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Abstract Computational prediction of protein structure has been pursued intensely for decades, 
motivated largely by the goal of using structural models for drug discovery. Recently developed 
machine- learning methods such as AlphaFold 2 (AF2) have dramatically improved protein structure 
prediction, with reported accuracy approaching that of experimentally determined structures. To 
what extent do these advances translate to an ability to predict more accurately how drugs and drug 
candidates bind to their target proteins? Here, we carefully examine the utility of AF2 protein struc-
ture models for predicting binding poses of drug- like molecules at the largest class of drug targets, 
the G- protein- coupled receptors. We find that AF2 models capture binding pocket structures 
much more accurately than traditional homology models, with errors nearly as small as differences 
between structures of the same protein determined experimentally with different ligands bound. 
Strikingly, however, the accuracy of ligand- binding poses predicted by computational docking to 
AF2 models is not significantly higher than when docking to traditional homology models and is 
much lower than when docking to structures determined experimentally without these ligands 
bound. These results have important implications for all those who might use predicted protein 
structures for drug discovery.

eLife assessment
This important study presents findings with broad implications for the use of AlphaFold 2 models 
in ligand binding pose modeling, a common task in protein structure modeling. The computa-
tional experiments and analyses provide compelling results for the GPCR protein family data, but 
the conclusions are likely to apply also to other proteins and they will therefore be of interest to 
biophysicists, physical chemists, structural biologists, and anyone interested or involved in structure- 
based ligand discovery.

Introduction
Recent breakthroughs in machine learning have substantially improved the accuracy of protein struc-
ture prediction, to the point that some have declared the problem solved (Baek et al., 2021; Jumper 
et al., 2021; Ourmazd et al., 2022). Indeed, in the most recent round of the Community Assessment 
of Structure Prediction (CASP)—a blind protein structure prediction competition—AlphaFold 2 (AF2) 
demonstrated an unprecedented ability to predict protein structures with atomic accuracy, sometimes 
rivaling the accuracy of certain experimental methods for structure determination (Kryshtafovych 
et al., 2021; Tejero et al., 2022).
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These advances have generated tremendous excitement, focused in particular on their potential 
impact on drug discovery (Lowe, 2022; Thornton et al., 2021; Toews, 2021). The vast majority of 
drug targets are proteins, and structures play a critical role in rational drug design (Anderson, 2003; 
Kolb et al., 2009). In particular, rational drug design strategies frequently require determining struc-
tures of the target protein bound to many ligands, as information on how these ligands bind is crit-
ical both to discovering early- stage drug candidates and to optimizing their properties (Maveyraud 
and Mourey, 2020; Warren et al., 2012). Determining these structures experimentally is typically 
slow and expensive, and sometimes proves impossible (Slabinski et al., 2007). Tremendous effort 
has thus gone into development of computational docking methods for predicting ligand- binding 
modes, which have dramatically accelerated this process in cases where a high- resolution experimen-
tally determined structure of the target protein is available (Ferreira et al., 2015; Pinzi and Rastelli, 
2019).

However, the metrics generally used to evaluate protein structure prediction methods—including 
all of those used in CASP—focus on the overall accuracy of predicted structures, rather than on their 
utility in predicting ligand binding. This has left the large community of academic and industrial 
researchers who wish to use protein structures to design drugs and other ligands unsure of whether, 
when, and how to use the new structural models. Improvements in protein structure prediction are 
widely assumed to lead to better models of ligand- binding pockets and thus more accurate predic-
tions of ligand binding (Beuming and Sherman, 2012; Bordogna et al., 2011; Erickson et al., 2004), 
but to what extent do these assumptions hold?

Here, we address these questions by evaluating (1) the structural accuracy of ligand- binding 
pockets in modeled proteins and (2) the accuracy of ligand- binding poses predicted using these 
models, where a ligand’s binding pose is specified by the 3D coordinates of its atoms when bound to 
the target protein. We evaluate models generated both by AF2 and by a traditional template- based 
modeling strategy, systematically comparing both to experimentally determined structures.

Several recent studies have experimented with the use of models generated by AF2—and related 
protein structure prediction approaches such as RoseTTAFold (Baek et al., 2021)—for tasks related 
to drug design, with mixed results (Díaz- Rovira et al., 2023; He et al., 2023; Heo and Feig, 2022; 
Lee et al., 2022; Lee et al., 2023; Liang et al., 2022; Qiao et al., 2022; Scardino et al., 2023; 
Wong et al., 2022). Our study stands apart in two regards. First, we use structural models generated 
without any use of known structures of the target protein. For machine- learning methods, this requires 
ensuring that no structure of the target protein was used to train the method. Second, we perform 
a systematic comparison that takes into account the variation between experimentally determined 
structures of the same protein when bound to different ligands.

Our results reveal both strengths and weaknesses of AF2 models. The structural accuracy of 
ligand- binding pockets in AF2 models is usually substantially higher than that of traditional homology 
models. Indeed, the typical difference between corresponding binding pockets in an AF2 model and 
in an experimentally determined structure is only slightly larger than the typical difference between 
two experimentally determined structures of the same protein with different ligands bound. Surpris-
ingly, however, ligand- binding poses predicted given AF2 models are not significantly more accurate 
than those predicted given traditional models and are much less accurate than those predicted by 
docking computationally to experimentally determined protein structures. Our results provide guide-
lines as to how AF2 models should—and should not—be used for effective ligand- binding prediction. 
Our findings also suggest opportunities for improving structure prediction methods to maximize their 
impact on drug discovery.

Results
Selection of proteins and models to ensure a fair comparison
Evaluating the accuracy of predicted ligand- binding poses requires that we examine protein–ligand 
complexes whose structures have been determined experimentally. We wish to ensure, however, that 
the predicted structures of a given protein are not informed by experimentally determined structures 
of that same protein.

AF2 and other recent neural- network- based protein structure prediction methods use experimen-
tally determined protein structures in two ways: first, to train the neural network and second, as 
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templates for prediction of individual protein structures (Baek et al., 2021; Jumper et al., 2021). The 
AF2 neural network was trained on structures in the Protein Data Bank (PDB) (Berman et al., 2000) 
as of April 30, 2018 so we evaluated structural models of proteins for which no experimentally deter-
mined structure was available as of that date. In addition, when generating models using AF2, we 
used only structures that were available on that date as templates (see Methods). For a fair compar-
ison, we also ensured that the traditional template- based models we used were not informed by any 
structures that became available after that date. In particular, we used traditional models that were 
published before April 30, 2018.

We selected all proteins, ligands, and structural models used in this study in a systematic manner 
(see Methods). We focused on one class of drug targets—G- protein- coupled receptors (GPCRs)—for 
three reasons. First, GPCRs represent the largest class of drug targets by a substantial margin, with 
35% of FDA- approved drugs targeting a GPCR (Sriram and Insel, 2018). Second, GCPR- binding 
pockets are very diverse, reflecting the fact that GPCRs have evolved to bind very different ligands 
with high specificity (Venkatakrishnan et al., 2013). Third, the GPCRdb project maintains a histor-
ical database of template- based models of GPCRs (Pándy- Szekeres et al., 2018). By selecting the 
template- based models listed in GPCRdb in April 2018, we ensured that these models were not 
informed by any structures that became available after April 30, 2018.

Binding pocket structures are much more accurate in AF2 models than 
traditional models
Because proteins are flexible, each protein can adopt multiple structures. In particular, the structure 
of a protein—especially the structure of the binding pocket—depends on which ligand is bound. To 
quantify this natural variation, we compared all pairs of experimentally determined structures of the 
same protein to one another, using root mean squared deviation (RMSD) as a metric (see Methods).

AF2 does not allow one to specify a bound ligand when generating a protein model, and the 
template- based models listed in GPCRdb were also generated without specification of a bound 
ligand. We thus evaluated the accuracy of each model by computing its RMSD to that of all available 
experimental structures of the same protein. We compared the resulting distribution of RMSDs to the 
distribution of RMSDs between structures of the same protein with different ligands bound.

As expected based on previously reported results for other proteins (Jumper et al., 2021), we find 
that the global structural accuracy of the AF2 models is substantially better than that of the traditional 
template- based models. In particular, when computing RMSDs based on all non- hydrogen atoms in 
each protein, we find a median RMSD of 2.9 Å between AF2 models and corresponding experimen-
tally determined structures, compared to a median RMSD of 4.3 Å for traditional models (Figure 1—
figure supplement 1).

Next, we turn our attention to the orthosteric binding pocket of each protein—that is, the region 
where native ligands and most other ligands, including those in our dataset, bind. AF2 was trained 
to optimize global structural accuracy, with an emphasis on correctly predicting the structure of the 
protein backbone. The accuracy of binding pocket prediction, on the other hand depends heavily on 
side- chain conformations in this local region. Nevertheless, we find that AF2 predictions of binding 
pocket structures are typically very accurate.

In fact, the binding pocket RMSD between an AF2 model and an experimentally determined struc-
ture is typically nearly as low as the RMSD between two experimentally determined structures of the 
same protein with different ligands bound (Figure 1). In contrast, binding pockets in the traditional 
template- based models are much less accurate, with a median RMSD of 3.3 Å for traditional models 
vs. 1.3 Å for AF2 models. We note that the binding pockets of a few AF2 models are highly inaccurate 
(approximately 5 Å RMSD), as is the case for several of the traditional models.

Binding pose prediction using AF2 models or traditional models yields 
similar accuracy
Next, we assess the accuracy of ligand- binding poses predicted by computational docking to AF2 
models and traditional template- based models. For each ligand we consider, the binding pose to 
a target protein is known based on an experimentally determined structure of the ligand bound to 
the protein, which we call the reference structure. Using industry- standard software, we docked each 
ligand to both AF2 and GPCRdb models of the protein. A predicted pose is considered correct if 
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its RMSD from the experimentally determined pose is ≤2.0 Å (Figure 2), a widely used criterion for 
correct pose prediction (Erickson et al., 2004; Gohlke et al., 2000; Paggi et al., 2021).

For comparison, we also dock each ligand to structures of the same protein determined experi-
mentally with other ligands bound (cross- docking). Note that when calculating pose prediction accu-
racy (Figure 2), we exclude cases where the ligand is docked back to the reference structure; such 
‘self- docking’ yields much higher accuracy (Figure 2—figure supplement 1) but is of little practical 
utility, because in practice one wishes to predict binding poses that have not already been determined 
experimentally.

Strikingly, binding pose prediction accuracy was similar when using AF2 models or traditional 
template- based models, despite the fact that binding pocket structures were substantially more accu-
rate in AF2 models. Although the fraction of ligands docked correctly was slightly higher when using 

Figure 1. Structural accuracy of modeled binding pockets. Binding pockets are defined to include all amino acid residues with any atom within 5 Å 
of the ligand in an experimentally determined structure. We compute all- atom binding pocket root mean squared deviations (RMSDs) between each 
modeled structure and all experimentally determined structures of the same protein. For comparison, we also compute binding pocket RMSDs between 
all pairs of experimentally determined structures of the same protein with different ligands bound. The middle line of each box in the plot is the median 
RMSD, with the box extending from the first to the third quartile and defining the ‘interquartile range’. Whiskers extend to last data points that are 
within 150% of the interquartile range, and outlier data points beyond those are shown individually. The plotted data is based on 150 RMSD values 
(comparisons) for experimentally determined structures with different ligands bound, 52 for AlphaFold 2 models, and 78 for traditional models.  

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Structural accuracy of modeled proteins.

Figure supplement 2. Structural accuracy of modeled binding pockets.

https://doi.org/10.7554/eLife.89386


 Research article      Structural Biology and Molecular Biophysics

Karelina et al. eLife 2023;12:RP89386. DOI: https://doi.org/10.7554/eLife.89386  5 of 16

AF2 models (15%) than when using traditional models (9%), this difference was not statistically signif-
icant (p > 0.5). On the other hand, binding pose prediction accuracy was far higher when docking to 
experimentally determined protein structures (44%), even though these structures were determined 
in complex with ligands different from those being docked.

The docked poses analyzed above were determined with the widely used commercial docking 
software package Glide, run in SP mode (for ‘standard precision’) (Friesner et al., 2004). To verify the 
robustness of our results, we repeated all docking experiments using a completely different docking 
software package—Rosetta docking (Park et al., 2021)—as well as with Glide run in XP mode (for 
‘extra precision’) (Friesner et al., 2006). In both cases, we again found that, when used for ligand- 
binding pose prediction, AF2 models substantially underperformed experimentally determined 

Figure 2. Accuracy of ligand- binding poses predicted by computational docking to AlphaFold 2 models, traditional template- based models, or protein 
structures determined experimentally in complex with a ligand different from the one being docked. We plot the fraction of docked ligands whose pose 
is predicted correctly (see Methods). Error bars are 90% confidence intervals calculated via bootstrapping. *** for p- values <0.001, ns for p- values >0.05. 
40 - 54 ligands were evaluated for each set of structures or models.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Accuracy of ligand- binding poses predicted by computational docking to AlphaFold 2 models, traditional template- based 
models, or experimentally determined protein structures.

Figure supplement 2. Accuracy of ligand- binding poses predicted by computational docking to AlphaFold 2 models, traditional template- based 
models, or protein structures determined experimentally in complex with ligands different from the one being docked or very different from the one 
being docked.

https://doi.org/10.7554/eLife.89386
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structures and did not significantly outperform traditional models (Figure  2—figure supplement 
2). In fact, the difference in binding pose prediction accuracy between AF2 models and traditional 
models was even smaller when using Rosetta docking or Glide XP than when using Glide SP.

Closer look at discrepancy between structural accuracy and pose 
prediction accuracy
The results of the previous two sections contrast sharply with one another. AF2 models nearly 
match experimentally determined structures—and are much better than traditional template- based 
models—in binding pocket accuracy, as measured by a standard structural metric. Yet AF2 models fare 
much worse than experimentally determined structures—do not significantly outperform traditional 
models—when used to predict ligand- binding poses. Figures 3 and 4 provide illustrative examples.

To further quantify these results, we compare pose prediction accuracy for structures and models 
with similar binding pocket accuracy. In particular, we calculate pose prediction accuracy as a func-
tion of binding pocket accuracy (RMSD) for both experimentally determined structures and models. 
As expected, we find that average pose prediction accuracy increases as binding pocket accuracy 
increases (i.e., RMSD to reference structure decreases). This trend holds for experimentally deter-
mined structures, AF2 models, and traditional template- based models (Figure  5 and Figure  5—
figure supplement 1). Yet for the same binding pocket accuracy (RMSD from the reference structure), 
AF2 models yield lower average pose prediction accuracy than experimentally determined structures 
(Figure 3). In contrast, in cases where traditional models and experimentally determined structures 
have similar binding pocket accuracies, they yield similar pose prediction accuracies (Figure 5—figure 
supplement 1).

We also considered the possibility that the improved performance of experimentally determined 
structures relative to AF2 models might be because, in some cases, the structure used for docking was 
determined with a bound ligand similar (though not identical) to the ligand being docked. Eliminating 
such cases from consideration does lead to decreases in both aggregate binding pocket accuracy and 
pose prediction accuracy of experimentally determined structures, but experimentally determined 
structures continue to yield significantly more accurate pose predictions than AF2 models (p < 0.01) 
(Figure 1—figure supplement 1 and Figure 2—figure supplements 1 and 2).

Discussion
Several recent papers have concluded that AF2 models fall short of experimentally determined struc-
tures when used for ligand docking (Díaz- Rovira et al., 2023; He et al., 2023; Heo and Feig, 2022; 
Scardino et al., 2023). Our results agree with this conclusion but go beyond it in several ways. We 
compare AF2 models and traditional template- based models, rigorously ensuring that none of these 
models was informed by experimentally determined structures of the protein being modeled. We find 
that, in terms of structural accuracy of the binding pocket, AF2 models are much better than tradi-
tional models; indeed, the RMSD between an AF2 model and an experimentally determined structure 
is typically comparable to the RMSD between two structures determined experimentally with different 
ligands bound. Yet, when used for docking, AF2 models yield pose prediction accuracy similar to that 
of traditional models and much worse than that of experimentally determined structures.

A few caveats are in order. First, building a traditional template- based model is not always possible. 
We only considered template- based models in cases where a structure was available for another 
protein with at least 40% sequence identity. However, 80% of human drug targets have at least 50% 
sequence identity to a protein whose structure was known in 2017 (Somody et al., 2017), and that 
number is even higher today. In addition, we note that the traditional models we used were gener-
ated relatively quickly by an academic group along with models for hundreds of other proteins. An 
expert working on a drug discovery project could frequently build a better template- based model—
for example, by examining the predictive utility of several models (Carlsson et al., 2011; Haddad 
et al., 2020).

Second, our study examined only GPCRs. The results might in principle be different for other classes 
of drug targets. However, GPCRs have very diverse binding pockets, which have evolved to binding 
an extremely broad range of ligands, ranging from very small molecules to peptides and proteins, with 
high specificity (Venkatakrishnan et al., 2013). Our conclusions thus likely apply to many non- GPCR 

https://doi.org/10.7554/eLife.89386
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Ligand RMSD:  10.6  Å Ligand RMSD:  1.9 Å

Aprepitant docked to
AlphaFold 2 model

Aprepitant docked
to di�erent structure

Experimentally determined 
aprepitant pose

Binding pocket RMSD:  2.6 ÅBinding pocket RMSD:  1.6 Å

AlphaFold 2 model
of NK1R

Di�erent NK1R structure
(without aprepitant)

NK1R structure determined
with aprepitant bound

A B

C D

Docking to an experimentally determined structure vs. AF2 model

Figure 3. An example in which docking to an AlphaFold 2 (AF2) model yields poor results even though the model’s binding pocket has high structural 
accuracy. We predict the binding pose of the drug aprepitant to its target, the neurokinin- 1 receptor (NK1R) given either the AF2 model (orange) of 
NK1R or the experimentally determined structure (blue, PDB entry 6E59) of NK1R bound to a different ligand, L760735. (A, B) The binding pocket of the 
AF2 model is more similar (lower root mean squared deviation [RMSD]) than the binding pocket of the L760735- bound structure to the binding pocket 

Figure 3 continued on next page
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drug targets—and GPCR targets alone account for roughly half of drug discovery projects. We also 
note that, for GPCRs specifically, one can often improve docking performance by using a model or an 
experimentally determined structure in the activation state to which a given ligand preferentially binds 
(Heo and Feig, 2022; Lee et al., 2022). In this study, we did not limit the ligands docked to each 
structure or model to those that preferentially bind one specific activation state. We made this choice 
for several reasons: many other classes of drug targets do not have well- defined activation states; in 
practical applications, the preferred activation state for a given ligand may not be known when one 
docks it; and AF2 does not produce models in specific activation states by default.

Third, we have not examined performance of the full range of available computational docking 
methods (Pagadala et  al., 2017). Our results are, however, consistent across the three docking 
methods we examined: Glide SP, Glide XP, and Rosetta docking. In each case, AF2 models yield 
docking accuracy similar to that of traditional models and substantially worse than that of experimen-
tally determined structures.

Our results have important implications for practitioners of structure- based drug discovery. Our 
findings suggest that, despite dramatic recent improvements in protein structure prediction, structural 
models (in particular, AF2 models) yield substantially poorer accuracy than experimentally determined 
structures in prediction of ligand- binding modes. Moreover, when a reasonable structural template is 
available—as is typically the case—AF2 models should not be expected to yield significantly better 
pose prediction accuracy than traditional models. Indeed, with sufficient effort, an expert may well be 
able to build a traditional template- based model that yields better performance than an AF2 model.

Despite these findings, we believe that AF2 and other recently developed protein structure predic-
tion methods will prove valuable in certain structure- based drug discovery efforts. Up- to- date AF2 
models for any human protein are readily available for download (Tunyasuvunakool et  al., 2021; 
Varadi et al., 2022). In contrast, expertise is required to build a decent template- based model, and 
up- to- date, downloadable repositories of such models are not available for all drug targets. Also, in 
the relatively rare cases when no structural template is available for a drug target, approaches like AF2 
may be the only realistic option short of solving a structure experimentally.

Our results also point to opportunities for developing improved computational modeling methods. 
Existing deep- learning methods for protein structure prediction were developed with the aim of maxi-
mizing structural accuracy for models. We find that the RMSD of a model—a classic structural accu-
racy metric—is not a good predictor of the accuracy that model yields for pose prediction. Future 
protein structure prediction methods might instead be designed to maximize utility for ligand- binding 
prediction, while still exploiting the deep- learning advances of AF2 and related recent methods. We 
also note that the vast majority of test cases used in the design of currently available docking soft-
ware involved experimentally determined protein structures. One might be able to redesign docking 
methods to yield better performance given computationally predicted models.

Methods
Protein and ligand selection
We selected structures from the aggregated list of all experimentally determined human GPCR struc-
tures from GPCRdb (Isberg et al., 2014). We removed all proteins for which a structure was published 
in the PDB before April 30, 2018, including two Class C GPCRs for which structures of the extracellular 
domain (to which ligands bind) had been published before that date. We also removed proteins for 
which structures were available in complex with fewer than two unique orthosteric ligands. This left 

of the aprepitant- bound structure (the ‘reference structure’, white, PDB entry 6J20). Amino acid residues whose positions differ most from the reference 
structure are shown in sticks (see Methods). (C, D) The aprepitant binding pose predicted by docking is much less accurate (higher RMSD) when using 
the AF2 model than when using the L760735- bound structure. Ligand L76035 shares a scaffold with aprepitant; for completeness, we include another 
example with highly dissimilar ligands in Figure 3—figure supplement 1. We note that the experimentally determined L760735- bound structure is a 
low- resolution structure with suboptimal goodness of fit to experimental data; despite this, docking aprepipant to this structure yields an accurate pose.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. An example in which docking to an AlphaFold 2 (AF2) model yields poor results even though the model’s binding pocket has 
high structural accuracy.

Figure 3 continued

https://doi.org/10.7554/eLife.89386
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Docking to an AF2 model vs. traditional model

Figure 4. An example in which docking to a traditional template- based model yields better results than docking to an AlphaFold 2 (AF2) model, even 
though the AF2 model’s binding pocket has higher structural accuracy. We predict the binding pose of the psychedelic LSD to its primary target, the 
serotonin 2A receptor (5HT2A) given either the AF2 model (orange) or a traditional model (green) of 5HT2A. (A, B) The binding pocket of the AF2 
model is more similar (lower root mean squared deviation [RMSD]) than that of the traditional model to the binding pocket of the experimentally 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.89386
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us with 54 experimentally determined structures of 18 GPCRs (17 class A, 1 class B). The full list of 
proteins and structures is in Supplementary file 1.

Obtaining structural models
AlphaFold 2
For each protein, we took the full protein sequence from Uniprot (UniProt Consortium, 2023) to 
generate five AF2 models, as was done for CASP (Jumper et al., 2021), and picked the top- scoring 
prediction as our model. We set the template cutoff date to 2018- 04- 30.

GPCRdb
We downloaded template- based models from the GPCRdb archive dated 2018- 04- 06. We used all the 
inactive- and active- state models available, and averaged results as described in Statistical tools. We 

determined LSD- bound structure (the ‘reference structure’, white, PDB entry 6WGT). Amino acid residues that differ most from the reference structure 
are shown in sticks. (C, D) The LSD- binding pose predicted by docking is less accurate (higher RMSD) when using the AF2 model than when using the 
traditional model.

Figure 4 continued

Figure 5. Pose prediction accuracy as a function of binding pocket structural accuracy when docking to AlphaFold 2 (AF2) models or experimentally 
determined structures. Docking to an experimentally determined structure generally leads to more accurate pose prediction than docking to an AF2 
model with the same binding pocket root mean squared deviation (RMSD). The difference between the two curves is statistically significant for all 
binding pocket RMSD values below 1.1 Å (see Methods). See Figure 5—figure supplement 1 for additional data, including results for traditional 
models and for various docking methods.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Pose prediction accuracy as a function of binding pocket structural accuracy when docking to AlphaFold 2 (AF2) models, 
experimentally determined structures or traditional template- based models, with different docking protocols.

https://doi.org/10.7554/eLife.89386
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excluded models for which the minimum sequence identity of the templates was below 40%, as such 
template- based models are typically not used for drug- binding predictions.

This led to exclusion of models for four GPCRs (AGRG3, TA2R, PE2R2, and PE2R4). GPCRdb did 
not include models for two of the GPCRs (GPBAR and PE2R3).

Ligand preparation
Ligands were extracted from PDB structures using the Schrödinger Python API and then manually 
inspected to make sure we had chosen the ligand at the orthosteric site. With the same API, ligands 
were converted to SMILES strings. Ligands were then prepared with Schrödinger’s LigPrep with 
default command line parameters (Schrödinger LLC, 2021).

Ligand similarity was defined as a ratio of the size of the maximum common substructure to the size 
of the smaller molecule. Ligand pairs for which this ratio was less than 0.5 were deemed very different 
ligands.

Protein preparation
Experimentally determined structures were downloaded from the PDB. Only a single chain containing 
the ligand was kept, and all waters were removed. All structures and models were prepared with 
Schrödinger Protein Preparation Wizard (Schrödinger LLC, 2021 ) following the same protocols as 
Paggi et al., 2021, including energy minimization. All the experimentally determined structures were 
determined with a ligand bound, and we retained this ligand during minimization. Computationally 
predicted models did not include a ligand.

Glide docking
For Glide XP and Glide SP docking, we follow the docking protocol described in Paggi et al., 2021. 
The grid is centered at the geometric centroid of the ligand and is defined with an inner box with 15 Å 
sides and outer box with 30 Å sides. For predicted structural models the center of the box is deter-
mined by aligning the model to an experimentally determined structure of that protein and using the 
centroid of its ligand. For this alignment, we pick the structure with the alphabetically first PDB entry 
ID.

Rosetta docking
For Rosetta docking, we used the GALigandDock protocol (Park et  al., 2021). To prepare the 
proteins, PyMol (Schrödinger, 2015) was used to remove heteroatoms and all alternative locations 
for each atom. CONECT information was included. UCSF Chimera v1.16 (Pettersen et al., 2004) was 
used to initially remove all hydrogens, followed by their Dock Prep software to prepare the structure 
for docking.

For ligands, Open Babel v2.4.0 (O’Boyle et al., 2011) was used to generate 3D structures from 
ligand SMILES and add hydrogens at a pH of 7 (O’Boyle et al., 2011). Ambertools v22.0 (Case et al., 
2023) was used to add AM1- BCC partial charges. The ligand was translated such that the center of 
mass of the ligand was positioned at center of the binding pocket of the prepared structure. The 
center of the binding pocket was defined as the center of mass of the ligand in the experimentally 
determined structure. Models were aligned to the experimentally determined structure of the protein 
which had the alphabetically first PDB entry ID. This structure’s ligand center of mass was used to 
define the model’s binding pocket.

Structural comparisons
To calculate ligand pose RMSD, structures were first aligned on amino acid residues within 15 Å of 
bound orthosteric ligands, using Schrödinger’s structalign tool (Schrödinger LLC, 2021). This align-
ment was used to calculate the RMSD of each docked ligand pose from the reference ligand pose.

Binding pocket RMSDs were calculated with a PyMOL script, considering all residues that are 
within 5 Å of the ligand in the reference structure (for both alignment and RMSD calculation). We 
included all non- hydrogen atoms in this calculation, except that for the backbone- only binding pocket 
RMSDs shown in Figure 5—figure supplement 1 we included only backbone atoms.

We computed full- structure RMSDs with a similar PyMOL script, but taking into account all non- 
hydrogen atoms in the protein.

https://doi.org/10.7554/eLife.89386
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In Figure 3, Figure 4, and Figure 3—figure supplement 1, we highlight residues in the binding 
pocket whose positions differ most from the reference structure. To identify these residues, we aligned 
to the reference structure the structure and model (or the two models) being docked to. For each 
structure/model, we computed the RMSD for each residue within 5 Å of the ligand, and then for each 
residue determined the maximum RMSD across the two structures/models. We selected the residues 
with the largest maximum RMSDs.

Statistical tools
p values were computed with two sided paired t- tests, using SciPy (Virtanen et al., 2020). Bootstrap-
ping 90% confidence intervals were computed with the default 9999 resamples, also using SciPy.

In Figure 2, the docking accuracy is calculated as a weighted average across all docking results, 
with weights chosen such that each ligand–protein pair is represented equally. In particular, when 
multiple traditional template- based models of a single protein were available, we docked each ligand 
to each model but set the averaging weight to the inverse of the number of models docked to. 
Likewise, when multiple experimentally determined structures of a single protein were available for 
docking of a particular ligand (i.e., structures determined experimentally without that particular ligand 
bound), we docked the ligand to each structure but set the averaging weight to the inverse of the 
number of structures docked to.

In Figure 5 and Figure 5—figure supplement 1, instead of simply binning structures and models 
in different RMSD ranges, we performed a smoothing analysis that does not impose arbitrary cutoffs 
between bins. The smoothed functions were created by running kernel smoothing over docking 
outcomes. The smoothing was done over data such that each data point was the binding pocket 
RMSD and the binary value indicating whether or not the predicted pose was correct. An Epanech-
nikov kernel (Hastie et al., 2009) was used, with a width of 0.25 Å. To avoid inaccurate boundary 
condition behaviors, each end the kernel was only evaluated when the center of the kernel overlapped 
with the first or last data point on the X- axis. To calculate statistical significance and p values, a boot-
strapping significance test was conducted for each interval on the X- axis. Additionally, in Figure 5—
figure supplement 1, we show 90% confidence intervals that are also computed with bootstrapping.
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Appendix 1

Appendix 1—key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software Schrödinger tools Schrödinger
Version: 2021- 1
glide- v9.0

Glide, Maestro, Protein 
Preparation Wizard

Software PyMOL Schrödinger PyMOL 3.8

Software AlphaFold 2.0.1
https://doi.org/10.1038/ 
s41586-021-03819-2

Software Rosetta GALigandDock
https://doi.org/10.1021/ 
acs.jctc.0c01184

https://doi.org/10.7554/eLife.89386
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1021/acs.jctc.0c01184
https://doi.org/10.1021/acs.jctc.0c01184
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