Dynamics of macrophage polarization support Salmonella persistence in a whole living organism

  1. Jade Leiba  Is a corresponding author
  2. Tamara Sipka
  3. Christina Begon-Pescia
  4. Matteo Bernardello
  5. Sofiane Tairi
  6. Lionello Bossi
  7. Anne-Alicia Gonzalez
  8. Xavier Mialhe
  9. Emilio Gualda
  10. Pablo Loza-Alvarez
  11. Anne Blanc-Potard
  12. Georges Lutfalla
  13. Mai E Nguyen-Chi  Is a corresponding author
  1. LPHI, CNRS, Université de Montpellier, France
  2. The Barcelona Institute of Science and Technology, Spain
  3. Université Paris-Saclay, CEA, CNRS, France
  4. Université de Montpellier, CNRS, INSERM, France
  5. Université de Montpellier, CNRS, INSERM, Montpellier France, France
  6. LIPH, CNRS, INSERM, Univ Montpellier, France

Abstract

Numerous intracellular bacterial pathogens interfere with macrophage function, including macrophage polarization, to establish a niche and persist. However, the spatiotemporal dynamics of macrophage polarization during infection within host remain to be investigated. Here, we implement a model of persistent Salmonella Typhimurium infection in zebrafish, which allows visualization of polarized macrophages and bacteria in real time at high-resolution. While macrophages polarize toward M1-like phenotype to control early infection, during later stages, Salmonella persists inside non-inflammatory clustered macrophages. Transcriptomic profiling of macrophages showed a highly dynamic signature during infection characterized by a switch from pro-inflammatory to anti-inflammatory/pro-regenerative status and revealed a shift in adhesion program. In agreement with this specific adhesion signature, macrophage trajectory tracking identifies motionless macrophages as a permissive niche for persistent Salmonella. Our results demonstrate that zebrafish model provides a unique platform to explore, in a whole organism, the versatile nature of macrophage functional programs during bacterial acute and persistent infections.

Data availability

The raw sequencing data is available in the NCBI GEO database under accession number: GSE224985, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224985.Figure 7 - Source Data 1 contains the numerical data used to generate the figures.Other data that support the findings are openly available from the public repository Zenodo at https://zenodo.org/records/10409519, at the publication date.

The following data sets were generated

Article and author information

Author details

  1. Jade Leiba

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    For correspondence
    jade.leiba@umontpellier.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Tamara Sipka

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina Begon-Pescia

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Matteo Bernardello

    ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Sofiane Tairi

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Lionello Bossi

    Institute for Integrative Biology of the Cell-I2BC, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne-Alicia Gonzalez

    MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Xavier Mialhe

    MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier France, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilio Gualda

    ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pablo Loza-Alvarez

    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3129-1213
  11. Anne Blanc-Potard

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Georges Lutfalla

    DIMNP, LIPH, CNRS, INSERM, Univ Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mai E Nguyen-Chi

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    For correspondence
    mai-eva.nguyen-chi@umontpellier.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2672-2426

Funding

Horizon 2020 Framework Programme (MSCA-ITN ImageInLife Grant Agreement n{degree sign} 721537)

  • Pablo Loza-Alvarez
  • Georges Lutfalla

Horizon 2020 Framework Programme (MSCA-ITN Inflanet Grant Agreement n{degree sign} 955576)

  • Mai E Nguyen-Chi

Agence Nationale de la Recherche (ANR-19-CE15-0005-01,MacrophageDynamics)

  • Mai E Nguyen-Chi

Region Occitanie (REPERE « INFLANET »)

  • Mai E Nguyen-Chi

Spanish Ministerio de Economía y Competitividad (CEX2019-000910-S)

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

MINECO/FEDER (RYC-2015-17935)

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

Horizon 2020 Framework Programme (Laserlab-Europe GA no. 871124)

  • Pablo Loza-Alvarez

Fundació Privada Cellex

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

Fundación Mig-Puig

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation procedures were carried out according to the European Union guidelines for handling of laboratory animals (https://ec.europa.eu/environment/chemicals/lab_animals/index_en.htm) and were approved by the Comité d'Ethique pour l'Expérimentation Animale under reference CEEA-LR- B4-172-37 and APAFIS #36309-2022040114222432 V2. Fish husbandry, embryo collection, animal experimentations, handling, and euthanasia were performed at the University of Montpellier, LPHI/CNRS UMR5295, by authorized staff. All experimentations were performed under tricain (Ethyl 3-aminobenzoate) anesthesia, and every effort was made to minimize suffering. Euthanasia was performed using an anesthetic overdose of tricain.

Copyright

© 2024, Leiba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,557
    views
  • 293
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jade Leiba
  2. Tamara Sipka
  3. Christina Begon-Pescia
  4. Matteo Bernardello
  5. Sofiane Tairi
  6. Lionello Bossi
  7. Anne-Alicia Gonzalez
  8. Xavier Mialhe
  9. Emilio Gualda
  10. Pablo Loza-Alvarez
  11. Anne Blanc-Potard
  12. Georges Lutfalla
  13. Mai E Nguyen-Chi
(2024)
Dynamics of macrophage polarization support Salmonella persistence in a whole living organism
eLife 13:e89828.
https://doi.org/10.7554/eLife.89828

Share this article

https://doi.org/10.7554/eLife.89828

Further reading

    1. Microbiology and Infectious Disease
    Ziyu Wen, Pingchao Li ... Caijun Sun
    Research Article

    The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.

    1. Microbiology and Infectious Disease
    Brooke E White, Carolyn L Hodo ... Rick L Tarleton
    Research Article

    Infection with the protozoan parasite Trypanosoma cruzi is generally well-controlled by host immune responses, but appears to be rarely eliminated. The resulting persistent, low-level infection results in cumulative tissue damage with the greatest impact generally in the heart in the form of chagasic cardiomyopathy. The relative success in immune control of T. cruzi infection usually averts acute phase death but has the negative consequence that the low-level presence of T. cruzi in hosts is challenging to detect unequivocally. Thus, it is difficult to identify those who are actively infected and, as well, problematic to gauge the impact of treatment, particularly in the evaluation of the relative efficacy of new drugs. In this study, we employ DNA fragmentation and high numbers of replicate PCR reaction (‘deep-sampling’) and to extend the quantitative range of detecting T. cruzi in blood by at least three orders of magnitude relative to current protocols. When combined with sampling blood at multiple time points, deep sampling of fragmented DNA allowed for detection of T. cruzi in all infected hosts in multiple host species, including humans, macaques, and dogs. In addition, we provide evidence for a number of characteristics not previously rigorously quantified in the population of hosts with naturally acquired T. cruzi infection, including, a >6 log variation between chronically infected individuals in the stable parasite levels, a continuing decline in parasite load during the second and third years of infection in some hosts, and the potential for parasite load to change dramatically when health conditions change. Although requiring strict adherence to contamination–prevention protocols and significant resources, deep-sampling PCR provides an important new tool for assessing therapies and for addressing long-standing questions in T. cruzi infection and Chagas disease.