ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin

  1. Cristina Cacho-Navas
  2. Carmen López-Pujante
  3. Natalia Reglero-Real
  4. Natalia Colás-Algora
  5. Ana Cuervo
  6. Jose Javier Conesa
  7. Susana Barroso
  8. Gema de Rivas
  9. Sergio Ciordia
  10. Alberto Paradela
  11. Gianluca D'Agostino
  12. Carlo Manzo
  13. Jorge Feito
  14. Germán Andrés
  15. Francisca Molina-Jiménez
  16. Pedro Majano
  17. Isabel Correas
  18. José-Maria Carazo
  19. Sussan Nourshargh
  20. Meritxell Huch
  21. Jaime Millán  Is a corresponding author
  1. Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Spain
  2. William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
  3. Centro Nacional de Biotecnologia (CSIC), Spain
  4. Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC), Spain
  5. Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Spain
  6. Molecular Biology Unit, Hospital Universitario de la Princesa, Spain
  7. Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Spain
  8. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
  9. Department of Cellular Biology, Universidad Complutense de Madrid, Spain
  10. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
9 figures, 3 videos, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Intercellular adhesion molecule-1 (ICAM-1) regulates the size of apical bile canaliculi (BCs) in polarized HepG2 cells.

(A) ICAM-1 concentrates in bile canaliculi (top images) and bile ducts (bottom images) from polarized hepatocytes and cholangiocytes, respectively (arrows), and in sinusoids in human livers from …

Figure 1—source data 1

Original file for the western blot analysis in Figure 1B.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-data1-v1.zip
Figure 1—source data 2

PDF containing Figure 1B and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-tubulin), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-data2-v1.zip
Figure 1—source data 3

Original file for the western blot analysis in Figure 1F.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-data3-v1.zip
Figure 1—source data 4

PDF containing Figure 1F and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-ERK), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-data4-v1.zip
Figure 1—figure supplement 1
Effect of ICAM-1 depletion on cell apicobasal polarity, proliferation, size and survival.

(A) Cells were seeded at very low density and counted for 96 hr. Bars represent the SD of the mean. n = 3. ** p<0.01. (B) In each cell passage, cell density, size (left graph), and percentage of …

Figure 1—figure supplement 1—source data 1

Original file for the western blot analysis in Figure 1—figure supplement 1F (anti-ICAM-1 and anti-ERK).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-figsupp1-data1-v1.zip
Figure 1—figure supplement 1—source data 2

PDF containing Figure 1—figure supplement 1F and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-ERK), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig1-figsupp1-data2-v1.zip
Figure 2 with 1 supplement
Intercellular adhesion molecule-1 (ICAM-1) regulates bile canaliculi (BC) dynamics in polarized HepG2 cells.

(A) Correlative cryo-soft X-ray tomography (cryo-SXT) of ICAM-1_KO cells stably expressing GFP-Rab11 showing two fusing BCs. The SXT image shows a slice of the reconstructed tomogram from the boxed …

Figure 2—figure supplement 1
Long-term ICAM-1 depletion induces massively enlarged BCs.

(A) WT and ICAM-1_KO HepG2 cells were cultured for 6 d, fixed and stained for ZO-1 and F-actin. Right images show enlargements of the boxed areas in the left images. Scale bar, 20 μm. (B) HepG2 …

Figure 2—figure supplement 1—source data 1

Original file for the western blot analysis in Figure 2—figure supplement 1B (anti-ICAM-1 and anti-tubulin).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig2-figsupp1-data1-v1.zip
Figure 2—figure supplement 1—source data 2

PDF containing Figure 2—figure supplement 1B and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-tubulin), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig2-figsupp1-data2-v1.zip
Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in response to inflammatory cytokines reduces bile canaliculi (BC) frequency.

(A–D) Polarized hepatic epithelial cells were stimulated or not for 48 hr with 50 ng/ml TNF-α, 15 ng/ml IL-1β, and IFN-γ 1000 U/ml as indicated. (A) Cells were lysed and ICAM-1 expression levels …

Figure 3—source data 1

Original file for the western blot analysis in Figure 3A.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig3-data1-v1.zip
Figure 3—source data 2

PDF containing Figure 3A and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-tubulin), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig3-data2-v1.zip
Figure 4 with 1 supplement
Intercellular adhesion molecule-1 (ICAM-1) controls canalicular membrane expansion by regulating a distal canalicular actomyosin network.

(A, B) Bile canaliculi (BC) contain a ring of actomyosin. (A) Polarized HepG2 cells expressing GFP-MLC were incubated with SirActin for 2 hr and subjected to time-lapse confocal microscopy. Left …

Figure 4—figure supplement 1
ROCK inhibition phenocopies the effect of ICAM-1 depletion and myosin-II inhibition on BC size.

Canalicular localization of RhoB and RhoC GTPases .(A) Representative images of cells quantified in Figure 4D. (B) HepG2 cells were exposed or not to 5 μM of the ROCK inhibitor Y27632 for the …

Figure 5 with 1 supplement
Intercellular adhesion molecule-1 (ICAM-1) signals to actomyosin, thereby reducing apicobasal polarity.

(A) Surface ICAM-1 engagement reduces bile canaliculi (BC) morphogenesis. ICAM-1-GFP HepG2 cells were cultured for 24 hr on coverslips precoated with the indicated antibodies (α), IgG control or …

Figure 5—source data 1

Original file for the western blot analysis in Figure 5E (anti-pMLC).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-data1-v1.zip
Figure 5—source data 2

Original file for the western blot analysis in Figure 5E (anti-MLC).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-data2-v1.zip
Figure 5—source data 3

Original file for the western blot analysis in Figure 5E (anti-tubulin).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-data3-v1.zip
Figure 5—source data 4

PDF containing Figure 5E and original scans of the relevant western blot analysis (anti-pMLC, anti-MLC, and anti-tubulin), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-data4-v1.zip
Figure 5—figure supplement 1
Localization of ICAM-1 in membrane regions close to stellate stress fibers.

Effect of cell adhesion to FN on apicobasal polarity and myosin-II activation.(A) Surface intercellular adhesion molecule-1 (ICAM-1) engagement generates stellate stress fibers that concentrate pMLC …

Figure 5—figure supplement 1—source data 1

Original file for the western blot analysis in Figure 5—figure supplement 1C (anti-pMLC).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-figsupp1-data1-v1.zip
Figure 5—figure supplement 1—source data 2

Original file for the western blot analysis in Figure 5—figure supplement 1C (anti-MHCIIa and anti-tubulin).

Exposure corresponding to ICAM-1_KO cells.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-figsupp1-data2-v1.zip
Figure 5—figure supplement 1—source data 3

Original file for the western blot analysis in Figure 5—figure supplement 1C (anti-MHCIIa and anti-tubulin).

Exposure corresponding to WT cells.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-figsupp1-data3-v1.zip
Figure 5—figure supplement 1—source data 4

PDF containing Figure 5—figure supplement 1C and original scans of the relevant western blot analysis (anti-pMLC, anti-pMHCIIa, and anti-tubulin), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig5-figsupp1-data4-v1.zip
Figure 6 with 1 supplement
Proximal interaction of intercellular adhesion molecule-1 (ICAM-1) with EBP50/NHERF1/SLC9A3R1 into nano-scale microvillar domains.

(A) The ICAM-1 BioID interactome reveals the proximal interaction of ICAM-1 with EBP50. Parental polarized HepG2 cells (WT) and HepG2 cells stably expressing ICAM-1-BirA* were incubated with 50 μM …

Figure 6—source data 1

Original file for the western blot analysis in Figure 6A (anti-EBP50).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data1-v1.zip
Figure 6—source data 2

Original file for the western blot analysis in Figure 6A (anti-EXO70).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data2-v1.zip
Figure 6—source data 3

Original file for the western blot analysis in Figure 6A (anti-ICAM-1).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data3-v1.zip
Figure 6—source data 4

Original file for the western blot analysis in Figure 6A (anti-ERK).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data4-v1.zip
Figure 6—source data 5

PDF containing Figure 6A and original scans of the relevant western blot analysis (anti-ICAM-1, anti-EBP50, anti-EXO70, and anti-ERK), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data5-v1.zip
Figure 6—source data 6

Original file for the western blot analysis in Figure 6E (anti-ICAM-1 and anti-flag).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data6-v1.zip
Figure 6—source data 7

PDF containing Figure 6E and original scans of the relevant western blot analysis (anti-ICAM-1 and anti-flag), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-data7-v1.zip
Figure 6—figure supplement 1
Intercellular adhesion molecule-1 (ICAM-1) BioID reveals the proximal interaction of the receptor with a new set of proteins.

(A) Schematic representation of the proximal biotinylation of proteins by the ICAM-1-BirA* chimeric protein. (B) Cells expressing ICAM-1-BirA* or not were incubated with 50 μM biotin for 16 hr, …

Figure 6—figure supplement 1—source data 1

Original file for the western blot analysis in Figure 6—figure supplement 1B (neutravidin-HRP).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data1-v1.zip
Figure 6—figure supplement 1—source data 2

PDF containing Figure 6—figure supplement 1B and original scan of the relevant western blot (neutravidin-HRP), with the highlighted region squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data2-v1.zip
Figure 6—figure supplement 1—source data 3

Original file for the western blot analysis in Figure 6—figure supplement 1D (anti-ICAM-1 and anti-SNAP23).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data3-v1.zip
Figure 6—figure supplement 1—source data 4

Original file for the western blot analysis in Figure 6—figure supplement 1D (anti-ERMs).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data4-v1.zip
Figure 6—figure supplement 1—source data 5

PDF containing Figure 6—figure supplement 1D and original scan of the relevant western blot (anti-ICAM-1, anti-ERMs, and anti-SNAP23), with the highlighted region squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data5-v1.zip
Figure 6—figure supplement 1—source data 6

Original file for the western blot analysis in Figure 6—figure supplement 1F (anti-ICAM-1).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data6-v1.zip
Figure 6—figure supplement 1—source data 7

Original file for the western blot analysis in Figure 6—figure supplement 1F (anti-EBP50).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data7-v1.zip
Figure 6—figure supplement 1—source data 8

Original file for the western blot analysis in Figure 6—figure supplement 1F (anti-tubulin).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data8-v1.zip
Figure 6—figure supplement 1—source data 9

Original file for the western blot analysis in Figure 6—figure supplement 1F (anti-ERMs).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data9-v1.zip
Figure 6—figure supplement 1—source data 10

Original file for the western blot analysis in Figure 6—figure supplement 1F (anti-GAPDH).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data10-v1.zip
Figure 6—figure supplement 1—source data 11

PDF containing Figure 6—figure supplement 1F and original scan of the relevant western blot (anti-ICAM-1, anti-EBP50, anti-tubulin, anti-ERMs, and anti-GAPDH), with the highlighted region squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig6-figsupp1-data11-v1.zip
EBP50 regulates intercellular adhesion molecule-1 (ICAM-1)-mediated signaling.

(A, B) HepG2 cells were transfected with siRNA control (siControl) or with siRNA targeting EBP50 (siEBP50) and cultured for 72 hr. Cells were lysed and analyzed by western blot for the indicated …

Figure 7—source data 1

Original file for the western blot analysis in Figure 7A (anti-EBP50 and anti-GAPDH).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig7-data1-v1.zip
Figure 7—source data 2

PDF containing Figure 7A and original scans of the relevant western blot analysis (anti-EBP50 and anti-GAPDH), with the highlighted bands squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig7-data2-v1.zip
Figure 8 with 1 supplement
Intercellular adhesion molecule-1 (ICAM-1) and non-muscle myosin-II regulate the size of canalicular-like cavities in hepatic organoids.

(A) ICAM-1 concentrates in bile canaliculi and bile ducts in livers of LPS-stimulated mice (arrows). S, sinusoids. Scale bars, 20 μm (left image) and 10 μm (right image). (B) ICAM-1, F-actin, and …

Figure 8—figure supplement 1
Generation of liver organoids from bipotent precursor cells and the effect of ICAM1 gene knockout on their cellular morphology.

(A) Graphical protocol of ductal stem cell isolation and differentiation from human and murine liver biopsies ( Broutier et al., 2016). Briefly, ductal stem cells were isolated from hepatic tissue …

Figure 8—figure supplement 1—source data 1

Original file of the gel containing PCR analyses of several transcripts in murine liver organoids grown in expanding medium and in hepatic tissue shown in Figure 8—figure supplement 1B (panels ICAM-1 and hrpt).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig8-figsupp1-data1-v1.zip
Figure 8—figure supplement 1—source data 2

Original file of the gel containing PCR analyses of several transcripts of murine liver organoids cultivated in expanding medium (EM) and differentiated medium (DM) and of liver tissue shown in Figure 8—figure supplement 1B (panels ICAM-1 and albumin).

https://cdn.elifesciences.org/articles/89261/elife-89261-fig8-figsupp1-data2-v1.zip
Figure 8—figure supplement 1—source data 3

PDF containing Figure 8—figure supplement 1B and original scan of the relevant PCR analyses (ICAM-1, hrpt, albumin), with the highlighted region squared.

https://cdn.elifesciences.org/articles/89261/elife-89261-fig8-figsupp1-data3-v1.zip
A model for the control of actomyosin-mediated contraction of bile canaliculi (BC) mediated by intercellular adhesion molecule-1 (ICAM-1) expression levels, which determine the size and frequency of these apical structures in hepatic epithelial cells.

Top images: canalicular ICAM-1 signals toward a distal canalicular actomyosin network at the base of microvilli. EBP50 links ICAM-1 to F-actin and localizes into membrane nano-scale domains to …

Videos

Video 1
Time-lapse fluorescence microscopy of polarized WT HepG2 cells stably expressing MDR1-GFP.

Images were acquired at 15 min intervals for 18 hr and displayed at four frames per second. Note the fusion of two bile canaliculi (BC) between 14 and 18 hr. Scale bar, 10 μm.

Video 2
Time-lapse fluorescence microscopy of polarized ICAM-1_KO HepG2 cells stably expressing MDR1-GFP.

Images were acquired at 15 min intervals for 18 hr and displayed at four frames per second. Scale bar, 10 μm.

Video 3
Time-lapse spinning disc confocal microscopy of polarized HepG2 cells expressing GFP-tagged myosin light chain (GFP-MLC) (green) and incubated with SirActin (red).

Images were acquired at 4 min intervals for 48 min and displayed at one frame per second. Scale bar, 3 μm.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Homo sapiens)ICAM1GenBankGene ID: 3383Also known as BB2; CD54; P3.58
Gene (H. sapiens)NHERF1GenBankGene ID: 9368Also known as EBP50; NHERF; NHE-RF; NHERF- 1; NPHLOP2; SLC9A3R1
Gene (Mus musculus)Icam1GenBankGene ID: 15894Also known as CD54; Ly-47; Icam-1; MALA-2
Cell line (H. sapiens)HepG2ATCCATCC HB- 8065
Cell line (H. sapiens)Human T lymphoblastsDonorsHuman primary cells prepared from isolated peripheral blood mononuclear cells
Transfected construct (H. sapiens)ICAM-1-BirA*This paper and Cacho-Navas et al., 2022Backbone pEGFP-N1
Transfected construct (H. sapiens)ICAM-1-GFPDr. F. Sánchez- Madrid (Madrid, Spain) (Barreiro et al., 2002)Backbone pEGFP-N1
Transfected construct (H. sapiens)pSpCas9(BB)-2ª- GFPPX458Addgene; 48138Vector for CRISPR-CAS9-medited gene edition Dr. F. Zhang (Cambridge, MA)
Transfected construct (H. sapiens)GFPClontechpEGFP-N1
Transfected construct (H. sapiens)GFP-Rab11Dr. F. Martín- Belmonte (Madrid, Spain) (Rodríguez-Fraticelli et al., 2015)Backbone pEGFP-C1
Transfected construct (H. sapiens)MDR1-GFPDr. I.M. Arias, (Bethesda, MD) (Sai et al., 1999)
Transfected construct (H. sapiens)GFP-RhoBDr. D. Pérez- Sala (Madrid, Spain) (Marcos-Ramiro et al., 2016)Backbone pEGFP-C1
Transfected construct (H. sapiens)GFP-Rac1Dr. G. BokochAddgene; 12980
Transfected construct (H. sapiens)GFP-RhoCFrom Channing Der (Chapel Hill, NC)Addgene; 23226Backbone pEGFP-C2
Transfected construct (H. sapiens)pCMV-FLAG-EBP50(NHERF1)-FLDr. M.M. Georgescu (Houston, TX)Addgene; 28291Backbone pCMV-2-FLAG
Transfected construct (H. sapiens)pCMV-FLAG- EBP50(NHERF1)-PDZ1-2Dr. M.M. Georgescu (Houston, TX)Addgene; 28294Backbone pCMV-2-FLAG
Transfected construct (H. sapiens)pCMV-FLAG- EBP50(NHERF1)-PDZ1iPDr. M.M. Georgescu (Houston, TX)Addgene; 28295Backbone pCMV-2-FLAG
Transfected construct (H. sapiens)pCMV-FLAG- EBP50(NHERF1)-PDZ2Dr. M.M. Georgescu (Houston, TX)Addgene; 28296Backbone pCMV-2-FLAG
Transfected construct (H. sapiens)pCMV-FLAG- EBP50(NHERF1)-EBDr. M.M. Georgescu (Houston, TX)Addgene; 28297Backbone pCMV-2-FLAG
AntibodyAnti-ICAM-1 (mouse monoclonal)R&D Systems#BBA3; RRID:AB_356950IF 1/400; IP 1/100
AntibodyAnti-ICAM-1 (rabbit polyclonal)Santa Cruz Biotechnologysc-7891; RRID:AB_647486WB 1/1000
AntibodyAnti-ICAM-1 (mouse monoclonal)Santa Cruz Biotechnologysc-107; RRID:AB_627120IHC 1/1000
AntibodyAnti-ICAM-1 (rat monoclonal)EBioscience14-0542-81; RRID:AB_529544WB 1/1000; IF 1/200
AntibodyAnti-ERK1/2 (rabbit polyclonal)Santa Cruz Biotechnologysc-94; RRID:AB_2140110WB 1/1000
AntibodyAnti-EBP50 (mouse monoclonal)Santa Cruz Biotechnologysc-271552; RRID:AB_10649999WB 1/1000; IF 1/400
AntibodyAnti-EBP50 (rabbit polyclonal)Thermo Fisher ScientificPA1-090; RRID:AB2191493WB 1/1000; IF 1/250
AntibodyAnti-tubulin (mouse monoclonal)Santa Cruz Biotechnologysc-134241; RRID:AB_2009282WB 1/5000
AntibodyAnti-SNAP23 (rabbit polyclonal)Synaptic Systems111 202; RRID:AB_887788WB 1/1000; IF 1/400
AntibodyAnti-SNAP23 (mouse monoclonal)Santa Cruz Biotechnologysc-374215; RRID:AB_10990315WB 1/1000
AntibodyAnti-CD59 (mouse monoclonal)EXBIOMEM43 (11-233C100); RRID:AB_10735273IF 1/400
AntibodyAnti-ERM (rabbit polyclonal)Cell Signaling Technology3142; RRID:AB_2100313WB 1/1000; IF 1/400
AntibodyAnti-GFP (mouse monoclonal)Roche11814460001; RRID:AB_390913WB 1/1000
AntibodyAnti-ZO-1 (rabbit polyclonal)Thermo Fisher Scientific40-2200; RRID:AB_2533456IF 1/500
AntibodyAnti-Rab11 (mouse monoclonal)Thermo Fisher Scientific71-5300; RRID:AB_2533987WB 1/1000
AntibodyAnti-TfR (mouse monoclonal)Thermo Fisher Scientific13-6800; RRID:AB_2533029WB 1/1000
AntibodyAnti-MLC (rabbit polyclonal)Cell Signaling Technology3672; RRID:AB_10692513WB 1/1000; IF 1/200
AntibodyAnti-p(T18/S19)- MLC (rabbit polyclonal)Cell Signaling Technology3671; RRID:AB_330248WB 1/1000; IF 1/200
AntibodyAnti-MHC-IIb (rabbit polyclonal)BioLegend909902; RRID:AB_2749903IF 1/200
AntibodyRabbit anti-MHC- IIa (rabbit polyclonal)BioLegend909802; RRID:AB_2734686IF 1/200
AntibodyAnti-Exo70 (mouse monoclonal)Merck (Millipore)MABT186 clone 70X13F3WB 1/500
AntibodyAnti-IgG (mouse monoclonal)Merck (Sigma-Aldrich)I5381; RRID:AB_1163670IP 1/100
AntibodyAnti-IgG (rabbit polyclonal)Merck (Sigma-Aldrich)I5006; RRID:AB_1163659IP 1/100
AntibodyAnti-F4/80 (rat monoclonal)Abcamab6640; RRID:AB_1140040IF 1/1000
AntibodyAnti-HA-4 antigen (CEACAM) (mouse monoclonal)University of IowaRRID:AB_ 10659875IF 1/100
AntibodyAnti-plasmolipin (rabbit polyclonal)In-house (Cacho-Navas et al., 2022)IF 1/250
AntibodyAnti-Radixin (rabbit polyclonal)Cell SignalingC4G7; RRID:AB_2238294IF 1/250
AntibodyAnti-MRP2 (mouse monoclonal)Enzo Life SciencesALX-801-016; RRID:AB_22 73479IF 1/250
AntibodyAnti-CD3 OKT3 (mouse monoclonal)ATCCCRL-8001Purified from mouse hybridomas producing anti-CD3ε mAb OKT3 (our laboratory); IF 1/250
AntibodyGoat F(ab) anti-mouse IgG 596AbcamAbcam (ab6723); RRID:AB_955573IF 1/100
AntibodyDonkey anti-mouse Alexa Fluor 488Thermo Fisher ScientificA-21202; RRID:AB_141607IF 1/500
AntibodyDonkey anti-mouse Alexa Fluor 555Thermo Fisher ScientificA-31570; RRID:AB_2536180IF 1/500
AntibodyDonkey anti-mouse Alexa Fluor 647Thermo Fisher ScientificA-31571; RRID:AB_162542IF 1/500
AntibodyDonkey anti-rabbit Alexa Fluor 488Thermo Fisher ScientificA-21206; RRID:AB_141708IF 1/500
AntibodyDonkey anti-rabbit Alexa Fluor 555Thermo Fisher ScientificA-31572; RRID:AB_162543IF 1/500
AntibodyDonkey anti-rabbit Alexa Fluor 647Thermo Fisher ScientificA-31573; RRID:AB_2536183IF 1/500
AntibodyDonkey anti-rat Alexa Fluor 488Thermo Fisher ScientificA-21208; RRID:AB_2535794IF 1/500
AntibodyDonkey anti-mouse HRPJackson Immunoresearch715-035-151; RRID:AB_2340771WB 1/5000
AntibodyDonkey anti-rabbit HRPGE HealthcareNA934; RRID:AB_772206WB 1/5000
Sequence-based reagentsgRNA ICAM-1 fwThis paperSingle-guide RNACACCGCGCACTCCTGGTCCTGC TCG
Sequence-based reagentsgRNA ICAM-1 rvThis paperSingle-guide RNAAAACCGAGCAGGACCAGGAGT GCGC
Sequence-based reagentmsICAM-1 FwThis paperPCR primerCTTCAACCCGTGCCAAGC
Sequence-based reagentmsICAM-1 RvThis paperPCR primerGAAGGCTTCTCTGGGATGGA
Sequence-based reagentmsHRPT FwThis paperPCR primerAAGCTTGCTGGTGAAAAGGA
Sequence-based reagentmsHRPT RvThis paperPCR primerTTGCGCTCATCTTAGGCTTT
Sequence-based reagentmsALB FwThis paperPCR primerGCGCAGATGACAGGGCGGAA
Sequence-based reagentmsALB RvThis paperPCR primerGTGCCGTAGCATGCGGGAGG
Sequence-based reagentsiControlDharmaconsiRNAAUGUAUUGGCCUGUAUUAGUU
Sequence-based reagentsiICAM-1 3’UTRDharmaconsiRNAGAACAGAGUGGAAGACAUAUU
Sequence-based reagentsiSLC9A3R1 05DharmaconsiRNA(TS) CCAGAAACGCAGCAGCAAA
Sequence-based reagentsiSLC9A3R1 06DharmaconsiRNA(TS) GCGAAAACGUGGAGAAGGA
Sequence-based reagentsiSLC9A3R1 07DharmaconsiRNAGCGAGGAGCUGAAUUCCCA
Sequence-based reagentsiSLC9A3R1 08DharmaconsiRNAGAACAGUCGUGAAGCCCUG
Peptide, recombinant proteinStreptavidin-Alexa Fluor 555Thermo Fisher ScientificS21381; RRID:AB_2307336IF 1/1000
Peptide, recombinant proteinStreptavidin-HRPThermo Fisher Scientific815-968-0747WB 1/10,000
Peptide, recombinant proteinPhalloidin-Alexa Fluor 647Thermo Fisher ScientificA-22287; RRID:AB_2620155IF 1/250
Peptide, recombinant proteinPHAThermo Fisher Scientific10576015
Peptide, recombinant proteinIL-2Thermo Fisher ScientificPHC0021
Peptide, recombinant proteinIL-1βPeprotech200-01B
Peptide, recombinant proteinTNF-αR&D Systems210-TA/CF
Peptide, recombinant proteinIFN-γPeprotech/Teb- bio300-02
Peptide, recombinant proteinFibronectinCorning356008
Commercial assay or kitBCG albumin assay kitMerck (Sigma-Aldrich)MAK124
Chemical compound, drugDAPIMerck268298IF 1/1000
Chemical compound, drugGeneticinSanta Cruz Biotechnology29065B
Chemical compound, drugSulfo-NHS-biotinThermo Fisher Scientific21217
Chemical compound, drugPhorbol 12- miristate 13- acetate (PMA)Merck (Sigma-Aldrich)P8139
Chemical compound, drugCalcein-AMThermo Fisher ScientificC3099
Chemical compound, drugY-27632Merck (Calbiochem)688000
Chemical compound, drugBlebbistatinMerck (Sigma-Aldrich)B-0560
Chemical compound, drugBiotinMerck (Sigma-Aldrich)B4501
Chemical compound, drug(5-and-6)- Carboxyfluorescein Diacetate (CFDA)Thermo Fisher ScientificC195
OtherTissue-Tek O.C.T.Sakura4583For preparing liver tissue samples for immunohistochemistry; see ‘Tissue immunofluorescence and immunohistochemistry’
OtherHoley Carbon Grids for Cryo EMQuantifoilR2/2G200F1For culturing cells for cryo-soft-X-ray tomography; see ‘Correlative cryo-soft X-ray tomography’
OtherNeutravidin AgaroseThermo Fisher Scientific29201Neutravidin conjugated to solid substrate to perform pull-down assays of biotinylated proteins; see ‘Biotinylation of ICAM-1-proximal proteins: BioID assay’
OtherProtein-G- sepharoseRocklandPG50-00-0002Protein G-coated Sepharose to conjugate mouse monoclonal antibodies and perform immunoprecipitation; see ‘Immunoprecipitation assays’
OtherFicollSTEMCELL Technologies07801Reagent for isolating human peripheral blood mononuclear cells (PBMCs) as in Millán et al., 2002; see ‘Cells and culture’

Additional files

Download links