Dynamics of macrophage polarization support Salmonella persistence in a whole living organism

  1. Jade Leiba  Is a corresponding author
  2. Tamara Sipka
  3. Christina Begon-Pescia
  4. Matteo Bernardello
  5. Sofiane Tairi
  6. Lionello Bossi
  7. Anne-Alicia Gonzalez
  8. Xavier Mialhe
  9. Emilio Gualda
  10. Pablo Loza-Alvarez
  11. Anne Blanc-Potard
  12. Georges Lutfalla
  13. Mai E Nguyen-Chi  Is a corresponding author
  1. LPHI, CNRS, Université de Montpellier, France
  2. The Barcelona Institute of Science and Technology, Spain
  3. Université Paris-Saclay, CEA, CNRS, France
  4. Université de Montpellier, CNRS, INSERM, France
  5. Université de Montpellier, CNRS, INSERM, Montpellier France, France
  6. LIPH, CNRS, INSERM, Univ Montpellier, France

Abstract

Numerous intracellular bacterial pathogens interfere with macrophage function, including macrophage polarization, to establish a niche and persist. However, the spatiotemporal dynamics of macrophage polarization during infection within host remain to be investigated. Here, we implement a model of persistent Salmonella Typhimurium infection in zebrafish, which allows visualization of polarized macrophages and bacteria in real time at high-resolution. While macrophages polarize toward M1-like phenotype to control early infection, during later stages, Salmonella persists inside non-inflammatory clustered macrophages. Transcriptomic profiling of macrophages showed a highly dynamic signature during infection characterized by a switch from pro-inflammatory to anti-inflammatory/pro-regenerative status and revealed a shift in adhesion program. In agreement with this specific adhesion signature, macrophage trajectory tracking identifies motionless macrophages as a permissive niche for persistent Salmonella. Our results demonstrate that zebrafish model provides a unique platform to explore, in a whole organism, the versatile nature of macrophage functional programs during bacterial acute and persistent infections.

Data availability

The raw sequencing data is available in the NCBI GEO database under accession number: GSE224985, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224985.Figure 7 - Source Data 1 contains the numerical data used to generate the figures.Other data that support the findings are openly available from the public repository Zenodo at https://zenodo.org/records/10409519, at the publication date.

The following data sets were generated

Article and author information

Author details

  1. Jade Leiba

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    For correspondence
    jade.leiba@umontpellier.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Tamara Sipka

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina Begon-Pescia

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Matteo Bernardello

    ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Sofiane Tairi

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Lionello Bossi

    Institute for Integrative Biology of the Cell-I2BC, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne-Alicia Gonzalez

    MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Xavier Mialhe

    MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier France, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilio Gualda

    ICFO - Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pablo Loza-Alvarez

    ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3129-1213
  11. Anne Blanc-Potard

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Georges Lutfalla

    DIMNP, LIPH, CNRS, INSERM, Univ Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mai E Nguyen-Chi

    LPHI, CNRS, Université de Montpellier, Montpellier, France
    For correspondence
    mai-eva.nguyen-chi@umontpellier.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2672-2426

Funding

Horizon 2020 Framework Programme (MSCA-ITN ImageInLife Grant Agreement n{degree sign} 721537)

  • Pablo Loza-Alvarez
  • Georges Lutfalla

Horizon 2020 Framework Programme (MSCA-ITN Inflanet Grant Agreement n{degree sign} 955576)

  • Mai E Nguyen-Chi

Agence Nationale de la Recherche (ANR-19-CE15-0005-01,MacrophageDynamics)

  • Mai E Nguyen-Chi

Region Occitanie (REPERE « INFLANET »)

  • Mai E Nguyen-Chi

Spanish Ministerio de Economía y Competitividad (CEX2019-000910-S)

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

MINECO/FEDER (RYC-2015-17935)

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

Horizon 2020 Framework Programme (Laserlab-Europe GA no. 871124)

  • Pablo Loza-Alvarez

Fundació Privada Cellex

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

Fundación Mig-Puig

  • Matteo Bernardello
  • Emilio Gualda emilio.jose.gualda@upc.edu.
  • Pablo Loza-Alvarez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation procedures were carried out according to the European Union guidelines for handling of laboratory animals (https://ec.europa.eu/environment/chemicals/lab_animals/index_en.htm) and were approved by the Comité d'Ethique pour l'Expérimentation Animale under reference CEEA-LR- B4-172-37 and APAFIS #36309-2022040114222432 V2. Fish husbandry, embryo collection, animal experimentations, handling, and euthanasia were performed at the University of Montpellier, LPHI/CNRS UMR5295, by authorized staff. All experimentations were performed under tricain (Ethyl 3-aminobenzoate) anesthesia, and every effort was made to minimize suffering. Euthanasia was performed using an anesthetic overdose of tricain.

Copyright

© 2024, Leiba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,249
    views
  • 274
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jade Leiba
  2. Tamara Sipka
  3. Christina Begon-Pescia
  4. Matteo Bernardello
  5. Sofiane Tairi
  6. Lionello Bossi
  7. Anne-Alicia Gonzalez
  8. Xavier Mialhe
  9. Emilio Gualda
  10. Pablo Loza-Alvarez
  11. Anne Blanc-Potard
  12. Georges Lutfalla
  13. Mai E Nguyen-Chi
(2024)
Dynamics of macrophage polarization support Salmonella persistence in a whole living organism
eLife 13:e89828.
https://doi.org/10.7554/eLife.89828

Share this article

https://doi.org/10.7554/eLife.89828

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.