the H. naledi remains reported in the Dinaledi system, especially in feature 1 and in the Hill Antechamber feature (Berger et al., 2025a). While the one other major locus of remains in Dinaledi (the Puzzle Box feature and surface collections) has a majority of non-articulated materials, there are some articulated remains present and there is strong evidence that disarticulation resulted from post-depositional reworking, likely by H. naledi (Berger et al., 2025a). Therefore, we suggest that the currently available evidence tentatively meets Pettit, 2022 criterion for funerary action. As it stands, the whole of the evidence supports the hypothesis that the H. naledi remains in the Dinaledi subsystem are one of the two earliest examples of a mortuary practice in a hominin, and potentially offer the earliest evidence of multiple interments, post-depositional reworking, and thus funerary actions by a hominin.

In addition to the above, the locations, contexts, and the inferred behavior associated with the *H. naledi* remains most likely demonstrate shared meaning-making activity (*Kissel and Fuentes, 2017*, *Kissel and Fuentes, 2018*). Certainly, if the remains are post-depositionally reworked, and/or do represent burials, and one accepts the correlational association, and validity, of engravings near the interment sites with *H. naledi* (e.g. *Berger, 2025b*), they do. But even if one *only* accepts the transport to and placement of bodies in the Dinaledi Chamber and Hill Antechamber locations (and the Lesedi Chamber, *Hawks et al., 2017; Berger et al., 2025a*) there remains a robust argument for mortuary behavior and the assignation of shared meaning to it. Most documented mortuary and funerary practices have been attributed to *Homo sapiens* and Neanderthals, and aside from the Sima de los Huesos site (*Carbonell and Mosquera, 2006*) and Dinaledi, most such evidence is later in the Pleistocene (*Figure 1* and *Table 1*). Evidence of funerary behavior is generally assumed to require human-like cognitive capability (*Pettitt, 2018*). If such behavior is indeed present in a small-brained hominin, it suggests that increases in brain size/EQ are not a necessary precursor for the appearance of complex meaning-making behavior in hominins.

A role for emotional cognition?

The achievement of social collaboration and social solidarity in humans relies upon emotional cognition and emotional regulation. A broad array of data supports the hypothesis that emotional regulation and self-awareness were prerequisites of human social behaviors involving solidarity and cooperation, including cultural learning, language, and provision of extended care (*Spikins et al., 2019*).

Humans share many building blocks of emotional cognition with other mammals, and some complex abilities with other primates. We share the same visceromotor and sensorimotor foundation for emotions with other mammals, for example (*Steklis and Lane, 2013*). Moreover, a range of common emotional responses in humans has now been documented in other primates, particularly in apes, through measurement of heart rate and skin conductance, as well as more recently pupil mimicry and infrared thermography (*Nieuwburg et al., 2021*). Interpersonal emotional interactions have a common basis. Emotional contagion is apparent in monkeys and apes, and apes in particular demonstrate a level of empathy through yawning and even sympathy through active consolation (*Romero et al., 2010*; *Preston and de Waal, 2002*). Diverse primate species have the cognitive ability to infer emotional meaning from expressions (*Nieuwburg et al., 2021*). Moreover, there is anecdotal evidence for the foundations of cognitive empathy in targeted helping within apes (*Koski and Sterck, 2010*).

One important aspect of human emotional cognition is the ability to regulate emotions by bringing feelings into 'rational' thought (*Green and Spikins, 2020*). Humans communicate and engage in

Table 1. Table of evidence of potential mortuary behavior in hominins.

		'	,				
Site	Type of site	Multiple bodies	Туре	Skeletal age of specimen(s)	Age Estimate (in ka)	Species	Reference
Krems-Wachtberg	open air	yes	burial	infants	31	Homo sapiens	Teschler-Nicola et al., 2020
Lake Mungo	open air	yes	burial	adults	40	Homo sapiens	Bowler et al., 2003
Taramsa hills	open air	no	burial	child (8–10 yrs old)	45	Homo sapiens	Vermeersch et al., 1998
La Ferrasie	cave	yes	burial	children?	45	Neandertal	Gómez-Olivencia et al., 2018
Shanidar	cave	yes	burial	adults, infants, 2–3 yr old	45	Neandertal	Pomeroy et al., 2020
Mezmaiskaya Cave,	cave	no	burial	infant	45	Neandertal	Golovanova et al., 1999
La Chapelle-aux- Saints 1	cave	no	burial	adult	50	Neandertal	Rendu et al., 2014
Dederiyeh Cave,	cave	yes	burial	children	50	Neandertal	Akazawa et al., 1999
Régourdou Cave	cave	no	burial	adult	50	Neandertal	Maureille et al., 2001
Kebara	cave	yes	burial	child and adult	55	Neandertal	Pettitt, 2011
Amud	cave	yes	burial	infant and adults	60	Neandertal	Hovers et al., 2000
Roc de Marsal	cave	no	Burial?	child	70	Neandertal	Maureille and Knüsel, 2022
Panga ya Saidi	cave	no	burial	2.5–3 yrs old	78	Homo sapiens	Martinón-Torres et al., 2021
Qafzeh	cave	yes	burial	children and adults	100	Homo sapiens	Vandermeersch and Bar- Yosef, 2019
Skhul	cave	yes	burial	adults and children	110	Homo sapiens	Ronen, 1976
Tabun	cave	yes	burial	adult (maybe neonate?)	120	Neandertal	Pettitt, 2002
Border Cave	cave	yes	burial	adult and infants	74	Homo sapiens	d'Errico and Backwell, 2016
Sima de los huesos	pit	yes	caching/mortuary behavior	adults and children	500	Neandertal	Bischoff et al., 2007
Moula-Guercy	cave	yes	modification/ mortuary behavior?	adults and children			Defleur et al., 1999
Herto	open air	no	modification/ mortuary behavior?	adult	160	Homo sapiens	White et al., 2003
El Sidron	cave	yes	modification/ mortuary behavior?	adults and children	480	Neandertal	Rosas et al., 2006
Bodo	open air	no	modification/ mortuary behavior?	adult	600	Homo sapiens	White, 1986
Gran Dolina	cave	na	modification/ mortuary behavior?	adult and children	800	Homo sapiens	Fernández-Jalvo et al., 1999
Sterkfontein	cave	no	modification/ mortuary behavior?	adult	1635	Australopithecus	Pickering et al., 2000
Krapina	cave	yes	mortuary behavior	many age ranges	130	Neandertal	Russell, 1987
AL-333	open air	yes	mortuary behavior?	adults, juveniles and infants	3200	Australopithecus afarensis	Pettitt, 2011

shared intentions and meaning-making, to a degree not seen in other animals and demonstrate motivations to share emotions, experiences, and activities with other persons (*Steklis and Lane, 2013*; *Fuentes, 2018*). Emotional self-awareness, and with it the capacity to regulate emotions—that is, to calmly tolerate difficult feelings and bring them into rational thought—is key to many human social behaviors. Emotional self-awareness is essential to translating empathy into systematic compassionate helping for others, for example (*Spikins, 2022*). Furthermore, emotional self-awareness allows the regulation of interpersonal emotional vulnerabilities which foster connection and collaboration, such as fearfulness (*Grossmann, 2022*). Self-conscious emotions also more broadly regulate social behaviors in general (*Beer et al., 2003*) and conversely, impaired emotional awareness interferes with

normal social function in both clinical and non-clinical populations (**Gu et al., 2013**). Perhaps most importantly, emotional self-awareness provides the basis for emotional commitments which bring high levels of give and take to social relationships. Capacities to make emotional commitments to group interests are often demonstrated through costly signaling in risky, nonfunctional ways (**Hall et al., 2015**; **Lang and Kundt, 2024**).

Another important aspect of human emotional cognition is the presence of emotional cues that are absent or not well developed in other living species. The depth of human emotional commitments comes with costs. First, living humans accentuate emotions associated with social control, including shame and guilt, which are not manifested in similar ways in other great apes (*Boehm, 2012*; *Turner, 2014*). Sympathy for others and guilt both emerge early in human ontogeny, with sympathy providing a basis for prosocial orientation in very young children and guilt helping provide motivation for repair of social ruptures (*Vaish and Grossmann, 2022*). These have sometimes been examined within the framework of *moral emotions*, which would additionally include emotions such as contempt, gratitude, and disgust (*Fitouchi et al., 2023*). These aspects of emotional cognition in humans provide a foundation for prosociality and social solidarity. Both emotional self-awareness and moral emotions function to regulate social interactions and maintain cohesive and cooperative social relationships. Second, emotional bonds with high degrees of give and take, and emotional commitments, which drive behaviors such as risky hunting or caring behaviors necessarily involve relational trauma at loss, regulated and resolved through social relationships and cultural practices.

The H. naledi evidence suggests that a human-style conscious emotional awareness was present in this hominin despite its small brain size. The hominins carrying out these mortuary activities would need to be able to bring their emotions into 'rational thought' in order to both be aware of their own grief and communicate and coordinate shared intentions over the bodies of the deceased. Moreover, they would need to be able to regulate their emotions (hold feelings in calm awareness) such that they were able to mutually engage in coordination to carefully negotiate extensive, complex subterranean landscapes, despite the risk and complexity of such behavior, to transport bodies into the Dinaledi Subsystem. This level of emotional regulation, coordination, and awareness is markedly different from the generally personal (such as corpse interaction), sometimes numb (corpse avoidance), and often disordered displays of grief in our nearest relatives (Pettitt and Anderson, 2020). The shared and planned transportation and placement of several bodies in the Rising Star system is also evidence of a shared set of cognitive commitments, beliefs, or assumptions about meaning and action, something similar to what one would term 'shared grief' and/or 'shared belief' in contemporary humans. The behavioral sequences required for mortuary action also suggest a form of shared memorialization, or at least more behaviorally and communicationally complicated shared attention and action to achieve the deposition of the bodies in the locations in the Rising Star system. Regardless of whether one accepts the interpretation of burials and the presence and association of engravings with H. naledi, the underlying cognitive processes associated with just the transport and placement of H. naledi into the Dinaledi subsystem indicate a level of conscious emotional awareness that enables and is associated with extensive shared intentionality, forward planning, and repeated cultural behavior involving bodily risk. Equally complex use of caves by Neanderthals Jaubert et al., 2016; Baquedano et al., 2023 demonstrates a similar emotional self-awareness, and production of highly symmetrical stone tools is also potentially indicative of certain aspects of emotional awareness and regulation in earlier members of the genus Homo (Green and Spikins, 2020). Furthermore, this evidence suggests a depth of emotional commitments, with a willingness to take risks and costs on another's behalf. Social understanding of emotions is widely accepted as adaptive in an evolutionary context (Nieuwburg et al., 2021) and emotional awareness is associated with better life outcomes in contemporary human contexts (Smith et al., 2023).

That complex emotional cognition is not unique to *Homo sapiens* should not be surprising, but it is not strictly associated with overall brain size (*Hurst*, *2017*). The fact that a small-brained hominin displays these sorts of behaviors suggests that the neurological capacity enabled by a brain larger than 1000 cc cannot be the only factor, or necessarily the main factor, enabling the kind of emotional cognition that is considered a central factor in human evolutionary success. Particular brain areas are related to emotional regulation, including anterior cingulate cortex (*Giuliani et al.*, *2011*) and amygdala (*Davidson et al.*, *2007*). Much in the prefrontal cortex has also been implicated in emotional regulation and executive control (*Davidson et al.*, *2007*). Recent approaches also focus on large-scale

brain networks being implicated in emotional regulation (*Morawetz et al., 2020*; *Pozzi et al., 2021*; *Rieck et al., 2024*). The associations between brain areas or networks and emotional regulation and self-awareness are studied by considering how these cognitive traits correlate with the volumes of various brain areas, and by the activation of brain areas as indicated by oxygen consumption during experimental tasks. Neither kind of study can be compared easily with studies of fossil hominins. The only data on brain anatomy from fossil hominins are the volume of the endocranial cavity and the few sulcal and gyral patterns that imprint on the endocranial surface. These data provide one suggestive indication that emotional regulation may have been important across *Homo*, which is that species of the genus have humanlike frontal cortex configurations, including *Homo floresiensis* and *Homo naledi* (*Falk et al., 2005*; *Holloway et al., 2018*; *Hurst et al., 2024*).

The anatomical data alone do not answer when human-like emotional self-awareness and emotional regulation first evolved. Some have suggested that hominins would have been under selection for these traits early in their evolutionary history because of the need for cooperating, cohesive groups in open habitats with high predation (*Turner*, 2014). Others have suggested that such behavior is a hall-mark of the genus *Homo*, or that abilities such as technical learning or the routine use of fire (*Twomey*, 2019) could only have been manifested in species with emotional cognition that was similar in ways to recent humans. *Green and Spikins*, 2020 specifically pointed to several aspects of Early Stone Age artifacts like Acheulean handaxes as possible indicators of self-control, including inhibition and conscious regulation of emotions. The reported *H. naledi* behavioral activities may have depended on emotional commitments to others combined with a set of cultural beliefs/practices, a high level of emotional awareness to manage these, and in turn, collaboration with extensive coordination.

Homo naledi behavior in a broader perspective

The behavior patterns manifested in the Rising Star cave system have a distinctive place within a broader global context of mortuary behavior. The repeated mortuary behavior involving more than 30 individuals from Sima de los Huesos, Spain, is substantially earlier than evidence from the Dinaledi Subsystem (Carbonell and Mosquera, 2006; Arsuaga et al., 2014; Vives, 2015; Sala et al., 2024). Cutmarks on hominin individuals such as the Bodo 1 skull from Bodo, Ethiopia, and the StW 53 skull from Sterkfontein, South Africa, may result from even earlier mortuary activity by hominins (White, 1986; Pickering et al., 2000). In the case of StW 53, the evidence is associated with a skull that many researchers attribute to Australopithecus, although the claim of homininproduced cutmarks has been disputed (Hanon et al., 2018). Curation of hominin skeletal remains was part of mortuary behavior at Herto, Ethiopia, before 160,000 years ago (White et al., 2003; Clark et al., 2003). Archaeological evidence of mortuary behavior becomes increasingly common in later contexts, and within the Late Pleistocene, burials and other kinds of funerary behavior have been attributed to both modern humans and Neanderthals. Within this broader pattern, the Rising Star evidence stands out in two ways: the early possible occurrence of burials (Berger et al., 2025a; Dirks et al., 2015), and the position of H. naledi as a phylogenetic outgroup when compared to modern humans and Neanderthals (Dembo et al., 2016; Argue et al., 2017; Caparros and Prat, 2021).

Mortuary behavior is only one category within a broader set of behavior patterns that emerge from shared meaning within social groups (*Table 1* and *Figure 1*). Another category of evidence is the patterned engraving of lines on bones, shells, rocks, or rock walls. Providing geochronological context for such engraved features on rock walls is challenging as it requires that walls themselves be buried in sediment or that engraved features be partially obscured by material susceptible to dating, such as calcite crusts. The purported engraved lines and percussion marks observed within the Dinaledi Subsystem (*Berger, 2025b*) are not an exception to this challenge; however, the widespread presence of *H. naledi* remains within this space and absence of any evidence of modern human activity other than entry by recent explorers, makes it a reasonable hypothesis that *H. naledi* individuals were authors of these marks. Such a hypothesis is reasonable when considered in a global context. Engraved bones are known from several sites as old or older than the Dinaledi Subsystem, including marked bones, ivory, and stone from Bilzingsleben, Germany (*Mania and Mania, 1988*), an engraved shell from Trinil, Indonesia (*Joordens et al., 2014*), and an engraved bone from Kozarnika, Bulgaria, once suggested to be around 1.4 million years old (*Guadelli and Guadelli, 2004*), although recent geochronological work suggests that the layer is likely early Middle Pleistocene in age (*Heydari et al.,*

2022). A larger array of such evidence is known from later Middle Pleistocene and Late Pleistocene, including examples of engraved hominin bone.

Evidence of the entry into caves by hominins occurs across the span of the fossil record of South Africa, three million years or earlier. What is apparently somewhat unusual in the Rising Star Cave is the repeated hominin use of deep caves, where illumination is necessary, including non-utilitarian use of the space. No evidence of such behavior has yet been found earlier than the Dinaledi Subsystem. Still, the evidence for manipulation of stalagmites and built structures within Bruniquel Cave, France (*Jaubert et al., 2016*), presumed to have been done by Neanderthals, as well as later Neanderthal marking within deep caves such as Cueva de Ardales, Spain (*Martí et al., 2021*), or areas far from cave entrances such as at Gorham's Cave, Gibraltar (*Rodríguez-Vidal et al., 2014*), brings to mind the activity seen in the Rising Star cave system. Within South Africa, the site of Wonderwerk Cave has evidence that may be contemporary or slightly later than the Dinaledi Subsystem, including ochre and quartz crystals taken approximately 100 m from the cave entrance, although within this linear and large cave, the entrance is always visible from the excavated area (*Chazan et al., 2020*).

The sustained use of deep cave areas is, in humans, tied to the use of fire for illumination. Hominin control of fire in South Africa long predates the Rising Star evidence, with controlled fire indicated in Member 3 at Swartkrans (only ~800 m from the Rising Star Cave), and in Early Stone Age context at Wonderwerk Cave, by one million years ago (*Brain and Sillent, 1988; Brain, 1993; Berna et al., 2012*). Both *Paranthropus* and early *Homo* were present in South Africa during that period and occurred in association with combustion evidence (*Brain and Sillent, 1988; Brain, 1993*). Additionally, cave use by hominins across multiple locations during the period of *H. naledi* and earlier (e.g. Wonderwerk in South Africa and Bruniquel in France) also involved use of fire (*Berna et al., 2012; Jaubert et al., 2016*). While we cannot yet be certain of the exact modes, intensity, duration, and quality of the fires potentially used by *H. naledi* in the Dinaledi subsystem, it is a strong assumption that they at least provided flickering and moderate intensity light sources.

Use of ochre and other pigments is another category of behavior linked to meaning-making (*Dapschauskas et al., 2022; Kissel and Fuentes, 2018*). Material evidence of pigments carried or used by hominins has been found at several sites earlier than the Dinaledi Subsystem, including sites within Africa, as well as within southwest Asia and south Asia (*Figure 1*). Non-utilitarian objects that were transported by hominins into sites include some with physical or iconic resemblance to human figures, including objects from Berekhat Ram, Israel (*Goren-Inbar, 1986*), and Tan-Tan, Morocco (*Bednarik, 2003*), both from the later Middle Pleistocene.

This pattern of evidence shows that *H. naledi* and other populations of the genus *Homo* overlap temporally in the expression of meaning-making behavior. The material evidence indicates some degree of shared socioemotional and cognitive processes. Middle Pleistocene hominins varied in brain sizes and cranial and post-cranial morphologies, and many of these varied populations share increased evidence for meaning-making (*Figure 1*). Such behavior is neither 'modern' nor exclusive to larger-brained *Homo sapiens* (and Neanderthals). Whilst this adds further evidence to our understanding of the emergence of hominin cognition, there are also wider evolutionary implications. Much like the evolution of social-emotional abilities in other primates (*Nieuwburg et al., 2021*), the behavioral evidence for small-brained *H. naledi* may suggest that some degree of analogous and homologous, evolution underlies social emotional complexity in humans.

Reconsidering brain size

Since the nineteenth century, ideas about the evolution of human behavior have tended to emphasize that larger brains evolved to enable more complex behavior. In the most general sense, this is surely correct. Large brains are expensive to maintain and grow (*Isler and Schaik*, 2009). Considering these costs, the large brain sizes manifested in some hominin lineages would not have evolved if they were not reliably correlated with survival or reproduction. It is often assumed that a large brain was an essential step towards a uniquely human cognition, social relationships, and culture (*Dunbar*, 2003; *Muthukrishna et al.*, 2018). Several hominin lineages during the Pleistocene did experience evolution of larger overall and relative brain size, as measured by endocranial volume (*Figure 2*) and body size. Nothing in the Pleistocene behavioral record refutes the basic idea that such lineage-specific increases in brain size evolved alongside some behavioral adaptations.

But the Pleistocene record today does not support the notion that every behavioral adaptation was mediated by overall brain size. Planning and forethought in stone tool production both preceded the first appearance of Homo (Harmand et al., 2015). Early populations of H. erectus dispersed from Africa into Eurasia before 1.8 million years ago, and the first substantial sample of these hominins has an endocranial volume ranging from 550 ml to 730 ml (Ponce de León et al., 2021). The first bifacial tool traditions were developed before 1.76 million years ago, within a geographic and temporal context where the only extant groups of hominins had small average endocranial volumes (Lepre et al., 2011). The use of fire emerged in excess of a million years ago in Africa (Hlubik et al., 2019) at a time when the average endocranial volume among crania attributed to H. erectus was around 750 ml. It is credible that ancestors of H. naledi were among these early fire users. The phylogenetic arrangements of species within the genus Homo remain uncertain (Hawks et al., 2017; Argue et al., 2017; Dembo et al., 2016; Caparros and Prat, 2021). Still, much evidence suggests that the lineages leading to hominin species with small brain size, including H. naledi and H. floresiensis emerged from within this early Pleistocene evolutionary context (Dembo et al., 2016; Hawks and Berger, 2020). These species would have been part of the hominin niche that also gave rise to other later Pleistocene members of the genus Homo (Mondanaro et al., 2020).

It is also important to be precise about what the small sample of fossils really tells us about differences in brain size between lineages (Figure 2). Known Homo naledi individuals for which endocranial volume estimates can be made (n=5) have volumes ranging from 450 ml to 610 ml (Holloway et al., 2018; Hurst et al., 2024), the single known endocranial volume for H. floresiensis is 426 ml (Kubo et al., 2013; Falk et al., 2005). With so few fossils, these samples are unlikely to provide an accurate understanding of the average of either species. Moreover, both samples may be biased. The LB1 individual of H. floresiensis is inferred to be female based on postcranial morphology (Brown et al., 2004) and male individuals would likely have had larger endocranial volumes. The low degree of variation in size within the H. naledi sample suggests that the sample may be biased toward representation of one sex (Delezene et al., 2024), again indicating that the sample average may misrepresent the species mean. Both samples have smaller average endocranial volume than H. erectus, yet many of the fossils attributed to this species within Africa have estimated endocranial volumes within or just above the range observed in H. naledi, including DNH 134 (Herries et al., 2020), KNM-ER 42700 (Neubauer et al., 2018), DAN5/P1 (Semaw et al., 2020), KNM-OL 45500 (Potts et al., 2004), and OH 12. While global H. erectus endocranial volume increased over time (Leigh, 1992), fossils attributed to this species with small endocranial volumes occur across the entire temporal range of the species within Africa.

Different hominin lineages manifested differences in brain organization, and these do not always correspond to changes in brain size (Holloway et al., 2018; Hurst, 2017; Hurst et al., 2024; Ponce de León et al., 2021). Endocast evidence from across the genus Homo suggests that humanlike frontal cortex development and morphology occurs across a broader array of species than large brain size (Falk et al., 2005; Holloway et al., 2018; Ponce de León et al., 2021). Homo floresiensis and Homo naledi both share some humanlike aspects of frontal lobe organization, while they both have brain sizes within the range of Australopithecus (Falk et al., 2005; Holloway et al., 2018; Hurst et al., 2024). Early Homo erectus is argued to be polymorphic in frontal lobe organization (Ponce de León et al., 2021), and as noted above, many fossil crania attributed to this species have endocranial volumes smaller than 650 ml (Lordkipanidze et al., 2013; Ponce de León et al., 2021; Herries et al., 2020; Semaw et al., 2020).

Looking forward

The initial rise of complex social behaviors in hominins may have been fueled by evolution of emotional cognition alongside other cognitive processes. Meaning-making by hominins includes a variety of categories of behavior that are joined together by the role of shared intention, repetition, and social collaboration. Mortuary behavior is one of these. Varied expressions of mortuary behavior are present in other social mammals, and hominins are distinct in the extent of repetition, social collaboration, and shared meaning in the process. Rather than relying on increased encephalization and its relation to complex behavior as a *Cognitive Rubicon* in human evolution (see *Meneganzin and Currie, 2022*), we suggest that a distinctive cultural, empathetic, collaborative niche dependent on increasingly complex and robust relationships between individuals has also been a primary driver in the development

of key aspects of human, or human-like, behavior (*Galway-Witham et al., 2019*; *Mcbrearty and Brooks, 2000*; *Kissel and Fuentes, 2021*; *Fuentes, 2017*; *Spikins, 2022*; *DeCasien et al., 2022*). The increasing data for complex behavior and meaning-making across the Pleistocene should play a major element in structuring how we investigate, explain, and model the origins and patterns of hominin and human evolution (*Kissel and Fuentes, 2021*; *Spikins, 2022*; *Spikins et al., 2019*). The current evidence for *H. naledi* in the Rising Star system pushes back the origins of mortuary, and possibly funerary behaviors, challenges our assumptions about the role and importance of encephalization in human evolution, and suggests that the hominin emotional, socio-cognitive niche is more significant than previously thought.

Acknowledgements

Permits to conduct research in the Rising Star Cave system are provided by the South African National Research Foundation (LRB). Permission to work in the Rising Star cave is given by the LRB Foundation for Research and Exploration. The authors would like to acknowledge the funders of the various expeditions, including the National Geographic Society (LRB), the Lyda Hill Foundation (LRB), and the National Research Foundation of South Africa (LRB). Laboratory work and travel was funded by the National Geographic Society (LRB), the Lyda Hill Foundation (LRB), the Fulbright Scholar Program (JH), the University of Wisconsin (JH), and Princeton University, and the John Templeton Foundation (AF). We also want to express a sincere thanks for the inspiration of the late, great Calvin Keys.

Additional information

Funding

Funder	Grant reference number	Author
National Geographic Society		Lee R Berger
Lyda Hill Foundation		Lee R Berger
John Templeton Foundation		Agustín Fuentes
Fulbright Association		John Hawks
National Research Foundation of South Africa		Lee R Berger
University of Wisconsin		John Hawks
Princeton University		Agustín Fuentes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Agustín Fuentes, Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Writing – original draft, Project administration, Writing – review and editing; Marc Kissel, Conceptualization, Investigation, Visualization, Methodology, Writing – original draft, Writing – review and editing; Penny Spikins, Conceptualization, Investigation, Writing – original draft, Writing – review and editing; Keneiloe Molopyane, Investigation, Writing – review and editing; John Hawks, Conceptualization, Validation, Investigation, Methodology, Project administration, Writing – review and editing; Lee R Berger, Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Project administration, Writing – review and editing

Author ORCIDs

Agustín Fuentes https://orcid.org/0000-0003-0955-8214

Marc Kissel https://orcid.org/0000-0002-4004-1996

Penny Spikins https://orcid.org/0000-0002-9174-5168

Keneiloe Molopyane http://orcid.org/0000-0002-1541-0059

John Hawks (b) https://orcid.org/0000-0003-3187-3755 Lee R Berger (b) https://orcid.org/0000-0002-0367-7629

Peer review material

Reviewer #3 (Public review): https://doi.org/10.7554/eLife.89125.3.sa1 Author response https://doi.org/10.7554/eLife.89125.3.sa2

Data availability

Source data has been provided for Figure 1.

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Hawks J	2023	Endocranial volumes for fossil hominins	https://doi.org/10. 6084/m9.figshare. 22743980	figshare, 10.6084/ m9.figshare.22743980

References

Akazawa T, Muhesen S, Ishida H, Kondo O, Griggo C. 1999. New discovery of a neanderthal child burial from the dederiyeh cave in Syria. *Paléorient* 25:129–142. DOI: https://doi.org/10.3406/paleo.1999.4691

Alperson-Afil N. 2008. Continual fire-making by hominins at gesher benot ya'aqov, Israel. *Quaternary Science Reviews* 27:1733–1739. DOI: https://doi.org/10.1016/j.quascirev.2008.06.009

Anderson H. 2012. Crossing the line: the early expression of pattern in middle stone age Africa. Journal of World Prehistory 25:183–204. DOI: https://doi.org/10.1007/s10963-012-9061-2

Argue D, Groves CP, Lee MSY, Jungers WL. 2017. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. Journal of Human Evolution 107:107–133. DOI: https://doi.org/10.1016/j.jhevol.2017.02.006, PMID: 28438318

Arsuaga JL, Martínez I, Arnold LJ, Aranburu A, Gracia-Téllez A, Sharp WD, Quam RM, Falguères C, Pantoja-Pérez A, Bischoff J, Poza-Rey E, Parés JM, Carretero JM, Demuro M, Lorenzo C, Sala N, Martinón-Torres M, García N, Alcázar de Velasco A, Cuenca-Bescós G, et al. 2014. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344:1358–1363. DOI: https://doi.org/10.1126/science.1253958

Baquedano E, Arsuaga JL, Pérez-González A, Laplana C, Márquez B, Huguet R, Gómez-Soler S, Villaescusa L, Galindo-Pellicena MÁ, Rodríguez L, García-González R, Ortega MC, Martín-Perea DM, Ortega AI, Hernández-Vivanco L, Ruiz-Liso G, Gómez-Hernanz J, Alonso-Martín JI, Abrunhosa A, Moclán A, et al. 2023. A symbolic Neanderthal accumulation of large herbivore crania. *Nature Human Behaviour* 7:342–352. DOI: https://doi.org/10.1038/s41562-022-01503-7, PMID: 36702939

Bednarik RG. 1998. The "Australopithecine" cobble from Makapansgat, South Africa. The South African Archaeological Bulletin **53**:3889256. DOI: https://doi.org/10.2307/3889256

Bednarik RG. 2003. A figurine from the African Acheulian. Current Anthropology 44:405–413. DOI: https://doi.org/10.1086/374900

Bednarik RG. 2005. Middle Pleistocene beads and symbolism. Anthropos 100:537–552. DOI: https://doi.org/10. 5771/0257-9774-2005-2-537

Bednarik RG. 2006. The middle paleolithic engravings from Oldisleben, Germany. Anthropol 44:113–121.
Beer JS, Heerey EA, Keltner D, Scabini D, Knight RT. 2003. The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. Journal of Personality and Social Psychology 85:594–604.
DOI: https://doi.org/10.1037/0022-3514.85.4.594, PMID: 14561114

Berger LR, Makhubela T, Molopyane K, Krüger A, Randolph-Quinney P, Elliott M, Peixotto B, Fuentes A, Tafforeau P, Beyrand V, Dollman K, Jinnah Z, Brewer Gillham A, Broad K, Brophy J, Chinamatira G, Dirks PHM, Feuerriegel E, Gurtov A, Hlophe N, et al. 2023a. Evidence for Deliberate Burial of the Dead by *Homo naledi. bioRxiv*. DOI: https://doi.org/10.1101/2023.06.01.543127

Berger LR, Hawks J, Fuentes A, van Rooyen D, Tsikoane M, Ramalepa M, Nkwe S, Molopyane K. 2023b. 241,000 to 335,000 years old rock engravings made by *Homo naledi* in the rising star cave system, South Africa. *eLife* 1:891021. DOI: https://doi.org/10.7554/eLife.89102.1

Berger LR, Makhubela T, Krüger A, Molopyane K, Randolph-Quinney P, Elliott M, Peixotto B, Fuentes A, Tafforeau P, Beyrand V, Dollman K, Jinnah Z, Brewer Gillham A, Broad K, Brophy J, Chinamatira G, Dirks PHM, Feuerriegel E, Pryor E, Gurtov A, et al. 2025a. Evidence for deliberate burial of the dead by *Homo naledi. eLife* 1:891062. DOI: https://doi.org/10.7554/eLife.89106.2

Berger LR. 2025b. 241,000 to 335,000 years old rock engravings made by *Homo naledi* in the rising star cave system. *eLife* 12:RP89102. DOI: https://doi.org/10.7554/eLife.89102

Berna F, Goldberg P, Horwitz LK, Brink J, Holt S, Bamford M, Chazan M. 2012. Microstratigraphic evidence of in situ fire in the acheulean strata of wonderwerk cave, Northern Cape province, South Africa. PNAS 109:E1215–E1220. DOI: https://doi.org/10.1073/pnas.1117620109

- Biro D, Humle T, Koops K, Sousa C, Hayashi M, Matsuzawa T. 2010. Chimpanzee mothers at Bossou, Guinea carry the mummified remains of their dead infants. *Current Biology* **20**:R351–R352. DOI: https://doi.org/10.1016/j.cub.2010.02.031, PMID: 21749951
- Bischoff JL, Williams RW, Rosenbauer RJ, Aramburu A, Arsuaga JL, García N, Cuenca-Bescós G. 2007. High-resolution U-series dates from the Sima de los Huesos hominids yields: implications for the evolution of the early Neanderthal lineage. *Journal of Archaeological Science* 34:763–770. DOI: https://doi.org/10.1016/j.jas. 2006.08.003
- Boehm C. 2012. Moral Origins: The Evolution of Virtue, Altruism, and Shame. Basic Books.
- **Boesch C**, Boesch-Acherman H. 2000. The Chimpanzees of the Taï-Forest: Behavioural Ecology and Evolution. Oxford University Press.
- Bower B. 2022. Homo naledi may have lit fires in caves at least 236,000 years ago [Sciencenews]. https://www.sciencenews.org/article/homo-naledi-fire-hominid-cave-human-evolution [Accessed December 2, 2022].
- Bowler JM, Johnston H, Olley JM, Prescott JR, Roberts RG, Shawcross W, Spooner NA. 2003. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421:837–840. DOI: https://doi.org/ 10.1038/nature01383, PMID: 12594511
- Brain CK, Sillent A. 1988. Evidence from the Swartkrans cave for the earliest use of fire. Nature 336:464–466. DOI: https://doi.org/10.1038/336464a0
- Brain CK. 1993. Swartkrans: A Cave's Chronicle of Early Man. Transvaal Museum.
- **Brophy JK**, Elliott MC, De Ruiter DJ, Bolter DR, Churchill SE, Walker CS, Hawks J, Berger LR. 2021. Immature hominin craniodental remains from a new locality in the rising star cave system, South Africa. *PaleoAnthropology* **2021**:64. DOI: https://doi.org/10.48738/2021.iss1.64
- Brown P, Sutikna T, Morwood MJ, Soejono RPJatmikoSaptomo EW, Due RA. 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. *Nature* **431**:1055–1061. DOI: https://doi.org/10.1038/nature02999, PMID: 15514638
- Caparros M, Prat S. 2021. A Phylogenetic Networks perspective on reticulate human evolution. *iScience* **24**:102359. DOI: https://doi.org/10.1016/j.isci.2021.102359, PMID: 33898948
- Carbonell E, Mosquera M. 2006. The emergence of a symbolic behaviour: the sepulchral pit of Sima de los Huesos, Sierra de Atapuerca, Burgos, Spain. Comptes Rendus Palevol 5:155–160. DOI: https://doi.org/10.1016/j.crov.2005.11.010
- Chazan M, Horwitz LK. 2009. Milestones in the development of symbolic behaviour: a case study from Wonderwerk Cave, South Africa. World Archaeology 41:521–539. DOI: https://doi.org/10.1080/ 00438240903374506
- Chazan M, Berna F, Brink J, Ecker M, Holt S, Porat N, Thorp JL, Horwitz LK. 2020. Archeology, Environment, and chronology of the early middle stone age component of wonderwerk cave. *Journal of Paleolithic Archaeology* 3:302–335. DOI: https://doi.org/10.1007/s41982-020-00051-8
- Clark JD, Kurashina H. 1979. Hominid occupation of the east-central highlands of Ethiopia in the Plio-Pleistocene. *Nature* **282**:33–39. DOI: https://doi.org/10.1038/282033a0
- Clark JD, Beyene Y, WoldeGabriel G, Hart WK, Renne PR, Gilbert H, Defleur A, Suwa G, Katoh S, Ludwig KR, Boisserie JR, Asfaw B, White TD. 2003. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423:747–752. DOI: https://doi.org/10.1038/nature01670, PMID: 12802333
- Colagè I, d'Errico F. 2025. An empirically-based scenario for the evolution of cultural transmission in the human lineage during the last 3.3 million years. PLOS ONE 20:e0325059. DOI: https://doi.org/10.1371/journal.pone. 0325059, PMID: 40465574
- Dapschauskas R, Göden MB, Sommer C, Kandel AW. 2022. The emergence of habitual ochre use in Africa and its significance for the development of ritual behavior during the middle stone age. *Journal of World Prehistory* 35:233–319. DOI: https://doi.org/10.1007/s10963-022-648-09170-2
- **Davidson RJ**, Fox A, Kalin NH. 2007. Neural bases of emotion regulation in nonhuman primates and humans. In: Gross JJ (Ed). *Handbook of Emotion Regulation*. The Guilford Press. p. 47–68.
- Deacon TW. 1997. The Symbolic Species: The Co-Evolution of Language and the Brain. W. Norton.
- DeCasien AR, Barton RA, Higham JP. 2022. Understanding the human brain: insights from comparative biology. Trends in Cognitive Sciences 26:432–445. DOI: https://doi.org/10.1016/j.tics.2022.02.003
- Defleur A, White T, Valensi P, Slimak L, Crégut-Bonnoure E. 1999. Neanderthal Cannibalism at moula-guercy, ardèche, France. Science 286:128–131. DOI: https://doi.org/10.1126/science.286.5437.128
- Deino AL, McBrearty S. 2002. 40Ar/39Ar dating of the Kapthurin formation, Baringo, Kenya. *Journal of Human Evolution* 42:185–210. DOI: https://doi.org/10.1006/jhev.2001.0517
- Delezene LK, Skinner MM, Bailey SE, Brophy JK, Elliott MC, Gurtov A, Irish JD, Moggi-Cecchi J, de Ruiter DJ, Hawks J, Berger LR. 2024. Descriptive catalog of *Homo naledi* dental remains from the 2013 to 2015 excavations of the Dinaledi Chamber, site U.W. South AfricaJournal of Human Evolution 180:103372. DOI: https://doi.org/10.1016/j.jhevol.2023.103372, PMID: 37229947
- Dembo M, Radovčić D, Garvin HM, Laird MF, Schroeder L, Scott JE, Brophy J, Ackermann RR, Musiba CM, de Ruiter DJ, Mooers AØ, Collard M. 2016. The evolutionary relationships and age of *Homo naledi*: An assessment using dated Bayesian phylogenetic methods. *Journal of Human Evolution* 97:17–26. DOI: https://doi.org/10.1016/j.jhevol.2016.04.008, PMID: 27457542
- d'Errico F, Nowell A. 2000. A new look at the Berekhat Ram figurine: implications for the origins of symbolism. Cambridge Archaeological Journal 10:123–167. DOI: https://doi.org/10.1017/S0959774300000056

- d'Errico F, Vanhaeren M, Barton N, Bouzouggar A, Mienis H, Richter D, Hublin JJ, McPherron SP, Lozouet P. 2009. Additional evidence on the use of personal ornaments in the Middle Paleolithic of North Africa. PNAS 106:16051–16056. DOI: https://doi.org/10.1073/pnas.0903532106
- d'Errico F, Backwell L. 2016. Earliest evidence of personal ornaments associated with burial: the Conus shells from Border Cave. *Journal of Human Evolution* 93:91–108. DOI: https://doi.org/10.1016/j.jhevol.2016.01.002, PMID: 27086058
- Dibble HL, Aldeias V, Goldberg P, McPherron SP, Sandgathe D, Steele TE. 2015. A critical look at evidence from La Chapelle-aux-Saints supporting an intentional Neandertal burial. *Journal of Archaeological Science* 53:649–657. DOI: https://doi.org/10.1016/j.jas.2014.04.019
- Dirks PHGM, Berger LR, Roberts EM, Kramers JD, Hawks J, Randolph-Quinney PS, Elliott M, Musiba CM, Churchill SE, de Ruiter DJ, Schmid P, Backwell LR, Belyanin GA, Boshoff P, Hunter KL, Feuerriegel EM, Gurtov A, Harrison J du G, Hunter R, Kruger A, et al. 2015. Geological and taphonomic context for the new hominin species *Homo naledi* from the Dinaledi Chamber, South Africa. eLife 4:e09561. DOI: https://doi.org/10.7554/eLife.09561, PMID: 26354289
- Dunbar RIM. 2003. The social brain: mind, language, and society in evolutionary perspective. *Annual Review of Anthropology* **32**:163–181. DOI: https://doi.org/10.1146/annurev.anthro.32.061002.093158
- **Dunbar RIM**. 2010. The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. *Neuroscience & Biobehavioral Reviews* **34**:260–268. DOI: https://doi.org/10.1016/j.neubiorev. 2008.07.001
- Elliott MC, Makhubela TV, Brophy JK, Churchill SE, Peixotto B, Fuerriegel EM, Morris H. 2021. Expanded explorations of the dinaledi subsystem, rising star cave system, South Africa. *PaleoAnthropology* 1:16–22. DOI: https://doi.org/10.48738/2021.iss1.68
- Engelke M. 2019. The anthropology of death revisited. Annual Review of Anthropology 48:29–44. DOI: https://doi.org/10.1146/annurev-anthro-102218-011420
- Ernst J, Northoff G, Böker H, Seifritz E, Grimm S. 2013. Interoceptive awareness enhances neural activity during empathy. *Human Brain Mapping* **34**:1615–1624. DOI: https://doi.org/10.1002/hbm.22014, PMID: 22359353
- Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown PJatmikoSaptomo EW, Brunsden B, Prior F. 2005. The brain of LB1, Homo floresiensis. Science 308:242–245. DOI: https://doi.org/10.1126/science.1109727, PMID: 15749690
- Fashing PJ, Nguyen N, Barry TS, Goodale CB, Burke RJ, Jones SCZ, Kerby JT, Lee LM, Nurmi NO, Venkataraman VV. 2011. Death among geladas (Theropithecus gelada): a broader perspective on mummified infants and primate thanatology. *American Journal of Primatology* 73:405–409. DOI: https://doi.org/10.1002/ajp.20902, PMID: 21432869
- Fernández-Jalvo Y, Carlos Díez J, Cáceres I, Rosell J. 1999. Human cannibalism in the Early Pleistocene of Europe (Gran Dolina, Sierra de Atapuerca, Burgos, Spain). *Journal of Human Evolution* 37:591–622. DOI: https://doi.org/10.1006/jhev.1999.0324, PMID: 10497001
- Feuerriegel EM, Green DJ, Walker CS, Schmid P, Hawks J, Berger LR, Churchill SE. 2017. The upper limb of Homo naledi. Journal of Human Evolution 104:155–173. DOI: https://doi.org/10.1016/j.jhevol.2016.09.013, PMID: 27839696
- Feuerriegel EM, Voisin JL, Churchill SE, Haeusler M, Mathews S, Schmid P, Hawks J, Berger LR. 2019. Upper limb fossils of *Homo naledi* from the lesedi chamber, rising star system, South Africa. *PaleoAnthropology* 1:311–349. DOI: https://doi.org/10.4207/PA.2019.ART134
- Fitouchi L, Singh M, André JB, Baumard N. 2023. Prosocial religions as folk-technologies of mutual policing. OSF. DOI: https://doi.org/10.31234/osf.io/qdhka
- Foecke KK, Queffelec A, Pickering R. 2024. No sedimentological evidence for deliberate burial by *Homo naledi* A case study highlighting the need for best practices in geochemical studies within a archaeology and paleoanthropology. *PaleoAnthropology* 202:202x.issx.xxx. DOI: https://doi.org/10.48738/202x.issx.xxx
- Fuentes A. 2017. The Creative Spark: How Imagination Made Humans Exceptional. Dutton.
- Fuentes A. 2018. How humans and apes are different, and why it matters. "Journal of. Anthropological Research 74:151–167. DOI: https://doi.org/10.1086/697150
- **Galway-Witham J**, Cole J, Stringer C. 2019. Aspects of human physical and behavioural evolution during the last 1 million years. *Journal of Quaternary Science* **34**:355–378. DOI: https://doi.org/10.1002/jgs.3137
- Gargett RH, Bricker HM, Clark G, Lindly J, Farizy C, Masset C, Frayer DW, Montet-White A, Gamble C, Gilman A, Leroi-Gourhan A, Ossa P, Trinkaus E, Weber AW. 1989. Grave Shortcomings: the evidence for neandertal burial. Current Anthropology 30:157–190. DOI: https://doi.org/10.1086/203725
- Garvin HM, Elliott MC, Delezene LK, Hawks J, Churchill SE, Berger LR, Holliday TW. 2017. Body size, brain size, and sexual dimorphism in *Homo naledi* from the Dinaledi Chamber. *Journal of Human Evolution* 111:119–138. DOI: https://doi.org/10.1016/j.jhevol.2017.06.010, PMID: 28874266
- **Giuliani NR**, Drabant EM, Gross JJ. 2011. Anterior cingulate cortex volume and emotion regulation: is bigger better? *Biological Psychology* **86**:379–382. DOI: https://doi.org/10.1016/j.biopsycho.2010.11.010, PMID: 21138751
- Goldberg P, Aldeias V, Dibble H, McPherron S, Sandgathe D, Turq A. 2017. Testing the roc de marsal neandertal "Burial" with Geoarchaeology. *Archaeological and Anthropological Sciences* 9:1005–1015. DOI: https://doi.org/10.1007/s12520-013-0163-2
- Golovanova LV, Hoffecker JF, Kharitonov VM, Romanova GP. 1999. Mezmaiskaya cave: a Neanderthal occupation in the northern caucasus. *Current Anthropology* 40:77–86. DOI: https://doi.org/10.1086/515805

- **Gómez-Olivencia A**, Quam R, Sala N, Bardey M, Ohman JC, Balzeau A. 2018. La Ferrassie 1: new perspectives on a "classic" Neandertal. *Journal of Human Evolution* **117**:13–32. DOI: https://doi.org/10.1016/j.jhevol.2017. 12.004
- Gonçalves A, Carvalho S. 2019. Death among primates: a critical review of non-human primate interactions towards their dead and dying. *Biol Rev Camb Philos Soc* 94:1502–1529. DOI: https://doi.org/10.1111/brv. 12512
- Goodall J. 1977. Infant killing and cannibalism in free-living chimpanzees. Folia Primatologica 28:259–282. DOI: https://doi.org/10.1159/000155817
- Goren-Inbar N. 1986. A figurine from The acheulian site of Berekhat Ram. *Journal of the Israel Prehistoric Society* **19**:197540. DOI: https://doi.org/10.61247/s197540
- Goren-Inbar N, Alperson N, Kislev ME, Simchoni O, Melamed Y, Ben-Nun A, Werker E. 2004. Evidence of hominin control of fire at Gesher Benot Ya'aqov. *Israel. Science* 5671:725–727. DOI: https://doi.org/10.1126/science.1095443
- Green J, Spikins P. 2020. Not just a virtue: the evolution of self-control. *Time and Mind* 13:117–139. DOI: https://doi.org/10.1080/1751696X.2020.1747246
- Grossmann T. 2022. The human fear paradox: Affective origins of cooperative care. The Behavioral and Brain Sciences 46:e52. DOI: https://doi.org/10.1017/S0140525X2200067X, PMID: 35431016
- Gu X, Hof PR, Friston KJ, Fan J. 2013. Anterior insular cortex and emotional awareness. *The Journal of Comparative Neurology* **521**:3371–3388. DOI: https://doi.org/10.1002/cne.23368, PMID: 23749500
- **Guadelli A**, Guadelli JL. 2004. Une expression "symbolique" sur os dans le Paléolithique inférieur de la grotte Kozarnika, Bulgarie du Nord-Ouest. *Colloque International "La Spiritualité"*. *UISPP VIIIème Commission:* Paléolithique Supérieur. Liège. ERAUL **106**:87–95.
- Habgood PJ, Franklin NR. 2008. The revolution that didn't arrive: A review of Pleistocene Sahul. *Journal of Human Evolution* **55**:187–222. DOI: https://doi.org/10.1016/j.jhevol.2007.11.006
- Hall DL, Cohen AB, Meyer KK, Varley AH, Brewer GA. 2015. Costly signaling increases trust, even across religious affiliations. *Psychological Science* 26:1368–1376. DOI: https://doi.org/10.1177/0956797615576473, PMID: 26187247
- Hanon R, Péan S, Prat S. 2018. Reassessment of anthropic modifications on the Early Pleistocene hominin specimen Stw53 (Sterkfontein, South Africa). *Bull. MéM Soc. Anthropol. Paris* **30**:49–58.
- Harmand S, Lewis JE, Feibel CS, Lepre CJ, Prat S, Lenoble A, Boës X, Quinn RL, Brenet M, Arroyo A, Taylor N, Clément S, Daver G, Brugal JP, Leakey L, Mortlock RA, Wright JD, Lokorodi S, Kirwa C, Kent DV, et al. 2015.
 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521:310–315. DOI: https://doi.org/10.1038/nature14464, PMID: 25993961
- Hawks J, Elliott M, Schmid P, Churchill SE, de Ruiter D, Roberts EM, Hilbert-Wolf H, Garvin HM, Williams SA, Delezene LK, Feuerriegel EM, Randolph-Quinney P, Kivell TL, Laird MF, Tawane G, DeSilva JM, Bailey SE, Brophy JK, Meyer MR, Skinner MM, et al. 2017. New fossil remains of *Homo naledi* from the Lesedi Chamber, South Africa. *eLife* 6:24232. DOI: https://doi.org/10.7554/eLife.24232
- Hawks J, Berger LR. 2020. On Homo naledi and its significance in evolutionary anthropology. In: Deane-Drummond Celia, Fuentes Agustín (Eds). Theology and Evolutionary Anthropology: Dialogues in Wisdom, Humility and Grace. New York: Routledge. p. 51–68.
- Hawks J. 2023. Endocranial volumes for fossil hominins. *Figshare*. DOI: https://doi.org/10.6084/m9.figshare. 22743980.v1
- Herries AIR, Martin JM, Leece AB, Adams JW, Boschian G, Joannes-Boyau R, Edwards TR, Mallett T, Massey J, Murszewski A, Neubauer S, Pickering R, Strait DS, Armstrong BJ, Baker S, Caruana MV, Denham T, Hellstrom J, Moggi-Cecchi J, Menter C. 2020. Contemporaneity of australopithecus, paranthropus, and early *Homo erectus* in South Africa. *Science* 368:7293. DOI: https://doi.org/10.1126/science.aaw7293
- **Heydari M**, Guérin G, Sirakov N, Fernandez P, Ferrier C, Guadelli A, Leblanc JC, Taneva S, Sirakova S, Guadelli JL. 2022. The last 30,000 to 700,000 years ago: Unravelling the timing of human settlement for the palaeolithic site of Kozarnika. *Quaternary Science Reviews* **291**:107645. DOI: https://doi.org/10.1016/j. quascirev.2022.107645
- Hlubik S, Cutts R, Braun DR, Berna F, Feibel CS, Harris JWK. 2019. Hominin fire use in the Okote member at Koobi Fora, Kenya: New evidence for the old debate. *Journal of Human Evolution* 133:214–229. DOI: https://doi.org/10.1016/j.jhevol.2019.01.010, PMID: 31358181
- Hodgson D. 2021. Upper palaeolithic art as a perceptual search for magical images. *Time and Mind* 14:487–499. DOI: https://doi.org/10.1080/1751696X.2021.1961048
- Holloway RL, Hurst SD, Garvin HM, Schoenemann PT, Vanti WB, Berger LR, Hawks J. 2018. Endocast morphology of *Homo naledi* from the dinaledi chamber, South Africa. *PNAS* 115:5738–5743. DOI: https://doi.org/10.1073/pnas.1720842115, PMID: 29760068
- **Hopkinson T**. 2013. 'Man the symboller'. A contemporary origins myth. *Archaeological Dialogues* **20**:215–241. DOI: https://doi.org/10.1017/S138020381300024X
- **Hovers E**, Vandermeersch B, Bar-Yosef O. 1997. A middle palaeolithic engraved artifact from Qafzeh Cave. *Israel* **14**:79–87.
- Hovers E, Kimbel WH, Rak Y. 2000. The amud 7 skeleton--still a burial: Response to Gargett. Journal of Human Evolution 39:253–260. DOI: https://doi.org/10.1006/jhev.1999.0406, PMID: 10968931
- Hurst SD. 2017. Emotional Evolution in the Frontal Lobes: Social Affect and Lateral Orbitofrontal Cortex Morphology in Hominoids. Bloomington, IN: Indiana University.

- Hurst SD, Holloway RL, Balzeau A, Garvin HM, Vanti WB, Berger LR, Hawks J. 2024. The endocast morphology of LES1, Homo naledi. American Journal of Biological Anthropology 184:e24983. DOI: https://doi.org/10.1002/ajpa.24983, PMID: 38864146
- Isler K, Schaik CP. 2009. The Expensive Brain: a framework for explaining evolutionary changes in brain size. *J Hum Evol* **57**:392–400. DOI: https://doi.org/10.1016/j.jhevol.2009.04.009
- Jaubert J, Verheyden S, Genty D, Soulier M, Cheng H, Blamart D, Burlet C, Camus H, Delaby S, Deldicque D, Edwards RL, Ferrier C, Lacrampe-Cuyaubère F, Lévêque F, Maksud F, Mora P, Muth X, Régnier É, Rouzaud JN, Santos F. 2016. Early Neanderthal constructions deep in Bruniquel Cave in southwestern France. Nature 534:111–114. DOI: https://doi.org/10.1038/nature18291, PMID: 27251286
- Joordens JCA, d'Errico F, Wesselingh FP, Munro S, de Vos J, Wallinga J, Ankjærgaard C, Reimann T, Wijbrans JR, Kuiper KF, Mücher HJ, Coqueugniot H, Prié V, Joosten I, van Os B, Schulp AS, Panuel M, van der Haas V, Lustenhouwer W, Reijmer JJG, et al. 2014. *Homo erectus* at Trinil on Java used shells for tool production and engraving. *Nature* 518:228–231. DOI: https://doi.org/10.1038/nature13962, PMID: 25470048
- Kedar Y, Kedar G, Barkai R. 2021. Hypoxia in Paleolithic decorated caves: the use of artificial light in deep caves reduces oxygen concentration and induces altered states of consciousness. *Time and Mind* 14:181–216. DOI: https://doi.org/10.1080/1751696X.2021.1903177
- King BJ. 2013. How Animals Grieve. Chicago: University of Chicago Press.
- Kissel M, Fuentes A. 2017. Semiosis in the Pleistocene. Cambridge Archaeological Journal 27:397–412. DOI: https://doi.org/10.1017/S0959774317000014
- Kissel M, Fuentes A. 2018. 'Behavioral modernity' as a process, not an event, in the human niche. *Time and Mind* 11:163–183. DOI: https://doi.org/10.1080/1751696X.2018.1469230
- **Kissel M**, Fuentes A. 2021. The ripples of modernity: How we can extend paleoanthropology with the extended evolutionary synthesis. *Evolutionary Anthropology* **30**:84–98. DOI: https://doi.org/10.1002/evan.21883, PMID: 33547734
- Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE. 2015. The hand of Homo naledi. Nature Communications 6:8431. DOI: https://doi.org/10.1038/ncomms9431, PMID: 26441219
- Klein RG. 1995. Anatomy, behavior, and modern human origins. *Journal of World Prehistory* 9:167–198. DOI: https://doi.org/10.1007/BF02221838
- Koski SE, Sterck EHM. 2010. Empathic chimpanzees: A proposal of the levels of emotional and cognitive processing in chimpanzee empathy. European Journal of Developmental Psychology 7:38–66. DOI: https://doi.org/10.1080/17405620902986991
- Kubo D, Kono RT, Kaifu Y. 2013. Brain size of Homo floresiensis and its evolutionary implications. Proceedings of the Royal Society B 280:20130338. DOI: https://doi.org/10.1098/rspb.2013.0338
- Lang M, Kundt R. 2024. The evolution of human ritual behavior as a cooperative signaling platform. *Religion, Brain & Behavior* 14:377–399. DOI: https://doi.org/10.1080/2153599X.2023.2197977
- Leigh SR. 1992. Cranial capacity evolution in *Homo erectus* and early *Homo sapiens*. American Journal of Physical Anthropology **87**:1–13. DOI: https://doi.org/10.1002/ajpa.1330870102, PMID: 1736667
- Lepre CJ, Roche H, Kent DV, Harmand S, Quinn RL, Brugal JP, Texier PJ, Lenoble A, Feibel CS. 2011. An earlier origin for the Acheulian. Nature 477:82–85. DOI: https://doi.org/10.1038/nature10372, PMID: 21886161
- Li Z, Doyon L, Li H, Wang Q, Zhang Z, Zhao Q, d'Errico F. 2019. Engraved bones from the archaic hominin site of Lingjing, Henan Province. Antiquity 93:886–900. DOI: https://doi.org/10.15184/aqy.2019.81
- Lordkipanidze D, Ponce de León MS, Margvelashvili A, Rak Y, Rightmire GP, Vekua A, Zollikofer CPE. 2013. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. *Science* **342**:326–331. DOI: https://doi.org/10.1126/science.1238484, PMID: 24136960
- **Low S**. 2003. The Anthropology of Space and Place: Locating Culture. Wiley-Blackwell.
- MacDonald K, Scherjon F, van Veen E, Vaesen K, Roebroeks W. 2021. Middle Pleistocene fire use: The first signal of widespread cultural diffusion in human evolution. *PNAS* **118**:2101108118. DOI: https://doi.org/10.1073/pnas.2101108118
- Malafouris L. 2013. How Things Shape the Mind: A Theory of Material Engagement. Cambridge: MIT Press. DOI: https://doi.org/10.7551/mitpress/9476.001.0001
- Mania D, Mania U. 1988. Deliberate engravings on bone artefacts of *Homo erectus*. Rock Art Research 5:91–97.
 Martí AP, Zilhão J, d'Errico F, Cantalejo-Duarte P, Domínguez-Bella S, Fullola JM, Weniger GC, Ramos-Muñoz J. 2021. The symbolic role of the underground world among middle paleolithic Neanderthals. PNAS 118:2021495118. DOI: https://doi.org/10.1073/pnas.2021495118
- Martinón-Torres M, d'Errico F, Santos E, Álvaro Gallo A, Amano N, Archer W, Armitage SJ, Arsuaga JL, Bermúdez de Castro JM, Blinkhorn J, Crowther A, Douka K, Dubernet S, Faulkner P, Fernández-Colón P, Kourampas N, González García J, Larreina D, Le Bourdonnec F-X, MacLeod G, et al. 2021. Earliest known human burial in Africa. Nature 593:95–100. DOI: https://doi.org/10.1038/s41586-021-03457-8, PMID: 33953416
- Martinón-Torres M, Garate D, Herries AIR, Petraglia MD. 2023. No scientific evidence that *Homo naledi* buried their dead and produced rock art. *Journal of Human Evolution* **195**:103464. DOI: https://doi.org/10.1016/j.jhevol.2023.103464, PMID: 37953122
- Maureille B, Rougier H, Houet F, Vandermeersch B. 2001. Les dents inférieurs du Néandertalien Regourdou 1 (site de Regourdou, commune de Montignac, Dordogne). Anal. Métriques Comp. Paleo 13:183–200.
- Maureille B, Knüsel CJ. 2022. The earliest european burials. In: Maureille B, Knüsel CJ (Eds). In The Routledge Handbook of Archaeothanatology. Routledge. p. 140–158. DOI: https://doi.org/10.4324/9781351030625

- Mcbrearty S, Brooks AS. 2000. The revolution that wasn't: a new interpretation of the origin of modern human behavior. *Journal of Human Evolution* 39:453–563. DOI: https://doi.org/10.1006/jhev.2000.0435, PMID: 11102266
- Meneganzin A, Currie A. 2022. Behavioural modernity, investigative disintegration & Rubicon expectation. Synthese 200:034917. DOI: https://doi.org/10.1007/s11229-022-03491-7
- Meneganzin A, Killin A. 2024. Beyond reasonable doubt: reconsidering neanderthal aesthetic capacity. In: Meneganzin A, Killin A (Eds). *Phenomenology and the Cognitive Sciences*. Springer. p. 733–765. DOI: https://doi.org/10.1007/s11097-024-10003-0
- Merz E. 1978. Male-male interactions with dead infants inMacaca sylvanus. *Primates* 19:749–754. DOI: https://doi.org/10.1007/BF02373640
- Mondanaro A, Melchionna M, Di Febbraro M, Castiglione S, Holden PB, Edwards NR, Carotenuto F, Maiorano L, Modafferi M, Serio C, Diniz-Filho JAF, Rangel T, Rook L, O'Higgins P, Spikins P, Profico A, Raia P. 2020. A Major change in rate of climate niche envelope evolution during Hominid history. iScience 23:101693. DOI: https://doi.org/10.1016/j.isci.2020.101693, PMID: 33163945
- Montello D, Moyes H. 2012. Why dark zones are sacred. In: Moyes H (Ed). In In Sacred Darkness: A Global Perspective on the Ritual Use of Caves. University Press of Colorado. p. 161–170.
- Morawetz C, Riedel MC, Salo T, Berboth S, Eickhoff SB, Laird AR, Kohn N. 2020. Multiple large-scale neural networks underlying emotion regulation. *Neuroscience & Biobehavioral Reviews* **116**:382–395. DOI: https://doi.org/10.1016/j.neubiorev.2020.07.001
- Muthukrishna M, Doebeli M, Chudek M, Henrich J. 2018. The cultural brain hypothesis: How culture drives brain expansion, sociality, and life history. *PLOS Computational Biology* **14**:e1006504. DOI: https://doi.org/10.1371/journal.pcbi.1006504, PMID: 30408028
- Neubauer S, Hublin JJ, Gunz P. 2018. The evolution of modern human brain shape. Sci Adv 4:eaao5961. DOI: https://doi.org/10.1126/sciadv.aao5961
- Nieuwburg EGI, Ploeger A, Kret ME. 2021. Emotion recognition in nonhuman primates: How experimental research can contribute to a better understanding of underlying mechanisms. Neuroscience & Biobehavioral Reviews 123:24–47. DOI: https://doi.org/10.1016/j.neubiorev.2020.11.029
- Pettit P. 2022. Did Homo naledi dispose of their dead in the rising star cave system. South African Journal of Science 118:15140. DOI: https://doi.org/10.17159/sajs.2022/15140
- Pettitt P. 2002. The Neanderthal dead: exploring mortuary variability in middle palaeolithic Eurasia. *Before Farming* 1:1–19. DOI: https://doi.org/10.3828/bfarm.2002.1.4
- Pettitt P. 2010. The Palaeolithic Origins of Human Burial. New York: Routledge.
- Pettitt P. 2011. The living as symbols, the dead as symbols: problematising the scale and pace of hominin symbolic evolution. In: Henshilwood C, d'Errico F (Eds). Homo Symbolicus: The Dawn of Language, Imagination and Spirituality. John Benjamins Publishing. p. 141–162. DOI: https://doi.org/10.1075/z.168.08pet
- Pettitt P. 2018. Hominin evolutionary thanatology from the mortuary to funerary realm: the palaeoanthropological bridge between chemistry and culture. *Philosophical Transactions of the Royal Society B* 373:20180212. DOI: https://doi.org/10.1098/rstb.2018.0212
- Pettitt P, Anderson JR. 2020. Primate thanatology and hominoid mortuary archeology. Primates; Journal of Primatology 61:9–19. DOI: https://doi.org/10.1007/s10329-019-00769-2, PMID: 31646398
- Pickering TR, White TD, Toth N. 2000. Brief communication: cutmarks on a Plio-Pleistocene hominid from Sterkfontein, South Africa. American Journal of Physical Anthropology 111:579–584. DOI: https://doi.org/10.1002/(SICI)1096-8644(200004)111:4<579::AID-AJPA12>3.0.CO;2-Y, PMID: 10727975
- Piel AK, Stewart FA. 2015. Non-human animal responses towards the dead and death: a comparative approach to understanding the evolution of human mortuary practices. In: Renfrew C, Boyd MJ, Morley I (Eds). Death Rituals, Social Order and the Archaeology of Immortality in the Ancient World: "Death Shall Have No Dominion. Cambridge University Press; Cambridge Core. p. 15–26. DOI: https://doi.org/10.1017/CBO9781316014509.003
- Pomeroy E, Bennett P, Hunt CO, Reynolds T, Farr L, Frouin M, Holman J, Lane R, French C, Barker G. 2020. New Neanderthal remains associated with the 'flower burial' at Shanidar Cave. *Antiquity* 94:11–26. DOI: https://doi.org/10.15184/aqy.2019.207
- Ponce de León MSP, Bienvenu T, Marom A, Engel S, Tafforeau P, Alatorre Warren JL, Lordkipanidze D, Kurniawan I, Murti DB, Suriyanto RA, Koesbardiati T, Zollikofer CPE. 2021. The primitive brain of early Homo. *Science* 372:165–171. DOI: https://doi.org/10.1126/science.aaz0032
- Potts R, Behrensmeyer AK, Deino A, Ditchfield P, Clark J. 2004. Small Mid-Pleistocene hominin associated with East African Acheulean technology. *Science* 305:75–78. DOI: https://doi.org/10.1126/science.1097661, PMID: 15232102
- Pozzi E, Vijayakumar N, Rakesh D, Whittle S. 2021. Neural correlates of emotion regulation in adolescents and emerging adults: a meta-analytic study. *Biological Psychiatry* 89:194–204. DOI: https://doi.org/10.1016/j.biopsych.2020.08.006, PMID: 33268030
- Preston SD, de Waal FBM. 2002. Empathy: Its ultimate and proximate bases. The Behavioral and Brain Sciences 25:1–20; . DOI: https://doi.org/10.1017/s0140525x02000018, PMID: 12625087
- **Püschel HP**, Bertrand OC, O'Reilly JE, Bobe R, Püschel TA. 2021. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. *Nature Ecology & Evolution* **5**:808–819. DOI: https://doi.org/10.1038/s41559-021-01431-1

- Radovčić D, Sršen AO, Radovčić J, Frayer DW. 2015. Evidence for Neandertal jewelry: modified white-tailed eagle claws at Krapina. *PLOS ONE* **10**:0119802. DOI: https://doi.org/10.1371/journal.pone.0119802, PMID: 25760648
- Radovčić D, Japundžić D, Sršen AO, Radovčić J, Frayer DW. 2016. An interesting rock from Krapina. Comptes Rendus Palevol 15:988–993. DOI: https://doi.org/10.1016/j.crpv.2016.04.013
- Raynal JP, Seguy R. 1986. Os incisé Acheuléen de Sainte-Anne 1 (Polignac, Haute-Loire) / Acheulean incised bone of Sainte-Anne I (Polignac, Haute-Loire). Revue Archéologique Du Centre 25:79–81. DOI: https://doi.org/10.3406/racf.1986.2463
- Rendu W, Beauval C, Crevecoeur I, Bayle P, Balzeau A, Bismuth T, Bourguignon L, Delfour G, Faivre JP, Lacrampe-Cuyaubère F, Tavormina C, Todisco D, Turq A, Maureille B. 2014. Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. PNAS 111:81–86. DOI: https://doi.org/10.1073/pnas.1316780110, PMID: 24344286
- Rieck J, Wrobel J, Porras AR, McRae K, Gowin JL. 2024. Neural signatures of emotion regulation. *Scientific Reports* 14:1775. DOI: https://doi.org/10.1038/s41598-024-52203-3, PMID: 38245590
- Robbins JL, Dirks P, Roberts EM, Kramers JD, Makhubela TV, Hilbert-Wolf HL, Elliott M, Wiersma JP, Placzek CJ, Evans M, Berger LR. 2021. Providing context to the *Homo naledi* fossils: Constraints from flowstones on the age of sediment deposits in Rising Star Cave, South Africa. *Chemical Geology* **567**:120108. DOI: https://doi.org/10.1016/j.chemgeo.2021.120108
- Rodríguez-Vidal J, d'Errico F, Pacheco FG, Blasco R, Rosell J, Jennings RP, Queffelec A, Finlayson G, Fa DA, Gutiérrez López JM, Carrión JS, Negro JJ, Finlayson S, Cáceres LM, Bernal MA, Fernández Jiménez S, Finlayson C. 2014. A rock engraving made by Neanderthals in Gibraltar. PNAS 111:13301–13306. DOI: https://doi.org/10.1073/pnas.1411529111
- Roebroeks W, Sier MJ, Nielsen TK, De Loecker D, Parés JM, Arps CES, Mücher HJ. 2012. Use of red ochre by early Neandertals. PNAS 109:1889–1894. DOI: https://doi.org/10.1073/pnas.1112261109, PMID: 22308348
- Romero T, Castellanos MA, de Waal FBM. 2010. Consolation as possible expression of sympathetic concern among chimpanzees. PNAS 107:12110–12115. DOI: https://doi.org/10.1073/pnas.1006991107
- Ronen A. 1976. The skhul burials: an archaeological review. In: Vandermeersch B (Ed). Colloque XII: Les Sepultures Anderthaliennes. Union internationale des sciences préhistoriques et protohistoriques. p. 27–40.
- Ronen A, Burdukiewicz JM, Laukhin SA, Winter Y, Tsatskin A, Dayan T, Kulikov OA, Semenov VV. 1998. The lower palaeolithic site bitzat ruhama in the Northern Negev, Israel. *Archaologisches Korrespondenzblatt* 28:163–173.
- Rosas A, Martínez-Maza C, Bastir M, García-Tabernero A, Lalueza-Fox C, Huguet R, Ortiz JE, Julià R, Soler V, de Torres T, Martínez E, Cañaveras JC, Sánchez-Moral S, Cuezva S, Lario J, Santamaría D, de la Rasilla M, Fortea J. 2006. Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. PNAS 103:19266–19271. DOI: https://doi.org/10.1073/pnas.0609662104
- Russell MD. 1987. Mortuary practices at the Krapina Neandertal site. *American Journal of Physical Anthropology* **72**:381–397. DOI: https://doi.org/10.1002/ajpa.1330720311, PMID: 3107399
- Sala N, Pantoja-Pérez A, Gracia A, Arsuaga JL. 2024. Taphonomic-forensic analysis of the hominin skulls from the Sima de los Huesos. *The Anatomical Record* **307**:2259–2277. DOI: https://doi.org/10.1002/ar.24883
- Sandgathe DM, Dibble HL, Goldberg P, McPherron SP. 2011. The Roc de Marsal Neandertal child: a reassessment of its status as a deliberate burial. *Journal of Human Evolution* 61:243–253. DOI: https://doi.org/ 10.1016/j.jhevol.2011.04.003, PMID: 21664649
- Scerri EML, Will M. 2023. The Revolution that still isn't: The orgin of behavioral complexity in *Homo sapiens*. Journal of Human Evolution 179:103358. DOI: https://doi.org/10.1016/j.jhevol.2023.103358
- Semaw S, Rogers MJ, Simpson SW, Levin NE, Quade J, Dunbar N, McIntosh WC, Cáceres I, Stinchcomb GE, Holloway RL, Brown FH, Butler RF, Stout D, Everett M. 2020. Co-occurrence of Acheulian and Oldowan artifacts with Homo erectus cranial fossils from Gona, Afar, Ethiopia. Science Advances 6:eaaw4694. DOI: https://doi.org/10.1126/sciadv.aaw4694, PMID: 32181331
- Silverman H. 2008. Introduction: the space and place of death. Archeological Papers of the American Anthropological Association 11:1–11. DOI: https://doi.org/10.1525/ap3a.2002.11.1.1
- Silverman GS, Baroiller A, Hemer SR. 2021. Culture and grief: Ethnographic perspectives on ritual, relationships and remembering. *Death Studies* 45:1–8. DOI: https://doi.org/10.1080/07481187.2020.1851885, PMID: 33272138
- Sirakov N, Guadelli JL, Ivanova S, Sirakova S, Boudadi-Maligne M, Dimitrova I, Ph F, Ferrier C, Guadelli A, Iordanova D, Iordanova N, Kovatcheva M, Krumov I, Leblanc JC, Miteva V, Popov V, Spassov R, Taneva S, Tsanova T. 2010. An ancient continuous human presence in the Balkans and the beginnings of human settlement in western Eurasia: A Lower Pleistocene example of the Lower Palaeolithic levels in Kozarnika cave (North-western Bulgaria). Quaternary International 223–224:94–106. DOI: https://doi.org/10.1016/j.quaint. 2010.02.023
- Smith R, Steklis HD, Steklis N, Weihs KL, Allen JJB, Lane RD. 2023. Lower emotional awareness is associated with greater early adversity and faster life history strategy. *Evolutionary Behavioral Sciences* 17:1–15. DOI: https://doi.org/10.1037/ebs0000282
- Spikins P, Needham A, Wright B, Dytham C, Gatta M, Hitchens G. 2019. Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare. *Quaternary Science Reviews* 217:98–118. DOI: https://doi.org/10.1016/j.quascirev.2018.08.011
- Spikins P. 2022. Hidden Depths: The Origins of Human Connection. White Rose University Press.

- Steidle A, Hanke EV, Werth L. 2013. In the dark we cooperate: the situated nature of procedural embodiment. Social Cognition 31:275–300. DOI: https://doi.org/10.1521/soco.2013.31.2.275
- Steklis HD, Lane RD. 2013. The unique human capacity for emotional awareness: psychological, neuroanatomical, comparative and evolutionary perspectives. In: Watanabe Shigeru, Kuczaj Stan (Eds). *In Emotions of Animals and Humans: Comparative Perspectives*. Tokyo: Springer Japan. p. 165–205. DOI: https://doi.org/10.1007/978-4-431-54123-3_8
- Syeda SM, Dunmore CJ, Skinner MM, Berger LR, Churchill SE, Zipfel B, Kivell TL. 2025. cortical bone distribution reveals different dexterous and climbing behaviors in Australopithecus sediba and *Homo naledi*. Science Advances 11:eadt1201. DOI: https://doi.org/10.1126/sciadv.adt1201
- Tattersall I. 2023. Endocranial volumes and human evolution. F1000Research 12:565. DOI: https://doi.org/10.12688/f1000research.131636.1, PMID: 37744765
- Teschler-Nicola M, Fernandes D, Händel M, Einwögerer T, Simon U, Neugebauer-Maresch C, Tangl S, Heimel P, Dobsak T, Retzmann A, Prohaska T, Irrgeher J, Kennett DJ, Olalde I, Reich D, Pinhasi R. 2020. Ancient DNA reveals monozygotic newborn twins from the Upper Palaeolithic. *Communications Biology* 3:650. DOI: https://doi.org/10.1038/s42003-020-01372-8, PMID: 33159107
- **Texier PJ**, Porraz G, Parkington J, Rigaud JP, Poggenpoel C, Tribolo C. 2013. The context, form and significance of the MSA engraved ostrich eggshell collection from Diepkloof Rock Shelter, Western Cape, South Africa. *Journal of Archaeological Science* **40**:3412–3431. DOI: https://doi.org/10.1016/j.jas.2013.02.021
- Toro-Moyano I, Martínez-Navarro B, Agustí J, Souday C, Martinón-Torres M, Fajardo B, Duval M, Falguères C, Oms O, Parés JM, Anadón P, Julià R, García-Aguilar JM, Moigne AM, Espigares MP, Ros-Montoya S, Palmqvist P. 2013. The oldest human fossil in Europe dated to ca. 1.4 Ma at1154 Orce (Spain). *Journal of Human Evolution* 1:201301012. DOI: https://doi.org/10.1016/j.jhevol.2013.01.012
- Traynor S, Green DJ, Hawks J. 2022. The relative limb size of Homo naledi. Journal of Human Evolution 170:103235. DOI: https://doi.org/10.1016/j.jhevol.2022.103235, PMID: 35994845
- Turner JH. 2014. The evolution of human emotions. In: Stets JE, Turner JH (Eds). Handbook of the Sociology of Emotions. Springer Netherlands. p. 11–31. DOI: https://doi.org/10.1007/978-94-017-9159130-4_2
- **Twomey T.** 2019. Domestic fire, domestic selves: How keeping fire facilitated the evolution of emotions and emotion regulation. In: Henley T, Rossano M, Kardas E (Eds). *Handbook of Cognitive Archaeology*. Routledge. p. 415–430.
- Vaish A, Grossmann T. 2022. Caring for others: the early emergence of sympathy and guilt. In: Hart SL, Bjorklund DF (Eds). Evolutionary Perspectives on Infancy. Springer International Publishing. p. 349–369. DOI: https://doi.org/10.1007/978-3-030-76000-7_16
- Vandermeersch B, Bar-Yosef O. 2019. The paleolithic burials at Qafzeh cave, Israel. *Paléo* **30**:256–275. DOI: https://doi.org/10.4000/paleo.4848
- van Rooyen L, Berger L, Hawks J, Zubair J. 2025. Interpreting access to the dinaledi subsystem by Homo naledi: Redefining the "Chute" as a labyrinth. AfricArXiv. DOI: https://doi.org/10.60763/africarxiv/1749
- Vermeersch PM, Paulissen E, Van Peer P, Stokes S, Charlier C, Stringer C, Lindsay W. 1998. A middle palaeolithic burial of a modern human at Taramsa Hill, Egypt. Antiquity 72:475–484. DOI: https://doi.org/10.1017/ S0003598X00086919
- Vives DRI. 2015. Taphonomical interpretations of the Sima de los Huesos site (Atapuerca range, Burgos, Spain): A review. Spanish Journal of Palaeontology 30:30117203. DOI: https://doi.org/10.7203/sjp.30.1.17203
- Wadley L. 2001. What is cultural modernity? a general view and a South African perspective from rose cottage cave. Cambridge Archaeological Journal 11:201–221. DOI: https://doi.org/10.1017/S0959774301000117
- Wadley L, Esteban I, de la Peña P, Wojcieszak M, Stratford D, Lennox S, d'Errico F, Rosso DE, Orange F, Backwell L, Sievers C. 2020. Fire and grass-bedding construction 200 thousand years ago at Border Cave, South Africa. *Science* 369:863–866. DOI: https://doi.org/10.1126/science.abc7239
- Waller D, Hodgson E. 2013. Sensory contributions to spatial knowledge of real and virtual environments. In: Steinicke F, Visell Y, Campos J, Lécuyer A (Eds). *Human Walking in Virtual Environments: Perception, Technology, and Applications*. Springer. p. 3–26. DOI: https://doi.org/10.1007/978-1-4419-8432-6_1
- Watts I, Chazan M, Wilkins J. 2016. Early evidence for brilliant ritualized display: specularite use in the Northern Cape (South Africa) between ~500 and ~300 Ka. *Current Anthropology* **57**:287–310. DOI: https://doi.org/10.1086/686484
- White TD. 1986. Cut marks on the Bodo cranium: a case of prehistoric defleshing. American Journal of Physical Anthropology 69:503–509. DOI: https://doi.org/10.1002/ajpa.1330690410, PMID: 3087212
- White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, Howell FC. 2003. Pleistocene *Homo sapiens* from middle awash, Ethiopia. *Nature* 423:742–747. DOI: https://doi.org/10.1038/nature01669, PMID: 12802332
- Wiersma JP, Roberts EM, Dirks P. 2020. Formation of mud clast breccias and the process of sedimentary autobrecciation in the hominin-bearing (*Homo naledi*) Rising Star Cave system, South Africa. *Sedimentology* 67:897–919. DOI: https://doi.org/10.1111/sed.12666
- Williams SA, García-Martínez D, Bastir M, Meyer MR, Nalla S, Hawks J, Schmid P, Churchill SE, Berger LR. 2017. The vertebrae and ribs of *Homo naledi*. *Journal of Human Evolution* 104:136–154. DOI: https://doi.org/10.1016/j.jhevol.2016.11.003
- Zuccarelli L, Galasso L, Turner R, Coffey EJB, Bessone L, Strapazzon G. 2019. Human physiology during exposure to the cave environment: a systematic review with implications for aerospace medicine. Frontiers in Physiology 10:442. DOI: https://doi.org/10.3389/fphys.2019.00442, PMID: 31068833

Appendix 1

Supplementary text for Table 1 on mortuary practices

Table 1 was constructed by searching the literature for examples of funerary behaviors in the Paleolithic. The nature of many of these finds are contentious (Pettitt, 2010). For example, some scholars have rejected Roc-de-Marsal (Sandgathe et al., 2011; Goldberg et al., 2017) as a burial based on reevaluating the context of the site, while others include it in the list of European burials. Similarly, experts are divided as to if La Chapelle-aux-Saints should (Rendu et al., 2014) or should not (Gargett et al., 1989; Dibble et al., 2015) be accepted as an intentional Neandertal burial. We also list sites that are not burials but instead show possible evidence of modifying the body after death. Again, scientists disagree if these are funerary practices or, in the case of cutmarks on hominin bones, cannibalism.

Most archaeologists define burial in a way that lets them detect it archaeologically (excavate a pit, put body in pit, refill pit), but this is only one type of funerary ritual. All cultures must find ways to deal with the beginning of life and with the end of life. How to treat the dead (and how to decide when someone is really dead) is culturally specific. The symbolic practices related to death are also highly varied. Just as with foodways, deathways are mediated by how a culture sees death.

All of this is to say that the symbolic aspects around death are as important as the process of dealing with the body. We might also ask how the death-related symbolic behaviors help people mourn.