
Pak et al. eLife 2023;12:RP89368. DOI: https://doi.org/10.7554/eLife.89368 � 1 of 19

Distinctive whole-brain cell types predict 
tissue damage patterns in thirteen 
neurodegenerative conditions
Veronika Pak1,2,3, Quadri Adewale1,2,3, Danilo Bzdok2,4,5,6, Mahsa Dadar7, 
Yashar Zeighami7, Yasser Iturria-Medina1,2,3,4,8*

1Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; 
2McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, 
Canada; 3Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada; 
4Department of Biomedical Engineering, McGill University, Montreal, Canada; 5School 
of Computer Science, McGill University, Montreal, Canada; 6Mila – Quebec Artificial 
Intelligence Institute, Montreal, Canada; 7The Douglas Research Center, Montreal, 
Canada; 8McGill Centre for Studies in Aging, Montreal, Canada

Abstract For over a century, brain research narrative has mainly centered on neuron cells. 
Accordingly, most neurodegenerative studies focus on neuronal dysfunction and their selective 
vulnerability, while we lack comprehensive analyses of other major cell types’ contribution. By 
unifying spatial gene expression, structural MRI, and cell deconvolution, here we describe how the 
human brain distribution of canonical cell types extensively predicts tissue damage in 13 neuro-
degenerative conditions, including early- and late-onset Alzheimer’s disease, Parkinson’s disease, 
dementia with Lewy bodies, amyotrophic lateral sclerosis, mutations in presenilin-1, and 3 clinical 
variants of frontotemporal lobar degeneration (behavioral variant, semantic and non-fluent primary 
progressive aphasia) along with associated three-repeat and four-repeat tauopathies and TDP43 
proteinopathies types A and C. We reconstructed comprehensive whole-brain reference maps of 
cellular abundance for six major cell types and identified characteristic axes of spatial overlapping 
with atrophy. Our results support the strong mediating role of non-neuronal cells, primarily microglia 
and astrocytes, in spatial vulnerability to tissue loss in neurodegeneration, with distinct and shared 
across-disorder pathomechanisms. These observations provide critical insights into the multicel-
lular pathophysiology underlying spatiotemporal advance in neurodegeneration. Notably, they also 
emphasize the need to exceed the current neuro-centric view of brain diseases, supporting the 
imperative for cell-specific therapeutic targets in neurodegeneration.

eLife assessment
Pak et al. examined the relationship between the most common spatial patterns of neurodegenera-
tion and transcriptional markers of the density of different cell types in the cerebral cortex. This valu-
able study uses innovative methods to provide convincing evidence that patterns of gray matter 
loss in various forms of dementia are correlated with the anatomical distribution of non-neuronal cell 
types.

Introduction
Neurodegenerative diseases are characterized by substantial neuronal loss in both the central and 
peripheral nervous systems (Gorman, 2008). In dementia-related conditions like Alzheimer’s disease 

RESEARCH ARTICLE

*For correspondence: 
Iturria.medina@gmail.com

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 12

Sent for Review
30 May 2023
Preprint posted
09 June 2023
Reviewed preprint posted
19 September 2023
Reviewed preprint revised
26 February 2024
Version of Record published
21 March 2024

Reviewing Editor: Alex Fornito, 
Monash University, Australia

‍ ‍ Copyright Pak et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.89368
mailto:Iturria.medina@gmail.com
https://doi.org/10.1101/2023.06.08.544227
https://doi.org/10.7554/eLife.89368.1
https://doi.org/10.7554/eLife.89368.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Pak et al. eLife 2023;12:RP89368. DOI: https://doi.org/10.7554/eLife.89368 � 2 of 19

(AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB), neurodegeneration can 
lead to progressive damage in brain regions related with memory, behavior, and cognition (Duong 
et al., 2017). Other diseases are thought to primarily affect the locomotor system, including motor 
neurons in amyotrophic lateral sclerosis (ALS) and nigrostriatal dopaminergic circuitry in Parkinson’s 
disease (PD) (Bosco et al., 2011). Although each disorder has its own distinct etiology, progression, 
affected brain areas, and clinical manifestations, recent studies support that most of them share same 
molecular and cellular mechanisms (Wingo et al., 2022; Huseby et al., 2023; Arneson et al., 2018; 
Zeighami et al., 2023).

While research has been mainly focused on neuronal dysfunction, other brain cells such as astro-
cytes, microglia, oligodendrocytes, as well as cells of the vascular and peripheral immune systems, are 
gaining more recognition for their contribution to disease pathology (Bordone and Barbosa-Morais, 
2020; Lee et al., 2020; Reynolds et al., 2019). Depending on the disease stage, non-neuronal cells 
in the brain can play a dual role, with their complex response having both protective and detrimental 
effects on neuronal health and survival (Geloso et al., 2017; Jiwaji et al., 2022). For instance, such 
glial cells as astrocytes and microglia are involved in neuronal support, maintenance of extracel-
lular homeostasis, and immune regulation in response to injury (Garland et  al., 2022; Kwon and 
Koh, 2020). Initially, these cells respond to injury by releasing neuroprotective neurotrophic factors 
and antioxidants (Garland et al., 2022; Kwon and Koh, 2020). However, under certain conditions, 
prolonged microglial activation can induce reactive astrocytes and together they release neurotoxic 
pro-inflammatory cytokines and chemokines, which in turn can lead to metabolic stress and foster the 
accumulation of amyloid-β and tau plaques in AD, ultimately contributing to heightened neuronal 
death (Kempuraj et al., 2016; Yun et al., 2018; Liddelow et al., 2017). Growing evidence suggests 
that immune and other cell type-mediated events are a driving force behind the wide range of neuro-
degenerative conditions (Kempuraj et al., 2016; Maccioni et al., 2009; Zang et al., 2022; Castellani 
et al., 2023; Balusu et al., 2023). Yet, the exact bases behind how these processes contribute to 
selective neuronal loss across brain regions remain unclear.

Recent studies have suggested that brain spatial patterns in gene expression are associated with 
regional vulnerability to some neurodegenerative disorders and their corresponding tissue atrophy 
distributions (Vidal-Pineiro et al., 2020; Roshchupkin et al., 2016; Zheng et al., 2019; Altmann 
et al., 2020; Kerrebijn et al., 2023). A comparison of transcriptomic patterns in middle temporal 
gyrus across various brain diseases showed cell type expression signature unique for neurodegener-
ative diseases (Zeighami et al., 2023). Although single-cell transcriptomics and multiomics analyses 
have advanced our knowledge of cell type compositions associated with pathology in neurodegener-
ation (Cuevas-Diaz Duran et al., 2022; Luquez et al., 2022; Riley et al., 2014), these are invariably 
restricted to a few isolated brain regions, usually needing to be preselected at hand for each specific 
disease. Due to the invasive nature of tissue acquisition/mapping and further technical limitations for 
covering extended areas (Arnatkeviciute et al., 2022), no whole-brain maps for the abundance of cell 
populations in humans are currently available, constraining the analysis of large-scale cellular vulner-
abilities in neurological diseases. Accordingly, how spatial cell type distributions relate to stereotypic 
regional damages in different neurodegenerative conditions remains largely unclear (Mrdjen et al., 
2019).

Here, we extend previous analyses of cellular-based spatiotemporal vulnerability in neurodegen-
eration in three fundamental ways. First, we use transcriptomics, structural MRI, and advanced cell 
deconvolution to construct whole-brain reference maps of cellular abundance in healthy humans for 
six canonical cell types: neurons, astrocytes, oligodendrocytes, microglia, endothelial cells, and oligo-
dendrocyte precursors. Second, we describe the spatial associations of each healthy level of refer-
ence canonical cell types with atrophy in 13 low-to-high prevalent neurodegenerative conditions, 
including early- and late-onset AD, genetic mutations in presenilin-1 (PS1 or PSEN1), DLB, ALS, PD, 
and both clinical and pathological subtypes of frontotemporal lobar degeneration (FTLD). Third, we 
identify distinctive cell–cell and disorder–disorder axes of spatial susceptibility in neurodegenera-
tion, obtaining new insights about across-disorder (dis)similarities in underlying pathological cellular 
systems. We confirm that non-neuronal cells express substantial vulnerability to tissue loss and spatial 
brain alterations in most studied neurodegenerative conditions, with distinct and shared across-cell 
and across-disorder mechanisms. This study aids in unraveling the commonalities across a myriad of 
dissimilar neurological conditions, while also revealing cell type-specific patterns conferring increased 
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vulnerability or resilience to each examined disorder. For further translation and validation of our 
findings, all resulting analytic tools and cell abundance maps are shared with the scientific and clinical 
communities.

Results
Multimodal data origin and unification approach
We obtained whole-brain voxel-wise atrophy maps for 13 neurodegenerative conditions, including 
early- and late-onset Alzheimer’s disease (EOAD and LOAD, respectively), PD, ALS, DLB, mutations 
in presenilin-1 (PS1), clinical variants of FTD (the behavioral variant [bvFTD] and the non-fluent and 
semantic variants of primary progressive aphasia [nfvPPA and svPPA]), and FTLD-related patholo-
gies such as FLTD-TDP (TAR DNA-binding protein) types A and C, three-repeat tauopathy, and four-
repeat tauopathy (see ‘Disease-specific atrophy maps’; Harper et  al., 2017; Dadar et  al., 2020; 
Zeighami et al., 2015; Dadar and Metz, 2023). We use the term FTD when addressing the clin-
ical syndromes, and the term FTLD is employed when referencing histologically confirmed neuro-
degenerative pathologies (Boeve et al., 2022). Pathological diagnosis confirmation was performed 
for EOAD and LOAD, DLB, PS1, FTLD-TDP types A and C, three-repeat tauopathy, and four-repeat 
tauopathy (Harper et al., 2017), while PD, ALS, and variants of FTD were diagnosed based on clinical 
and/or neuroimaging criteria (Parkinson Progression Marker Initiative, 2011; Kalra et al., 2020; 
Staffaroni et al., 2019), with some ALS patients being histologically confirmed postmortem (Kalra 
et  al., 2020). Changes in tissue density in the atrophy maps were previously measured by voxel- 
and deformation-based morphometry (VBM and DBM; see ‘Disease-specific atrophy maps’) applied 
to structural T1-weighted MR images, and expressed as a t-score per voxel (relatively low negative 
values indicate greater GM tissue loss/atrophy; Aubert-Broche et al., 2013; Ashburner and Friston, 
2000). All maps are registered to the Montreal Neurological Institute (MNI) brain space (Evans et al., 
1994). In addition, we obtained bulk transcriptomic data for the adult healthy human brains from the 
Allen Human Brain Atlas (AHBA) (Shen et al., 2012). This included high-resolution coverage of nearly 
the entire brain, measuring expression levels for over 20,000 genes from 3702 distinct tissue samples 
of six postmortem specimens, and detailed structural MRI data (see ‘Mapping gene expression data’; 
Shen et al., 2012).

Using a previously validated approach to infer gene expression levels (in AHBA data) at nonsam-
pled brain locations with Gaussian process regression (Gryglewski et al., 2018), mRNA expression 
levels were completed for all gray matter (GM) voxels in the standardized MNI brain space (Evans 
et al., 1994). Gaussian process regression allowed predicting gene expression values for unobserved 
regions based on the mRNA values of proximal regions. Next, at each GM location, densities for 
multiple canonical cell types were estimated using the Brain Cell type-Specific Gene Expression Anal-
ysis software (BRETIGEA) (McKenzie et al., 2018a). The deconvolution method (McKenzie et al., 
2018a; Chikina et al., 2015; implemented in the BRETIGEA) accurately estimated cell proportions 
from bulk gene expression for six major cell types (Figure 1B): neurons, astrocytes, oligodendrocytes, 
microglia, endothelial cells, and oligodendrocyte precursor cells (OPCs). Overall, atrophy levels for 13 
neurodegenerative conditions and proportion values for 6 major cell types from healthy brains were 
unified at matched and standardized locations (MNI space), covering the entire GM of the brain (see 
Figure 1 for a schematic description).

We hypothesized (and tested in next subsections) that brain tissue damages in neurodegenerative 
conditions are associated with distinctive patterns of cells distributions, with alterations on major cell 
types playing a key role on the development of each disorder and representing a direct factor contrib-
uting to brain dysfunction.

Uncovering spatial associations between cell type abundances and 
tissue damage in neurodegeneration
First, we investigated whether stereotypic brain atrophy patterns in neurodegenerative conditions 
show systematic associations with the spatial distribution of canonical cell type populations in healthy 
brains. For each condition and cell type pair, the nonlinear Spearman’s correlation coefficient was calcu-
lated with paired atrophy–cell proportion values across 118 cortical and subcortical regions defined 
by the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002; Supplementary 
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Figure 1. Schematic approach for whole-brain cell type proportions vulnerability analysis in neurodegeneration. (A) Microarray bulk gene expression 
levels in the Allen Human Brain Atlas (AHBA) were derived from 3072 distinct tissue samples of six postmortem healthy human brains. Missing gene 
expression data were then inferred for each unsampled gray matter voxel using Gaussian process regression. When combined with original AHBA 
data, they were mapped into volumetric Montreal Neurological Institute (MNI) space, resulting in the whole-brain transcriptional atlas. Deconvolution 
algorithm for bulk RNA expression levels was applied to the transcriptional atlas by using well-known cell type-specific gene markers to estimate cell 
type proportions. Comprehensive volumetric maps showing reconstructed distributions of six canonical cell types across all gray matter voxels in the 
brain were created (see ‘Cell type proportion estimation’). (B) Voxel-wise surface visualization (lateral, dorsal, and ventral views) of cell abundance maps 
for neurons, astrocytes, microglia, endothelial cells, oligodendrocytes, and oligodendrocyte precursor cells (OPCs). At each voxel, red and blue colors 
indicate high and low proportion densities, respectively. (C) Associations between cell type proportions from each density map and atrophy values in 13 
neurodegenerative conditions were analyzed in 118 gray matter regions predefined by the automated anatomical labeling (AAL) atlas.

© 2024, BioRender Inc. Figure 1 was created with BioRender, and is published under a CC B-NC-ND license with permission. Further reproductions 
must adhere to the terms of this license.
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file 1). The results (Figures 2A–M and 3A) show clear associations for all the studied conditions, 
suggesting extensive cell type-related tissue damage vulnerability in neurodegenerative conditions. 
We confirmed that the observed relationships are independent of brain parcellation, obtaining equiv-
alent results for a different brain parcellation (i.e., Desikan–Killiany–Tourville [DKT] atlas; Desikan 
et al., 2006; see Figure 3—figure supplement 1).

As shown in Figures 2A–M and 3A, astrocytes and microglia cell occurrences presented the stron-
gest spatial associations with atrophy in most neurodegenerative conditions, particularly for EOAD, 
LOAD, DLB, PS1, FTLD-3RTau, FTLD-4Rtau, FTLD-TDP type A, FTLD-TDP type C, bvFTD, nfvPPA, 
and svPPA (all p<0.001, false discovery rate [FDR]-corrected). Astrocytes are involved in neuronal 
support, extracellular homeostasis, and inflammatory regulation in response to injury, and show high 
susceptibility to senescence and oxidative damage (Li et al., 2021; González-Reyes et al., 2017). 
Astrocytes also play an important role in the maintenance of the blood–brain barrier (BBB), which 
regulates the passage of molecules, ions, and cells between the blood and the brain (Preininger and 
Kaufer, 2022). A recent study suggested that reactive astrocytes may promote vascular inflammation 

Figure 2. Spatial associations between tissue integrity and cell type proportions for 13 neurodegenerative conditions illustrated in the scatterplots and 
surface maps (left hemisphere; lateral view) of regional measures. (A–M) Strongest Spearman’s correlations for early-onset Alzheimer’s disease (EOAD), 
late-onset Alzheimer’s disease (LOAD), dementia with Lewy bodies (DLB), presenilin-1 (PS1), FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, FTLD-TDP43C, 
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), behavioral variant of frontotemporal dementia (bvFTD), non-fluent variant of primary 
progressive aphasia (nfvPPA), and semantic variant of primary progressive aphasia (svPPA), respectively. Atrophy and cell type density measures were 
averaged across 118 gray matter (GM) regions and projected to the cortical surface of the fsaverage template. Each dot in the scatterplots represents a 
GM region from the automated anatomical labeling (AAL) atlas (Supplementary file 1). Lower tissue integrity score in the scatterplots’ x-axis indicates 
greater GM loss/atrophy. For a better visual comparison of patterns in atrophy and cell abundance, the atrophy scale was reversed, with higher t-statistic 
values indicating greater atrophy in the surface plots. Thus, the first color bar ranging from 0 is universal for all cell maps and pathologically confirmed 
dementia conditions (A–H). The second color bar captures the tissue enlargement in PD, ALS, and variants of FTD (I–M). Notice how astrocyte density 
significantly correlates with increase in tissue loss in EOAD, DLB, PS1, FTLD-TDP43C, and nfvPPA (A, C, D, H, L; p<0.001). Tissue loss was also 
associated with increase in microglial proportion in LOAD, FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, bvFTD, and svPPA (B, E, F, G, K, M; p<0.001). 
Increased oligodendrocytes associated with PD (I; p<0.001). Increase in neuronal proportion showed association with decrease in atrophy and tissue 
enrichment in ALS (J; p<0.001). All p-values were false discovery rate (FDR)-adjusted with the Benjamini–Hochberg procedure (p<0.05).
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in the BBB (Kim et al., 2022). Endothelial cells, which comprise the functional component of the BBB, 
also showed strong spatial associations with atrophy in almost all conditions (Figure 3A). Endothelial 
cells regulate cerebral blood flow and deliver oxygen and nutrients to the brain (Pober and Sessa, 
2007). Disruption of the BBB may allow harmful substances to enter the brain, including inflammatory 
molecules and toxic-aggregated proteins, ultimately exacerbating neuronal damage (Kalaria, 1997; 

Figure 3. Cell and disorder similarities based on shared distributions. (A) Dendrogram and unsupervised hierarchical clustering heatmap of Spearman’s 
correlations between cell type proportions and atrophy patterns across the 13 neurodegenerative conditions. (B) Cell–cell associations based 
on regional vulnerabilities to tissue loss across neurodegenerative conditions. (C) Disorder–disorder similarities across cell types. In (A), red color 
corresponds to strong positive correlations between cells and disorders, white to no correlation, and dark blue to strong negative correlations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Spatial associations between tissue integrity and cell type proportions for 13 neurodegenerative conditions in the gray matter 
(GM) regions defined by the Desikan–Killiany–Tourville (DKT) parcellation.

https://doi.org/10.7554/eLife.89368
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Salmina et al., 2010). Reduction in cerebral blood flow and vascular dysregulation are the earliest 
and strongest pathological biomarkers of LOAD, PD, and other neurodegenerative disorders (Iturria-
Medina et al., 2016; Globus et al., 1985; Wolters et al., 2020).

Similar to astrocytes in their role of supporting neurons, microglial cells are the resident macro-
phages of the central nervous system and key players in the pathology of neurodegenerative condi-
tions, including AD, PD, FTD, and ALS (Geloso et al., 2017; Guzman-Martinez et al., 2019; Malpetti 
et al., 2021). Besides its many critical specializations, microglial activation in prolonged neuroinflam-
mation is of particular relevance in neurodegeneration (Geloso et  al., 2017; Perea et  al., 2018). 
At earlier stages of AD, increased population of microglia and astrocytes (microgliosis and astrogli-
osis) has been observed in diseased regions due to sustained cellular proliferation in response to 
disturbances, loss of homeostasis, or the accumulation of misfolded proteins (Kwon and Koh, 2020; 
Keren-Shaul et al., 2017; Vandenbark et al., 2021). Excessive proliferation may lead to the transi-
tion of homeostatic microglia to its senescent or disease-associated type, also known as DAM, via 
the processes mediated by TREM2-APOE signaling (Keren-Shaul et al., 2017; Zhou et al., 2020; Hu 
et al., 2021). Increased number of dystrophic microglia, a form of cellular senescence characterized 
as beading and fragmentation of the branches of microglia, has been seen in multiple neurodegen-
erative conditions such as AD, DLB, and TDP-43 encephalopathy (Streit et al., 2020). The presence 
of senescent microglia is believed to ultimately contribute to the failure of brain homeostasis and to 
clinical symptomatology (Balusu et al., 2023; Hu et al., 2021; Lau et al., 2023).

Oligodendrocytes also associated with spatial tissue vulnerability to all conditions aside ALS 
(Figure 3A). Oligodendrocytes are responsible for the synthesis and maintenance of myelin in the 
brain (Armada-Moreira et al., 2015). Demyelination produces loss of axonal insulation, leading to 
neuronal dysfunctions (Armada-Moreira et al., 2015; Mot et al., 2018). Myelin dysfunction may lead 
to secondary inflammation and subsequent failure of microglia to clear amyloid-β deposition in AD 
mice models (Depp et al., 2023). Oligodendrocytes were shown to be highly genetically associated 
with PD (Bryois et al., 2020; Feleke et al., 2021; Agarwal et al., 2020). In addition, densities of 
OPCs showed strong correlations with the atrophy patterns of DLB, EOAD, PS1, and FTLD-TDP type 
C. OPCs regulate neural activity and harbor immune-related and vascular-related functions (Akay 
et al., 2021). In response to oligodendrocyte damage, OPCs initiate their proliferation and differen-
tiation for the purpose of repairing damaged myelin (Ohtomo et al., 2018). In AD, PD, and ALS, the 
OPCs become unable to differentiate and their numbers decrease, leading to a reduction in myelin 
production and subsequent neural damage (Traiffort et al., 2021; Spaas et al., 2021).

We observed (Figure  3A) that neuronal abundance distribution is also associated with tissue 
damage in many neurodegenerative conditions. However, these associations are less strong than for 
other cell types, except for the ALS case (Figure 2J). For this disorder, neuron proportions positively 
correlated with tissue integrity (i.e., the higher the neuronal proportion, the less atrophy in a region). 
This observation suggests that increased neuronal presence at brain regions (relative to all considered 
cell types) may have a protective effect in ALS, making neuronal enriched regions less vulnerable to 
damage in this disorder. In addition, we observed particularly weak associations between neuronal 
proportions and tissue damage in all three clinical variants of FTD (bvFTD, nfvPPA, svPPA) and PD 
(Figure 3A), suggesting that these conditions may be primarily associated with supportive cell types 
(microglia, astrocytes, and oligodendrocytes, respectively; Figure 2I and K–M).

Spatial cell type grouping exposes distinctive disease–disease 
similarities
Next, we hypothesized that disorders sharing similar biological mechanisms and clinical manifesta-
tions present common across-brain patterns of cell type density associations. Figure  3A shows a 
hierarchical taxonomy dendrogram grouping cell types and conditions according to their common 
brain-wide correlation patterns.

The clustergram analysis revealed distinct grouping patterns among various neurodegenerative 
conditions. All histologically confirmed dementia conditions formed a separate cluster. Notably, 
EOAD and mutations in PS1, a prevalent cause of familial EOAD (Kelleher and Shen, 2017), grouped 
together. Interestingly, three clinical subtypes of FTD (bvFTD, nfvPPA, and svPPA) displayed similar 
patterns of cell type vulnerabilities and diverged into a discrete cluster with PD, separately from ALS and 
other dementia conditions. However, FTLD-associated pathologies such as TDP-43 proteinopathies 

https://doi.org/10.7554/eLife.89368
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(types A and C), as well as three-repeat and four-repeat tauopathies, showed patterns more similar to 
those found in DLB and AD-related conditions (EOAD, LOAD, PS1) rather than clinical FTD subtypes 
from a different dataset. These differences could be attributed to variations in the source dataset; the 
atrophy maps were derived from different studies and measured by different techniques, which may 
have introduced discrepancies in results due to different data acquisition tools and protocols (see 
‘Materials and methods’). Nonetheless, all FTLD-related subtypes and conditions showed the stron-
gest associations with spatial distributions of glial cells, particularly astrocytes and microglia.

Among all cell types, neurons’ and OPCs’ spatial density distributions were least associated with 
tissue atrophy in all 13 conditions, subsequently clustering together. Astrocytes and microglia distri-
butions similarly showed the strongest associations with all neurodegenerative conditions (Figure 3B), 
and thus formed a separate cluster while still being related with oligodendrocytes and endothelial 
cells. Astrocytes and microglia are known to be intimately related in the pathophysiological processes 
of neurodegenerative disorders (Kwon and Koh, 2020). Both are key regulators of inflammatory 
responses in the central nervous system, and given their role in clearing misfolded proteins, dysfunc-
tions of each of them can result in the accumulation of amyloid-β and tau (Kwon and Koh, 2020; 
Leyns and Holtzman, 2017). During the progression of AD and PD, microglia’s activation can result 
in an increased capacity to convert resting astrocytes to reactive astrocytes (Liddelow et al., 2017).

Patterns in cellular vulnerability in DLB did not strongly resemble PD without dementia (Figure 3C), 
although both conditions involve alpha-synuclein aggregates (Kim et al., 2014). A similar observation 
can be made for ALS and FTLD. Despite the common presence of TDP-43 abnormal accumulations 
and their strong genetical overlap (Ferrari et al., 2011), ALS did not group together with FTD variants 
and FTLD-associated pathologies based on patterns of cell–atrophy associations. All these conditions 
are known to be pathologically linked, often arising from either tau or TDP-43 accumulation; for 
instance, TDP-43 is the usual cause of svPPA and approximately half of bvFTD cases, while the other 
half of bvFTD patients and many nfvPPA cases are associated with tau pathology (Perry and Miller, 
2013). These results emphasize the fundamental role of network topology and other factors beyond 
the presence of toxic misfolded proteins in developing characteristic tissue loss and cellular vulner-
ability in neurodegenerative conditions (Zeighami et  al., 2015; Iturria-Medina and Evans, 2015; 
Tremblay et al., 2021; Zeighami et al., 2019).

Discussion
Previous efforts to describe the composition of the brain’s different cell populations related to neuro-
degeneration have been limited to a few isolated regions. In the most systematic study of its kind, 
here we characterized large-scale spatial associations between canonical cell types and brain tissue 
loss across cortical and subcortical GM areas in 13 neurodegenerative conditions (including EOAD, 
LOAD, PD, DLB, ALS, mutations in PS1, and clinical [bvFTD, nfvPPA, svPPA] and pathological [three-
repeat and four-repeat tauopathies and TDPP43 proteinopathies types A and C] subtypes of FTLD). 
Starting from healthy brain levels of gene expression and structural MRI data from the AHBA (Shen 
et al., 2012), and extending our analysis with advanced single-cell-RNA seq-validated cell decon-
volution approaches, along with whole-brain atrophy maps from clinically and/or neuropathologi-
cally confirmed disorders, we determined that (i) the spatial distributions of non-neuronal cell types, 
primarily microglia and astrocytes, are strongly associated with the spread tissue damage present in 
many neurodegenerative conditions; (ii) cells and disorders define major axes that underlie spatial 
vulnerability, aiding in comprehending heterogeneity behind distinct and similar clinical manifesta-
tions/definitions; and (iii) the generated whole-brain maps of cellular abundance can be similarly used 
for studying the associations between imaging phenotypes and healthy reference cellular levels in 
other neurological conditions (e.g., neurodevelopmental and neuropsychiatric disorders). Overall, our 
findings stress the critical need to surpass the current neuro-centric view of brain diseases and the 
imperative for identifying cell-specific therapeutic targets in neurodegeneration. For further trans-
lation and validation, all resulting cell abundance maps and analytic tools are freely shared with the 
community.

We derived, first to our knowledge, high-resolution maps of cellular abundance/proportion in the 
adult human healthy brain for six canonical cell types, including astrocytes, neurons, oligodendrocytes, 
microglia, and endothelial cells. As mentioned, previous cellular analyses of neurological conditions 
have been restricted to expert-selected isolated brain areas. The invasive nature of expression assays, 

https://doi.org/10.7554/eLife.89368
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requiring direct access to neural tissue, and other numerous scaling limitations have impeded exten-
sive spatial analyses (Arnatkeviciute et al., 2019). Earlier studies, also using AHBA data, have shown 
that spatial patterns in cell type-specific gene expression are associated with both regional vulnera-
bility to neurodegeneration and patterns of atrophy across the brain (Zeighami et al., 2023; Vidal-
Pineiro et al., 2020; Roshchupkin et al., 2016; Zheng et al., 2019; Altmann et al., 2020). Since 
many neurodegeneration-related genes have similar levels of expression in both affected and unaf-
fected brain areas (Jackson, 2014), characterizing changes in tissue loss associated with reference cell 
type proportions in health may provide a clearer perspective on large-scale spatial patterns of cellular 
vulnerability. Our maps of cells abundance are available for the scientific and clinical community, 
potentially allowing researchers to further study spatial variations in cell type density with macroscale 
phenotypes. These maps can be used in future studies concerning brain structure and function in both 
health and disease. They can be also explored in the context of other neurological diseases, including 
neurodevelopmental and psychiatric conditions.

Our results demonstrate that all canonical cell types express vulnerability to dementia-related 
atrophy of brain tissue, potentially suggesting the disruption of the molecular pathways involving 
specific cell types can contribute to their observed dysfunctions and subsequent clinical symptom-
atology (Balusu et al., 2023). Previously, transcriptional profiling of prefrontal cortex in AD showed 
reduced proportions of neurons, astrocytes, oligodendrocytes, and homeostatic microglia (Lau 
et al., 2020). In contrast, bulk-RNA analysis of diseased AD tissues from various human brain regions 
observed neuronal loss and increased cell abundance of microglia, astrocytes, oligodendrocytes, and 
endothelial cells (Johnson et al., 2021; Wang et al., 2020). Furthermore, increased microglial, endo-
thelial cell, and oligodendrocyte population was observed in PD and other Lewy diseases (Feleke 
et al., 2021; Nido et al., 2020). Cortical regions exhibiting the most severe atrophy in symptomatic 
C9orf72, GRN, and MAPT mutation carriers with FTD showed increased gene expression of astrocytes 
and endothelial cells (Altmann et al., 2020). Cortical thinning has been demonstrated to correlate 
with higher proportions of astrocytes, microglia, oligodendrocytes, OPCs, and endothelial cells in 
cases of AD compared to controls (Vidal-Pineiro et al., 2020; Kerrebijn et al., 2023). In line with 
these results, we observed that regions with increased cell type proportions, particularly for astrocytes 
and microglia, are strongly associated with GM atrophy in almost all neurodegenerative conditions. 
This may partly explain the reported cellular proliferation through microglial activation in diseased 
regions in response to the misfolded protein accumulation or other pathobiological processes (Keren-
Shaul et al., 2017; Lau et al., 2023). As disease progresses, the release of inflammatory agents by 
sustained microglial activation is believed to be responsible for exacerbating neurodegeneration and 
clinical symptoms (Kempuraj et al., 2016; Maccioni et al., 2009). Microglial activation in pair with GM 
atrophy in frontal cortex was shown to be directly associated with cognitive decline in FTD (Malpetti 
et al., 2021).

Our study has several limitations. Firstly, our analyses were focused on stereotypic atrophy patterns 
for each disorder. It is known that neurodegenerative diseases are highly heterogeneous, with molec-
ular, phenotypic, and clinical subtypes potentially varying in atrophy patterns (Fonov et al., 2021; 
Rosenberg-Katz et al., 2013). Further investigation of cell type signatures across various subtypes not 
covered in this study and disease stages may better characterize each case. Additionally, comparing 
our findings with neuropathological assessments of diseased brain tissues in available regions would 
be beneficial. While the diagnosis of most dementia conditions used in this study has been histo-
logically confirmed, the diagnosis for clinical variants of FTD, ALS, and PD patients was based on 
clinical and neuroimaging assessments. In addition, it has been observed that cell type-related tran-
scriptional changes are different between sexes (Mathys et  al., 2019), making future sex-specific 
analyses indispensable for further understanding of sex-related pathomechanisms. An important 
consideration is that examined atrophy maps were sourced from different studies (Supplementary 
file 2), with differences in data acquisition protocols (e.g., spatial resolution) and technical procedures 
(e.g., smoothing level, statistical methods). In complementary analyses, we observed almost identical 
results after smoothing all disorder-specific images with the same kernel size, while they were already 
mapped at the same spatial resolution for this study and statistically adjusted by acquisition parame-
ters (e.g., field strength) in original studies. Moreover, cell type deconvolution approaches are varied 
and limited in their precision (Dai et al., 2023). Here, we used a previously validated deconvolution 
method designed for efficiently estimating cell proportions for six major cell types from bulk mRNA 

https://doi.org/10.7554/eLife.89368


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Pak et al. eLife 2023;12:RP89368. DOI: https://doi.org/10.7554/eLife.89368 � 10 of 19

expression (McKenzie et  al., 2018a). Conveniently, this method is freely available for researchers 
(R package, BRETIGEA), which will facilitate reproducibility analyses of our study. Other important 
considerations are the dynamic nature of gene expression as disease progresses (Iturria-Medina 
et al., 2020; Hammond et al., 2019), postmortem RNA degradation of the used templates (Jaffe 
et al., 2017), and the subsequent limited ability of bulk RNA sequencing to reflect cell-to-cell vari-
ability, which is relevant for understanding cell heterogeneity and the roles of specific cell populations 
in disease (Yu et al., 2021). Lastly, a promising future direction would be to validate our findings with 
single-cell spatial analyses.

Materials and methods
Disorder-specific atrophy maps
Voxel-wise brain atrophy maps in EOAD, LOAD, PD, ALS, DLB, mutation carriers in PS1, clinical vari-
ants of FTD, and FTLD pathologies (FTLD-TDP types A and C, three-repeat tauopathy and four-repeat 
tauopathy) were adopted from open data repositories and/or requested from collaborators (Harper 
et al., 2017; Dadar et al., 2020; Zeighami et al., 2015; Dadar and Metz, 2023), as specified below. 
Reduction in GM density in diseased atrophy maps relative to controls was measured by VBM and 
DBM applied to structural T1-weighted MR images, and thus was expressed as t-score per voxel 
(relatively low negative t-scores indicate greater GM tissue loss/atrophy) (Aubert-Broche et al., 2013; 
Ashburner and Friston, 2000). VBM is a hypothesis-free technique for analyzing neuroimaging data 
that characterizes regional tissue concentration differences across the whole brain, without the need 
to predefine regions of interest (Whitwell, 2009). DBM is a similar widely used technique to identify 
structural changes in the brain across participants, which in addition considers anatomical differences 
such as shape and size of brain structures (Chung et al., 2001). See Supplementary file 2 for study 
origin, sample size, and imaging technique corresponding to each atrophy map.

MRI data for neuropathological dementias were collected from 186 individuals with a clinical 
diagnosis of dementia and histopathological (postmortem or biopsy) confirmation of underlying 
pathology, along with 73 healthy controls (Harper et al., 2017). Data were averaged across partic-
ipants per condition: 107 had a primary AD diagnosis (68 early-onset [<65 y at disease onset], 29 
late-onset [≥65  y at disease onset], 10 PS1 mutation carriers), 25 with DLB, 11 with three-repeat-
tauopathy, 17 with four-repeat-tauopathy, 12 FTLD-TDP type A, and 14 FTLD-TDP type C (Harper 
et al., 2017). Imaging data were collected from multiple centers on scanners from three different 
manufacturers (Philips, GE, and Siemens) using a variety of different imaging protocols (Harper et al., 
2017). Magnetic field strength varied between 1.0 T (n = 15 scans), 1.5 T (n = 201 scans), and 3 T (n 
= 43 scans) (Harper et al., 2017). Pathological examination of brain tissue was conducted between 
1997 and 2015 according to the standard histopathological processes and criteria in use at the time 
of assessment at one of four centers: the Queen Square Brain Bank, London; Kings College Hospital, 
London; VU Medical Centre, Amsterdam; and Institute for Ageing and Health, Newcastle (Harper 
et al., 2017). Atrophy maps were statistically adjusted for age, sex, total intracranial volume, and MRI 
strength field and site (Harper et al., 2017). Ethical approval for this retrospective study was obtained 
from the National Research Ethics Service Committee London-Southeast (Harper et al., 2017).

MRI data for PD consisting of 3 T high-resolution T1-weighted scans were obtained from the Parkin-
son’s Progression Markers Initiative (PPMI) database (Parkinson Progression Marker Initiative, 2011). 
The PPMI is a multicenter international study with approved protocols by the local institutional review 
boards at all 24 sites across the United States, Europe, and Australia (Parkinson Progression Marker 
Initiative, 2011). MRI data were acquired in 16 centers participating in the PPMI project using scan-
ners from three different manufacturers (GE medical systems, Siemens, and Philips medical systems). 
3 T high-resolution T1-weighted MRI scans from the initial visit and clinical data used in constructing 
atrophy maps were collected from 232 participants with PD and 118 age-matched controls (Zeighami 
et al., 2015). PD subjects (77 females; age 61.2 ± 9.1) were required to be at least 30 years old or 
older, untreated with PD medications, diagnosed within the last two years, and to exhibit at least two 
or more PD-related motor symptoms, such as asymmetrical resting tremor, uneven bradykinesia, or a 
combination of bradykinesia, resting tremor, and rigidity (Parkinson Progression Marker Initiative, 
2011). All individuals underwent dopamine transporter (DAT) imaging to confirm a DAT deficit as a 

https://doi.org/10.7554/eLife.89368
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prerequisite for eligibility (Parkinson Progression Marker Initiative, 2011). No significant effect of 
age, gender, or site was found (Zeighami et al., 2015).

For ALS, MRI data were collected from 66 patients (24  females; age 57.98 ± 10.84) with both 
sporadic or familial form of disease from centers of the Canadian ALS Neuroimaging Consortium (​
ClinicalTrials.​gov NCT02405182), which included 3 T MRI sites in University of Alberta, University of 
Calgary, University of Toronto, and McGill University (Dadar et al., 2020; Kalra et al., 2020). Patients 
were included if they were diagnosed with sporadic or familial ALS, and meet the revised El Escorial 
research criteria (Brooks et al., 2000) for possible, laboratory-supported, or definite ALS (Kalra et al., 
2020). Patients underwent a neurological exam administered by a trained neurologist at each partic-
ipating site (Kalra et al., 2020). All participants gave written informed consent, and the study was 
approved by the health research ethics boards at each of the participating sites (Dadar et al., 2020). 
Participants were excluded if they had a history of other neurological or psychiatric disorders, prior 
brain injury, or respiratory impairment resulting in an inability to tolerate the MRI protocol (Dadar 
et al., 2020). Participants with primary lateral sclerosis, progressive muscular atrophy, or FTD were 
also excluded from the study (Kalra et al., 2020). Normative aging as well as sex differences were 
regressed out from data prior the map construction (Dadar et al., 2020).

For clinical subtypes of FTD, atrophy maps were obtained from the open-access database (Dadar 
and Metz, 2023). These maps were derived from MRI data from the Frontotemporal Lobar Degen-
eration Neuroimaging Initiative (FTLDNI AG032306; part of the ALLFTD). As described in separate 
studies (Dadar et  al., 2021; Dadar et  al., 2022), the data used for constructing these atrophy 
maps consisted of 136 patients diagnosed with FTD, alongside 133 age-matched control partici-
pants. Participants were previously stratified into groups according to their clinical variant of FTD: 
70 patients were diagnosed with the behavioral variant, 36 with the semantic primary progressive 
aphasia, and 30 with the non-fluent primary progressive aphasia (Staffaroni et  al., 2019; Dadar 
et al., 2021). 3 T structural images were collected on the following three sites: University of California 
San Francisco, Mayo Clinic, and Massachusetts General Hospital (Staffaroni et al., 2019). Patients 
were referred by physicians or self-referred, and all underwent neurological, neuropsychological, and 
functional assessment with informant interview (Staffaroni et al., 2019). All individuals received their 
diagnoses during a multidisciplinary consensus conference using established criteria: Neary criteria 
(Neary et  al., 1998) or, depending on the year of enrollment, the recently published consensus 
criteria for bvFTD (Rascovsky et  al., 2011) and PPA (Gorno-Tempini et  al., 2011). Histological 
analysis was conducted to assess whether patients might have AD pathology since both conditions 
present the overlap of clinical symptoms (Staffaroni et al., 2019). All subjects provided informed 
consent, and the protocol was approved by the institutional review board at all sites (Staffaroni 
et al., 2019).

Mapping gene expression data
To construct a comprehensive transcriptome atlas, we used mRNA microarray gene expression data 
from the AHBA (Shen et al., 2012). The AHBA included anatomical and histological data collected 
from six healthy human specimens with no known neurological disease history (one female; age range 
24–57 y; mean age 42.5 ± 13.38 y) (Shen et al., 2012). Two specimens contained data from the entire 
brain, whereas the remaining four included data from the left hemisphere only, with 3702 spatially 
distinct samples in total (Shen et al., 2012). The samples were distributed across cortical, subcortical, 
brainstem, and cerebellar regions in each brain, and the expression levels of more than 20,000 genes 
were quantified (Shen et al., 2012). mRNA data for specific brain locations were accompanied by 
structural MR data from each individual and were labeled with Talairach native coordinates (Talairach 
and Szikla, 1980) and MNI coordinates (Evans et al., 1994), which allowed us to match samples to 
imaging data.

Following the validated approach in Gryglewski et al., 2018, missing data points between samples 
for each MNI coordinate were interpolated using Gaussian process regression, a widely used method 
for data interpolation in geostatistics. The regression is performed as a weighted linear combination 
of missing mRNA, with the weights decreasing from proximal to distal regions. MNI coordinates for 
predicting mRNA values were taken from the GM regions of the AAL atlas. Spatial covariance between 
coordinates from the available 3072 AHBA tissue samples and coordinates from the AAL atlas was 
estimated via the quadratic exponential kernel function. mRNA expression at each MNI coordinate 

https://doi.org/10.7554/eLife.89368
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was then predicted by multiplying AHBA gene express values that corresponded to specific probes to 
kernel covariance matrix divided by the sum of kernels.

Cell type proportion estimation
Densities for multiple canonical cell types were estimated at the GM by applying an R-package 
BRETIGEA, with known genetic markers to the transcriptome atlas (McKenzie et al., 2018a). This 
eigengene decomposition-based deconvolution method was designed for estimating cell proportions 
in bulk gene expression data for six major cell types: neurons, astrocytes, oligodendrocytes, microglia, 
endothelial cells, and OPCs (McKenzie et al., 2018a; Chikina et al., 2015). We chose 15 represen-
tative gene markers per each cell type (90 in total) from the BRETIGEA human brain marker gene set 
and then selected those genes that were also present in the AHBA gene expression database with 
matching gene probes. This resulted in 80 cell type-related gene markers that were used in missing 
data interpolation and the deconvolution proportion estimation analysis (Supplementary file 3). For 
each voxel, each cell type proportion value was normalized relative to the sum of all six cell types and 
the sum was scaled relative to the GM density. We then registered data into MNI and volumetric space 
using the ICBM152 template (Evans et al., 1994).

For the correlation analysis, cell densities were averaged over 118 anatomical regions in GM defined 
by the extended AAL atlas (Supplementary file 1; Tzourio-Mazoyer et al., 2002). We repeated the 
correlation analysis for the 98 regions from the DKT atlas (Figure 3—figure supplement 1; Desikan 
et al., 2006).

Data analysis
We constructed a 6 × 13 correlation matrix by computing inter-regional Spearman’s correlations 
between spatial distributions of the 6 canonical cell types and patterns of atrophy in 13 neurode-
generative conditions. Correction for multiple comparisons using the FDR was conducted using the 
Benjamini–Hochberg method, with a significance threshold of 0.05. Shapiro–Wilk tests were used to 
examine the normality of data distribution. Hierarchical clustering analyses were applied using in-built 
MATLAB function for data visualization. Cells and conditions were clustered together based on esti-
mated averaged linkage Euclidian distance between their correlation values.
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