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Abstract Deep neural networks have made tremendous gains in emulating human- like intel-
ligence, and have been used increasingly as ways of understanding how the brain may solve the 
complex computational problems on which this relies. However, these still fall short of, and therefore 
fail to provide insight into how the brain supports strong forms of generalization of which humans 
are capable. One such case is out- of- distribution (OOD) generalization – successful performance 
on test examples that lie outside the distribution of the training set. Here, we identify properties 
of processing in the brain that may contribute to this ability. We describe a two- part algorithm that 
draws on specific features of neural computation to achieve OOD generalization, and provide a 
proof of concept by evaluating performance on two challenging cognitive tasks. First we draw on 
the fact that the mammalian brain represents metric spaces using grid cell code (e.g., in the ento-
rhinal cortex): abstract representations of relational structure, organized in recurring motifs that 
cover the representational space. Second, we propose an attentional mechanism that operates over 
the grid cell code using determinantal point process (DPP), that we call DPP attention (DPP- A) – a 
transformation that ensures maximum sparseness in the coverage of that space. We show that a loss 
function that combines standard task- optimized error with DPP- A can exploit the recurring motifs in 
the grid cell code, and can be integrated with common architectures to achieve strong OOD gener-
alization performance on analogy and arithmetic tasks. This provides both an interpretation of how 
the grid cell code in the mammalian brain may contribute to generalization performance, and at the 
same time a potential means for improving such capabilities in artificial neural networks.

eLife assessment
This important modeling work demonstrates out- of- distribution generalization using a grid cell 
coding scheme combined with an attentional mechanism that operates over these representations 
(Determinantal Point Process Attention). The simulations provide compelling evidence that the 
model can improve generalization performance for analogies, addition, and multiplication. The 
paper is significant in demonstrating how neural grid codes can support human- like generalization 
capabilities in analogy and arithmetic tasks, which has been a challenge for prior models.

Introduction
Deep neural networks now meet, or even exceed, human competency in many challenging task 
domains (He et al., 2016; Silver et al., 2017; Wu et al., 2016; He et al., 2017). Their success on these 
tasks, however, is generally limited to the narrow set of conditions under which they were trained, 
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falling short of the capacity for strong forms of generalization that is central to human intelligence 
(Barrett et al., 2018; Lake and Baroni, 2018; Hill et al., 2019; Webb et al., 2020), and hence fail to 
provide insights into how our brain supports them. One such case is out- of- distribution (OOD) gener-
alization where the test data lies outside the distribution of the training data. Here, we consider two 
challenging cognitive problems that often require a capacity for OOD generalization: (1) analogy and 
(2) arithmetic. What enables the human brain to successfully generalize on these tasks, and how might 
we better realize that ability in deep learning systems?

To address the problem, we focus on two properties of processing in the brain that we hypoth-
esize are useful for OOD generalization: (1) the abstract representations of relational structure, in 
which relations are preserved across transformations like translation and scaling (such as observed for 
grid cells in mammalian medial entorhinal cortex Hafting et al., 2005); and (2) an attentional objec-
tive inspired from determinantal point processes (DPPs), which are probabilistic models of repulsion 
arising in quantum physics (Macchi, 1975), to attend to abstract representations that have maximum 
variance and minimum correlation among them, over the training data. We refer to this as DPP atten-
tion or DPP- A. The net effect of these two properties is to normalize the representations of training 
and testing data in a way that preserves their relational structure, and allows the network to learn that 
structure in a form that can be applied well beyond the domain over which it was trained.

In previous work, it has been shown that such OOD generalization can be accomplished in a neural 
network by providing it with a mechanism for temporal context normalization (TCN) (Webb et al., 
2020), a technique that allows neural networks to preserve the relational structure between the inputs 
in a local temporal context, while abstracting over the differences between contexts. [Temporal context 
normalization (Webb et al., 2020) is a normalization procedure proposed for use in training a neural 
network, similar to batch normalization (Ioffe and Szegedy, 2015), in which tensor normalization is 
applied over the temporal instead of the batch dimension, which is shown to help with OOD general-
ization. It is unrelated to the temporal context model (Howard et al., 2005), which is a computational 
model that proposes a role for temporal coding in the functions of the medialtemporal lobe in support 
of episodic recall, and spatial navigation.] Here, we test whether the same capabilities can be achieved 
using a well- established, biologically plausible embedding scheme – grid cell code – and an adaptive 
form of normalization that is based strictly on the statistics of the training data in the embedding 
space. We show that when deep neural networks are presented with data that exhibits such relational 
structure, grid cell code coupled with an error- minimizing/attentional objective promotes strong OOD 
generalization. We unpack each of these theoretical components in turn before describing the tasks, 
modeling architectures, and results.

Abstract representations of relational structure
The first component of the proposed framework relies on the idea that a key element underlying 
human- like OOD generalization is the use of low- dimensional representations that emphasize the 
relational structure between data points. Empirical evidence suggests that, for spatial information, 
this is accomplished in the brain by encoding the organism’s spatial position using a periodic code 
consisting of different frequencies and phases (akin to a Fourier transform of the space). Although 
grid cells were discovered for representations of space (Hafting et al., 2005; Sreenivasan and Fiete, 
2011; Mathis et  al., 2012) and used for guiding spatial behavior (Erdem and Hasselmo, 2014; 
Bush et al., 2015), they have since been identified in non- spatial domains, such as auditory tones 
(Aronov et al., 2017), odor (Bao et al., 2019), episodic memory (Chandra et al., 2023), and concep-
tual dimensions (Constantinescu et al., 2016). These findings suggest that the coding scheme used 
by grid cells may serve as a general representation of metric structure that may be exploited for 
reasoning about the abstract conceptual dimensions required for higher- level reasoning tasks, such as 
analogy and mathematics (McNamee et al., 2022). Of interest here, the periodic response function 
displayed by grid cells belonging to a particular frequency is invariant to translation by its period, and 
increasing the scale of a higher- frequency response gives a lower- frequency response and vice versa, 
making it invariant to scale across frequencies. This is particularly promising for prospects of OOD 
generalization: downstream systems that acquire parameters over a narrow training region may be 
able to successfully apply those parameters across transformations of translation or scale, given the 
shared structure (which can also be learned; Cueva and Wei, 2018; Banino et al., 2018; Whittington 
et al., 2020).

https://doi.org/10.7554/eLife.89911
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DPP-A
The second component of our proposed framework is a novel attentional objective that uses the 
statistics of the training data to sculpt the influence of grid cells on downstream computation. Despite 
the use of a relational encoding metric (i.e., grid cell code), generalization may also require identifying 
which aspects of this encoding that could potentially be shared across training and test distributions. 
Here, we implement this by identifying, and restricting further processing to those grid cell embed-
dings that exhibit the greatest variance, but are least redundant (i.e., pairwise uncorrelated) over the 
training data. Formally, this is captured by maximizing the determinant of the covariance matrix of the 
grid cell embeddings computed over the training data (Kulesza and Taskar, 2012). To avoid overfit-
ting the training data, we attend to a subset of grid cell embeddings that maximize the volume in 
the representational space, diminishing the influence of low- variance codes (irrelevant), or codes with 
high similarity to other codes (redundant), which decrease the determinant of the covariance matrix.

DPP- A is inspired by mathematical work in statistical physics using DPPs that originated for 
modeling the distribution of fermions at thermal equilibrium (Macchi, 1975). DPPs have since been 
adopted in machine learning for applications in which diversity in a subset of selected items is desir-
able, such as recommender systems (Kulesza and Taskar, 2012). Recent work in computational cogni-
tive science has shown DPPs naturally capture inductive biases in human inference, such as some 
word- learning and reasoning tasks (e.g., one noun should only refer to one object) while also serving 
as an efficient memory code (Webb et al., 2020). In that context, the learner is biased to find a set 
of possible word- meaning pairs whose representations exhibit the greatest variance and lowest cova-
riance on a task- relevant dataset. DPPs also provide a formal objective for the type of orthogonal 
coding that has been proposed to be characteristic of representations in mammalian hippocampus, 
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Figure 1. Schematic of the overall framework. Given a task (e.g., an analogy to solve), inputs (denoted as  {A, B, C, D} ) are represented by the grid 
cell code, consisting of units (grid cells) representing different combinations of frequencies and phases. Grid cell embeddings ( xA ,  xB ,  xC ,  xD ) are 
multiplied elementwise (represented as a Hadamard product  ⊙ ) by a set of learned attention gates  g , then passed to the inference module  R . The 
attention gates  g  are optimized using  LDPP , which encourages attention to grid cell embeddings that maximize the volume of the representational 
space. The inference module outputs a score for each candidate analogy (consisting of  A, B, C   and a candidate answer choice  D ). The scores for all 
answer choices are passed through a softmax to generate an answer  ̂y , which is compared against the target  y  to generate the task loss  Ltask .
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and integral for episodic memory (McClelland et al., 1995). Thus, using the DPP objective to govern 
attention over the grid cell code, known to be implemented in the entorhinal cortex (Hafting et al., 
2005; Barry et al., 2007; Stensola et al., 2012; Giocomo et al., 2011; Brandon et al., 2011) (one 
synapse upstream of the hippocampus), aligns with the function and organization of cognitive and 
neural systems underlying the capability for abstraction.

Taken together, the representational and attention mechanisms outlined above define a two- 
component framework of neural computation for OOD generalization, by minimizing task- specific 
error subject to: (1) embeddings that encode relational structure among the data (grid cell code), and 
(2) attention to those embeddings that maximize the ‘volume’ of the representational space that is 
covered, while minimizing redundancy (DPP- A). Below, we demonstrate proof of concept by showing 
that these mechanisms allow artificial neural networks to learn representations that support OOD 
generalization on two challenging cognitive tasks and therefore serve as a reasonable starting point 
for examining the properties of interest in these networks.

Methods
Figure 1 illustrates the general framework. Task inputs, corresponding to points in a metric space, are 
represented as a set of grid cell embeddings  xt=1..T  , that are then passed to the inference module  R . 
The embedding of each input is represented by the pattern of activity of grid cells that respond selec-
tively to different combinations of phases and frequencies. Attention over these is a learned gating 

 g  of the grid cells, the gated activations of which ( x ⊙ g ) are passed to the inference module ( R ). The 
parameterization of  g  and  R  are determined by backpropagation of the error signal obtained by two 
loss functions over the training set. Note that learning of parameter  g  occurs only over the training 
space and is not further modified during testing (i.e., over the test spaces). The first loss function,  LDPP  
favors attentional gatings over the grid cells that maximize the DPP- A objective; that is, the ‘volume’ 
of the representational space covered by the attended grid cells. The second loss function,  Ltask  is a 

(a) Translation (b) Scaling

Figure 2. Generation of test analogies from training analogies (region marked in blue) by: (a) translating both dimension values of  A, B, C, D  by the 
same amount; and (b) scaling both dimension values of  A, B, C, D  by the same amount. Since both dimension values are transformed by the same 
amount, each input gets transformed along the diagonal.

The online version of this article includes the following source data for figure 2:

Source data 1. The zip file contains the data for the analogy task depicted in Figure 2.

https://doi.org/10.7554/eLife.89911
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standard task error term (e.g., the cross- entropy of targets  y  and task outputs  ̂y  over the training set). 
We describe each of these components in the following sections.

Task setup
Analogy task
We constructed proportional analogy problems with four terms, of the form  A : B : : C : D , where the 
relation between  A  and  B  was the same as between  C  and  D . Each of  A, B, C, D  was a point in the 
integer space  Z2 , with each dimension sampled from the range  

[
0, M − 1

]
 , where  M   denotes the size of 

the training region. To form an analogy, two pairs of points ( A, B ) and ( C, D ) were chosen such that the 
vectors  AB  and  CD  were equal. Each analogy problem also contained a set of six foil items sampled in 
the range  

[
0, M − 1

]2
  excluding  D , such that they did not form an analogy with  A, B, C . The task was, 

given  A ,  B , and  C , to select  D  from a set of multiple choices consisting of  D  and the six foil items. 
During training, the networks were exposed to sets of points sampled uniformly over locations in the 
training range, and with pairs of points forming vectors of varying length. The network was trained on 
80% of all such sets of points in the training range, with 20% held out as the validation set.

To study OOD generalization, we created two cases of test data, that tested for OOD general-
ization in translation and scale. For the translation invariance case (Figure 2a), the constituents of 
the training analogies were translated along both dimensions by the same integer value (obtained 
by multiplying  K   and  M  , both of which are integer values) such that the test analogies were in the 
range  

[
KM,

(
K + 1

)
M − 1

]2
  after translation. [We transformed by the same amount along both dimen-

sions so that the OOD generalization regimes are similar to Webb et al., 2020.] Non- overlapping 
test regions were generated for  K ∈

[
1, 9

]
 . Similar to the translation OOD generalization regime of 

Webb et al., 2020, this allowed the graded evaluation of OOD generalization to a series of increas-
ingly remote test domains as the distance from the training region increased. For example a training 
analogy  A : B : : C : D  after translation by  KM  , would be  A + KM : B + KM : : C + KM : D + KM  .

For the scale invariance case (Figure 2b), we scaled each constituent of the training analogies by  K   
so that the test analogies after scaling were in the range  

[
0, KM − 1

]2
 . Thus, an analogy  A : B : : C : D  

after scaling by  K  , would be  KA : KB : : KC : KD . By varying the value of  K   from 1 to 9, we scaled the 
training analogies to occupy increasingly distant and larger regions of the test space. It is worth noting 
that while humans can exhibit complex and sophisticated forms of analogical reasoning (Holyoak, 
2012; Lu et al., 2022; Webb et al., 2023), here we focused on a relatively simple form, that was 
inspired by Rumelhart’s parallelogram model of analogy (Mikolov et al., 2013; Rumelhart and Abra-
hamson, 1973) that has been used to explain traditional human verbal analogies (e.g., “king is to 
what as man is to woman?”). Our model, like that one, seeks to explain analogical reasoning in terms 
of the computation of simple Euclidean distances (i.e.,  A − B = C − D , where  A, B, C, D  are vectors in 
2D space).

Arithmetic task
We tested two types of arithmetic operations, corresponding to the translation and scaling transfor-
mations used in the analogy tasks: elementwise addition and multiplication of two inputs  A  and  B , 
each a point in  Z2 , for which  C  was the point corresponding to the answer (i.e.,  C = A + B  or  C = A ∗ B ). 
As with the analogy task, each arithmetic problem also contained a set of six foil items sampled in the 
range  

[
0, M − 1

]2
 , excluding  C . The task was to select  C  from a set of choices consisting of  C  and the 

six foil items. Similar to the analogy task, training data was constructed from a uniform distribution of 
points and vector lengths in the training range, with 20% held out as the validation set. To study OOD 
generalization, we created testing data corresponding to  K = 9  non- overlapping regions, such that 

 C ∈
[
M, 2M − 1

]2 ,
[
2M, 3M − 1

]2 , ...
[
KM,

(
K + 1

)
M − 1

]2
 .

Architecture
Grid cell code
As discussed above, the grid cell code is found in the mammalian neocortex, that support structured, 
low- dimensional representations of task- relevant information. For example, an organism’s location in 
2D allocentric space (Hafting et al., 2005), the frequency of 1D auditory stimuli (Aronov et al., 2017), 
and conceptual knowledge in two continuous dimensions Doeller et al., 2010; Constantinescu et al., 
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2016 have all been shown to be represented as unique, similarity- preserving combinations of frequen-
cies and phases. Here, these codes are of interest because the relational structure in the input is 
preserved in the code across translation and scale. This offers a promising metric that can be used to 
learn structure relevant to the processing of analogies (Frankland et al., 2019) and arithmetic over a 
restricted range of stimulus values, and then used to generalize such processing to stimuli outside of 
the domain of task training.

To derive the grid cell code for stimuli, we follow the analytic approach described by Bicanski and 
Burgess, 2019 (https://github.com/bicanski/VisualGridsRecognitionMem; Bicanski, 2019). Specifi-
cally, the grid cell embedding for a particular stimulus location  A  is given by:

 xA = max
(
0, cos(z0) + cos(z1) + cos(z2)

)
  (1)

where,

 zi = bi ∗
(
FA + Aoffset

)
  (2)

 

b0 =


 cos

(
0
)

sin
(
0
)


 , b1 =


 cos

(π
3

)

sin
(π

3

)

 , b2 =




cos
(

2π
3

)

sin
(

2π
3

)




  

(3)

The spatial frequencies of grids ( F ) begin at a value of  0.0028 ∗ 2π . Wei et al., 2015 have shown 
that, to minimize the number of variables needed to represent an integer domain of size  S , the firing 
rate widths and frequencies should scale geometrically in a range  (

√
2,
√

e) , closely matching empiri-
cally observed scaling in entorhinal cortex (Stensola et al., 2012). We choose a scaling factor of  

√
2  

to efficiently tile the space. One consequence of this efficiency is that the total number of discrete 
frequencies in the entorhinal cortex is expected to be small. Empirically, it has been estimated to be 
between 8 and 12 (Moser et al., 2015) [It seems likely that the use of grid cell code for abstraction in 
human cognition requires a considerably greater number of states S than that used by the rodent for 
sensory encoding. However, given exponential scaling, the total number of frequencies is expected to 
remain low, increasing as a logarithm of S.]. Here, we choose  Nf = 9  (dimension of  F ) as the number 
of frequencies.  A  refers to a particular location in a two dimensional space, and 100 offsets ( Aoffset ) are 
used for each frequency to evenly cover a space of 1000 × 1000 locations using 900 grid cells. These 
offsets represent different phases within each frequency and since there are 100 of them,  Np = 100 . 
Hence  Np × Nf = 900 , which denotes the number of grid cells. Each point from the set of 2D points for 
the stimuli in a task (described in Task setup), was represented using the firing rate of 900 grid cells 
which constituted the grid cell embedding for that point to form the inputs to our model.

DPP-A
We hypothesize that the use of a relational encoding metric (i.e., grid cell code) is extremely useful, 
but not sufficient for a system to achieve strong generalization, which requires attending to partic-
ular aspects of the encoding that can capture the same relational structure across the training and 
test distributions. Toward this end, we propose an attentional objective that uses the statistics of 
the training data to attend to grid cell embeddings that can induce the inference module to achieve 
strong generalization. Our objective, which we describe in detail below, seeks to identify those grid 
cell embeddings that exhibit the greatest variance but are least redundant (pairwise uncorrelated over 
the training data). Formally, this is captured by maximizing the determinant of the covariance matrix 
of the grid cell embeddings computed over the training data (Kulesza and Taskar, 2012). Although 
in machine learning, DPPs have been particularly influential in work on recommender systems (Chen 
et al., 2018), summarization (Gong et al., 2014; Perez- Beltrachini and Lapata, 2021), and neural 
network pruning (Mariet and Sra, 2015), here, we propose to use maximization of the determinant 
of the covariance matrix as an attentional mechanism to limit the influence of grid cell embeddings 
with low- variance (which are less relevant) or with high similarity to other grid cell embeddings (which 
are redundant).

For the specific tasks that we study here, we have assumed the grid cell embeddings to be pre- 
learned to represent the entire space of possible test data points, and we are simply focused on 
the problem of how to determine which of these are most useful in enabling generalization for a 

https://doi.org/10.7554/eLife.89911
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task- optimized network trained on a small fraction of that space (Figure 2). That is, we look for a way 
to attend to a subset of grid cells frequencies whose embeddings capture recurring task- relevant 
relational structure. We find that grid cell embeddings corresponding to the higher spatial frequency 
grid cells exhibit greater variance over the training data than the lower- frequency embeddings, while 
at the same time the correlations among those grid cell embeddings are lower than the correlations 
among the lower- frequency grid cell embeddings. The determinant of the covariance matrix of the 
grid cell embeddings is maximized when the variances of the grid cell embeddings are high (they 
are ‘expressive’) and the correlation among the grid cell embeddings is low (they ‘cover the repre-
sentational space’). As a result, the higher- frequency grid cell embeddings more efficiently cover the 
representational space of the training data, allowing them to efficiently capture the same relational 
structure across training and test distributions which is required for OOD generalization.

Algorithm 1. Training with DPP- A

Parameters: inference module  R , attention gates  g 
Hyperparameters: number of frequencies  Nf  , number of phases  Np , number of epochs optimizing DPP attention 

 NEDPP , number of epochs optimizing task loss  NEtask , number of batches per epoch  Nb 
Inputs: covariance matrix  V  , grid cell embeddings  x  and targets  y  for all training problems

Initialize  g ,  R 
for  i = 1  to  NEDPP  do
    for  j = 1  to  Nb  do

     

 
F̂
(
g, V, Nf, Np

)
=

Nf∑
f=1

log det
(

diag
(
σ(gf)

) (
Vf − I

)
+ I

)

 
       LDPP = −F̂(g, V, Nf, Np) 
      Update  g 
    end for
end for

 F̂f∈
[
1,Nf

] = log det
(
diag

(
σ(gf)

) (
Vf − I

)
+ I

)
 

 fmaxDPP = arg maxf∈
[
1,Nf

]F̂f  
for  i = 1  to  NEtask  do
    for  j = 1  to  Nb  do
        ̂y = R(xf=fmaxDPP

) 
       Ltask = cross-entropy(ŷ, y) 
       Update  R 
    end for 
end for 

Formally, we treat obtaining  LDPP  as an approximation of a DPP. A DPP  P   defines a probability 
measure on all subsets of a set of items  U = {1, 2, ...N} . For every  u ⊆ U  ,  P

(
u
)
∝ det

(
Vu

)
 . Here,  V   

is a positive semidefinite covariance matrix and  Vu =
[
Vij

]
i,j∈u  denotes the matrix  V   restricted to 

the entries indexed by elements of  u . The maximum a posteriori (MAP) problem  argmaxu det(Vu)  is 
NP- hard (Ko et al., 1995). However,  f(u) = log

(
det(Vu)

)
  satisfies the property of a submodular func-

tion, and various algorithms exist for approximately maximizing them. One common way is to approx-
imate this discrete optimization problem by replacing the discrete variables with continuous variables 
and extending the objective function to the continuous domain. Gillenwater et al., 2012 proposed a 
continuous extension that is efficiently computable and differentiable:

 
F̂(w) = log

∑
u

∏
i∈u

wi
∏
i∈u

(1 − wi) exp
(
f(u)

)
, w ∈

[
0, 1

]N .
  

(4)

We use the following theorem from Gillenwater et al., 2012 to construct  LDPP :

Theorem 2.1
For a positive semidefinite matrix  V   and  w ∈

[
0, 1

]N
 :

 

∑
u

∏
i∈u

wi
∏
i∈u

(
1 − wi

)
det

(
Vu

)
= det

(
diag

(
w
) (

V − I
)

+ I
)
  

(5)

https://doi.org/10.7554/eLife.89911
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We propose an attention mechanism that uses  LDPP  to attend to subsets of grid cell embeddings 
for further processing. Algorithm 1 describes the training procedure with DPP- A which consists of two 
steps, using  LDPP  as the first step. This step maximizes the objective function:

 
F̂
(
g, V, Nf, Np

)
=

Nf∑
f=1

log det
(
diag

(
σ(gf)

) (
Vf − I

)
+ I

)
  

(6)

using stochastic gradient ascent for  NEDPP  epochs, which is equivalent to minimizing  LDPP , as 

 LDPP = −F̂(g, V, Nf, Np) . It involves attending to grid cell embeddings that exhibit the greatest within- 
frequency variance but are least redundant (i.e., that are least also pairwise uncorrelated) over the 
training data. This is achieved by maximizing the determinant of the covariance matrix over the within- 
frequency grid cell embeddings of the training data, and Equation 6 is obtained by applying log on 
both sides of the Theorem 2.1, and in our case  U   refers to grid cells of a particular frequency. Here,  g  
are the attention gates corresponding to each grid cell, and  Nf   is the number of distinct frequencies. 
The matrix  V   captures a measure of the covariance of the grid cell embeddings over the training 
region. We used the  synth_kernel  function (https://github.com/insuhan/fastdppmap/blob/db7a28c3 
8ce654bdbfd5ab1128d3d5910b68df6b/test_greedy.m#L123; Han, 2017) to construct  V  , where in 
our case  m  are the variances of the grid cell embeddings  S  computed over the training region  M  ,  N   
is the number of grid cells and  wm, b  are hyperparameters with values of 1 and 0.1, respectively. [ S  
need not be a square matrix in our case, whose second dimension M is the size of the training region. 
L_kernel is same as  V  .] The dimensionality of  V   is  NfNp × NfNp(900 × 900) .  gf   are the gates of the grid 
cells belonging to the  f  th frequency, so  gf = g[fNp : (f + 1)Np] , where  Np  is the number of phases for 
each frequency.  Vf = V[fNp : (f + 1)Np, fNp : (f + 1)Np]  is the restriction of  V   to the grid cell embeddings 
for  f   th frequency, so it captured the covariance of the grid cell embeddings belonging to the  f   th 
frequency.  σ  is sigmoid nonlinearity applied to  gf  , defined as  σ(gf) = 1/(1 + e−gf ) , so that their values 
are between 0 and 1.  diag(σ(gf))  converts vector  σ(gf)  into a matrix with  σ(gf)  as the diagonal of the 
matrix and the rest entries are zero, which is multiplied with  V − I , which results in elementwise 
multiplication of  σ(gf)  with the column vectors of  V − I . Equation 6 which involved summation of 
the logarithm of the determinant of the gated covariance matrix of grid cell embeddings within each 
frequency, over  Nf   frequencies was used to compute the negative of  LDPP . Maximizing  ̂F  gave the 
approximate maximum within- frequency log determinant for each frequency  f ∈ [1, Nf] , which we 
denote for the  f   th frequency as  F̂f  . In the second step of the training procedure, we used the  fmaxDPP  
grid cell frequency, where  fmaxDPP = arg maxf∈[1,Nf]F̂f  . In other words, we used the grid cell embeddings 
for the frequency which had the maximum within- frequency log determinant at the end of the first 
step, which we find are best at capturing the relational structure across the training and testing data, 
thereby promoting OOD generalization. In this step, we trained the inference module minimizing  Ltask  
over  NEtask  epochs. More details can be found in Appendix 1: ‘DPP- A attentional modulation’.

Inference module
We implemented the inference module  R  in two forms, one using Long Short Term Memory (LSTM) 
(Hochreiter and Schmidhuber, 1997) and the other using a transformer (Vaswani et al., 2017) archi-
tecture. Separate networks were trained for the analogy and arithmetic tasks using each form of 
inference module. For each task, the attended grid cell embeddings of each stimulus obtained from 
the DPP- A process ( xf=fmaxDPP ), were provided to  R  as its inputs, which we denote as  xR  for brevity. For 
the arithmetic task, we also concatenated to  xR  a one- hot tensor of dimension 2, before feeding to  R  
that specified which computation to perform (addition or multiplication). As proposed by Hill et al., 
2019, we treated both the analogy and arithmetic tasks as scoring (i.e., multiple choice) problems. For 
each analogy, the inference module was presented with multiple problems, each consisting of three 
stimuli,  A, B, C , and a candidate completion from the set containing  D  (the correct completion) and six 
foil completions. For each instance of the arithmetic task, it was presented with two stimuli,  A, B , and 
a candidate completion from the set containing  C  (the correct completion) and six foil completions. 
Stimuli were presented sequentially for  R  constructed using an LSTM, which consists of three gates, 
and computations using them defined as below:

 input_gate
[
t
]

= σ
(
WiixR

[
t
]

+ bii + Whih
[
t − 1

]
+ bhi

)
  (7)

https://doi.org/10.7554/eLife.89911
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 forget_gate
[
t
]

= σ
(
WifxR

[
t
]

+ bif + Whfh
[
t − 1

]
+ bhf

)
  (8)

 output_gate
[
t
]

= σ
(
WioxR

[
t
]

+ bio + Whoh
[
t − 1

]
+ bho

)
  (9)

 c
[
t
]

= forget_gate
[
t
]
⊙ c

[
t − 1

]
+ input_gate

[
t
]
⊙ tanh

(
WicxR

[
t
]

+ bic + Whch
[
t − 1

]
+ bhc

)
  (10)

 h
[
t
]

= output_gate
[
t
]
⊙ tanh

(
c
[
t
])

  (11)

where  Wii , Whi , Wif  , Whf  , Wio , Who , Wic , Whc  are weight matrices and  bii ,  bhi ,  bif  ,  bhf  ,  bio ,  bho ,  bic ,  bhc  are 
bias vectors.  h[t]  and  c[t]  are the hidden state and the cell state at time  t , respectively. The hidden 
state for the last timestep was passed through a linear layer with a single output unit to generate a 
score for the candidate completions for each problem. We used a single layered LSTM of 512 hidden 
units, which corresponds to the size of the hidden state, cell state, bias vectors, and weight matrices. 
The hidden and cell state of the LSTM was reinitialized at the start of each sequence for each candi-
date completion.

For  R  constructed using a transformer, we used the standard multi- head self attention ( MHSA ) 
mechanism followed by a multi- layered perceptron ( MLP ) – a feedforward neural network with one 
hidden layer, with layer normalization (Ba et al., 2016) ( LN  ) to transform  xR  at each layer of the trans-
former, defined as below:

 
SA

(
Q, K, V

)
= softmax

(
QKT
√

dk

)
V

  
(12)

 
MHSA(xR) = Concat

(
SA

(
WQ

1 xR, WK
1 xR, WV

1 xR
)

, ...., SA
(

WQ
HxR, WK

HxR, WV
HxR

))
WO

  (13)

 x̃R = MLP
(
LN

(
MHSA

(
LN

(
xR

))
+ xR

))
+ MHSA

(
LN

(
xR

))
+ xR  (14)

where  Q ,  K , and  V   are called the query, key, and value matrices, respectively,  dk  is the dimension of 
the matrices,  WQ ,  WK , and  WV   are the corresponding projection matrices,  WO  is the output projection 
matrix which is applied to the concatenation of self attention ( SA ) output for each head, and  H   is the 
number of heads. The  softmax  function is used to convert real valued vector inputs into a probability 
distribution, defined as  softmax(zi) = ezi /

∑
i ezi

 . We used a transformer with 6 layers, each of which 
had 8 heads,  dk = 32 , and  MLP  hidden layer dimension of 512. The stimuli were presented together 
and projected into 128 dimensions to be more easily divisible by the number of heads, followed by 
layer normalization. Since a transformer is naturally invariant to the order of the stimuli, to make use 
of the order we added to  xR  a learnable positional encoding (Kazemnejad, 2019), which is the linear 
projection of one- hot tensors denoting the position of stimuli in the sequence. We then concatenated 
a learned CLS (short for ‘classification’) token (analogous to the CLS token in Devlin et al., 2018) to 

 xR , before transforming with Equation 14. We took the transformed value ( ̃xR ) corresponding to the 
CLS token, and passed it to a linear layer with 1 output unit to generate a score for each candidate 
completion. This procedure was repeated for each candidate completion.

The seven scores (one for the correct completion and for six foil completions) were normalized 
using a softmax function, such that a higher score would correspond to a higher probability and 
vice versa, and the probabilities sum to 1. The inference module was trained using the task- specific 
cross- entropy loss ( Ltask = cross-entropy ) between the softmax- normalized scores and the index for the 
correct completion (target), defined as  − log(softmax(scores)[target]) . It is worth noting that the proper-
ties of equivariance hold, since the probability distribution after applying softmax remains the same 
when the transformation (translation or scaling) is applied to the scores for each of the answer choices 
obtained from the output of the inference module, and when the same transformation is applied to 
the stimuli for the task and all the answer choices before presenting as input to the inference module 
to obtain the scores. We also tried formulating the tasks as regression problems, the details of which 
can be found in Appendix 1: ‘Regression formulation’.

While our model is not construed to be as specific about the implementation of the  R  module, 
we assume that – as a standard deep learning component – it is likely to map onto neocortical struc-
tures that interact with the entorhinal cortex and, in particular, regions of the prefrontal–posterior 
parietal network widely believed to be involved in abstract relational processes (Waltz et al., 1999; 
Christoff et al., 2001; Knowlton et al., 2012; Summerfield et al., 2020). In particular, the role of 
the prefrontal cortex in the encoding and active maintenance of abstract information needed for task 
performance (such as rules and relations) has often been modeled using gated recurrent networks, 
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such as LSTMs (Frank et al., 2001; Braver and Cohen, 2000), and the posterior parietal cortex has 
long been known to support ‘maps’ that may provide an important substrate for computing complex 
relations (Summerfield et al., 2020).

Experiments
Experimental details
For each task, the sequence of stimuli for a given problem was encoded using grid cell code (see Grid 
cell code), that were then modulated by DPP- A (see DPP- A), and passed to the inference module  R  
(see Inference module). We trained three networks using each type of inference module. For networks 
using an LSTM in the inference module, we trained each network for number of epochs for optimizing 
DPP attention  NEDPP = 50 , number of epochs for optimizing task loss  NEtask = 50 , on analogy problems, 
and for  NEDPP = 500 ,  NEtask = 500,  on arithmetic problems with a batch size of 256, using the ADAM 
optimizer (Kingma and Ba, 2014), and a learning rate of  1e−3 . For networks using a transformer in 
the inference module, we trained with a batch size of 128 on analogy with a learning rate of  5e−4 , and 
on arithmetic problems with a learning rate of  5e−5 . More details can be found in Appendix 1: ‘More 
experimental details’.

Comparison models
To evaluate how the grid cell code coupled with DPP- A compares with other architectures and 
approaches to generalization, and the extent to which each of these components contributed to the 
performance of the model, we compared it with several alternative models for performing the analogy 
and arithmetic tasks. First, we compared it with the TCN model (Webb et al., 2020) (see Related 
work), but modified so as to use the grid cell code as input. We passed the grid cell embeddings 
for each input through a shared feedforward encoder which consisted of two fully connected layers 
with 256 units per layer. ReLU nonlinearities were used in both the layers. The final embedding was 
generated with a linear layer of 256 units. TCN was applied to these embeddings and then passed 
as a sequence for each candidate completion to the inference module. This implementation of TCN 
involved a learned encoder on top of the grid cell embeddings, so it is closely analogous to the orig-
inal TCN.

Next, we compared our model to one that used variational dropout (Gal and Ghahramani, 2016), 
which is shown to be more effective in generalization compared to naive dropout (Srivastava et al., 
2014). We randomly sampled a dropout mask (50% dropout), zeroing out the contribution of some 
of the grid cell code in the input to the inference module. We then use that locked dropout mask for 
every time step in the sequence. We also compared DPP- A to a model that had an additional penalty 
(L1 regularization) proportional to the absolute sum of the attention gates  g  along with the task- 
specific loss. We experimented with different values of λ, which controlled the strength of the penalty 
relative to the cross- entropy loss. We report accuracy values for λ that achieved the best performance 
on the validation set. Accuracy values for various λs are provided in Appendix 1: ‘Effect of L1 Regular-
ization strength (λ)’. Dropout and L1 regularization were chosen as a proxy for DPP- A and hence we 
used the same input data for fair comparison. Finally, we compared to a model that used the complete 
grid cell code, that is no DPP- A.

Related work
A body of recent computational work has shown that representations similar to grid cells can be derived 
using standard analytical techniques for dimensionality reduction (Dordek et al., 2016; Stachenfeld 
et al., 2017), as well as from error- driven learning paradigms (Cueva and Wei, 2018; Banino et al., 
2018; Whittington et al., 2020; Sorscher et al., 2023). Previous work has also shown that grid cells 
emerge in networks trained to generalize to novel location/object combinations, and support tran-
sitive inference (Whittington et al., 2020). Here, we show that grid cells enable strong OOD gener-
alization when coupled with the appropriate attentional mechanism. Our proposed method is thus 
complementary to these previous approaches for obtaining grid cell representations from raw data.

In the field of machine learning, DPPs have been used for supervised video summarization (Gong 
et al., 2014), diverse recommendations (Chen et al., 2018), selecting a subset of diverse neurons 
to prune a neural network without hurting performance (Mariet and Sra, 2015), and diverse mini-
batch attention for stochastic gradient descent (Zhang et al., 2017). Recently, Mariet et al., 2019 
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generated approximate DPP samples by proposing an inhibitive attention mechanism based on 
transformer networks as a proxy for capturing the dissimilarity between feature vectors, and Perez- 
Beltrachini and Lapata, 2021 used DPP- based attention with seq- to- seq architectures for diverse 
and relevant multi- document summarization. To our knowledge, however, DPPs have not previously 
been combined with the grid cell code that we employ here, and have not been used to enable OOD 
generalization.

Various approaches have been proposed to prevent deep learning systems from overfitting, and 
enable them to generalize. A commonly employed technique is weight decay (Krogh and Hertz, 
1992). Srivastava et al., 2014 proposed dropout, a regularization technique which reduces overfit-
ting by randomly zeroing units from the neural network during training. Recently, Webb et al., 2020 
proposed TCN in which a normalization similar to batch normalization (Ioffe and Szegedy, 2015) was 
applied over the temporal dimension instead of the batch dimension. However, unlike these previous 
approaches, the method reported here achieves nearly perfect OOD generalization when operating 
over the appropriate representation, as we show in the results. Our proposed method also has the 
virtue of being based on a well understood, and biologically plausible, encoding scheme (grid cell 
code).

Results
Analogy
We first present results on the analogy task for two types of testing data, translation and scaling using 
two types of inference module, LSTM and transformer. We trained three networks for each method 
and report mean accuracy along with standard error of the mean. Figure 3 shows the results for the 
analogy task using an LSTM in the inference module. The left panel shows results for the translation 
regime, and the right panel shows results for the scaling regime. Both plots show accuracy on the 
training and validation sets, and on a series of nine (increasingly distant) OOD generalization test 
regions. DPP- A (shown in blue) achieves nearly perfect accuracy on all of the test regions, consider-
ably outperforming the other models.

For the case of translation, using all the grid cell code with no DPP- A (shown in purple) led to the 
worst OOD generalization performance, overfitting on the training set. Locked dropout (denoted by 
green) and L1 regularization (denoted by red) reduced overfitting and demonstrated better OOD 
generalization performance than no DPP- A but still performed considerably worse than DPP- A. 
For the case of scaling, locked dropout and L1 regularization performed slightly better than TCN, 
achieving marginally higher test accuracy, but DPP- A still substantially outperformed all other models, 
with a nearly 70% improvement in average test accuracy.

To test the generality of the grid cell code and DPP- A across network architectures, we also tested 
a transformer (Vaswani et al., 2017) in place of the LSTM in the inference module. Previous work has 

Figure 3. Results on analogy on each region for translation and scaling using LSTM in the inference module.
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suggested that transformers are particularly useful for extracting structure in sequential data and have 
been used for OOD generalization (Saxton et al., 2019). Figure 4 shows the results for the analogy 
task using a transformer in the inference module. With no explicit attention (no DPP- A) over the grid 
cell code (shown in orange), the transformer did poorly on the analogies on the test regions. This 
suggests that simply using a more sophisticated architecture with standard forms of attention is not 
sufficient to enable OOD generalization based on the grid cell code. With DPP- A (shown in blue), the 
OOD generalization performance of the transformer is nearly perfect for both translation and scaling. 
These results also demonstrate that grid cell code coupled with DPP- A can be exploited for OOD 
generalization effectively by different architectures.

Arithmetic
We next present results on the arithmetic task for two types of operations, addition and multiplica-
tion using two types of inference module, LSTM and transformer. We trained three networks for each 
method and report mean accuracy along with standard error of the mean.

Figure 5 shows the results for arithmetic problems using an LSTM in the inference module. The left 
panel shows results for addition problems, and the right panel shows results for multiplication prob-
lems. DPP- A achieves higher accuracy for addition than multiplication on the test regions. However, 
in both cases DPP- A significantly outperforms the other models, achieving nearly perfect OOD 

Figure 4. Results on analogy on each region for translation and scaling using the transformer in the inference module.

Figure 5. Results on arithmetic on each region using LSTM in the inference module.
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generalization for addition, and 65% accuracy for multiplication, compared with under 20% accuracy 
for all the other models. We found that grid cell embeddings obtained after the first step in Algorithm 
1 are not able to fully preserve the relational structure for multiplication problems on the test regions 
(more details in Appendix 1: ‘Why is OOD generalization performance worse for the multiplication 
task?’), but still it affords superior capacity for OOD generalization than any of the other models. 
Thus, while it does not match the generalizability of a genuine algorithmic (i.e., symbolic) arithmetic 
function, it may be sufficient for some tasks (e.g., approximate multiplication ability in young children; 
Qu et al., 2021).

Figure 6 shows the results for arithmetic problems using a transformer in the inference module. 
With no DPP- A over the grid cell code the transformer did poorly on addition and multiplication on 
the test regions, achieving around 20–30% accuracy. With DPP- A, the OOD generalization perfor-
mance of the transformer shows a pattern similar to that for LSTM: it is nearly perfect for addition and, 
though not as good on multiplication, nevertheless shows approximately 40% better performance 
than the transformer multiplication.

Figure 6. Results on arithmetic on each region using the transformer in the inference module.

Figure 7. Results on analogy on each region using determinantal point process attention (DPP- A), an LSTM in the inference module, and different 
embeddings (grid cell code, one- hots, and smoothed one- hots passed through a learned encoder) for translation (left) and scaling (right). Each point is 
mean accuracy over three networks, and bars show standard error of the mean.

https://doi.org/10.7554/eLife.89911


 Research article      Neuroscience

Mondal et al. eLife 2023;12:RP89911. DOI: https://doi.org/10.7554/eLife.89911  14 of 27

Ablation study
To determine the individual importance of the grid cell code and the DPP- A attention objective, we 
carried out several ablation studies. First, to evaluate the importance of grid cell code, we analyzed 
the effect of DPP- A with other embeddings, using either one- hot or smoothed one- hot embeddings 
(similar to place cell coding) with standard deviations of 1, 10, and 100, each passed through a learned 
feedforward encoder, which consisted of two fully connected layers with 1024 units per layer, and 
ReLU nonlinearities. The final embedding was generated with a fully connected layer with 1024 units 
and sigmoid nonlinearity. Since these embeddings do not have a frequency component, the training 
procedure with DPP- A consisted of only one step: minimizing the loss function  L = Ltask − λ ∗ F̂(g, V) . 
We tried different values of λ (0.001, 0.01, 0.1, 1, 10, 100, 1000, 10,000). For each type of embedding 
(one- hots and smoothed one- hots with each value of standard deviation), we trained three networks 
and report for the model that achieved best performance on the validation set. Note that, given the 
much higher dimensionality and therefore memory demands of embeddings based on one- hots and 
smoothed one- hots, we had to limit the evaluation to a subset of the total space, resulting in evalua-
tion on only two test regions (i.e.,  K ∈ [1, 3] ).

Figure 7 shows the results for the analogy task (results for the arithmetic task are in Appendix 1: 
‘Ablation study on arithmetic task’, Appendix 1—figure 3) using an LSTM in the inference module. 
The average accuracy on the test regions for translation and scaling using smoothed one- hots passed 
through an encoder (shown in green) is nearly 30% better than simple one- hot embeddings passed 
through an encoder (shown in orange), but both still achieve significantly lower test accuracy than grid 
cell code which support perfect OOD generalization.

With respect to the importance of the DPP- A, we note that the simulations reported earlier show 
that replacing the DPP- A mechanism with either other forms of regularization (dropout and L1 regu-
larization; see Comparison models) or a transformer (Figure 4 in Analogy for analogy and Figure 6 in 
Arithmetic for arithmetic tasks) failed to achieve the same level of OOD generalization as the network 
that used DPP- A. The results using a transformer are particularly instructive, as that incorporates a 
powerful mechanism for learned attention, but, even when provided with grid cell embeddings, failed 
to produce results comparable to DPP- A, suggesting that the latter provides a simple but powerful 
form of attention objective, at least when used in conjunction with grid cell embeddings.

Finally, for completeness, we also carried out a set of simulations that examined the performance 
of networks with various embeddings (grid cell code, and one- hots or smoothed one- hots with or 
without a learned feedforward encoder), but no attention or regularization (i.e., neither DPP- A, 
transformer, nor TCN, L1 Regularization, or Dropout). Figure 8 shows the results for the different 
embeddings on the analogy task (results for the arithmetic task are in Appendix 1: ‘Ablation study 
on arithmetic task’, Appendix 1—figure 4). For translation (left), the average accuracy over the test 
regions using grid cell code (shown in blue) is nearly 25% more compared to other embeddings, which 
all yield performance near chance (∼15%). For scaling (right), although other embeddings achieve 

Figure 8. Results on analogy on each region using different embeddings (grid cell code, and one- hots or smoothed one- hots with and without an 
encoder) and an LSTM in the inference module, but without determinantal point process attention (DPP- A), temporal context normalization (TCN), L1 
Regularization, or Dropout for translation (left) and scaling (right).
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higher performance than chance (except smoothed one- hots), they still achieve lower test accuracy 
than grid cell code. More ablation studies can be found in Appendix 1: ‘Ablation study on choice of 
frequency’, ‘Ablation on DPP- A’, and Figure A5.

Discussion
We have identified how particular properties of processing observed in the brain can be used to 
achieve strong OOD generalization, and introduced a two- component algorithm to promote OOD 
generalization in deep neural networks. The first component is a structured representation of the 
training data, modeled closely on known properties of grid cells – a population of cells that collec-
tively represent abstract position using a periodic code. However, despite their intrinsic structure, 
we find that grid cell code and standard error- driven learning alone are insufficient to promote OOD 
generalization, and standard approaches for preventing overfitting offer only modest gains. This is 
addressed by the second component, using DPP- A to implement attentional regularization over the 
grid cell code. DPP- A allows only a relevant and diverse subset of cells to influence downstream 
computation in the inference module using the statistics of the training data. For proof of concept, 
we started with two challenging cognitive tasks (analogy and arithmetic), and showed that the combi-
nation of grid cell code and DPP- A promotes OOD generalization across both translation and scale 
when incorporated into common architectures (LSTM and transformer). It is worth noting that the 
DPP- A attentional mechanism is different from the attentional mechanism in the transformer module, 
and both are needed for strong OOD generalization in the case of transformers. Use of the standard 
self- attention mechanism in transformers over the inputs (i.e., A, B, C, and D for the analogy task) in 
place of DPP- A would lead to weightings of grid cell embeddings over all frequencies and phases. 
The objective function for the DPP- A represents an inductive bias, that selectively assigns the greatest 
weight to all grid cell embeddings (i.e., for all phases) of the frequency for which the determinant of 
the covariance matrix is greatest computed over the training space. The transformer inference module 
then attends over the inputs with the selected grid cell embeddings based on the DPP- A objective.

The current approach has some limitations and presents interesting directions for future work. 
First, we derive the grid cell code from known properties of neural systems, rather than obtaining 
the code directly from real- world data. Here, we are encouraged by the body of work providing 
evidence for grid cell code in the hidden layers of neural networks in a variety of task contexts and 
architectures (Wei et al., 2015; Cueva and Wei, 2018; Banino et al., 2018; Whittington et al., 2020). 
This suggests reason for optimism that DPP- A may promote strong generalization in cases where 
grid cell code naturally emerge: for example, navigation tasks (Banino et al., 2018) and reasoning 
by transitive inference (Whittington et al., 2020). Integrating our approach with structured repre-
sentations acquired from high- dimensional, naturalistic datasets remains a critical next step which 
would have significant potential for broader future practical applications. So too does application to 
more complex transformations beyond translation and scale, such as rotation, and complex forms of 
representations, and analogical reasoning tasks (Holyoak, 2012; Webb et al., 2023; Lu et al., 2022). 
Second, it is not clear how DPP- A might be implemented in a neural network. In that regard, Bozkurt 
et al., 2022 recently proposed a biologically plausible neural network algorithm using a weighted 
similarity matrix approach to implement a determinant maximization criterion, which is the core idea 
underlying the objective function we use for DPP- A (Equation 6), suggesting that the DPP- A mecha-
nism we describe may also be biologically plausible. This could be tested experimentally by exposing 
individuals (e.g., rodents or humans) to a task that requires consistent exposure to a subregion, and 
evaluating the distribution of activity over the grid cells. Our model predicts that high- frequency grid 
cells should increase their firing rate more than low- frequency cells, since the high- frequency grid cells 
maximize the determinant of the covariance matrix of the grid cell embeddings. It is also worth noting 
that Frankland and Cohen, 2020 have suggested that the use of DPPs may also help explain a mutual 
exclusivity bias observed in human word learning and reasoning. While this is not direct evidence of 
biological plausibility, it is consistent with the idea that the human brain selects representations for 
processing that maximize the volume of the representational space, which can be achieved by maxi-
mizing the DPP- A objective function defined in Equation 6. Third, we compared grid cell code to only 
one- hots and place cell code. Future work could compare to a broader range of potential biological 
coding schemes for the overall space, for example boundary vector cell coding (Barry et al., 2006), 
band cell coding, or egocentric boundary cell coding (Hinman et al., 2019).
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Finally, we focus on analogies in linear spaces which limits the generality of our approach in 
nonlinear spaces. In that regard, there are at least two potential directions that could be pursued. One 
is to directly encode nonlinear structures (such as trees and rings) with grid cells, to which DPP- A could 
be applied as described in our model. The Tolman- Eichenbaum Machine (TEM) model (Whittington 
et al., 2020) suggests that grid cells in the medial entorhinal may form a basis set that captures struc-
tural knowledge for such nonlinear spaces, such as social hierarchies and transitive inference when 
formalized as a connected graph. Another would be to use eigen decomposition of the successor 
representation (Dayan, 1993), a learnable predictive representation of possible future states that has 
been shown by Stachenfeld et al., 2017 to provide an abstract structured representation of a space 
that is analogous to the grid cell code. This general- purpose mechanism could be applied to repre-
sent analogies in nonlinear spaces (Frankland et al., 2019), for which there may not be a clear factor-
ization in terms of grid cells (i.e., distinct frequencies and multiple phases within each frequency). 
Since the DPP- A mechanism, as we have described it, requires representations to be factored in this 
way it would need to be modified for such purpose. Either of these approaches, if successful, would 
allow our model to be extended to domains containing nonlinear forms of structure. To the extent that 
different coding schemes (i.e., basis sets) are needed for different forms of structure, the question of 
how these are identified and engaged for use in a given setting is clearly an important one, that is not 
addressed by the current work. We imagine that this is likely subserved by monitoring and selection 
mechanisms proposed to underlie the capacity for selective attention and cognitive control (Shenhav 
et al., 2013), though the specific computational mechanisms that underlie this function remain an 
important direction for future research.
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Appendix 1
Code and data availability
The code and the data can be downloaded from https://github.com/Shanka123/DPP-Attention_ 
Grid-Cell-Code (copy archived at Mondal, 2024).

More experimental details
The size of the training region was 100. For the analogy task, we used 653,216 training samples, 
163,304 validation samples, and 20,000 testing samples for each of the nine regions. For the arithmetic 
task, we used 80,000 training samples, 20,000 validation samples, and 20,000 testing samples for 
each of the nine regions with equal number of addition and multiplication problems. We used the 
PyTorch library (Paszke et al., 2017) for all experiments. For each network, the training epoch that 
achieved the best validation accuracy was used to report performance accuracy for the training 
stimulus sets, validation sets (held out stimuli from the training range), and OOD generalization test 
sets (from regions beyond the range of the training data).

Why is OOD generalization performance worse for the multiplication 
task?
In an effort to understand why DPP- A achieved around 65% average test accuracy on multiplication 
compared to nearly perfect accuracy for addition and analogy tasks, we analyzed the distribution of 
the grid cell embeddings for the frequency which had the maximum within- frequency determinant 
at the end of the first step in Algorithm 1. More specifically for  A ,  B , and the correct answer  C , we 
analyzed the distribution of each grid cell for the training and the nine test regions. Note that since 
the total number of grid cells was 900 and there were nine frequencies, the dimension of the grid cell 
embeddings corresponding to  fmaxDPP  grid cell frequency was 100. To quantify the similarity between 
training and the test distributions, we computed cosine distance (1 − cosine similarity), and averaged 
it over the 100 dimensions and nine test regions. We found that the average cosine distance is 5× 
greater for multiplication than addition problem (0.0002 for addition: 0.001 for multiplication). In 
this respect, grid cell code does not perfectly preserve the relational structure of the multiplication 
problem, which we would expect to limit DPP- A’s OOD generalization ability in that task domain.

Ablation study on choice of frequency

Appendix 1—figure 1. Results on analogy on each region using LSTM in the inference module for choosing top 
 K   frequencies with  F̂f   in Algorithm 1. Results show mean accuracy on each region averaged over three trained 
networks along with errorbar (standard error of the mean).

https://doi.org/10.7554/eLife.89911
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Baseline using dynamic attention across frequencies

Appendix 1—figure 2. Results on analogy on each region for translation and scaling using the transformer in the 
inference module.

Ablation study on arithmetic task

Appendix 1—figure 3. Results on arithmetic with different embeddings (with determinantal point process 
attention [DPP- A]) using LSTM in the inference module. Results show mean accuracy on each region averaged over 
three trained networks along with errorbar (standard error of the mean).

Appendix 1—figure 4. Results on arithmetic with different embeddings (without determinantal point process 
attention [DPP- A], temporal context normalization [TCN], L1 Regularization, or Dropout) using LSTM in the 
inference module. Results show mean accuracy on each region averaged over three trained networks along with 
errorbar (standard error of the mean).

https://doi.org/10.7554/eLife.89911
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Appendix 1—figure 5. Results on arithmetic for increasing number of grid cell frequencies  Nf   on each region 
using LSTM in the inference module. Results show mean accuracy on each region averaged over three trained 
networks along with errorbar (standard error of the mean).

Regression formulation

Appendix 1—figure 6. Results for regression on analogy using LSTM in the inference module. Results show mean 
squared error on each region averaged over three trained networks along with errorbar (standard error of the 
mean).

https://doi.org/10.7554/eLife.89911
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Appendix 1—figure 7. Results for regression on arithmetic on each region using LSTM in the inference module. 
Results show mean squared error on each region averaged over three trained networks along with errorbar 
(standard error of the mean).

We also tried formulating the analogy and arithmetic tasks as regression instead of classification 
via a scoring mechanism. For DPP- A, the inference module was trained to generate the grid 
cell embeddings belonging to the  fmaxDPP  frequency, which had the maximum within- frequency 
determinant at the end of the first step in Algorithm 1 for the correct completion, given as input the 

 fmaxDPP  frequency grid cell embeddings for  A ,  B ,  C  for the analogy task and  A ,  B  for the arithmetic 
task. A linear layer with 100 units and sigmoid activation was used to generate the output of the 
inference module and was trained to minimize the mean squared error with the  fmaxDPP  frequency 
grid cell embeddings of the correct completion. We compared DPP- A with a version that didn’t use 
the attentional objective (no DPP- A), where the inference module was trained to generate the grid 
cell embeddings for all the frequencies, but was evaluated on only the  fmaxDPP  frequency grid cell 
embeddings for fair comparison with the DPP- A version. Appendix 1—figure 6 shows the results for 
the analogy task using an LSTM in the inference module. For both the translation (left) and scaling 
(right) regimes, DPP- A achieves nearly zero mean squared error on all the test regions, considerably 
outperforming the no DPP- A which achieves a much higher error. Appendix 1—figure 7 shows the 
results for arithmetic problems using an LSTM in the inference module. For addition problems, shown 
on the left, DPP- A achieves nearly zero mean squared error on the test regions. For multiplication 
problems, shown on the right, DPP- A achieves a lower mean squared error on the test regions, 0.11, 
compared to no DPP- A which achieves around 0.17.

Effect of L1 regularization strength (λ)

Appendix 1—figure 8. Results on analogy for L1 regularization for various λs for translation and scaling using 
LSTM in the inference module. Results show mean accuracy on each region averaged over three trained networks 
along with errorbar (standard error of the mean).

https://doi.org/10.7554/eLife.89911
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Appendix 1—figure 9. Results on arithmetic for L1 regularization for various λs using LSTM in the inference 
module. Results show mean accuracy on each region averaged over three trained networks along with errorbar 
(standard error of the mean).

Ablation on DPP-A

Appendix 1—figure 10. Results on analogy for one step determinantal point process attention (DPP- A) over the 
complete grid cell code for various λs for translation and scaling using LSTM in the inference module. Results show 
mean accuracy on each region averaged over three trained networks along with errorbar (standard error of the 
mean).

https://doi.org/10.7554/eLife.89911
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Appendix 1—figure 11. Results on analogy for one step determinantal point process attention (DPP- A) within 
frequencies for various λs for translation and scaling using LSTM in the inference module. Results show mean 
accuracy on each region averaged over three trained networks along with errorbar (standard error of the mean).

The proposed DPP- A method (Algorithm 1) consists of two steps with  LDPP  in the first step and 

 Ltask  in the second step. We considered two ablation experiments which consists of a single step. In 
one case, we maximized the objective function,  ̂F(g, V) = log det(diag(σ(g))(V − I) + I) , over the grid 
cell embeddings of all frequencies and phases (instead of summing  ̂F  corresponding to the grid 
cell embeddings from each frequency independently as done in the first step of Algorithm 1), using 
stochastic gradient ascent, along with minimizing  Ltask , which would use all the attended grid cell 
embeddings (instead of using  fmaxDPP  frequency grid cell embeddings as done in the second step of 
Algorithm 1). So total loss,  L = Ltask − λ ∗ F̂(g, V) . We refer to this ablation experiment as one step 
DPP- A over the complete grid cell code. The results on the analogy for this ablation experiment 
are shown in Appendix 1—figure 10. We see that the accuracy on test analogies for translation for 
various λs is around 30–60%, and for scaling around 20–40%, which is much lower than the nearly 
perfect accuracy achieved by the proposed DPP- A method. In the other case, we maximized the 

objective function 
 
F̂(g, V, Nf, Np) =

Nf∑
f=1

log det(diag(σ(gf))(Vf − I) + I)
 
, using stochastic gradient ascent, 

which is same as  LDPP  in the first step of Algorithm 1, along with minimizing  Ltask , which would use 
all the attended grid cell embeddings. So total loss,  L = Ltask − λ ∗ F̂(g, V, Nf, Np) . We refer to this 
ablation experiment as one step DPP- A within frequencies. As shown in Appendix 1—figure 11, the 
accuracy on test analogies for both translation and scaling for various λs is in a similar range to one 
step DPP- A over the complete grid cell code, and is much lower than the nearly perfect accuracy 
achieved by the proposed DPP- A method.

https://doi.org/10.7554/eLife.89911
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DPP-A attentional modulation

Appendix 1—figure 12. Approximate maximum log determinant of the covariance matrix over the grid cell 
embeddings (y- axis) for each frequency (x- axis), obtained after maximizing Equation 6.

The gates within each frequency were optimized (independent of the task inputs), according 
to Equation 6, to compute the approximate maximum within- frequency log determinant of the 
covariance matrix over the grid cell embeddings individually for each frequency. We then used 
the grid cell embeddings belonging to the frequency that had the maximum within- frequency log 
determinant for training the inference module, which always happened to be grid cells within the top 
three frequencies. Appendix 1—figure 12 shows the approximate maximum log determinant (on 
the y- axis) for the different frequencies (on the x- axis). The intuition behind why DPP- A identified grid 
cell embeddings corresponding to the highest spatial frequencies, and why this produced the best 
OOD generalization (i.e., extrapolation on our analogy tasks), is because those grid cell embeddings 
exhibited greater variance over the training data than the lower- frequency embeddings, while at 
the same time the correlations among those grid cell embeddings were lower than the correlations 
among the lower- frequency grid cell embeddings. The determinant of the covariance matrix of 
the grid cell embeddings is maximized when the variances of the grid cell embeddings are high 
(they are ‘expressive’) and the correlation among the grid cell embeddings is low (they ‘cover the 
representational space’). As a result, the higher- frequency grid cell embeddings more efficiently 
covered the representational space of the training data, allowing them to efficiently capture the same 
relational structure across training and test distributions which is required for OOD generalization.

To demonstrate that the higher grid cell frequencies more efficiently cover the representational 
space, we analyzed in Appendix 1—figure 13, the results after the summation of the multiplication 
of the grid cell embeddings over the 2D space of 1000 × 1000 locations, with their corresponding 
gates for three representative frequencies (left, middle, and right panels showing results for the 
lowest, middle, and highest grid cell frequencies, respectively, of the nine used in the model), 
obtained after maximizing Equation 6 for each grid cell frequency. The color code indicates the 
responsiveness of the grid cells to different X and Y locations in the input space (lighter color 
corresponding to greater responsiveness). Note that the dark blue area (denoting regions of least 
responsiveness to any grid cell) is greatest for the lowest frequency and nearly zero for the highest 
frequency, illustrating that grid cell embeddings belonging to the highest frequency more efficiently 
cover the representational space which allows them to capture the same relational structure across 
training and test distributions as required for OOD generalization.

https://doi.org/10.7554/eLife.89911
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Appendix 1—figure 13. Each panel shows the results after summation of the multiplication of the grid cell 
embeddings over the 2D space of 1000 × 1000 locations, with their corresponding gates for a particular frequency, 
obtained after maximizing Equation 6 for each grid cell frequency. The left, middle, and right panels show results 
for the lowest, middle, and highest grid cell frequencies, respectively, of the nine used in the model. Lighter color 
in each panel corresponds to greater responsiveness of grid cells at that particular location in the 2D space.

https://doi.org/10.7554/eLife.89911
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