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Abstract During delayed ballistic reaches, motor areas consistently display movement-specific 
activity patterns prior to movement onset. It is unclear why these patterns arise: while they have 
been proposed to seed an initial neural state from which the movement unfolds, recent experiments 
have uncovered the presence and necessity of ongoing inputs during movement, which may lessen 
the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical 
system, and we asked what the optimal way to control this system to perform fast delayed reaches 
is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By 
studying a variety of network architectures, we could dissect and predict the situations in which it 
is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural 
dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel 
explanation for experimentally observed features of monkey M1 activity in double reaching.

eLife assessment
This important study provides a new perspective on why preparatory activity occurs before the 
onset of movement. The authors report that when there is a cost on the inputs, the optimal inputs 
should start before the desired network output for a wide variety of recurrent networks. The authors 
present compelling evidence by combining mathematically tractable analyses in linear networks and 
numerical simulation in nonlinear networks.

Introduction
During the production of ballistic movements, the motor cortex is thought to operate as a dynam-
ical system whose state trajectories trace out the appropriate motor commands for downstream 
effectors (Shenoy et al., 2013; Miri et al., 2017; Russo et al., 2018). The extent to which these 
cortical dynamics are controlled by exogenous inputs before and/or during movement is the subject 
of ongoing study.

On the one hand, several experimental and modeling studies point to a potential role for exoge-
nous inputs in motor preparation. First, cortical state trajectories are empirically well described by a 
low-dimensional dynamical system evolving near-autonomously during movement (Churchland et al., 
2012; Pandarinath et al., 2018; Schimel et al., 2022), such that there is a priori no reason to suspect 
that inputs are required for motor production. Rather, inputs would be required during preparation 
to bring the state of the cortical network into a suitable initial condition. This input-driven seeding 
process is corroborated by observations of movement-specific primary motor cortex (M1) activity 
arising well before movement initiation (Lara et al., 2018; Kaufman et al., 2014; Churchland et al., 
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2012; Meirhaeghe et al., 2023; Figure 1A), and associated models demonstrate the critical role of 
preparatory inputs therein (Sussillo et al., 2015; Hennequin et al., 2014; Kao et al., 2021).

On the other hand, recent studies in mice have shown that the motor cortex receives critical 
pattern-generating input from the thalamus during movement production (Sauerbrei et al., 2020), 
and recurrent neural network (RNN)-based modeling of the motor feedback loop involved in reaching 
movements suggests that sensory feedback may also contribute significantly to the observed dynamics 
of M1 (Kalidindi et al., 2021). Moreover, most published network models of delayed reaches are able 
to perform the task just as well without preparatory inputs, i.e., with external inputs forcefully confined 
to the movement epoch – an illustratory example is shown in Figure 1B. Thus, the relative contribu-
tions of preparatory vs. movement-epoch inputs to the dynamics implemented by M1 (potentially as 
part of a broader set of areas) remain unclear.

In addition to the specific form that inputs to cortical dynamics might take, one may ask more 
broadly about the computational role of motor preparation. Motor preparation is known to benefit 
behavior (e.g. by shortening reaction times and enabling more accurate execution Riehle and Requin, 
1989; Churchland and Shenoy, 2007; Michaels et  al., 2015) and may facilitate motor learning 
(Sheahan et al., 2016; Sun et al., 2022). However, from the perspective of cortical dynamics, prepa-
ration also introduces additional constraints.

Specifically, the high density of M1 neurons projecting directly to the spinal cord (Dum and Strick, 
1991) suggests that motor cortical outputs control lower-level effectors with little intermediate 
processing. For preparatory processes to avoid triggering premature movement, any pre-movement 
activity in the motor and dorsal premotor (PMd) cortices must therefore engage the pyramidal tract 
neurons in a way that ensures their activity patterns will not lead to any movement.

Figure 1. Control is possible under different strategies. (A) Trial-averaged firing rate of two representative monkey primary motor cortex (M1) neurons, 
across eight different movements, separately aligned to target onset (left) and movement onset (right). Neural activity starts separating across 
movements well before the animal starts moving. (B) Top: a recurrent neural network (RNN) model of M1 dynamics receives external inputs ‍u(t)‍ from 
a higher-level controller, and outputs control signals for a biophysical two-jointed arm model. Inputs are optimized for the correct production of eight 
center-out reaches to targets regularly positioned around a circle. Bottom: firing rate of a representative neuron in the RNN model for each reach, 
under two extreme control strategies. In the first strategy (left, solid lines), the external inputs ‍u(t)‍ are optimized while being temporally confined to the 
preparatory period. In the second strategy (right, dashed lines), they are optimized while confined to the movement period. Although slight differences 
in hand kinematics can be seen (compare corresponding solid and dashed hand trajectories), both control policies lead to successful reaches. These 
introductory simulations are shown for illustration purposes; the particular choice of network connectivity and the way the control inputs were found are 
described in the Results section.

https://doi.org/10.7554/eLife.89131
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While this can be achieved by constraining neural activity to evolve in a nullspace of the motor 
output (Kaufman et al., 2014), the question nevertheless arises: what advantage is there to having 
neural dynamics begin earlier in a constrained manner, rather than unfold freely just in time for move-
ment production?

Here, we sought a normative explanation for motor preparation at the level of motor cortex 
dynamics: we asked whether preparation arises in RNNs performing delayed-reaching tasks, and what 
factors lead to more or less preparation.

Such an explanation could not be obtained from previous network models of delayed reaches, as 
they typically assume from the get-go that the cortical network receives preparatory inputs during a 
fixed time window preceding the go cue (Sussillo et al., 2015; Kao et al., 2021). In this case, pre-
movement activity is by designing a critical determinant of the subsequent behavior (Sussillo et al., 
2015; Kao et  al., 2021; Zimnik and Churchland, 2021). In this work, we removed this modeling 
assumption and studied models in which the correct behavior could in principle be obtained without 
explicit motor preparation.

To study the role of motor preparation, and that of exogenous inputs in this process, we followed 
an optimal control approach (Harris and Wolpert, 1998; Todorov and Jordan, 2002; Yeo et al., 
2016). We considered the dynamics of an RNN model of M1 coupled to a model arm (Todorov and 
Li, 2003), and used a standard control cost functional to quantify and optimize performance in a 
delayed-reaching task. We used the iterative linear quadratic regulator algorithm (iLQR) algorithm 
(Li and Todorov, 2004) to find the spatiotemporal patterns of network inputs that minimize this cost 
functional, for any given network connectivity. Critically, these inputs could arise both before and 
during movement; thus, our framework allowed for principled selection among a continuum of motor 
strategies, going from purely autonomous motor generation following preparation, to purely input-
driven unprepared dynamics.

We considered an inhibition-stabilized network – which was shown previously to capture prominent 
aspects of monkey M1 activity (Hennequin et al., 2014; Kao et al., 2021) – and found that optimal 
control of the model requires preparation, with optimal inputs arising well before movement begins. 
To understand what features of network connectivity lead to optimal preparatory control strategies, 
we first turned to low-dimensional models, which could be more easily dissected. We then general-
ized insights from those systems back to high-dimensional networks using tools from control theory, 
and found that preparation can be largely explained by two quantities summarizing the dynamical 
response properties of the network.

Finally, we studied the optimal control of movement sequences. Consistent with recent exper-
imental findings (Zimnik and Churchland, 2021), we observed that optimal control of compound 
reaches leads to input-driven preparatory activity in a dedicated activity subspace prior to each 
movement.

Overall, our results show that preparatory neural activity patterns arise from optimal control of 
reaching movements at the level of motor cortical circuits, thus providing a possible explanation for a 
number of observed experimental findings.

Model
A model of cortical dynamics for reaching movements
We considered a simple reaching task, in which the hand must move from a resting location to one of 
eight radially located targets in a 2D plane as fast as possible (Figure 1). The target had to be reached 
within 600 ms of a go cue that follows a delay period of varying (but known) duration. We modeled the 
trajectory of the hand via a two-jointed model arm (Li and Todorov, 2004; Kao et al., 2021), driven 
into motion by a pair of torques ‍m(t)‍ (Methods). We further assumed that these torques arise as a 
linear readout of the momentary firing rates ‍r(t)‍ of a population of M1 neurons,

	﻿‍ m(t) = Cr(t)‍,� (1)

where ‍C‍ was a randomly generated readout matrix, projecting the neural activity into the output 
space. We modeled the dynamics of ‍N = 200‍ M1 neurons using a standard rate equation,

	﻿‍
τ

dx(t)
dt

= −x(t) + Wr(t) + h + u(t)
‍�

(2)

https://doi.org/10.7554/eLife.89131
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	﻿‍ r(t) = ϕ
[
x(t)

]
,‍� (3)

where the momentary population firing rate vector ‍r(t)‍ was obtained by passing a vector of internal 
neuronal activations ‍x(t)‍ through a rectified linear function ‍ϕ

[
·
]
‍, element-wise. In Equation 2, ‍h‍ is a 

constant input that establishes a baseline firing rate of 5 Hz on average, with a standard deviation of 
5 Hz across neurons, ‍u(t)‍ is a task-dependent control input (see below), and ‍W ‍ denotes the matrix of 
recurrent connection weights. Throughout most of this work, we considered inhibition-stabilized M1 
dynamics (Hennequin et al., 2014; Methods), which have previously been shown to produce activity 
resembling that of M1 during reaching (Kao et al., 2021).

Thus, our model can be viewed as a two-level controller, with the arm being controlled by M1, and 
M1 being controlled by external inputs. Note that each instantiation of our model corresponds to a 
set of ‍W ‍, ‍C‍, and ‍h‍, none of which are specifically optimized for the task.

To prepare or not to prepare?
Previous experimental (Churchland et  al., 2012; Shenoy et  al., 2013) and modeling (Hennequin 
et al., 2014; Sussillo et al., 2015; Pandarinath et al., 2018) work suggests that fast ballistic move-
ments rely on strong dynamics, which are observed in M1 and well modeled as near-autonomous 
(although the underlying dynamical system may not be anatomically confined to M1, as we discuss 
later). Network-level models of ballistic control thus rely critically on a preparation phase during which 
they are driven into a movement-specific state that seeds their subsequent autonomous dynamics 
(Kao et al., 2021; Sussillo et al., 2015). However, somewhat paradoxically, the same recurrent neural 
network models can also solve the task in a completely different regime, in which task-related inputs 
arise during movement only, with no preparatory inputs whatsoever. We illustrate this dichotomy in 
Figure 1. The same center-out reach can be produced with control inputs to M1 that arise either prior 
to movement only (full lines), or during movement only (dashed lines). In the latter case, no reach-
specific preparatory activity is observed, making the model inconsistent with experimental findings. 
But what rationale is there in preparing for upcoming movements, then?

To address this question, we formulated delayed reaching as an optimal control problem, and 
asked what external inputs are required, and at what time, to drive the hand into the desired position 
with minimum control effort. Specifically, we sought inputs that were as weak as possible yet accu-
rately drove the hand to the target within an allotted time window. We also penalized inputs that 
caused premature movement before the go cue.

Thus, we solved for spatiotemporal input trajectories that minimized a cost functional capturing 
the various task requirements. Our cost was composed of three terms: ‍Jtarget‍ penalizes deviations 
away from the target, with an ‘urgency’ weight that increases quadratically with time, thus capturing 
the implicit incentive for animals to perform fast reaches in such experiments (which are normally 
conducted in sessions of fixed duration).

‍Jnull‍ penalizes premature movement during preparation, as measured by any deviation in position, 
speed, and acceleration of the hand. Finally, ‍Jeffort‍ penalizes control effort in the form of input magni-
tude throughout the whole trial, thus promoting energy-efficient control solutions among a typically 
infinite set of possibilities (Kao et al., 2021; Sterling and Laughlin, 2015). Note that ‍Jeffort‍ can be 
viewed as a standard regularization term, and must be included to ensure the control problem is well 
defined. The total objective thus had the following form:

	﻿‍

J
[
u(t)

]
=
ˆ T

0
∥θ(t) − θ⋆∥2 t2

T2
dt
T� �� �

Jtarget

+ αnull

ˆ 0

−∆prep

(
∥θ(t) − θ0∥2 + ∥θ̇(t)∥2 + ∥m(t)∥2

) dt
T� �� �

Jnull

+ αeffort

ˆ T

−∆prep

∥u(t)∥2 dt
NT� �� �

Jeffort

,

‍�

(4)

https://doi.org/10.7554/eLife.89131
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where ‍θ‍ and ‍̇θ‍ denote the position and velocity of the hand in angular space, ‍∆prep‍ was the duration 
of the delay period, and ‍T ‍ that of the movement period. As ‍Jtarget‍ and ‍Jnull‍ depend on ‍u(t)‍ implicitly 
through Equations 1 and 2, ‍J ‍ is a function of ‍u‍ only.

Importantly, we allowed for inputs within a time window beginning ‍∆prep‍ ms before, and ending ‍T ‍ 
ms after the go cue (set at ‍t = 0‍). Therefore, both preparation-only and movement-only input strate-
gies (Figure 1) could potentially arise, as well as anything in-between.

Note that this control objective assumes that the delay duration (‍∆prep‍) is known ahead of time, 
an assumption that does not hold for many delayed-reaching tasks in monkeys where the delay is 
uncertain. We make this assumption for computational tractability and later discuss extensions to the 
uncertain case (Discussion).

Here, we solved for the optimal control inputs using the iLQR (Li and Todorov, 2004), an efficient 
trajectory optimization algorithm that is well suited for handling the nonlinear nature of both the arm’s 
and the network’s dynamics. As our primary goal was to assess the role of preparation in a normative 
way, we did not study the putative circuit dynamics upstream of M1 that might lead to the computa-
tion of these optimal inputs.

We balanced the various components of our cost functional by choosing ‍αnull‍ and ‍αeffort‍ to qualita-
tively match the behavioral requirements of a typical reach-and-hold task. Specifically, we tuned them 
jointly so as to ensure (i) stillness during preparation and (ii) reach duration of approximately ∼400 ms, 
with the hand staying within 0.5 cm of the target for ∼200 ms after the end of the reach. We ensured 
that the main qualitative features of the solution, i.e., the results presented below, were robust to the 
choice of hyperparameter values within the fairly large range in which the above soft-constraints are 
satisfied (Appendix 1).

Figure 2. Optimal control of the inhibition-stabilized network (ISN). (A) Illustration of the different terms in the control cost function, designed to 
capture the different requirements of the task. ‘Tgt’ marks the time of target onset, ‘Go’ that of the go cue (known in advance), and ‘End’ the end of the 
trial. (B) Time course of the hand velocity (top), optimal control inputs (middle; 10 example neurons), and firing rates (bottom, same neurons) during a 
delayed reach to one of the eight targets shown in Figure 1A. Here, the delay period was set to ‍∆prep = 300‍ ms. Note that inputs arise well before the 
go cue, even though they have no direct effect on behavior at that stage. (C) Dependence of the different terms of the cost function on preparation 
time. All costs are normalized by the total cost at ‍∆prep = 0‍ ms. The inset shows the time course of the hand’s average distance to the relevant target 
when no preparation is allowed (blue) and when preparation is allowed (red). Although the target is eventually reached for all values of ‍∆prep‍, the hand 
gets there faster with longer preparation times, causing a decrease in ‍Jtgt‍ – and therefore also in ‍Jtot‍. Another part of the decrease in ‍Jtot‍ is due to a 
progressively lower input energy cost ‍Jeffort‍. On the other hand, the cost of staying still before the go cue increases slightly with ‍∆prep‍. (D) We define 
the preparation index as the ratio of the norms of the external inputs during preparation and during movement (see text). The preparation index 
measures how much the optimal strategy relies on the preparatory period. As more preparation time is allowed, this is used by the optimal controller 
and more inputs are given during preparation. For longer preparation times, this ratio increases sub-linearly, and eventually settles.

https://doi.org/10.7554/eLife.89131
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Results
Preparation arises as an optimal control strategy
Using the above control framework, we assessed whether the optimal way of performing a delayed 
reach involves preparation.

More concretely, does the optimal control strategy of the model described in Equation 2 involve 
any preparatory inputs during the delay period? For any single optimally performed reach, we found 
that network activity began changing well before the go cue (Figure 2B, bottom), and that this was 
driven by inputs that arose early (Figure 2B, middle). Thus, although preparatory network activity 
cancels in the readout (such that the hand remains still; Figure  2B, top) and therefore does not 
contribute directly to movement, it still forms an integral part of the optimal reach strategy.

To quantify how much the optimal control strategy relied on inputs prior to movement, we defined 
the preparation index as the ratio of input magnitude during the delay period to that during the 
remainder of the trial:

	﻿‍
prep. index =

√√√√
´ 0
−∆prep

∥u(t)∥2dt
´ T

0 ∥u(t)∥2dt
.
‍�

(5)

We found that the preparation index rose sharply as we increased the delay period, and eventually 
plateaued at ∼1.3 for delay periods longer than 300 ms (Figure 2C).

Similarly, the total cost of the task was highest in the absence of preparation, and decreased until it 
also reached a plateau at ‍∆prep ∼ 300‍ ms (Figure 2C, black). This appears somewhat counterintuitive, 
as having a larger ‍∆prep‍ means that both ‍Jeffort‍ and ‍Jnull‍ are accumulated over a longer period. To 
resolve this paradox, we examined each component of the cost function. We found that the overall 
decrease in cost with increasing preparation time was driven by a concurrent decrease in both ‍Jtgt‍ and 

‍Jeffort‍. The former effect was due to the model producing faster reaches (Figure 2C inset; hand posi-
tion for a reach with [red] and without [blue] preparation) while the latter arose from smaller control 
inputs being necessary when preparation was allowed. Together, these results suggest that the pres-
ence of a delay period changes the optimal control strategy for reaching, and increases performance 
in the task.

The results above show that delaying the reach beyond ∼300 ms brings little benefit; in particular, 
all components of the cost stabilize past that point (Figure 2C). We thus wondered what features the 

Figure 3. Conservation of the optimal control strategy across delays. (A) Optimal control inputs to 10 randomly chosen neurons in the model recurrent 
neural network (RNN) (left) and their corresponding firing rates (right) for different preparation times ‍∆prep‍ (ranging from 0 to 800 ms; c.f. labels). 
(B) Projection of the movement-epoch population activity for each of the eight reaches (panels) and each value of ‍∆prep‍ shown in A (darker to lighter 
colors). These population trajectories are broadly conserved across delay times, and become more similar for larger delays.

https://doi.org/10.7554/eLife.89131
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optimally controlled dynamics would display as ‍∆prep‍ increased beyond 300 ms. Would the network 
defer preparation to a last minute surge, or prepare more gently over the entire preparatory window?

Would the network produce the same neural activity patterns? We found that the optimal 
controller made very little use of any preparation time available up to 300 ms before the go cue: 
with longer preparation times, external input continued to arise just a couple of hundred milli-
seconds before movement initiation, and single neuron firing rates remained remarkably similar 
(Figure 3A). This was also seen in PCA projections of the firing rates, which traced out similar trajec-
tories irrespective of the delay period (Figure 3B). We hypothesized that this behavior is due to the 
network dynamics having a certain maximum characteristic timescale, such that inputs that arrive 
too early end up being ‘forgotten’ – they increase ‍Jeffort‍ and possibly ‍Jnull‍ without having a chance 
to influence ‍Jtgt‍. We confirmed this by varying the characteristic time constant (‍τ ‍ in Equation 2). For 
a fixed ‍∆prep‍, we found that for larger (resp. lower) values of ‍τ ‍, the optimal control inputs started 
rising earlier (resp. later) and thus occupied more (resp. less) of the alloted preparatory period 
(Appendix 1—figure 3).

Understanding optimal control in simplified models
Having established that the inhibition-stabilized network (ISN) model of M1 relies on preparatory 
inputs to solve the delayed-reaching task, we next tried to understand why it does so.

To further unravel the interplay between the structure of the network and the optimal control 
strategy, i.e., what aspects of the dynamics of the network warrant preparation, we turned to simpler, 
two-dimensional (2D) models of cortical dynamics. These 2D models are small enough to enable 
detailed analysis (Appendix 1—figure 2), yet rich enough to capture the two dominant dynamical 
phenomena that arise in ISN dynamics: nonnormal amplification (Murphy and Miller, 2009; Goldman, 
2009; Hennequin, 2012) and oscillations (Brunel, 2000; Dayan and Abbott, 2001). Specifically, 
networks of E and I neurons have been shown to embed two main motifs of effective connectivity 
which are revealed by appropriate orthogonal changes of basis: (i) feedforward (‘nonnormal’) connec-
tivity whereby a ‘source mode’ of E-I imbalance feeds into a ‘sink mode’ in which balance is restored, 
and (ii) anti-symmetric connectivity that causes the two populations to oscillate.

To study the impact of each of these prototypical connectivity motifs on movement preparation, we 
implemented them separately, i.e., as two small networks of two units each, with an overall connec-
tivity scale parameter ‍w‍ which we varied (Figure 4A and D; Methods). As both nonnormal and oscil-
latory dynamics arise from linear algebraic properties of the connectivity matrix, we considered linear 
network dynamics for this analysis (‍ϕ(x) = x‍ in Equation 3). Moreover, to preserve the existence of an 
output nullspace in which preparation could in principle occur without causing premature movement, 
we reduced the dimensionality of the motor readout from 2D (where there would be no room left 
for a nullspace) to 1D (leaving a 1D nullspace), and adapted the motor task so that the network now 
had to move the hand position along a single dimension (Figure 4B and E, top). Analogous to the 
previous arm model, we assumed that the hand’s acceleration along this axis was directly given by the 
1D network readout.

We found that optimal control of both dynamical motifs generally led to preparatory dynamics, 
with inputs arising before the go cue (Figure 4B and E, bottom). In the feedforward motif, the amount 
of preparatory inputs appeared to depend critically on the orientation of the readout. When the 
readout was aligned with the sink (brown) mode (Figure 4B, left), the controller prepared the network 
by moving its activity along the source (orange) mode (Figure 4C, left). This placed the network in a 
position from which it had a natural propensity to generate large activity transients along the readout 
dimension (c.f. flow field in Figure 4A); here, these transients were exploited to drive the fast upstroke 
in hand acceleration and throw the hand toward the target location. Note that this strategy reduces 
the amount of input the controller needs to deliver during the movement, because the network itself 
does most of the work.

Nevertheless, in this case the network’s own impulse response was not rich enough to accommo-
date the phase reversal required to subsequently slow the hand down and terminate the movement. 
Optimal control therefore also involved inputs during the movement epoch, leading to a preparatory 
index of ∼0.54 (Figure 4G, dark blue).

When it was instead the source mode that was read out (Figure 4B, right), the only dimension 
along which the system could prepare without moving was the sink mode. Preparing this way is of 

https://doi.org/10.7554/eLife.89131
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no benefit, because the flow field along the sink mode has no component along the source (readout) 
mode.

Thus, here the optimal strategy was to defer control to the movement epoch, during which the 
transient growth of network activity along the readout rested entirely on adequate control inputs. 
This led to a preparation index of ∼0 (Figure 4G, pale green). Although the network did react with 
large activity excursions along the sink mode (Figure 4C, right), these were inconsequential for the 
movement. Importantly, of the two extreme readout configurations discussed above, the first one 
yielded a smaller overall optimal control cost (by a factor of ∼1.5). Thus, at a meta-control level, 

Figure 4. Analysis of the interplay between the optimal control strategy and two canonical motifs of E-I network dynamics: nonnormal transients driven 
by feedforward connectivity (A–C), and oscillations driven by anti-symmetric connectivity (D–F). (A) Activity flow field (10 example trajectories) of the 
nonnormal network, in which a ‘source’ unit (orange) drives a ‘sink’ unit (brown). We consider two opposite readout configurations, where it is either 
the sink (left) or the source (right) that drives the acceleration of the hand. (B) Temporal evolution of the hand position (top; the dashed horizontal line 
indicates the reach target), hand acceleration (middle), and optimal control inputs to the two units (bottom; colors matching panel A), under optimal 
control given each of the two readout configurations shown in A (left vs. right). The dashed vertical line marks the go cue, and the gray bar indicates the 
delay period. While the task can be solved successfully in both cases, preparatory inputs are only useful when the sink is read out. (C) Network activity 
trajectories under optimal control. Each trajectory begins at the origin, and the end of the delay period is shown with a black cross. (D–F) Same as 
(A–C), for the oscillatory network. (G–H) Preparation index (top) and total amount of preparatory inputs (bottom) as a function of the scale parameter 
‍w‍ of the network connectivity, for various readout configurations (color-coded as shown in the top inset). The nonnormal network (top) prepares more 
when the readout is aligned to the most controllable mode, while the amount of preparation in the oscillatory network (bottom) is independent of the 
readout direction. The optimal strategy must balance the benefits from preparatory inputs which allow to exploit the intrinsic network dynamics, with the 
constraint to remain still. This is more difficult when the network dynamics are strong and pushing activity out of the readout-null subspace, explaining 
the decrease in preparation index for large values of ‍w‍ in the oscillatory network.

https://doi.org/10.7554/eLife.89131
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ideal downstream effectors would read out the sink mode, not the source mode. Note that while 
increasing the connectivity strength initially led to more preparation (Figure 4H), a plateau was even-
tually reached for ‍w ≥ 4‍. Indeed, while stronger dynamics initially make preparation more beneficial, 
they also make it more difficult for preparatory activity to remain in the readout nullspace.

We obtained similar insights for oscillatory network dynamics (Figure  4D–F). A key difference 
however was that the flow field was rotationally symmetric such that no distinction could be made 
between ‘source’ and ‘sink’ units – indeed the optimal control strategy yielded the same results (up 
to a rotation of the state space) irrespective of which of the two units was driving the hand’s accelera-
tion (compare left and right panels in Figure 4D–F). Nevertheless, the optimal controller consistently 
moved the network’s activity along the output-null axis during preparation, in such a way as to engage 
the network’s own rotational flow immediately after the go cue (Figure 4F). This rotational flow drove 
a fast rise and decay of activity in the readout unit, thus providing the initial segment of the required 
hand acceleration. The hand was subsequently slowed down by modest movement-epoch control 
inputs which eventually receded, leading to a preparation index of ∼0.58. Interestingly, the prepara-
tion index showed a decrease for very large ‍w‍ (Figure 4G), which did not reflect smaller preparatory 
inputs (Figure  4H) but rather reflected the larger inputs that were required during movement to 
cancel the fast oscillations naturally generated by the network.

The above results highlight how the optimal control strategy is shaped by the dynamical motifs 
present in the network. Crucially, we found that the optimal way to control the movement depends 
not only on the strength and flow of the internal network dynamics, but also on their interactions with 
the readout.

Figure 5. Predicting the preparation index from the observability of the output nullspace (α) and the controllability of the readout (β, see details in text). 
(A) Illustration of the observability of the output nullspace in a synthetic two-dimensional system. The observability of a direction is characterized by how 
much activity (integrated squared norm) is generated along the readout by a unit-norm initial condition aligned with that direction. The top and bottom 
panels show the choices of readout directions (dotted black) for which the corresponding nullspace (dotted orange) is most (maximum α) and least 
(minimum α) observable, respectively. Trajectories initialized along the null direction are shown in solid orange, and their projections onto the readout 
are shown in the inset. (B) Illustration of the controllability of the readout in the same 2D system as in (A). To compute controllability, the distribution 
of activity patterns collected along randomly initialized trajectories is estimated (heatmap); the controllability of a given direction then corresponds 
to how much variance it captures in this distribution. Here, the network has a natural propensity to generate activity patterns aligned with the dashed 
white line (‘most controllable’ direction). The readout directions are repeated from panel A (dotted black). The largest (resp. smallest) value of β would 
by definition be obtained when the readout is most (resp. least) controllable. Note the tradeoff in this example: the choice of readout that maximizes 

α (top) does not lead to the smallest β. (C) The values of α and β accurately predict the preparation index (‍R2 = 0.93‍) for a range of high-dimensional 

inhibition-stabilized networks (ISNs) (maroon dots) with different connectivity strengths and characteristic timescales (Methods). The best fit (after 
z-scoring) is given by ‍f(α,β) = (16.94 ± 0.02)α− (15.97 ± 0.02)β‍ (mean ± s.e.m. were evaluated by boostrapping). This confirms our hypothesis that 
optimal control relies more on preparation when ‍α‍ is large and β is small. Note that α and β alone only account for 34.8% and 30.4% of the variance in 
the preparation index, respectively (inset). Thus, α and β provide largely complementary information about the networks’ ability to use inputs, and can 
be combined into a very good predictor of the preparation index. Importantly, even though this fit was obtained using ISNs only, it still captures 69% of 
preparation index variance across networks from other families (blue dots; Methods).

https://doi.org/10.7554/eLife.89131
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Control-theoretic properties predict the amount of preparation
Our investigation of preparation in a low-dimensional system allowed us to isolate the impact of core 
dynamical motifs, and highlighted how preparation depends on the geometry of the flow field, and 
its alignment to the readout. However, these intuitions remain somewhat qualitative, making them 
difficult to generalize to our high-dimensional ISN model.

To quantify the key criteria that appear important for preparation, we turned to tools from control 
theory. We reasoned that, for a network to be able to benefit from preparation and thus exhibit a 
large preparation index, there must be some advantage to using early inputs that do not immediately 
cause movement, relative to using later inputs that do. We hypothesized that this advantage could be 
broken down into two criteria. First, there must exist activity patterns that are momentarily output-
null (i.e. do not immediately cause movement) yet seed output-potent dynamics that subsequently 
move the arm. The necessity of this criterion was obvious in the 2D nonnormal network, which did not 
display any preparation when its nullspace was aligned with its ‘sink’ mode. In the language of control 
theory, this criterion implies that the nullspace of the readout must be sufficiently ‘observable’ – we 
captured this in a scalar quantity α (Methods; Kao and Hennequin, 2019; Skogestad, 2007). Second, 
there must be a sizeable cost to performing the movement in an entirely input-driven manner without 
relying on preparation. In other words, the network should be hard to steer along the readout direc-
tion, i.e., the readout must be of limited ‘controllability’ – we captured this in another scalar quantity 
β (Methods).

We illustrate the meaning of these two metrics in Figure 5A and B for a 2D example network 
that combines nonnormality and oscillations. We show two extreme choices of readout direction 
(Figure 5A, dashed black): the one that maximizes α (top) and the one that minimizes it (bottom). In 
the first case, the readout nullspace (dashed orange) is very observable, i.e., trajectories that begin 
in the nullspace evolve to produce large transients along the readout (solid orange and inset). In the 
second case, the opposite is true. For each case, we also assessed the controllability of the readout 
(β). The controllability of a direction corresponds to how much variance activity trajectories exhibit 
along that direction, when they are randomly and isotropically initialized (Figure 5B). In other words, 
a very controllable direction is one along which network trajectories have a natural tendency to evolve.

We then assessed how well ‍α‍ and ‍β‍ could predict the preparation index of individual networks. 
In 2D networks, we found that a simple function that grows with ‍α‍ and decreases with ‍β‍ could accu-
rately predict preparation across thousands of networks (Appendix 1 - Section 3 ‘Additional results in 
the 2D system’). To assess whether these insights carried over to high-dimensional networks, we then 
generated a range of large ISNs with parameterically varied connectivity strengths and decay times-
cales (Methods). We then regressed the preparation index against the values of ‍α‍ and ‍β‍ computed for 
each of these networks (as controllability and observability are only defined for linear networks, we set 

‍ϕ(x) = x‍ for this investigation). We found that a simple linear mapping, ‍prep. index = k0 + kαα + kββ‍, 
with parameters fitted to one half of the ISNs, accurately predicted the preparation indices of the 
other half (Figure 5C; ‍R2 = 0.93‍, fivefold cross-validated). Interestingly, we observed that although ‍α‍ 
and ‍β‍ (which are both functions of the network connectivity) were highly correlated across different 
networks, discarding either variable in our linear regression led to a significant drop in ‍R2‍ (Figure 5C, 
inset). Importantly, it was their difference that best predicted the preparation index (‍kα > 0‍ and ‍kβ < 0‍), 
consistent with our hypothesis that the preparation index is a relative quantity which increases as the 
nullspace becomes more observable, but decreases as readout dimensions become more controllable.

We were able to confirm the generality of this predictive model by generating networks with other 
types of connectivity (oscillatory networks, and networks with unstructured random weights), which 
displayed dynamics very different from the ISNs (see Appendix 1—figure 6). Interestingly, despite the 
different distribution of ‍α‍ and ‍β‍ parameters in those networks, we could still capture a large fraction 
of the variance in their preparation index (‍R2 = 0.69‍) using the linear fit obtained from the ISNs alone.

This confirms that ‍α‍ and ‍β‍ can capture information about the networks’ dynamics in a universal 
manner.

Note that we do not make any claims about the specific functional form of the relationship between 
‍α‍, ‍β‍, and the preparation index. Rather, we claim that there should be a broad trend for the prepara-
tion index to increase with ‍α‍ and decrease with ‍β‍, and we acknowledge that this relationship could in 
general be nonlinear. Indeed, in 2D networks, we found that the preparation index was in fact better 
predicted by the ratio of ‍α‍ over ‍β‍ than by their difference (Appendix 1—figure 5).

https://doi.org/10.7554/eLife.89131
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Finally, as the above results highlight that the amount of preparation depends on the alignment 
between internal dynamics and readout, one may wonder how much our conclusions depend on our 
use of a random unstructured readout matrix. First, we note that the effect of the alignment on prepa-
ration index is greatly amplified in the low-dimensional networks (Figure 4G). In high-dimensional 
networks, the null space of a random readout matrix ‍C‍ will have some overlap with the most observ-
able directions of the dynamics, thus encouraging preparation. Second, we performed additional 
simulations where we meta-optimized the readout so as to minimize the average optimal cost per 
movement. The resulting system is more observable overall (as it allows the network to solve the task 
at a lower cost) but relies just as much on preparation (Appendix 1—figure 7).

Modeling movement sequences
Having gained a better understanding of what features lead a network to prepare, we next set out 
to assess whether optimal control could also explain the neural preparatory processes underlying the 
generation of movement sequences. We revisited the experimental studies of Zimnik and Church-
land, 2021, where monkeys were trained to perform two consecutive reaches. Each trial started with 
the display of both targets, followed by an explicitly enforced delay period before the onset of the 
first reach. A distinction was made between ‘double’ reaches in which a pause was enforced between 
reaches, and ‘compound’ reaches in which no pause was required. This study concluded that, rather 
than the whole movement sequence unrolling from a single preparatory period, each reach was 
instead successively seeded by its own preparatory activity.

Here, we asked whether such an independent, successive preparation strategy would arise as an 
optimal control solution, in the same way that single-reach preparation did. Importantly, we could 
not answer this question by directly examining network inputs as we did for single reaches. Indeed, 
any network input observed before the second reach could be contributing either to the end of the 
first movement, or to the preparation of the next. In fact, the issue of teasing apart preparatory vs. 
movement-related activity patterns also arose in the analysis of the monkey data. To address this, 
Zimnik and Churchland, 2021, exploited the fact that monkey M1 activity just before and during 
single reaches is segregated into two distinct subspaces. Thus, momentary activity patterns (during 
either single or double reaches) can be unambiguously labeled as preparatory or movement-related 
depending on which of the two subspaces they occupied. We performed a similar analysis (Methods) 
and verified that preparatory and movement activity patterns in the model were also well segregated 
in their respective subspaces in the single-reach task (Figure 6A and B). We then assessed the occu-
pancy of the preparatory subspace during double reaching in the model, and took this measure as a 
signature of preparation.

To model optimal control of a double reach, we modified our cost functional to account for the 
presence of two consecutive targets (see Methods). We considered the same set of eight targets as 
in our single-reach task, and modeled all possible combinations of two targets (one example shown in 
Figure 6). We set the hyper-parameters of the cost function such that both targets could be reached by 
the resulting optimal controller, in a way that matched important qualitative aspects of the monkeys’ 
behavior (in particular, such that both reaches were performed at similar velocities, with the second 
reach lasting slightly longer on average; Figure 6B and C, top).

We projected the network activity onto preparatory and movement subspaces identified using 
single and double reaches activity (Methods). For double reaches with a long (600 ms) pause, the 
preparatory subspace was transiently occupied twice, with the two peaks occurring just before the 
onset of each movement in the sequence (Figure 6B, bottom).

Notably, the occupancy during the ‘compound’ reach (without pause; Figure 6C) also started rising 
prior to the first movement before decaying very slightly and peaking again before the second reach, 
indicating two independent preparatory events. This is somewhat surprising, given that a movement 
sequence can also be viewed as a single ‘compound’ movement, for which we have shown previously 
a unique preparatory phase is sufficient (Figure 2). In our model, this behavior can be understood to 
arise from the requirement that the hand stop briefly at the first target. To produce the second reach, 
the hand needs to accelerate again, which requires transient re-growth of activity in the network. 
Given that the network’s dynamical repertoire exhibits limited timescales, this is most easily achieved 
by reinjecting inputs into the system.

https://doi.org/10.7554/eLife.89131
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In summary, our results suggest that the ‘independent’ preparation strategy observed in monkeys 
is consistent with the optimal control of a two-reach sequence. While Zimnik and Churchland, 2021, 
showed that RNNs trained on this task used this ‘independent’ strategy, this was by design as the 
network was only cued for the second reach after the first one had started. In addition to replicating 
this proof of concept that it is possible to prepare while moving, our model also shows how and why 
independent preparation might arise as an optimal control solution.

Figure 6. The model executes a sequence of two reaches using an independent strategy. (A) Hand velocity during one of the reaches, with the 
corresponding hand trajectory shown in the inset. (B–C) We identified two six-dimensional orthogonal subspaces, capturing 79% and 85% of total 
activity variance during single-reach preparation and movement respectively. (B) First principal component of the model activity for the eight different 
reaches projected into the subspaces identified using preparatory (top) and movement-epoch (bottom) activity. (C) Occupancy (total variance 
captured across movements) of the orthogonalized preparatory and movement subspaces, in the model (top) and in monkey motor cortical activity 
(bottom; reproduced from Lara et al., 2018, for monkey Ax). We report mean ± s.e.m., where the error is computed by bootstrapping from the 
neural population as in Lara et al., 2018. We normalize each curve separately to have a maximum mean value of 1. To align the model and monkey 
temporally, we re-defined the model’s ‘movement onset’ time to be 120 ms after the model’s hand velocity crossed a threshold – this accounts for 
cortico-spinal delays and muscle inertia in the monkey. Consistent with Lara et al., 2018’s monkey primary motor cortex (M1) recordings, preparatory 
subspace occupancy in the model peaks shortly before movement onset, rapidly dropping thereafter to give way to pronounced occupancy of the 
movement subspace. Conversely, there is little movement subspace occupancy during preparation. (D) Behavioral (top) and neural (middle) correlates 
of the delayed reach for one example of a double reach with an enforced pause of 0.6 s. The optimal strategy relies on preparatory inputs preceding 
each movement. (E) Same as (C), for double reaches. The onsets of the monkey’s two reaches are separately aligned to the model’s using the same 
convention as in (C). The preparatory subspace displays two clear peaks of occupancy. This double occupancy peak is also observed in monkey neural 
activity (bottom; reproduced from Zimnik and Churchland, 2021, with the first occupancy peak aligned to that of the model). (F) Same as (D), for 
compound reaches with no enforced pause in-between. Even though the sequence could be viewed as a single long movement, the control strategy 
relies on two periods of preparation. Here, inputs before the second reach are used to reinject energy into the system after slowing down at the end of 
the first reach. (G) Even though no explicit delay period is enforced in-between reaches during the compound movement, the preparatory occupancy 
rises twice, before the first reach and once again before the second reach. This is similar to observations in neural data (bottom; reproduced from 
Zimnik and Churchland, 2021).

https://doi.org/10.7554/eLife.89131
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Discussion
In this work, we proposed a model for the dynamics of motor cortex during a delayed-reaching task 
in non-human primates. Unlike previous work, we treated M1 as an input-driven nonlinear dynamical 
system, with generic connectivity not specifically optimized for the task, but with external inputs 
assumed to be optimal for each reach.

Motivated by a large body of evidence suggesting that preparation is useful before delayed 
reaches (Churchland et al., 2010; Lara et al., 2018; Afshar et al., 2011; Shenoy et al., 2013), but 
also evidence for thalamic inputs being necessary for accurate movement execution (Sauerbrei et al., 
2020), we used this model to investigate whether and why neural circuits might rely on motor prepa-
ration during delayed-reaching tasks. Interestingly, preparation arose as an optimal control strategy in 
our model, with the optimal solution to the task relying strongly on inputs prior to movement onset. 
Moreover, the benefits of preparation were dependent on the network connectivity, with prepara-
tion being more prevalent in networks whose rich internal dynamics can be advantageously seeded 
by early external inputs. We were able to quantify this intuition with a predictive model relating the 
dynamical response properties of a network to the amount of preparation it exhibits when controlled 
optimally.

Finally, we found that prominent features of the monkeys’ neural activity during sequential reaches 
arose naturally from optimal control assumptions. Specifically, optimally controlled networks relied on 
two phases of preparation when executing sequences of two reaches, corroborating recent exper-
imental observations in monkey M1 (Zimnik and Churchland, 2021). Together, our results provide 
a normative explanation for the emergence of preparatory activity in both single and sequential 
reaching movements.

In recent years, task-optimized RNNs have become a very popular tool to model neural circuit 
dynamics. Classically, those models incorporate only those inputs that directly reflect task-related 
stimuli (e.g. motor target, go cue, etc.). This requires assumptions about the form of the inputs, such 
as modeling them as simple step functions active during specific task epochs. However, as local neural 
circuits are part of a wider network of brain areas, a large portion of their inputs come from other brain 
areas at intermediate stages of the computation and may therefore not be directly tied to task stimuli. 
Thus, it is not always obvious what assumptions can reasonably be made about the inputs that drive 
the circuit’s dynamics.

Our optimization framework, which does not require us to make any specific assumptions about 
when and how inputs enter the network (although it does allow to incorporate prior information in the 
form of constraints), allows to bypass this problem and to implicitly model unobserved inputs from 
other areas. Importantly, our framework allows to ask questions – such as ‘why prepare’ – that are diffi-
cult to phrase in standard input-driven RNN models. We note, however, that in the investigation we 
have presented here, the lack of imposed structure for the inputs also implied that the model could 
not make use of mechanisms known to contribute certain aspects of preparatory neural activity. For 
example, our model did not exhibit the usual visually driven response to the target input, nor did it 
have to use the delay epoch to keep such a transient sensory input in memory (Guo et al., 2014; Li 
et al., 2015).

The main premise of our approach is that one can somehow delineate the dynamical system 
which M1 implements, and attribute any activity patterns that it cannot autonomously generate to 
external inputs. Just where the anatomical boundary of ‘M1 dynamics’ lie – and therefore where 
‘external inputs’ originate – is unclear, and our results must be interpreted with this limitation in mind. 
Operationally, previous works in reaching monkeys have shown that M1 data can be mathematically 
well described by a dynamical system that appears largely autonomous during movement. These 
works have emphasized that those abstract dynamics, while inferred from M1 data alone, may not 
be anatomically confined to M1 itself. Instead, they may involve interactions between multiple brain 
areas, and even possibly parts of the body through delayed sensory feedback. Here, we too tend to 
think of our M1 models in this way, and therefore attribute external input to brain areas that are one 
step removed from this potentially broad motor-generating network. Nevertheless, a more detailed 
multi-area model of the motor-generating circuitry including, e.g., spinal networks (Prut and Fetz, 
1999) could enable more detailed comparisons to multi-region neural data. In a similar vein, our 
model makes no distinction between external inputs that drive movement-specific planning compu-
tations, and other types of movement-unspecific inputs that might drive the transition from planning 

https://doi.org/10.7554/eLife.89131
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to execution (e.g. ‘trigger’ inputs, Kaufman et  al., 2016). Incorporating such distinctions (e.g. by 
temporally modulating the cost in individual input channels depending on specific task events, or by 
having separate channels for movement-unspecific inputs) might allow to ask more targeted questions 
about the role and provenance of external inputs.

A major limitation of our study is the specific choice of a quadratic penalty on the external input in 
our control objective. While there are possible justifications for such a cost (e.g. regularization of the 
dynamics to promote robustness of the control solution), its use here is mainly motivated by math-
ematical tractability. Other costs might be conceivably more relevant and might affect our results. 
For example, studies of motor cortex have long thought of its dynamics as converting relatively 
simple inputs reflecting high-level, temporally stable plans, into detailed, temporally varying motor 
commands. Thus, a potentially relevant form of a penalty for external inputs would be their temporal 
complexity. Such a penalty would have the advantage of encouraging a clearer separation between 
the inputs and the RNN activations; indeed, in our current model, we find that the optimal controls 
themselves have a temporal structure, part of which could be generated by a dynamical system and 
thus potentially absorbed into our ‘M1 dynamics’. To address this, we note that our optimization 
framework can be adjusted to penalize the magnitude of the temporal derivative of the external input 

‍∥u̇∥2
‍, instead of ‍∥u∥2

‍. We experimented with this extension and found qualitatively different optimal 
inputs and M1 firing rates, which evolved more slowly and plateaued for sufficiently long preparation 
(Appendix 1—figure 8A-D) – this is in fact more consistent with monkey M1 data (e.g. Elsayed et al., 
2016). Despite these qualitative difference in the specific form of preparation, our main conclusion 
stands that input-driven preparation continues to arise as an optimal solution (Appendix 1—figure 
8E-F).

Another important assumption we have made is that the optimal controller is aware of the dura-
tion of the delay period. While this made solving for the optimal control inputs easier, it made our 
task more akin to a self-initiated reach (Lara et al., 2018) than to a typical delayed reach with unpre-
dictable, stochastic delay durations. Future work could revisit this assumption. As a first step toward 
this, we now briefly outline pilot experiments in this direction. We used an exponential distribution 
of delays (with mean 300 ms) and devised two modified versions of our model that dealt with the 
resulting uncertainty in two different ways. In the first strategy, at any time during preparation, the 
model would estimate the most probable time-to-go-cue given that it hadn’t arrived yet (in this case, 
this is always 300 ms in the future) and would plan an optimal sequence of inputs accordingly. In the 
second strategy, the network would prudently assume the earliest possible go cue (i.e. the next time 
step) and plan accordingly. In both cases, only the first input in the optimal input sequence would be 
used at each step, and complete replanning would follow in the next step, as the model re-assesses 
the situation given new information (i.e. whether the actual go cue arrived or not; this is a form of 
‘model predictive control’, Rawlings et al., 2017). Preparatory inputs arose in both settings, but we 
found that only the latter strategy led to activity patterns that plateaued early during preparation (see 
Appendix 1—figure 9).

Throughout the main text, we have referred to ‍∆prep‍ as the task-enforced delay period. However, 
a more accurate description may be that it corresponds to a delay period determined by an internally 
set go signal, which can lag behind the external go cue. While we would not expect a large difference 
between those two signals, the way in which we define ‍∆prep‍ becomes important as it approaches 0 
ms (limit of a quasi-automatic reach; Lara et al., 2018). Indeed, in this limit, our model exhibits almost 
no activity in the preparatory subspace (as defined in Figure 6 – see further analyses in Appendix 1—
figure 10). In contrast, monkey M1 activity was found to transiently occupy the preparatory subspace 
even in this case (Lara et al., 2018). Evidence for a delay between the earliest possible response to 
sensory cues and the trigger of movement was also observed in Kaufman et al., 2016, as well as in 
human behavioral studies (Haith et al., 2016). Thus, one may wish to explicitly incorporate this addi-
tional delay in the model in order to make it more realistic. Note however that Haith et al., 2016, 
showed that this internal delay could be shortened without affecting movement accuracy, suggesting 
that part of the processing that empirically occurs in-between the internal and external go cues may 
not be necessary, but rather reflect a decoupling between the end of preparation and the trigger of 
movement. This may be important to consider when attempting to compare the model to, e.g., reac-
tion times from behavioral experiments.

https://doi.org/10.7554/eLife.89131
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Dynamical systems have a longstanding history as models of neural populations (Dayan and 
Abbott, 2001). However, understanding how neural circuits can perform various computations 
remains a challenging question.

Recently, there has been increased interest in trying to understand the role of inputs in shaping 
cortical dynamics. This question has been approached both from a data-driven perspective (Malonis 
et al., 2021; Soldado-Magraner et al., 2023) and in modeling work with, e.g., Driscoll et al., 2022, 
showing how a single network can perform different tasks by reorganizing its dynamics under the 
effect of external inputs and Dubreuil et al., 2021, relating network structure to the ability to process 
contextual inputs. To better understand how our motor system can generate flexible behaviors 
(Logiaco et al., 2021; Stroud et al., 2018), and to characterize learning on short timescales (Sohn 
et al., 2021; Heald et al., 2023), it is important to study how network dynamics can be modulated by 
external signals that allow rapid adaptation to new contexts without requiring extensive modifications 
of the network’s connectivity. The optimal control approach we proposed here offers a way to system-
atically perform such evaluations, in a variety of tasks and under different assumptions regarding how 
inputs are allowed to impact the dynamics of the local circuit of interest. While our model’s predictions 
will depend on, e.g., the choice of connectivity or the design of the cost function, an exciting direction 
for future work will be to obtain those parameters in a data-driven manner, for instance using recently 
developed methods to infer dynamics from data (Pandarinath et al., 2018; Schimel et al., 2022), and 
advances in inverse reinforcement learning and differentiable control (Amos et al., 2018) to infer the 
cost function that behavior optimizes. These could additionally be combined with more biomechani-
cally realistic effectors, such as the differentiable arm models from Codol et al., 2023.

Methods
Experimental model and subject details
In Figure 1, we showed data from two primate datasets that were made available to us by Mark 
Churchland, Matthew Kaufman, and Krishna Shenoy. Details of animal care, surgery, electrophysio-
logical recordings, and behavioral task have been reported previously in Churchland et al., 2012; 
Kaufman et al., 2014 (see in particular the details associated with the J and N ‘array’ datasets). The 
subjects of this study, J and N, were two adult male macaque monkeys (Macaca mulatta). The animal 
protocols were approved by the Stanford University Institutional Animal Care and Use Committee. 
Both monkeys were trained to perform a delayed-reaching task on a fronto-parallel screen. At the 
beginning of each trial, they fixated on the center of the screen for some time, after which a target 
appeared on the screen. After a variable delay period (0–1000 ms), a go cue appeared instructing the 
monkeys to reach toward the target. Recordings were made in the PMd cortex and in the M1 using a 
pair of implanted 96-electrode arrays. In Figure 6, we also reproduced data from Lara et al., 2018, 
and Zimnik and Churchland, 2021. Details of animal care, surgery, electrophysiological recordings, 
and behavioral task for those data can be found in the Methods section of the respective papers.

Arm model
To simulate reaching movements, we used the planar two-link arm model described in Li and Todorov, 
2004. The two links have lengths ‍L1‍ and ‍L2‍, masses ‍M1‍ and ‍M2‍, and moments of inertia ‍I1‍ and ‍I2‍, 
respectively. The lower arm’s center of mass is located a distance ‍D2‍ from the elbow. By considering 
the geometry of the upper and lower limb, the position of the hand and elbow can be written as 
vectors ‍yh(t)‍ and ‍ye‍ given by

	﻿‍

yh =


 L1 cos θ1 + L2 cos(θ1 + θ2)

L1 sin θ1 + L2 sin(θ1 + θ2)


 and

ye =


 L1 cos θ1

L1 sin θ1


 .

‍�

(6)

The joint angles ‍θ = (θ1; θ2)T
‍ evolve dynamically according to the differential equation

	﻿‍ m(t) = M(θ)θ̈ + X (θ, θ̇) + Bθ̇,‍� (7)

https://doi.org/10.7554/eLife.89131
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where ‍m(t)‍ is the momentary torque vector, ‍M‍ is the matrix of inertia, ‍X ‍ accounts for the centripetal 
and Coriolis forces, and ‍B‍ is a damping matrix representing joint friction. These parameters are given 
by

	﻿‍

M(θ) =


 a1 + 2a2 cos θ2 a3 + a2 cos θ2

a3 + a2 cos θ2 a3




‍�
(8)

	﻿‍

X (θ, θ̇) = a2 sin θ2


 −θ̇2(2θ̇1 + θ̇2)

θ̇1
2




‍�
(9)

	﻿‍

B =


 0.05 0.025

0.025 0.05




‍�
(10)

with ‍a1 = I1 + I2 + M2L2
1‍, ‍a2 = M2L1D2‍, and ‍a3 = I2‍.

iLQR algorithm
Throughout this work, we used the iLQR algorithm (Li and Todorov, 2004) to find the locally optimal 
inputs that minimize our cost function. iLQR is a trajectory optimization algorithm that can handle 
nonlinear dynamics and non-quadratic costs. iLQR works in an iterative manner, by linearizing the 
dynamics and performing a quadratic approximation of the cost at each iteration, thus turning the 
control problem into a local linear quadratic problem whose unique solution is found using LQR 
(Kalman, 1960). The LQR solver uses a highly efficient dynamic programming approach that exploits 
the sequential structure of the problem. Our implementation of iLQR (Schimel et al., 2021) followed 
from Li and Todorov, 2004, with the difference that we performed regularization of the local curva-
ture matrix as recommended by Tassa, 2011.

Generation of the high-dimensional readouts and networks
Generation of inhibitory-stabilized networks
Simulations in Figures 1, 3, 5, and 6 were conducted using ISNs. Those were generated according 
to the procedure described in Hennequin et al., 2014, with minor adjustments. In brief, we initialized 
strongly connected chaotic networks with sparse and log-normally distributed excitatory weights, 
and stabilized them through progressive ‍H2‍-optimal adjustments of the inhibitory weights until the 
spectral abscissa of the connectivity matrix fell below 0.8. This yielded strongly connected but stable 
networks with a strong degree of nonnormality. When considering a larger range of ISNs (Figure 5), 
we independently varied both the variance of the distribution of initial excitatory weights and the 
spectral abscissa below which we stopped optimizing the inhibitory weights.

Generation of additional networks in Figure 5
To assess the generality of our findings in Figure 5, we additionally generated randomly connected 
networks by sampling each weight from a Gaussian distribution with ‍σ = R/

√
N ‍, where the spectral radius 

‍R‍ was varied between 0 and 0.99. We also sampled skew-symmetric networks by drawing a random 
network ‍S‍ as above, and setting ‍W = (S − ST)/2‍. We varied the radius ‍R‍ of the ‍S‍ matrices between 
0 and 5. Moreover, we considered diagonally shifted skew-symmetric networks ‍W = (S − ST)/2 + λI‍, 
where ‍λ‍ denotes the real part of all the eigenvalues and was varied between 0 and 0.8.

The elements of the readout matrix ‍C‍ mapping neural activity onto torques were drawn from a 
normal distribution with zero mean and standard deviation ‍σC = 0.05/

√
N ‍. This was chosen to ensure 

that firing rates of standard deviation on the order of 30 Hz would be decoded into torques of stan-
dard deviation ∼2 N/m, which is the natural variation required for the production of the reaches we 
considered.

https://doi.org/10.7554/eLife.89131
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Details of Figure 4
To more easily dissect the phenomena leading to the presence or absence of preparation, we turned 

to 2D linear networks in Figure 4. We modeled nonnormal networks with a connectivity 

‍

W=


0 0

w 0



‍

 

and oscillatory networks with connectivity 

‍

W=


0 −w

w 0



‍

. The activity of the two units evolved as

	﻿‍ τ ẋ(t) = −x(t) + Wx(t) + u(t)‍� (11)

and directly influenced the acceleration of a 1D output ‍y(t)‍ according to

	﻿‍ ÿ(t) = Cix(t)‍� (12)

where 
‍
Ci =

[
cos θC sin θC

]
‍
 was a row matrix reading the activity of the network along an angle ‍θC‍ 

from the horizontal (first unit). Our setup aimed to mirror the reaching task studied in this work. We 
thus optimized inputs to minimize the following cost function:

	﻿‍

J
[
u
]

=:
ˆ T

0
∥y(t) − y⋆∥2 t2

T2
dt
T� �� �

Jtarget

+αnull

ˆ 0

−∆prep

(
∥y(t)∥2 + ∥ẏ(t)∥2 + ∥ÿ∥2

) dt
T� �� �

Jnull

+αeffort

ˆ T

−∆prep

∥u(t)∥2 dt
2T� �� �

Jeffort

.

‍�

(13)

where ‍y
⋆ = 20‍ was the target position.

Computing networks’ controllability and observability to predict 
preparation in Figure 5
As part of our attempt to predict how much a network will prepare given its intrinsic properties only, 
we computed the prospective potency of the nullspace α, and the controllability of the readout β. For 
a stable linear dynamical system described by

	﻿‍
dx
dt

= Ax(t) + Bu(t)
‍�

(14)

	﻿‍ y(t) = Cx(t)‍� (15)

the system’s observability Gramian ‍Q‍ can be computed as the unique positive-definite solution of the 
Lyapunov equation

	﻿‍ ATQ + QA + CTC = 0.‍� (16)

The prospective potency of the nullspace ‍C⊥‍ is then defined as

	﻿‍
α ≜ Tr(C⊥QC⊥T

)
N − 2 ‍

.
�

(17)

Note that this measure ‍α‍ is invariant to the specific choice of basis for the nullspace ‍C⊥‍. Similarly, to 
assess the controllability of the readout, we first computed the controllability Gramian of the system 
‍P‍, which is the solution of

	﻿‍ AP + PAT + BBT = 0,‍� (18)

with ‍B = I‍ in our system. We then defined the controllability of the readout as

	﻿‍
β ≜ Tr(CPCT)

2
.
‍� (19)

https://doi.org/10.7554/eLife.89131
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Details of Figure 6
Cost function
We modeled sequences of reaches by modifying our cost functional to account for the presence of 
two targets, as

	﻿‍

J
[
u
]

=
ˆ ∆(1)

move+τ

0
∥θ(t) − θ⋆1∥

2 t2

T2 dt
� �� �

J (1)
target

+ αpause

ˆ ∆(1)
move+τ

∆(1)
move

∥θ̇(t)∥2dt
� �� �

Jpause ‍�

(20)

	﻿‍

+
ˆ T

∆(1)
move+τ

∥θ(t) − θ⋆2∥
2 (t −∆(1)

move − τ )2

T2 dt
︸ ︷︷ ︸

J (2)
target

+ αnull

ˆ 0

−∆prep

∥θ(t) − θ0∥2 + ∥θ̇(t)∥2 + ∥m(t)∥2dt
︸ ︷︷ ︸

Jnull

+ αeffort

ˆ T

−∆prep

∥u(t)∥2dt
︸ ︷︷ ︸

Jeffort ‍�

(21)

where ‍τ ‍ describes how long the monkey’s hands had to stay on the intermediate target before 
performing its second reach. We used ‍τ = 600 ms‍ and ‍αpause = 100‍ for the double reaches in which a 
pause was explicitly enforced during the experiment. For compound reaches, the experiment did not 
require monkeys to stop for any specific duration. However, to ensure that the hand stopped on the 
target in the model (as it does in experiments when monkeys touch the screen) rather than fly through 
it, we set ‍τ = 6 ms‍ and ‍αpause = 100‍ when modeling compound reaches.

Preparatory subspace analysis
Lara et al., 2018, proposed an analysis to identify preparatory and movement-related subspaces. This 
analysis allows to assess when the neural activity enters those subspaces, independently of whether it 
is delay-period or post-go-cue activity.

The method identifies a set of preparatory dimensions and a set of movement dimensions, 
constrained to be orthogonal to one another, as in Elsayed et  al., 2016. These are found in the 
following manner: the trial-averaged neural activity is split between preparatory and movement-
related epochs, yielding two matrices of size ‍N × MT ‍, where ‍N ‍ is the number of neurons, ‍T ‍ is the 
number of time bins, and ‍M ‍ is the number of reaches. One then optimizes the ‍Wprep ∈ RN×dprep

‍ and 

‍Wmov ∈ RN×dmov‍ (where ‍dprep‍ and ‍dmov‍ are the predefined dimensions of the two subspaces) such that 
the subspaces respectively capture most variance in the preparatory and movement activities, while 
being orthogonal to one another. This is achieved by maximizing the following objective:

	﻿‍
C(Wprep, Wmov) = 1

2

(
Tr(WT

prepCprepWprep)
Zprep(dprep)

+ Tr(WT
movCmovWmov)

Zmov(dmov)

)

‍�
(22)

where ‍Cprep/mov‍ are the covariance matrices of the neural activity during the preparatory and move-
ment epochs, respectively. The normalizing constant ‍Zprep(dprep)‍ denotes the maximum amount of 
variance in preparatory activity that can be captured by any subspace of dimension ‍dprep‍ (this is found 
via SVD), and similarly for ‍Zmov(dmov)‍. The objective is maximized under the constraints ‍W

T
prepWmov = 0‍, 

‍W
T
prepWprep = I ‍, and ‍W

T
movWmov = I ‍. We set subspace dimensions ‍dprep = dmov = 6‍, although our results 

were robust to this choice.
The occupancy of the preparatory subspace was defined as

https://doi.org/10.7554/eLife.89131
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	﻿‍
occupancyprep(t) =

dprep∑
k=1

varθ(xprep
k (t, θ))

‍�

and that of the movement subspace was defined as

	﻿‍
occupancymov(t) =

dmov∑
k=1

varθ(xmov
k (t, θ)).

‍�

For single reaches, we defined preparatory epoch responses as the activity in a 300 ms window 
before the end of the delay period, and movement-epoch responses as the activity in a 300 ms 
window starting 50 ms after the go cue. We normalized all neural activity traces using the same 
procedure as Churchland et al., 2012; Elsayed et al., 2016. For double reaches, we followed Zimnik 
and Churchland, 2021, and used neural activity traces from both single reaches and the first reach 
of double-reach sequences. Note that we did not include any activity from the second reaches in the 
sequence, or from compound reaches, when defining the subspaces.

Parameter table
Parameters used for the various simulations.

Symbol Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 6 Unit Description

‍L1‍ 30 – 30 cm

Length of the  
upper arm  
in model

‍L2‍ 30 - 30 cm
Length of the  
forearm in model

‍I1‍ 0.025 – 0.025 kg/m–2
Inertia of  
upper arm

‍I2‍ 0.045 - 0.045 kg/m–2 Inertia of forearm

‍M1‍ 1.4 – 1.4 kg
Mass of  
upper arm

‍M2‍ 1.0 - 1.0 kg Mass of forearm

‍D2‍ 16 – 16 cm

Elbow to lower  
arm center of  
mass distance

‍r ‍ 12 20 12 cm
Radius of the  
target reach

‍µh‍ 20 0 – mV
Mean baseline  
firing rate

‍σh‍ 5 0 - mV

s.t.d of the  
baseline firing  
rate

‍αeffort‍ 5E-7 1E-5 5E-7 –
Coeff. of  
input cost

‍αnull‍ 1 1 10 -

Coeff. of cost  
of moving  
during the delay

‍αpause‍ - 100 –

Coeff. of cost
of moving  
between  
reaches

‍τ ‍ 150 ms
Single-neuron  
time constant

‍∆
(1)
move‍ – 300 ms

Duration of the  
first reach

‍∆prep‍ 500 300 - 300 500 ms Delay period time

 Continued on next page
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Symbol Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 6 Unit Description

‍T ‍ 1100 900 – 900 2000—1406 ms
Total movement  
duration

‍N ‍ 200 - 200 -
Number of  
neurons

‍pcon‍ 0.2 – 0.2 –

Connection  
probability  
(E neurons)

‍pE‍ 80 - 80 -
Percentage of  
E neurons

‍pI‍ 20 – 20 –
Percentage of
I neurons
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Appendix 1
A1.1 Choice of the hyperparameters of the model

Appendix 1—figure 1. Correlates of the behavior and control strategy across a wide range of hyperparameters. 
The ‘reach success’” and ‘holding success’” are set to 1 if the success criterion (see text) is satisfied and 0 
otherwise. The task is executed successfully over a wide range of hyperparameters. The red star denotes the set 
of hyperparameters used in the main text simulations. This configuration was chosen to lie in a region in which the 
task can be successfully solved, with the performance being robust to small changes in the hyperparameters.

Our cost function for the delayed single-reaching task was composed of three components. The 
relative weighings of the different terms in our cost, which are hyperparameters of the model, affect 
the way in which the task is solved. To ensure robustness of our results to hyperparameter changes, 
we scanned the space of ‍αnull‍ and ‍αeffort‍ (as the solution is invariant to scaling of the cost, only those 
relative weighings matter), and evaluated the solutions found across this hyperparameter space for 
a delayed reach of 300 ms.

Our evaluation was based on multiple criteria. We considered the target to have been successfully 
reached if the mean distance to the target in the last 200 ms of the movement was lower than 5 mm 
(for a reach radius of 12 cm). We considered that the requirement to stay still during the delay period 
was satisfied if the mean torques during preparation were smaller than 0.02 N/m. We computed the 
preparation index and total cost as described in Equations 4 and 5. We moreover computed the 
total input energy per neuron as ‍

1
N
´ T
−∆prep

∥u∥2dt‍, and the maximum velocity as ‍maxt
√

ẋ(t)2 + ẏ(t)2 ‍. 
These various quantities are shown for a range of hyperparameters in Appendix 1—figure 1, with 
the choice of hyperparameters used throughout our simulations marked with a red star. This shows 
that the behavior of the model is consistent across a range of hyperparameter settings around the 
one we used.

In Appendix  1—figure 2, we illustrate the output of the model for several hyperparameter 
settings. One can notice that for very small values of ‍αeffort‍ the reach is successful, but executed 
with larger torques and velocity than is necessary – e.g., the red and yellow reaches are equally 
successful but the red one is much faster – which comes at the cost of larger inputs. We chose the 
set of hyperparameters for our simulations such as to lie in an intermediate regime in which the task 
is solved successfully, but without requiring more inputs than necessary.

https://doi.org/10.7554/eLife.89131
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Appendix 1—figure 2. Illustration of the behavior for several hyperparameter settings. (Left) Hand position along 
the horizontal axis, with the dotted line denoting the position of the target. (Middle) Temporal profile of the hand 
velocity. (Right) Temporal profile of the torques driving the hand.

A1.2 Investigation of the effect of the network decay timescale
Appendix 1—figure 3 highlighted that preparatory inputs tend to consistently arise late during 
the delay period. We hypothesized that this may be a reflection of the intrinsic tendency of the 
network dynamics to decay, such that inputs given too early may be ‘lost’. To test this, we changed 
the characteristic timescale of the dynamics during preparation only, leading to the following 
dynamics:

	﻿‍

τt
dx(t)

dt
= −x(t) + Wϕ

[
x(t)

]
+ h + τt

τmov
u(t) where




τt = τprepif t ≤ 0

τt = τmovif t ≥ 0
‍�

(A1.1)

with ‍τmov = 150 ms‍. This allowed us to evaluate whether having dynamics decaying more slowly 
during preparation led to inputs starting earlier. Note that we also rescaled the inputs during 
preparation by ‍

τprep
τmov ‍, to ensure that the effective cost of the inputs was not affected by the timescale 

change.
As shown in Appendix  1—figure 3, inputs started rising earlier when the network’s decay 

timescale was longer. This was consistent with the hypothesis that the length of the window of 
preparation that the optimal controller uses depends on the network’s intrinsic timescale.

Appendix 1—figure 3. Illustration of the effect of the characteristic neuronal timescale on the temporal 
distribution of the inputs. We modified the characteristic neuronal timescale of the inhibition-stabilized network 
(ISN) during preparation only and assessed how that changed the temporal distribution of inputs for three different 
timescales (τprep = 50 ms, τprep = 150 ms, τprep = 300 ms, top to bottom). As hypothesized, inputs start earlier during 
the preparation window when the decay timescale of the network was longer.

https://doi.org/10.7554/eLife.89131
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A1.3 Additional results in the 2D system
Our visualization of the behavior of 2D networks in Appendix 1—figure 4 allowed us to identify 
features of the dynamics that were well suited to predicting preparation. Below, we compute ‍α‍ and 
‍β‍ numerically and analytically in 2D oscillatory and nonnormal networks, to gain insights into how 
these quantities vary with the networks’ dynamics. We then show how preparation can be predicted 
highly accurately across a large number of 2D systems, using only those quantities to summarize the 
network dynamics.

A1.3.1 Controllability and observability computations
In Appendix 1—figure 4, we computed ‍α‍ and ‍β‍ numerically, as a function of the connectivity strength 
and the choice of readout, for the nonnormal and the oscillatory motifs shown in Appendix 1—
figure 4.

This highlights the very different behaviors of the two networks, which are to some extent also 
reflected in higher-dimensional models. In particular, we find a strong effect of the alignment between 
the readout and the network dynamics in nonnormal networks, while ‍α‍ and ‍β‍ are independent of ‍θC‍ 
in oscillatoryq networks. Interestingly, we see that ‍β‍ is constant across all oscillatory networks, while 
‍α‍ increases with ‍w‍.

As the reduced 2D model is more amenable to mathematical analysis than its high-dimensional 
counterpart, we can gain further insights into the origin of these differences by computing ‍α(w, θC)‍ 
and ‍β(w, θC)‍ analytically.

Recall that the observability Gramian Q of a linear input-driven dynamical system satisfies

	﻿‍ ATQ + QA + CTC = 0‍� (A1.2)

and the controllability Gramian satisfies

	﻿‍ AP + PAT + BBT = 0,‍� (A1.3)

and that we defined ‍α = Tr(C⊥QC⊥T
)‍ and ‍β = Tr(CPCT)‍, where ‍C⊥‍ denotes the nullspace of the 

readout matrix. Below, we compute these quantities for the 2D oscillatory and nonnormal networks, 
with ‍B = I ‍ and ‍C‍ a unit-norm vector whose direction we parametrize via a quantity ‍θC‍. Note that we 
ignore the effect of dt and ‍τ ‍ in the mathematical analysis, as those quantities can straightforwardly 
be included in the final result via a rescaling of ‍w‍ and ‍B‍.

https://doi.org/10.7554/eLife.89131
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Appendix 1—figure 4. Illustration of α and β as a function of θC and w in the 2D networks.

Oscillatory network
In the case of ‍A = −I + S‍, where ‍S‍ is a skew-symmetric network (i.e. ‍ST = −S‍), Equation A1.3 
is solved by ‍P = I/2‍ independently of the value of ‍S‍. This explains why ‍β = Tr(CPCT) = 1

2∥C∥2
‍ is 

independent of both the connectivity strength ‍w‍ and the orientation of the readout ‍θC‍ for skew-
symmetric networks (see Appendix 1—figure 4, bottom right). Practically, this means that skew-
symmetric networks are equally controllable in all directions: when driven by random inputs, these 
networks display isotropic activity of equal variance along all directions. Moreover, as ‍w‍ controls the 
oscillation frequency of the network, but does not change the decay timescale of the eigenmodes, 
the amount of variance generated by a random stimulation is independent of ‍w‍. Interestingly, we can 
see in Appendix 1—figure 4 (top right) that ‍α‍ displays a different behavior, and increases with ‍w‍. As 
highlighted above, skew-symmetric systems are rotationally symmetric. Without loss of generality, 

we can thus define our 1D vector to read out the first unit, i.e., 
‍
C=

[
1 0

]
‍
.

The observability Gramian must satisfy

	﻿‍

ATQ + QA + CTC = 0 =⇒


−1 w

−w −1


Q + Q


−1 −w

w −1


 =


−1 0

0 0


 .

‍�
(A1.4)

This can be found in closed form by solving the 2D system of equations, yielding

	﻿‍

Q=




1
4

+ 1
4(1 + w2)

− w
4(1 + w2)

− w
4(1 + w2)

w2

4(1 + w2)


.

‍�

(A1.5)

From there, we obtain ‍α = Tr(C⊥QC⊥T
) = w2

4(1+w2)‍. As found empirically, this quantity will initially 
increase before plateauing toward ‍1/4‍ as ‍w‍ becomes large.

One might wonder why observability displays such a dependence on the oscillatory frequency 
of the network, even though the network is rotationally symmetric, and ‍w‍ does not affect the decay 
timescale. As highlighted in Equation A1.2, controllability and observability Gramian would be 
identical for a skew-symmetric system if ‍C = I ‍. However, a feature of the systems we consider is 

https://doi.org/10.7554/eLife.89131
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the existence of a nullspace, i.e., the fact that the readout ‍C‍ only targets a subset of dimensions 
across the whole space (implying that ‍CTC‍ is a low-rank matrix). Intuitively, the reason why ‍α‍ 
increases with ‍w‍ while ‍β‍ is constant in skew-symmetric networks can be understood as follows: 
‍α‍ is computing how much readout activity a vector initialized in the nullspace of ‍C‍ will generate, 
while ‍β‍ is computing the amount of energy that will be generated across all directions by a vector 

initialized in the readout space. Thus, assuming once again 
‍
C=

[
1 0

]
‍
 and 

‍
C⊥ =

[
0 1

]
‍
, the activity 

of vectors initialized along ‍C‍ and ‍C⊥‍ respectively and evolving autonomously from there is given by 

‍
vC(t) =

[
e−t cos(wt) e−t sin(wt)

]
‍
 and 

‍
vC⊥ (t) =

[
−e−t sin(wt) e−t cos(wt).

]
‍

From there, we can compute ‍β =
´∞

0 ∥vC(t)∥2dt =
´∞

0 e−2tdt = 1
2‍. Thus, as found above, only the 

decay timescale of the envelope (fixed to 1 here) affects the value of ‍β‍.
Importantly, ‍α‍ will instead have a dependence on ‍w‍ arising from the fact that it depends on the 

size of the activity projected into the readout, as

	﻿‍
α =
ˆ ∞

0
∥vC⊥ (t)TC∥2dt =

ˆ ∞

0
e−2t sin2(wt)dt

‍�
(A1.6)

	﻿‍
=

1
2

ˆ ∞

0
e−2t(1 − cos(2wt))dt

‍�
(A1.7)

	﻿‍
=

1
2

ˆ ∞

0
e−2t −ℜe−2(1−iw)tdt

‍�
(A1.8)

	﻿‍
=

1
4
− 1

4(1 + w2)‍�
(A1.9)

	﻿‍
=

w2

4(1 + w2)
.
‍�

(A1.10)

The dependence of this quantity on ‍w‍ can be understood by the fact that activity patterns 
initialized in the readout nullspace benefit from the existence of rotational dynamics, which allows 
them to be readout before the activity decays completely.

Nonnormal network

In the nonnormal network, we have 

‍

A= -I+ W=


−1 0

w −1



‍

. The nonnormal 2D system, unlike its 

oscillatory counterpart, does not have rotational symmetry. Thus, to remain general, we will consider 

‍
C(θC) =

[
cos θC sin θC

]
‍
, and 

‍
C⊥(θC) =

[
− sin θC cos θC

]
‍
. Solving Equation A1.3 for ‍B = I ‍ leads to 

an expression for the controllability Gramian of the nonnormal system as

	﻿‍

P(w) =




1
2

w
4

w
4

1
2

+
w2

4


 .

‍�

(A1.11)

Similarly, computation of the observability Gramian leads to

	﻿‍

Q(w, θC) =




w2 sin2 θC
4

+ cos θC sin θCw
2

+ cos2 θC
2

w sin2 θC
4

+ cos θC sin θC
2

w sin2 θC
4

+ cos θC sin θC
2

sin2 θC
2


 .

‍� (A1.12)

We can then compute

	﻿‍
α(θC, w) = C⊥TQC⊥ = w2

4
sin4 θC‍� (A1.13)

https://doi.org/10.7554/eLife.89131
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and

	﻿‍
β(θC, w) = CTPC = (w sin θC + cos θC)2 − cos2 θC + 2

4
.
‍�

(A1.14)

This highlights the dependence of ‍α‍ and ‍β‍ on ‍θC‍, which can also be seen in Appendix 1—figure 
4 (left). Interestingly, these expressions also make evident the supralinear scaling of ‍α‍ and ‍β‍ with 
‍w‍ in nonnormal networks. Note however that we never investigate preparation in the very large ‍w‍ 
regime, as the simulation of such networks with discretized dynamics is prone to numerical issues.

A.13.2 Predicting preparation in 2D networks
To assess how well preparation could be predicted from the control-theoretic properties ‍α‍ and ‍β‍ (c.f. 
main text) of 2D networks, we generated 20,000 networks with weight matrix

	﻿‍

W(a, ω, wff) =
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a 1
2
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√

w2
ff + 4ω2)

1
2
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√

w2
ff + 4ω2) a



‍�

(A1.15)

where ‍a ∼ U (0, 0.8)‍, ‍ω ∼ U (0, 4)‍, and ‍wff ∼ U (0, 4)‍. Equation A1.5 implies that ‍W ‍ has a pair of 
complex-conjugate eigenvalues ‍a ± iω‍, and also embeds a feedforward coupling of strength ‍wff ‍ from 
the second to the first dimension. For each network configuration, we computed the corresponding 
values of ‍α‍ and ‍β‍. To confirm our intuition that the preparation index should increase with ‍α‍ and 
decrease with ‍β‍, we first attempted to fit ‍prep. index = c0 + c1

α
β ‍. Interestingly, we found that while 

this quantity was positively correlated with the preparation index across networks, a substantial 
fraction of variance remained unexplained (test ‍R2 = 0.16‍). Labeling the preparation index by the 
rotational frequency of the network highlighted that a substantial fraction of the variance across 
networks came from this timescale of oscillations (Appendix 1—figure 5, left). Indeed, a regression 
model of the ‍prep. index = c0 + c1ω

α
β ‍ captured 80% of the variance in preparation index, yielding an 

accurate fit across networks with only two free parameters (Appendix 1—figure 5, right).

Appendix 1—figure 5. Predicting the preparation index from characteristic network quantities. We evaluated 
how well the preparation index could be predicted as a linear function of ‍

α
β ‍ (left). A substantial amount of residual 

variance appeared to arise from variability in the oscillation frequency ‍ω‍ (color). Accounting for this frequency by 
regressing the preparation index against ‍ω

α
β ‍ gave a better fit (right).

We stress that the predictive power of these simple fits is remarkable given that the preparation 
index comes out of a complex process of optimization over control inputs. Thus, the control-theoretic 
quantities ‍α‍ and ‍β‍ appear to appropriately summarize the benefits of preparation for individual 
networks.

The fact that the preparation index also grows with ‍ω‍ can be understood by considering the 
alignment between the activity trajectories which the network can autonomously generate and 
those that are required for solving the motor task. Indeed, a network that is intrinsically unable to 
generate outputs with the right oscillatory timescale would have to rely on movement-related inputs, 

https://doi.org/10.7554/eLife.89131
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i.e., would have a low preparation index. As observed here, the network’s characteristic frequency 
has a big impact in 2D networks, consistent with ‍ω‍ determining the only oscillatory pattern that 
the network can generate on its own. For high-dimensional networks, however, we did not have 
to incorporate such a measure of compatibility between task requirements and network dynamics 
(Appendix 1—figure 5). We speculate that this is due to averaging effects. Indeed, larger networks 
possess a wide range of intrinsic oscillatory timescales, and the readout matrix – which here was 
not aligned to the network’s dynamics in any specific way – is expected to read out a little bit of all 
frequencies, including task-appropriate ones.

A1.4 Comparison across networks
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Appendix 1—figure 6. Preparation arises across a range of network architectures: neural correlates of the 
reach are shown for five different networks (A), alongside the loss and prep. index as a function of ‍∆prep‍. (A) 
Eigenvalue spectrum (top), internal network activations (middle), and inputs (bottom) for different network types. 
The unconnected network does not rely on preparatory inputs at all. The random network with weights draw from 

‍N (0, 0.95/
√

N)‍ uses very little delay-period inputs while the skew-symmetric network with ‍N (0, 4/
√

N)‍ shows a 
substantial amount of inputs during the delay period. The inhibition-stabilized network can be seen to rely most 
on preparation, more so than the similarity transformed inhibition-stabilized network (ISN). (B) Loss (top) and 
preparation index (bottom) as a function of delay-period length for the different networks. The unconnected and 
random networks can be seen to benefit very little from longer preparation times. Indeed, even as ‍∆prep‍ increases, 
their amount of preparatory inputs remains very close to 0. On the other hand, the skew-symmetric network 
and the ISN use preparatory inputs (bottom), which allow them to have a lower loss for larger values of ‍∆prep‍. 
Interestingly, the surrogate ISN prepares considerably less than the full ISN.

Our main investigation was largely focused on behavior of inhibition-stabilized networks, which 
are believed to constitute good models of M1. We however found that the expression we derived 
to obtain a network’s preparation index from its control-theoretic properties generalized across to 
other types of networks. Below, we detail the other network families we considered, and show how 
their dynamics qualitatively differ from the ISN, although their preparation can be predicted using 
the same quantities.

We modeled three additional classes of networks: randomly connected networks with either (i) 
unstructured or (ii) skew-symmetric connectivities, (iii) a surrogate network obtained by applying 
a similarity transformation to the ISN that preserved its eigenvalue spectrum but eliminated any 
‘nonnormality’ (i.e., we found ‍T ‍ such that ‍̃A = T −1AT ‍, where ‍̃A‍ was a diagonal matrix with the 
same eigenvalues as ‍A‍). Note that we did not apply the transformation to the readout or input 
matrices, such that the transfer function of the system was changed by our transformation. This 
was voluntary, as we were interested in the effect that transforming the dynamics would have on 
the input-output response. These networks were chosen for the diversity of dynamical motifs they 
exhibit: combinations of rapidly and slowly decaying modes, oscillations, and transient dynamics. 

https://doi.org/10.7554/eLife.89131
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Moreover, each of these network families could be sampled from in a straightforward manner, 
allowing to compute results across many instantiations of each network type. We again used random 
readout matrices not specifically adjusted to the dynamics of the network nor to the motor task.

To get an intuition for how different networks solve the task, we generated one network from 
each family and qualitatively compared their inputs and internal activations when performing the 
same delayed reach (Appendix 1—figure 6A). We first considered an unconnected network, i.e., a 
network whose recurrent weights were all 0. Unsurprisingly, this network had no use for a preparation 
phase. Indeed, there is no benefit to giving early inputs as the network is unable to amplify them. 
More surprisingly, a random network with a much stronger connectivity – as can be seen in its 
eigenvalue spectrum forming a small ball of radius close to 1 (Appendix 1—figure 6A, top) – also 
displayed very little preparation. The strong, visually apparent similarity between the inputs to 
the random and unconnected networks suggests that the optimal way of controlling the random 
network relies largely on ignoring its internal dynamics and solving the task almost entirely in an 
input-driven regime. The example skew-symmetric network, which had imaginary eigenvalues only 
(ranging between –5.5 and 5.5), displayed considerably more preparation, but still relied on strong 
inputs during the movement phase that resembled those of the unconnected and random networks. 
Finally, the ISN relied much more on preparation; the small inputs it receives are strongly amplified 
into large activity patterns owing to its strong, nonnormal recurrent connectivity. Interestingly 
however, the similarity transformed ISN lost much of that ability to amplify inputs, instead displaying 
dynamics resembling that of the skew-symmetric network. This highlights the effect of the ISN’s 
nonnormal dynamics in shaping the network’s activity and optimal inputs.

Next, we assessed more directly how beneficial preparation was for the different networks. We 
evaluated how the total loss and preparation index evolved as a function of the delay-period length 
(Appendix 1—figure 6B). As expected, the control of networks that relied on preparation (skew-
symmetric and ISN) benefited more from longer delays. The ISN has markedly lower control cost and 
higher preparation index than other networks, reflecting the fact that even weak (thus energetically 
cheap) inputs were sufficient to produce internal activity and thus output torques of the desired 
magnitude (Appendix 1—figure 6A, right).

The above results give a sense of the range of possible dynamics that different types of networks 
display. Interestingly, despite these differences, we showed in Appendix  1—figure 5 that the 
preparation index could be predicted with a simple formula across all networks.

Appendix 1—figure 7. Illustration of the effect of optimizing the readout matrix such as to minimize the cost of 
the reaches, across all movements. To evaluate the effect that our choice of random readout directions has on our 
conclusions, we additionally compare to a model with the same dynamics, but where the readout was optimized 
such as to minimize the cost across movements (i.e. ‍L(C) =

∑
i∈targets J

(i)(C)‍), under the constraint that its norm 
was fixed. In (A), we see that this leads to an increase in the observability of the system (compare the observability 
of the modes of the optimized system in black with those of the random readout in red). In (B) and (C), we see 
that this leads to an output of similar amplitude (B), but that is generated using smaller inputs (C). Importantly, we 
see that the system still relies on preparatory inputs. Thus, the exact choice of readout does not alter the network 
strategy, but can help the system perform the same movements in a more efficient manner.

https://doi.org/10.7554/eLife.89131
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Appendix 1—figure 8. Comparison of the effect of penalizing temporal input smoothness vs. input norm. We 
compare the effect of using a cost over inputs that penalizes input norm, vs. using a cost that penalizes the 
‘temporal complexity’ of the inputs – defined here as the temporal derivative of the inputs (i.e. ‍∥u(t + 1) − u(t)∥2

‍ 
in discrete time). This is achieved by augmenting the dynamical system to include an input integration stage, which 
then feeds into the original dynamical system; this way, the input to the augmented system – of which we continue 
to penalize the squared norm to enable the iterative linear quadratic regulator algorithm (iLQR) framework – is 
the derivative of the input to the original system. We perform this comparison in linear recurrent neural networks 
(RNNs), across a range of different preparation times. We show the activation of an example neuron in (A) and 
(B), and activity in an example input channel in (C) and (D). Each color denotes a different reach. We see that the 
rates vary more slowly when penalizing the temporal complexity (A) vs. the input norm (B), exhibiting a plateau 
for longer preparation times that is more similar to neural recordings. This is a reflection of the fact that the inputs 
themselves vary more slowly when the temporal complexity is penalized (compare C and D). As we do not penalize 
the input norm within our definition of temporal complexity, the optimal strategy is for the network to rely on 
steady inputs, which is different from the strategy used when the norm is penalized (compare C and D). We note 
that, under this different choice of input penalty, preparation nevertheless remains optimal, with the normalized 
loss (shown in E) decreasing as ‍∆prep‍ increases, and the preparation index (shown in F) increasing as ‍∆prep‍ 
increases.

https://doi.org/10.7554/eLife.89131
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Appendix 1—figure 9. Control strategy adopted by the model when planning with uncertain delays. We 
investigate an extension of the model, that includes uncertainty about the arrival of the go cue, and involves 
replanning at regular intervals to update the model with new information (e.g. whether the go cue has arrived). In 
(A), we model this by assuming that the network is adopting a strategy whereby it plans to be ready to move as 
early as possible following the target onset. We optimize the inputs using this assumption, and replan every 20 ms 
to update the model with the available information (which here corresponds to the actual go cue only arriving 500 
ms after target onset). We plot the activity of two example neurons (left and right panels, respectively), for each of 
the reaches (each color denotes a different reach). We can see that the neuronal activations start ramping up at the 
beginning of the task, and plateau before the actual target onset. In (B), we use a similar optimization strategy, but 
use a different ‘mental model’ for the network, whereby we assume that, until it sees the actual go cue, the model 
is always assuming that the delay period will be equal to the most likely a posteriori preparation time. Under the 
assumption of exponentially distributed delays with a mean of 150 ms, this corresponds to always replanning 
assuming a delay of 150 ms. We see that the network then adopts a different strategy, which does not include 
ramping/plateauing of the neural activity.

https://doi.org/10.7554/eLife.89131
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Appendix 1—figure 10. Comparison of the occupancy of the preparatory and movement subspaces across 
different delay periods. Occupancy (normalized by the maximum value across preparatory and movement 
occupancies) of the preparatory and movement subspaces identified using a delay period of 500 ms, for the 
activity generated using ‍∆prep = 0‍ ms (left), ‍∆prep = 100‍ ms (center), and ‍∆prep = 500‍ ms (right). We see that the 
network does not rely on preparatory activity when ‍∆prep = 0‍ ms.

https://doi.org/10.7554/eLife.89131
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