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Midbrain encodes sound detection 
behavior without auditory cortex
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eLife assessment
This study demonstrates that neurons receiving inputs from auditory cortex in the inferior collic-
ulus widely encode the outcome of a sound detection task independent of the presence of audi-
tory cortex. This valuable study based on imaging of transsynaptically labelled neurons provides 
convincing evidence that auditory cortex is necessary neither for sound detection, nor to channel 
information related to behavioral outcome to the subcortical auditory system. This study will be of 
wide interest for sensory neuroscientists.

Abstract Hearing involves analyzing the physical attributes of sounds and integrating the 
results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive 
behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual 
information and is thought to share the resulting representations with subcortical auditory structures 
via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the 
inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons 
encode information beyond the physical attributes of the stimulus and that the animals’ behavior 
can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this 
was also the case in mice in which auditory cortical input to the midbrain had been removed by 
bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth 
of non-acoustic information and can, independently of the auditory cortex, carry much richer neural 
representations than previously thought.

Introduction
Classically, perception is considered to rely on the flow of information from the sensory periphery via 
a sequence of hierarchically-organized brain structures up to the cortex. The ascending sensory path-
ways connecting these structures have been studied extensively and much has been learned about 
how signals are relayed, how features are extracted, and how information is integrated to produce 
increasingly abstract representations of the sensory environment. These pathways are paralleled by 
descending pathways that can feed information back to lower-order sensory structures. The fact that 
descending projections often outnumber their feedforward counterparts (Sherman, 2007) attests to 
their likely importance for brain function. This may include turning an otherwise passive, stimulus-
driven device into an active and adaptive brain that is capable of processing sensory input within its 
behavioral context and, therefore, able to learn and create meaning (Engel et al., 2001; Kraus and 
White-Schwoch, 2015; Malmierca et al., 2015).

The descending projections of the auditory cortex target all major subcortical stations of the audi-
tory pathway and are among the largest pathways of the brain (Winer, 2005; Bajo and King, 2013; 
Antunes and Malmierca, 2021), making them a particularly suitable system for investigating the 
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behavioral and physiological consequences of corticofugal processing. One of their main targets is the 
inferior colliculus (IC), an obligatory midbrain relay for nearly all ascending auditory input. The corti-
cocollicular projection primarily terminates in the non-lemniscal shell of the IC. The shell encapsulates 
and is extensively connected with the central nucleus of the IC, which forms part of the tonotopically 
organized core or lemniscal auditory pathway to the primary auditory cortex. The projection from the 
auditory cortex to the midbrain was identified almost a century ago (Mettler, 1935) and decades of 
research have since demonstrated that manipulating the activity of descending projection neurons 
can alter the collicular representations of multiple sound features, influence adaptive plasticity and 
perceptual learning, and even trigger an innate flight response (Suga, 2008; Nakamoto et al., 2008; 
Bajo et  al., 2010; Xiong et  al., 2015; Blackwell et  al., 2020). However, experimental evidence, 
especially from behaving animals, that could help explain what information the auditory midbrain and 
other subcortical sensory structures rely on their cortical input for is still very limited.

Interactions between different sensory pathways occur at multiple processing levels and they are 
also closely linked with the brain’s motor centers and neuromodulatory regions. Indeed, recordings 
in awake animals have shown that behavior, cognition, and brain state can strongly influence activity 
in the sensory pathways (Schneider and Mooney, 2018; McCormick et  al., 2020; Parker et  al., 
2020). Consistent with a hierarchical view of sensory processing in which neurons at higher levels carry 
progressively more complex representations of the world, such contextual influences appear particu-
larly strong in the cortex (Stringer et al., 2019; Musall et al., 2019) and may to a large extent be the 
result of intracortical processing (Noudoost et al., 2010; Schneider et al., 2014; Song et al., 2017). 
Nevertheless, non-acoustic and contextual variables can also alter sensory processing at subcortical 
levels, including the IC and particularly its shell (Metzger et al., 2006; Gruters and Groh, 2012; Chen 
and Song, 2019; Yang et al., 2020; Parras et al., 2017; Saderi et al., 2021; Shaheen et al., 2021). 
This raises the possibility that these context-dependent effects may be inherited from the auditory 
cortex (Ford et al., 2024).

To test whether auditory midbrain neurons convey behaviorally-relevant signals that depend on 
descending cortical inputs, we imaged corticorecipient IC shell neurons in mice engaged in a sound 

eLife digest Making sense of a sound and responding to it appropriately requires various parts of 
the nervous system to work together in a hierarchical and interconnected manner. For example, after 
the ear converts sound vibrations into electric signals, this information is sent to and pre-processed 
by the midbrain, a brain structure tasked with linking the auditory brain stem to sensory and motor 
systems. The signals are then relayed to the auditory cortex where they are further decoded and 
integrated with information emerging from other sensory and behavioral systems. These integrated 
auditory signals can then be fed back to the midbrain, potentially adjusting the signals delivered to 
its downstream targets.

Due to its integrative nature, neural activity in the auditory cortex is also shaped by non-acoustic 
input. Yet a growing body of evidence points to auditory neurons present in other regions than the 
cortex, such as the midbrain, being able to respond to non-acoustic information as well. It has typi-
cally been assumed that such responses are mediated by feedback from the auditory cortex.

To test this assumption, Lee et al. recorded the activity of auditory neurons in the midbrain of mice 
performing a sound detection task (that is, responding to a clicking sound by licking a waterspout). 
The analyses showed that most cells encoded not only basic sound properties (such as amplitude) but 
also information about the animal’s behavioral response; in fact, the performance of an animal could 
be accurately inferred based on the activity patterns of such neurons. This was the case even in mice 
in which the auditory cortex had been removed, suggesting that the activity detected in the midbrain 
had not emerged due to cortical signals.

The findings by Lee et al. help refine our understanding of the brain processes that underpin 
hearing, in particular by highlighting tight links between behavioral information and neural activity in 
the midbrain. These results should help guide further research into how various brain regions partic-
ipate in the processing of auditory input and the production of sound-guided behaviors, including 
when these mechanisms are affected by factors such as health or disease.

https://doi.org/10.7554/eLife.89950
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detection task. We found that the activity of most neurons contained information beyond the physical 
attributes of the sound and that this information could be used to decode the animals’ behavior with 
a high degree of accuracy. Surprisingly, this was the case both in mice with an intact cortex and those 
in which the auditory cortex had been lesioned. These findings suggest that subcortical auditory struc-
tures have access to a wealth of non-auditory information independently of descending inputs from 
the auditory cortex. Consequently, the contextually-enriched representations that are characteristic of 
sensory cortices can arise from subcortical processing.

Results
Transient suppression of the auditory cortex impairs sound detection
Our aim was to characterize the activity of neurons in the shell of the IC in animals engaged in 
sound-guided behavior and assess how this activity is influenced by the input from the auditory 
cortex. To this end, we trained water-regulated mice on a sound detection task (Figure 1A) in which 
they were rewarded with a drop of water for licking in response to a click sound. Transient pharma-
cological silencing of the auditory cortex using the GABA-A agonist muscimol has been shown to 
abolish the ability of rodents (Talwar et al., 2001), including head-fixed mice (Li et al., 2017), to 
perform a sound detection task, making this approach unsuitable for our aim of exploring the role 
of IC during behavior. We found that optogenetic suppression of cortical activity by photoactivating 
ChR2-expressing inhibitory neurons in Gad2-IRES-cre mice (Lohse et  al., 2020) also significantly 
impaired sound detection performance (Figure 1B and C), albeit not to the same degree as phar-
macological silencing. Although a control group in which the auditory cortex was injected with an 
EYFP virus lacking ChR2 would be required to confirm that the altered behavior results from an 
opsin-dependent perturbation of cortical activity, this result shows that this manipulation is also 
unsuitable for our study as it would leave us unable to determine whether any changes in the activity 
of IC neurons arise from removal of their auditory cortical input or are a consequence of alterations 
in the animals’ behavior.
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Figure 1. Optogenetic inactivation of the auditory cortex impairs sound detection performance in head-fixed mice. (A) Schematic of the click detection 
task. (B) Trial structure for experiments involving optogenetic manipulation. Stimulus trials (click) and catch trials (no click) were randomly interleaved and 
consecutive trials were separated by a randomly varying inter-trial interval (ITI). LEDs placed over each auditory cortex were switched on randomly in half 
of the stimulus and catch trials to photoactivate the opsin. A separate set of LEDs (Mask LEDs) placed directly in front of the mouse’s eyes were switched 
on in all Opto-on and Opto-off trials to prevent mice from visually registering the light from the photoactivation LEDs. (C) Detection performance in 
trials during which light was shone on the auditory cortex for optogenetic silencing (Opto LED – on) vs control trials (Opto LED - off). Different line styles 
indicate different mice (n=3). Numbers next to data points indicate the numbers of hit and false alarm trials over a total number of stimulus and catch 
trials, respectively. *p<0.001, two-sided Chi-squared proportion test.

https://doi.org/10.7554/eLife.89950
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Auditory cortex lesions leave detection ability intact
Several recent studies have shown that in contrast to the disruptive effects of transient silencing, 
cortical lesions leave performance in some sensory tasks intact (Hong et al., 2018; Ceballo et al., 
2019; O’Sullivan et al., 2019). In order to assess how auditory cortex lesions impact sound detection 
performance, we therefore compared the performance of mice with bilateral lesions of the auditory 
cortex (n=7) with non-lesioned controls (n=9).

Most corticocollicular neurons project ipsilaterally, with a substantial proportion also sending axons 
to the contralateral midbrain (Stebbings et al., 2014). The majority of corticocollicular neurons are 
found in the temporal cortex, and overwhelmingly in the auditory fields, while a small fraction popu-
lates adjacent areas, such as the temporal association area (Figure 2—figure supplement 1). After 
the experiments, we injected a retrogradely-transported viral tracer (rAAV2-retro-tdTomato) into 
the right IC to determine whether any corticocollicular neurons remained after the auditory cortex 
lesions (Figure 2, Figure 2—figure supplement 2, Figure 2—figure supplement 3). The presence 
of retrogradely-labeled corticocollicular neurons in non-temporal cortical areas (Figure 2) was not the 
result of viral leakage from the dorsal IC injection sites into the superior colliculus (Figure 2—figure 
supplement 3).

The ability of the mice to learn and perform the click detection task was evident in increasing 
hit rates and decreasing false alarm rates across training days (Figure  3A, p<0.01, mixed-design 
ANOVAs). There was no difference between lesioned and non-lesioned mice in their learning speed 
(Figure 3A, p>0.05, mixed-design ANOVAs) or psychometric functions (Figure 3B, p>0.05, mixed-
design ANOVA). Cortical lesioning thus leaves behavioral sensitivity to clicks intact and therefore 
provides a means of examining the effects of removing corticocollicular input, albeit non-reversibly, 
without directly affecting sound detection performance.

Transsynaptic labeling and two-photon calcium imaging of auditory 
corticorecipient IC neurons
Manipulations of auditory cortical activity can influence the activity of neurons throughout the IC, 
including the central nucleus (Suga, 2008; Nakamoto et  al., 2008), where corticocollicular axons 
are relatively sparse (Stebbings et al., 2014). The strongest effects, however, tend to be observed in 
the shell, where cortical input is densest (Nakamoto et al., 2008; Vila et al., 2019; Blackwell et al., 
2020). But even here, effects can be subtle (Vila et al., 2019) or undetectable (Blackwell et al., 2020), 
especially for cortical silencing. It is also unclear whether the IC neurons recorded in these studies 
receive cortical input or not. Therefore, we took a projection-specific approach to record the activity 
of IC neurons that receive direct input from the auditory cortex. More specifically, we injected AAV1.
hSyn.Cre.WPRE, a virus with anterograde transsynaptic spread properties (Zingg et al., 2017), into 
the right auditory cortex of, initially, a tdTomato (Ai9) reporter mouse. This resulted in the expression 
of Cre recombinase and the reporter gene in neurons that receive input from the auditory cortex, 
including the corticorecipient neurons of the IC (Figure 4A). By employing this approach in GCaMP6f 
(Ai95D) reporter mice, we could target the expression of a calcium indicator to corticorecipient IC 
neurons. We then proceeded to record the activity of corticorecipient neurons within about 150 µm of 
the dorsal surface of the IC using two-photon microscopy (Figure 4B, Figure 4—video 1).

Corticorecipient IC neurons display heterogeneous response profiles
The activity of individual corticorecipient IC neurons showed distinct response profiles across neurons 
and trial outcomes (hit vs miss) (Figure  4C). While averaging across all neurons cannot capture 
the diversity of responses, the averaged response profiles suggest that it is mostly trial outcome 
rather than the acoustic stimulus and neuronal sensitivity to sound level that shapes those responses 
(Figure 4—figure supplement 1). Indeed, close to half (1272/2649) of all neurons showed a statisti-
cally significant difference in response magnitude between hit and miss trials, while only a small frac-
tion (97/2649) exhibited a significant response to the sound. While the number of sound-responsive 
neurons is low, this is not necessarily surprising given the moderate intensity and very short duration 
of the stimuli. For comparison: Using the same transgenics, labeling approach, and imaging setup and 
presenting 200 ms long pure tones at 60 dB SPL with frequencies between 2 kHz and 64 kHz, we typi-
cally find that between a quarter and a third of neurons in a given imaging area exhibit a statistically 
significant response (data not shown).

https://doi.org/10.7554/eLife.89950
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Figure 2. Retrograde viral tracing of inferior colliculus (IC)-projecting neurons in bilaterally lesioned mice. (A) Timeline of experimental procedures. 
AAV1.hSyn.cre.WPRE was injected into the right auditory cortex of GCaMP6f-reporter (Ai95D) mice. This causes transsynaptic delivery of the virus to the 
IC and expression of GCaMP6f in corticorecipient IC neurons. Several weeks later, the mice underwent bilateral lesioning of the auditory cortex either by 
aspiration or by thermocoagulation (see Figure 2—figure supplement 2 for histological sections from a mouse that underwent thermocoagulation) and 
were implanted with a glass window over the right auditory cortex. Following recovery from this procedure, water access was restricted and, 2–3 days 
later, behavioral training and imaging commenced. After data collection had been completed, rAAV2-retro-tdTomato was injected in the dorsal IC in 
order to label corticocollicular neurons that had remained intact. (B, C) Coronal sections showing lesion extent at different rostrocaudal positions for one 
example mouse. Area borders were drawn onto the images according to Paxinos et al., 2001. No retrogradely-labeled neurons were found near the 
lesion borders, suggesting that the auditory cortex had been completely removed. Corticocollicular projections from non-temporal regions as well as 
thalamocollicular projections remained intact. Scale bars, 200 µm. (D) High magnification image (location shown by the upper rectangle in (B)) showing 
corticocollicular neurons in the visual cortex. Scale bar, 100 µm. (E) High magnification image (location shown by the lower rectangle in (B)) showing 
thalamocollicular neurons in the peripeduncular nucleus of the thalamus (PP). Scale bar, 100 µm. (F, G) High magnification images (locations shown by 
the left and right rectangles in (C), respectively) showing corticocollicular neurons in the parietal cortex. Scale bars,100 µm. Cortical area abbreviations: 
Au1, primary auditory; AuD, secondary auditory, dorsal; AuV, secondary auditory, ventral; Ect, ectorhinal; LPta, lateral parietal association; MPta, medial 
parietal association; Prh, perirhinal; RSG, retrosplenial granular; RSA, retrosplenial agranular; S1BF, primary somatosensory, barrel field; TeA, temporal 
association; V1, primary visual; V2L, secondary visual, lateral; V2ML, secondary visual, mediolateral; V2MM, secondary visual, mediomedial.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Contra- and ipsilateral corticocollicular neurons along the rostrocaudal axis.

Figure supplement 2. Lesioning by thermocoagulation.

Figure supplement 3. Retrograde labeling of corticocollicular neurons in non-temporal areas of the cerebral cortex is not the result of viral leakage into 
the superior colliculus.

https://doi.org/10.7554/eLife.89950
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To capture the heterogeneity of response patterns across all recorded neurons, we used an unsu-
pervised clustering algorithm (Namboodiri et al., 2019) to group the average responses on hit and 
miss trials for each neuron. This yielded 10 clusters that displayed different response patterns over 
the course of the trial (Figure 5A and B). Most of the clusters exhibited distinct activity for hit vs miss 
trials. Some hit trial profiles were characterized by increases or decreases in activity, with a very sharp, 
short-latency onset, as in clusters 4 and 10 (see Figure 5—figure supplement 1 for a scaled version 
of cluster 10), and others by much more gradual changes in which a peak occurred seconds after the 
trial onset, as in clusters 5 and 9. Cluster 3, which contained the smallest number of neurons, was an 
exception in that it showed a transient, short latency response to the stimulus for both trial outcomes. 
The response profiles of some other clusters, especially clusters 6 and 8, were also qualitatively similar 
across hit and miss trials and/or only weakly modulated across both trial types.

This suggests that the activity of the majority of neurons in the recorded population contained 
information beyond the physical properties of the stimulus. Given that licking causes self-generated 
sounds, IC neurons could, in principle, respond to the sound of licking. However, given how quiet 
these are - estimated to be just 12 dB SPL (Singla et al., 2017) - and that much of the response to such 
lick-related sounds is already canceled out at the level of the cochlear nucleus (Singla et al., 2017; 
but see Shaheen et al., 2021), it is highly unlikely that lick-related sounds play a major role in driving 
activity in the IC.

To assess whether certain response profiles depended on auditory cortical input, we compared 
the ratio of neurons from lesioned vs non-lesioned mice in each cluster to that of the overall recorded 
population. The number of recorded neurons was unequal for lesioned and non-lesioned mice (952 vs 
1697, respectively), reflecting the fact that a greater proportion of imaging sessions in non-lesioned 
animals were carried out using a larger field of view, which contained larger numbers of neurons 
(Figure 5—figure supplement 2). To account for this, the percentages shown on the pie charts were 
normalized to the ratio of the overall population (Figure 5C). Neurons from both groups were well 
represented across all 10 clusters and while a significant difference in the lesioned/non-lesioned ratio 
was found for four clusters, the difference between the groups was greater than 20% for only one of 
them. Furthermore, there was a close correspondence between the cluster averages of lesioned and 
non-lesioned mice (Figure 5—figure supplement 3). This suggests that the IC shell can produce very 
similar output regardless of whether auditory cortical input is available or not.

Behavior can be accurately decoded from neural activity in lesioned 
and non-lesioned mice
The average responses of individual neurons in the IC shell exhibited a variety of activity patterns 
associated with both the stimulus and the trial outcome (Figure 5A and B). To gain insight into how 
these activity patterns can be read out collectively on a trial-by-trial basis, we assessed the relation-
ship between the trial-by-trial network activity and the trial outcome. We trained logistic regression 
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Figure 3. Lesioned and non-lesioned mice are indistinguishable in their click detection learning rate and sensitivity. (A) Hit rate, false alarm rate, and d’ 
over time for lesioned and non-lesioned animals. (B) d’ as a function of sound level. The sound levels used were not identical across all mice and were, 
therefore, combined into 10 dB wide bins. Error bars indicate 95% confidence intervals.

https://doi.org/10.7554/eLife.89950
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models to classify hit vs miss trials on a trial-by-trial, frame-by-frame basis. As different populations 
of neurons were recorded in different imaging sessions, the models were trained separately for each 
session. ‘Dummy models,’ which randomly classified trials while taking into account the probability of 
hit vs miss trials in a given session, were used as the baseline model performance. If the population 
activity of the IC shell contained information about the trial outcome, the performance of the models 
would be significantly above baseline.

In both lesioned and non-lesioned mice, the average model performance was significantly above 
baseline in classifying hit vs miss trials (p<0.05, one-sided Wilcoxon signed-rank test or paired t-test 
with Bonferroni correction, Figure 6A), showed a temporal profile that is consistent with the dynamics 
of the activity profiles of some of the clusters, in particular clusters 1, 2, 4, 5, 9, 10 (Figure 5A and B), 
and was not meaningfully affected by differences in sound level distributions between hit and miss 
trials (Figure 6—figure supplement 1). Additionally, the model performance in non-lesioned mice 
was significantly better than that in lesioned mice (p<0.05, one-sided Mann-Whitney U test or t-test 
with Bonferroni correction, Figure 6A). This difference in the decoding performance was not the result 
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Figure 4. Transsynaptic targeting and two-photon calcium imaging of corticorecipient inferior colliculus (IC) shell neurons. (A) Coronal section of 
the left and right IC of a tdTomato-reporter (Ai9) mouse in which AAV1.hSyn.Cre.WPRE had been injected into the right auditory cortex three weeks 
before perfusion. The transsynaptically transported virus drove the expression of Cre recombinase and tdTomato in neurons that receive input from 
the auditory cortex, including the corticorecipient neurons in the IC. tdTomato-labeled neurons were predominantly found in the shell of the ipsilateral 
(right) IC. Scale bar, 500 µm. (B) In vivo two-photon micrograph taken approximately 100 µm below the dorsal surface of the right IC of a GCaMP6f-
reporter mouse (Ai95D) in which GCaMP6f expression had been driven in corticorecipient IC neurons by injection of AAV1.hSyn.Cre.WPRE into the 
right auditory cortex. See Figure 4—video 1 for the corresponding video recording. Scale bar, 100 µm. (C) Example average response profiles of five 
corticorecipient IC neurons for different trial outcomes. Vertical line at time 0 s indicates the time of click presentation. Shaded areas represent 95% 
confidence intervals.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Averaged response profiles for stimulus and catch trials.

Figure 4—video 1. Two-photon calcium imaging was performed approximately 100 µm below the dorsal surface of the right inferior colliculus (IC) of a 
GCaMP6f-reporter mouse (Ai95D) engaged in a sound detection task.

https://elifesciences.org/articles/89950/figures#fig4video1

https://doi.org/10.7554/eLife.89950
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of the difference in the number of neurons between non-lesioned and lesioned mice (Figure 6—
figure supplement 2).

By examining the corticocollicular labeling and referencing the histological sections against a mouse 
brain atlas (Paxinos et al., 2001), we categorized the mice according to lesion size. Four of the seven 
lesioned animals had ‘(near-)complete’ lesions, meaning that all (Figure  2) or an estimated  ~95% 
(Figure 2—figure supplement 2) of the auditory cortex had been lesioned, while the remaining mice 
had ‘partial’ lesions, with an estimated 15–25% of the auditory cortex left intact. To assess whether 
the size of the lesions impacted the decoding performance, we compared the model performance 
between mice that had (near-)complete lesions and mice that had partial lesions. This revealed that 
the average decoding performance for mice with (near-)complete lesions was significantly better than 
that measured for mice with partial lesions. While this pattern of results may be unexpected, it is 
consistent with work showing smaller lesions being associated with greater somatosensory processing 
deficits (Hong et al., 2018). Additionally, the decoding performance in mice with (near-)complete 
lesions was largely indistinguishable from that in mice with an intact auditory cortex. Although the 
proportion of individual neurons with distinct response magnitudes in hit and miss trials in lesioned 
mice did not differ from that in non-lesioned mice, it was significantly lower when separating out mice 
with partial lesions (Figure 6—figure supplement 3). These results imply that the activity of IC shell 
neurons can contain similar amounts of information about the animal’s behavior regardless of whether 
descending input from the cortex is available or not (Figure 6B).
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Figure 5. Corticorecipient inferior colliculus (IC) neurons display heterogeneous response profiles. (A) Peri-stimulus time histograms for all neurons in 
the dataset separated by cluster identity: hit trials (top) vs miss trials (bottom). (B) Averaged response profiles obtained by taking the mean across all 
neurons in a cluster separately for hit (red) and miss (blue) trials. (C) Pie charts illustrate the proportion of neurons from lesioned and non-lesioned mice 
in each cluster. The size of each pie chart is proportional to the total number of neurons in each cluster. Given the unequal number of neurons from 
lesioned (952 neurons) and non-lesioned (1697 neurons) mice, the pie charts were normalized to the overall sample size such that a 50/50 split indicates 
a lesioned/non-lesioned distribution that is identical to that of the overall population. Asterisks indicate a significant difference between the lesioned/
non-lesioned distribution in the given cluster and that in the overall population. *p<0.05, **p<0.01, ***p<0.001, two-sided one proportion Z-test.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Rescaled response profiles for each cluster.

Figure supplement 2. Number of sessions for each imaging field of view size.

Figure supplement 3. High correspondence between cluster profiles of lesioned and non-lesioned mice.

https://doi.org/10.7554/eLife.89950
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Pre-stimulus activity is predictive of the upcoming trial outcome
Remarkably, decoding accuracy was better than baseline even before stimulus onset. This could reflect 
changes in the network state that led or contributed to the upcoming trial outcome. For instance, 
changes in arousal or motivation can alter both the probability that an upcoming stimulus is detected 
and the activity of neurons in the network (Lee and Dan, 2012; McGinley et al., 2015). The decoding 
models might detect such changes in activity, resulting in higher decoding accuracy prior to stimulus 
onset. Additionally, pre-stimulus differences in hit and miss trial activity could also reflect the antici-
pation of an upcoming stimulus (Ruth et al., 1974; Nienhuis and Olds, 1978; Metzger et al., 2006) 
and the resulting change in attentional state. Inter-trial intervals in our experiments were randomly 
drawn from a normal distribution with a mean and standard deviation of 8 s and 2 s, respectively, 
and a lower bound of 3 s. Nevertheless, spontaneous licks did not occur at random times during the 
peri-catch trial periods following hit trials. Instead, average lick rates approximated the inter-trial 
interval distribution (Figure 6—figure supplement 4A–D), suggesting that mice learned to adapt 
their behavior to this distribution and anticipate the timing of upcoming stimuli (Figure 6—figure 
supplement 4E and F). Assuming that successfully anticipating the timing of an upcoming stimulus 
confers a greater chance of detecting the stimulus, neurons whose activity reflects that anticipation 
might be expected to show differences in pre-trial activity between hit and miss trials that could be 
detected by a decoding model. Note that for the analysis illustrated in Figures 5 and 6, hit trials were 
excluded if there were any licks between –500 ms and +120 ms (the latter number representing the 
lower bound of the animals’ lick-latency) relative to stimulus onset, suggesting that changes in pre-
stimulus activity cannot be directly related to licking.

A B
Non-lesioned
(Near-)complete
Partial

Non-lesioned

Non-lesioned
Dummies

Lesioned

Lesioned

Figure 6. Trial outcomes can be accurately decoded from neural activity in lesioned and non-lesioned mice. (A) Average decoding accuracy of logistic 
regression models as a function of time against dummy models with a score of 0.5 meaning chance performance and a score of 1 being the maximum. 
Data shown depict the mean model accuracy across 37 (lesioned) and 38 (non-lesioned) sessions, respectively. Dots at the top indicate the time points 
(frames) where the model performance was significantly different between trained and dummy models for non-lesioned mice (teal) or lesioned mice 
(orange) (p<0.05, one-sided Wilcoxon signed-rank test or paired t-test with Bonferroni correction, depending on whether normality assumption was 
met), and between the trained models for non-lesioned vs lesioned mice (blue) (p<0.05, one-sided Mann-Whitney U test or t-test with Bonferroni 
correction, depending on whether normality assumption was met). (B) Same as (A) but the average model accuracy is plotted separately for mice with 
(near-)complete (22 sessions) and partial lesions (15 sessions). Dots at the top indicate the time points where the model performance was significantly 
different between partial vs (near-)complete mice (purple), (near-)complete vs non-lesioned mice (blue), and partial vs non-lesioned mice (red) (p<0.05, 
one-sided Mann-Whitney U test or t-test with Bonferroni correction, depending on whether normality assumption was met). Shaded areas represent 
95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Trial outcome decoding is not meaningfully affected by differences in sound level distributions between hit and miss trials.

Figure supplement 2. Greater number of recorded neurons was not associated with better decoding performance.

Figure supplement 3. Similar fractions of task-modulated and sound-driven neurons in lesioned and non-lesioned mice.

Figure supplement 4. Lick rates in peri-catch trial periods approximate next-trial-probability.

https://doi.org/10.7554/eLife.89950
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Discussion
Imaging auditory corticorecipient neurons in the dorsal shell of the IC in mice trained to perform a 
sound detection task revealed that the majority of neurons exhibited distinct activity profiles for hit 
and miss trials, implying that they encode information beyond just the physical attributes of the stim-
ulus. Indeed, using logistic regression models to classify hit vs miss trials, we found that the animals’ 
behavioral choices can be read out from these neurons with a high degree of accuracy. Importantly, 
the difference in IC activity between hit and miss trials was observed across different sound levels and 
was not due to a difference in the sound level distribution for these two trial outcomes. Surprisingly, 
neural activity profiles and the decoding performance were similar in mice in which the auditory cortex 
had been lesioned bilaterally, suggesting that the midbrain has, independently of the auditory cortex, 
access to a wealth of non-acoustic information, which may be sufficient to support sound detection 
behavior.

Auditory corticocollicular axons terminate predominantly in the shell of the IC (Stebbings et al., 
2014; Bajo and King, 2013) and the strongest effects of cortical manipulations have been reported 
in this region (Nakamoto et al., 2008; Vila et al., 2019; Blackwell et al., 2020). However, these 
effects can be subtle (Cruces-Solís et al., 2018; Vila et al., 2019) or undetectable, especially when 
optogenetic silencing is used (Blackwell et al., 2020). Because of this and uncertainties over exactly 
what proportion of neurons in the shell of the IC is innervated by the auditory cortex and even where 
the border lies with the underlying central nucleus (Barnstedt et al., 2015), we used an anterograde 
transsynaptic tagging approach (Zingg et al., 2017) to identify corticorecipient neurons. This, there-
fore, maximized the chances of revealing the contribution of descending cortical input to the response 
properties of these midbrain neurons. We imaged across the optically accessible dorsal surface of 
the IC down to a depth of about 150 µm below the surface. Consequently, the neurons we recorded 
were located predominantly in the dorsal cortex. However, identifying the borders between different 
subdivisions of the IC is not straightforward and we cannot rule out the possibility that some were 
located in the lateral cortex.

Inferior colliculus neurons exhibit task-related activity
Our recordings from corticorecipient neurons in the IC are consistent with previous studies demon-
strating that neural representations of behavioral variables can be found in the auditory midbrain 
(Ruth et al., 1974; Nienhuis and Olds, 1978; Metzger et al., 2006; Gruters and Groh, 2012; Chen 
and Song, 2019; Yang et al., 2020; Saderi et al., 2021; De Franceschi and Barkat, 2021; Shaheen 
et al., 2021; Quass et al., 2024). In keeping with responses recorded in the auditory cortex (Francis 
et al., 2018; De Franceschi and Barkat, 2021) and IC (Chen and Song, 2019; Yang et al., 2020; 
De Franceschi and Barkat, 2021) of behaving mice, we found that the activity of most neurons was 
facilitated and about a third were suppressed during the sound detection task. Overall, only a small 
minority of clusters (mostly cluster 3) in our dataset showed what could be characterized as largely 
behavior-invariant response profiles to the auditory stimulus. In contrast, a large number of neurons 
were clearly driven by variables other than the stimulus itself. Their activity may represent the choice 
(to lick or not to lick) that an animal made, preparatory motor activity, corollary discharge, or the 
reward and the somatosensory or gustatory feedback associated with its consumption, as well as 
modulation by the animal’s cognitive and behavioral state. Due to the task structure used, for the most 
part, it was not possible to unambiguously assign activity profiles to a particular variable. Neverthe-
less, we can speculate that neurons with late transients, such as in cluster 5, are more likely to repre-
sent corollary discharge and signals associated with the consumption of the reward, while those with 
very short latency peaks, as in clusters 4 and 10, may represent the animals’ choice and/or preparatory 
motor activity.

When engaged in the detection task, an animal’s arousal or motivational state may vary sponta-
neously or as a result of changes in, for instance, thirst, time of day, or time into a session. In addition, 
cognitive factors, such as expectations about the timing of an upcoming trial (Ruth et al., 1974; Nien-
huis and Olds, 1978; Metzger et al., 2006), which mice may have derived by learning the shape of 
the inter-trial interval distribution, may lead to variations in arousal or attentional state. Pre-trial differ-
ences in activity as well as the above-chance decoding performance before trial onset likely reflect 
the joint impact of those state changes on the activity of IC corticorecipient neurons and detection 
sensitivity (McCormick et al., 2020).

https://doi.org/10.7554/eLife.89950
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Contribution of the auditory cortex to task-related activity in the 
midbrain
Given the massive corticofugal projections that exist within the auditory system (Bajo and King, 2013), 
we hypothesized that task-related activity in the IC might depend on descending inputs from the audi-
tory cortex. To address this, we imaged corticorecipient IC neurons during the same sound detection 
task after removing the cortical input. Consistent with previous work in the auditory (O’Sullivan et al., 
2019) and somatosensory systems (Hong et al., 2018), we found that transient optogenetic silencing 
of the auditory cortex impaired sound detection, whereas cortical lesions had no effect on detection 
behavior, with lesioned mice learning the task as quickly as non-lesioned animals and achieving the 
same level of performance. In order to determine whether the absence of auditory cortical input 
alters the activity of IC neurons during sound detection behavior, we therefore focused on mice with 
bilateral cortical lesions to avoid the potentially confounding effects that reduced detection sensitivity 
produced by transient cortical silencing might have on the activity of IC neurons. For the same reason, 
we opted against the more targeted approach of optogenetic silencing of corticocollicular axons. 
Furthermore, it would have been difficult to silence the entire corticocollicular projection and the 
higher light powers required for manipulating axons compared to somata would have risked transmit-
ting light to the cortex or other corticofugal targets, potentially causing behavioral changes and/or 
sacrificing specificity. Locally silencing corticocollicular axons would also have left indirect transmission 
via the thalamus between the auditory cortex and IC intact and would have been very challenging 
to verify. Finally, it has been reported that using optogenetic silencing tools in axons can have unin-
tended consequences (Wiegert et al., 2017).

In keeping with our findings, numerous studies (reviewed in e.g. Pickles, 1988; Buser and Imbert, 
1992) have shown that simple auditory skills, including the ability of freely moving rats to detect 
sounds (Kelly, 1970), are unaffected by the removal of the auditory cortex. However, transient phar-
macological silencing of the auditory cortex in freely moving rats (Talwar et al., 2001), as well as head-
fixed mice (Li et al., 2017), completely abolishes sound detection (but see Gimenez et al., 2015). 
The time course of the effects produced by muscimol application (Talwar et al., 2001) suggests that 
there is a relationship between the size of the behavioral deficit and the degree of cortical inactivation. 
Consequently, milder impairments may be produced by the optogenetic approaches employed by us 
and others (Kato et al., 2015; O’Sullivan et al., 2019) because of incomplete suppression of cortical 
activity. Alternatively, the larger behavioral effects reported following muscimol application may be 
due to diffusion of the drug to other brain structures, potentially including the IC. Although our 
results cannot speak directly to the question of whether the preservation of sound detection without 
auditory cortex reflects a rewiring or repurposing of circuits in the brain, this seems unlikely given that 
other studies have shown that trained mice achieve pre-lesion performance levels on simple auditory 
discrimination (Ceballo et  al., 2019; O’Sullivan et  al., 2019) or somatosensory detection (Hong 
et al., 2018) tasks suddenly and within 48 hr following cortical ablation.

Why then does transient inactivation produce behavioral deficits? One possibility is that disabling 
the auditory cortex impacts behavior not because it contributes necessary computations or informa-
tion, but because of the sudden and disruptive removal of tonic excitation (Oberle et al., 2022) to 
downstream targets (Otchy et al., 2015) that are indispensable for successful sound detection. In this 
scenario, normal operation would resume once synaptic scaling (Keck et al., 2013) had homeostatically 
restored normal activity in these structures, a process that has been suggested to take up to 48 hr and 
is consistent with the time course of recovery after lesions (Ceballo et al., 2019; Hong et al., 2018). 
Alternatively, several circuits may redundantly support sound detection. Silencing the auditory cortex 
might then transiently impede sound detection until the relevant downstream decision and motor 
structures have updated their synaptic weights and/or processing has shifted to the other circuits. 
Two observations, however, argue against this possibility. First, removing one of several redundant 
structures should leave some residual function intact and not have the devastating effect that phar-
macological cortical silencing achieves (Talwar et al., 2001, Li et al., 2017). Second, other circuits 
mediating the acousticomotor transformation required for successful sound detection behavior very 
likely incorporate subcortical auditory structures, including the auditory midbrain. Activity in the IC 
may trigger actions (Casseday and Covey, 1996), such as licking, via its direct projections to the supe-
rior colliculus, pontine nuclei and the periaqueductal gray (Huffman and Henson, 1990; Wenstrup 
et al., 1994; Casseday and Covey, 1996; Xiong et al., 2015) or indirectly via its projections to the 
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 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Lee et al. eLife 2023;12:RP89950. DOI: https://doi.org/10.7554/eLife.89950 � 12 of 21

auditory thalamus. If cortical lesioning results in a greater weight being placed on the activity in 
spared subcortical circuits for perceptual judgements, we would expect the accuracy with which trial-
by-trial outcomes could be read out from IC neurons to be greater in mice without auditory cortex. 
However, that was not the case. This could imply that, following cortical lesions, greater weight is 
placed on structures other than the IC, with the thalamus being an obvious candidate, or that the audi-
tory midbrain, thalamus and cortex are bypassed entirely if simple acousticomotor transformations, 
such as licking a spout in response to a sound, are handled by circuits linking the auditory brainstem 
and motor thalamus via pedunculopontine and midbrain reticular nuclei (Inagaki et al., 2022).

Some differences were observed for mice with only partial lesions of the auditory cortex. Those 
mice had a lower proportion of neurons with distinct response magnitudes in hit and miss trials than 
mice with (near-)complete lesions. Furthermore, trial outcomes could be read out with lower accuracy 
from these mice. While this finding is somewhat counterintuitive and is based on only three mice with 
partial lesions, it has been observed before that smaller lesions can have a more disruptive effect than 
larger, more complete lesions, in that the time it takes mice to learn a whisker-dependent sensory 
detection task is anticorrelated with the size of their somatosensory cortex lesion (Hong et al., 2018). 
While the complete destruction of a cortical area severs all its communication with downstream struc-
tures, a partial lesion may actually be more disruptive by eradicating normal local processing while 
at the same time leaving intact some tissue, especially in the deeper output layers, which continues 
to transmit what are now aberrant activity patterns. The difference in decoding accuracy that we 
observed in the IC could thus be a consequence of residual and now disruptive cortical input.

Our results show that behavioral variables are encoded by corticorecipient neurons in the dorsal 
shell of the IC independently of their main source of descending input, the auditory cortex. It there-
fore seems likely that this region of the auditory midbrain is part of the circuit that supports sound 
detection behavior in the absence of the auditory cortex. Nevertheless, except for the regions imme-
diately bordering the auditory cortex, corticocollicular neurons located in other areas were left intact. 
These relatively sparse descending projections to the IC, such as those originating from somatosen-
sory cortical areas (Lohse et al., 2020; Lesicko et al., 2016) and the parietal cortex, may have contrib-
uted to the response profiles that we observed. Additional non-acoustic sensory input can reach the 
IC via brainstem nuclei (Lesicko et al., 2016; Shore and Zhou, 2006) and the superior colliculus (Chen 
et al., 2018; Coleman and Clerici, 1987). The latter, together with input from the substantia nigra 
(Olaźabal and Moore, 1989) and the globus pallidus (Moriizumi and Hattori, 1991) may also be a 
source of motor signals, while state changes may impact on the IC via inputs from neuromodulatory 
structures, including the locus coeruleus and the subparafascicular, dorsal raphe and tegmental nuclei 
(Chen and Song, 2019, Liu et al., 2023).

Conclusion
Behavior is a major determinant of activity in the non-lemniscal auditory midbrain and thus key to 
understanding how it contributes to hearing. The anatomical feature that defines this structure more 
than any others is its connection with the auditory cortex. While modulation of IC activity by this 
descending projection has been implicated in various functions, most notably in the plasticity of audi-
tory processing, we have shown in mice performing a sound detection task that IC neurons show 
task-related activity in the absence of auditory cortical input. These results, therefore, emphasize more 
than ever the need to factor in subcortical processing when considering how the cortex contributes 
to sound-guided behavior.

Materials and methods
Animals
All experiments were approved by the Committee on Animal Care and Ethical Review at the University 
of Oxford and were licensed by the UK Home Office (Animal Scientific Procedures Act, 1986, amended 
in 2012). We used 22 (three female, 19 male) B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J (Ai95D, JAX 
024105, Jackson Laboratories, USA), three (one female, two male) Gad2tm2(cre)Zjh/J (JAX 010802), six 
female B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Ai9, JAX 007909), two female Ai95D X Slc32a1tm2(cre)

Lowl/J (JAX 016962), three female Ai95D X B6.Cg-Tg(Camk2a-cre)T29-1Stl/J (JAX 005359, Jackson 
Laboratories, USA), and three (one male, two female) C57BL/6NTac.Cdh23753A>G (MRC Harwell, UK) 

https://doi.org/10.7554/eLife.89950
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mice. All mice were 9–15 weeks old during data collection. They were maintained on a 12 hr light/dark 
cycle and were housed at 20–24°C with a relative humidity of 45–65%.

Surgeries
For all surgical procedures, mice were premedicated with intraperitoneal injections of dexamethasone 
(Dexadreson, 4 mg), atropine (Atrocare, 1 mg), and carprofen (Rimadyl, 0.15 mg) before being anes-
thetized with isoflurane (1.5–2%) and administered with buprenorphine (Vetergesic, 1 ml/kg) postop-
eratively. Mice were then placed in a stereotaxic frame (Model 900LS, David Kopf Instruments, CA, 
USA) and their body temperature was kept constant at 37 °C by the use of a heating mat and a DC 
temperature controller in conjunction with a temperature probe (FHC, ME, USA).

For injections in the auditory cortex of AAV1.hSyn.Cre.WPRE (Penn Vector Core), the skin over 
this part of the brain was shaved and an incision was made, after which three small holes were drilled 
(Foredom K.1070, Blackstone Industries, CT, USA) into the skull with a 0.4 mm drill bit and the virus 
injected using a pulled glass pipette and a custom pressure injection system. In order to express 
GCaMP6f or tdTomato in IC neurons that receive auditory cortical inputs, a total of 150–200 nl of 
AAV1.hSyn.Cre.WPRE was injected at three sites in the right auditory cortex of GCaMP6f (Ai95D) or 
tdTomato (Ai9) reporter mice, respectively, at depths of 450–550 μm below the brain surface. Given 
the anterograde transsynaptic spread properties of AAV1 (Zingg et al., 2017), this caused the expres-
sion of the desired fluorescent protein in structures that the auditory cortex projects to, including the 
shell of the IC (Figure 4A and B).

In order to prepare Gad2-Ires-Cre mice for the optogenetics experiments, we removed a large flap 
of skin over the parietal and temporal bones, partially removed the temporal muscles, and performed 
a circular craniotomy of 3 mm diameter over each auditory cortex. We then injected a total of 500 nl 
of AAV5-EF1a-DIO-hChR2-EYFP (UNC Vector Core) bilaterally across four sites and two depths (200 
and 600 μm) into the auditory cortex. Each craniotomy was covered with a circular 3 mm glass window 
that was attached to the edges of the skull with cyanoacrylate glue (Pattex Ultra Gel, Henkel), and 
the exposed skull was sealed with dental acrylic (C&B Superbond, Sun Medical, Japan) into which 
a custom steel bar was embedded for head fixation. Experiments commenced approximately three 
weeks afterward.

The IC window implantation and cortical lesioning in the Ai95D mice were performed at least 
three weeks after the injections. The window implantation involved removing a flap of skin over the 
(inter-)parietal and occipital bone and making a circular 3 mm craniotomy over the midbrain. A 3 mm 
diameter glass coverslip that had been glued to a ~1 mm tall steel cylinder with 0.5 mm wall thickness 
was inserted into this craniotomy. The cylinder allowed us to press the glass window gently onto the 
brain (in order to minimize brain movement during experiments) and was then glued to the edges of 
the skull. For head fixation, we embedded a custom steel plate in the dental acrylic used to seal the 
exposed bone.

Lesions were performed as part of the cranial window implantation surgery. In those mice under-
going lesions, we removed a slightly larger flap of skin on both sides in order to expose the temporal 
bone, detached and deflected and/or partly removed the temporal muscle, and then made, on both 
sides, an elliptical craniotomy over the auditory cortex of ~3 mm (dorsoventral) by 4 mm (rostro-
caudal). The exposed tissue was then aspirated (Hong et  al., 2018) with a blunted 19  G needle 
connected to a suction pump (Eschmann Vp25, UK) or destroyed by thermocoagulation (Ceballo 
et al., 2019) with a cauterizer (Small Vessel Cauterizer Kit, FST, Germany) and the piece of skull that 
had been removed for the craniotomy was glued (Pattex Ultra Gel) back in place. In some of the 
lesioned mice, after completion of the imaging, 150 nl of a retrograde viral construct (rAAV2-CAG-
tdTomato, UNC Vector Core) was injected into the dorsal IC across two to three sites at depths of 
100–400 μm below the brain surface in order to visualize the remaining IC-projecting cortical neurons. 
The extent of the lesions was estimated from the histological sections and by referencing them against 
sections from a mouse brain atlas (Paxinos et al., 2001). The experimenters were not blinded to the 
treatment group, i.e., lesioned or non-lesioned, but they were blind to the lesion size both during the 
behavior experiments and most of the data processing.

In order to visualize the distribution of IC-projecting neurons in mice without cortical lesions, 150 nl 
of the retrograde rAAV2-CAG-cre (UNC Vector Core) construct was injected into the dorsal IC of one 
Ai9 mouse with an intact cortex across three sites at depths of 100–400 μm below the brain surface.

https://doi.org/10.7554/eLife.89950
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Histology
For histological processing, mice were perfused transcardially, first with phosphate-buffered saline 
(PBS) and then with 4% paraformaldehyde in (PBS), and their brains were sectioned coronally (100 μm 
thick) with a vibratome (Leica). Images were taken manually using a Leica DMR microscope, a confocal 
laser scanning microscope (Olympus FV1000), or with an automated slide scanner (Zeiss Axioscan Z1). 
The brain of one mouse (Figure 2—figure supplement 1) was sectioned and imaged on a custom-
built two-photon whole brain tomograph.

Click detection task
Starting 2–3 days before training commenced, the mice were habituated to head fixation in the exper-
imental setup, and their access to water was restricted to about ~1 ml per day, bringing their body 
weight down to about ~85% of the pre-restriction values. During the training phase, the mice were 
required to report a 0.5ms broadband click stimulus of 80 dB SPL by licking a waterspout positioned 
in front of them. Licking within a 1.5 s response window (occasionally this was reduced in duration 
to discourage excessive licking) triggered an immediate water reward (~2  μl). Stimulus trials and 
catch (no stimulus) trials were randomly interleaved with an inter-trial interval drawn from a normal 
distribution with a mean and standard deviation of 8 s and 2 s, respectively, and a lower bound of 
3 s. Successful reporting of the sound within the response window was scored a ‘hit,’ while failure to 
respond was scored a ‘miss.’ During catch trials, neither licking (‘false alarm’) during the 1.5 s response 
window nor withholding licking (‘correct rejection’) triggered a reward. To help the mice form an asso-
ciation between sound and reward, they received occasional ‘free’ rewards in stimulus trials during the 
initial training even when no licking occurred.

Once the mice had achieved a stable level of performance (typically two days with d’>1.5), quieter 
stimuli (41–71 dB SPL) were introduced. For each mouse, a total of 9 different sound levels were used 
and the range of sound levels was adjusted to each animal’s behavioral performance to avoid floor 
and ceiling effects and could, therefore, differ from mouse to mouse. The behavioral experiments 
were run using custom MATLAB (MathWorks) scripts interfacing with a National Instruments board (NI 
USB-6501) for reward delivery and lick registration. The stimuli were presented using Psychtoolbox 
through a free-field speaker (Vifa, Avisoft Bioacoustics, Germany), positioned about ~15 cm from the 
snout of the mouse. Stimuli were calibrated using a Pettersson M500 microphone, which was itself 
referenced to a sound-level calibrator (Iso-Tech SLC-1356). Stimulus levels were calibrated by inte-
grating the recorded RMS of clicks over the mouse hearing range (1–100 kHz) and comparing this to 
the RMS of stimuli from the reference sound-level calibrator.

In the optogenetics experiments, the behavioral task was identical except that a single sound level 
(80 dB SPL) was used and on 50% of the trials bilateral photostimulation (20 Hz, 10ms pulses, 0.2 mW/
mm2) was performed via two 470 nm LEDs (CREE-XP-E2, LED-Tech, Germany) positioned above the 
cranial windows. LED-on and LED-off trials were randomly interleaved and stimulation lasted for 700 
ms starting 50 ms before trial onset. Furthermore, masking flashes were presented in all trials from two 
bright LEDs (60 mW) positioned a few cm in front of the animals’ eyes.

Two-photon calcium imaging
Imaging was performed at a depth of 50 μm – 150 μm from the IC surface using a commercial two-
photon laser-scanning microscope (B-Scope, ThorLabs, VA, USA), a SpectraPhysics Mai-Tai eHP 
laser (Spectra-Physics, CA, USA) tuned to 930 nm, and a Nikon 16 × 0.8 NA objective. Images were 
acquired with a resolution of 512 by 512 pixels at a rate of ~28 Hz. The size of the field of view was 
either 500 µm by 500 µm or 666 µm by 666 µm, which allowed us to, typically, image dozens of corti-
corecipient IC neurons simultaneously. Each imaging session lasted around 1–2 hr.

Image processing
Rigid and non-rigid image registration, segmentation, neuropil, and signal extraction were performed 
using the Python version of suite2p (Pachitariu et al., 2017). Neuropil extraction was performed using 
default suite2p parameters (https://suite2p.readthedocs.io/en/latest/settings.html), neuropil correc-
tion was done using a coefficient of 0.7 and calcium ΔF/F signals were obtained by using the median 
over the entire fluorescence trace as F0. To remove slow fluctuations in the signal, a baseline of each 
neuron’s entire trace was calculated by Gaussian filtering as well as minimum and maximum filtering 
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using default suite2p parameters. This baseline was then subtracted from the signal. To assess the 
extent of image displacement in the z-axis, we compared the average of the top and the bottom 500 
frames of each spatial principal component (PC) of the registered images for every 8–16 min of the 
recordings. Any region of interest (ROI) with substantial z-axis movement was excluded from further 
analysis. Sessions in which the majority of ROIs had to be excluded were discarded entirely. Further-
more, in order to specifically assess brain motion caused by the motor component of the task, i.e., 
the animal’s licking, lick-triggered movies of the imaging frames were created for every 8–16 min of 
the recordings. The rationale here is that if licking causes a stereotypical displacement of the imaging 
plane, this will become apparent when image sequences are averaged across lick events. Specifically, 
non-registered image sequences surrounding (from 2  s before to 2  s after) lick events were used 
to produce averaged lick-triggered movies. These lick-triggered movies, as well as non-averaged 
sequences, were then visually inspected and ROIs were excluded from subsequent analysis if they 
were affected by substantial z-motion.

Analysis of task-modulated and sound-driven neurons
To identify individual neurons that produced significantly different response magnitudes in hit and 
miss trials, we calculated the mean activity for each stimulus trial by taking the mean activity over 
the 5 s following the stimulus presentation and subtracting the mean activity over the 2 s preceding 
the stimulus during that same trial. A Mann-Whitney U test was then performed to assess whether a 
neuron showed a statistically significant difference (Benjamini-Hochberg adjusted p-value of 0.05) in 
response magnitude between hit and miss trials. The analysis was performed using equal numbers 
of hit and miss trials at each sound level to ensure balanced sound level distributions. If, for a given 
sound level, there were more hit than miss trials, we randomly selected a sample of hit trials (without 
substitution) to match the sample size for the miss trials and vice versa. Sound-driven neurons were 
identified by comparing the mean miss trial activity before and after stimulus presentation. Specifi-
cally, we performed a Wilcoxon signed rank test to assess whether there was a statistically significant 
difference (Benjamini-Hochberg adjusted p-value of 0.05) between the mean activity over the 2  s 
preceding the stimulus and the mean activity over the 1-s period following stimulus presentation. 
This analysis was performed using miss trials with click intensities from 53 dB SPL to 65 dB SPL (many 
sessions contained very few or no miss trials for higher sound levels).

Clustering analysis
To identify sub-populations of neurons with distinct response profiles, a clustering analysis was 
performed. While clustering is a useful approach for organizing and visualizing the activity of large and 
heterogeneous populations of neurons, we need to be mindful that, given continuous distributions 
of response properties, the locations of cluster boundaries can be somewhat arbitrary and/or reflect 
idiosyncrasies of the chosen method and thus vary from one algorithm to another. We employed an 
approach very similar to that described in Namboodiri et al., 2019 because it is thought to produce 
stable results in high-dimensional neural data (Hirokawa et al., 2019). For each neuron, the trial-
averaged activity was obtained by averaging across all the sound levels presented in a given session 
separately for hit and miss trials (given the small number of catch trials, approximately one-tenth 
of all trials, this analysis was restricted to stimulus trials only). Differences in the field of view size 
between sessions resulted in slight differences in frame rate and thus frame duration. Therefore, the 
activity traces were linearly interpolated to have the same number of data points (193 frames). For 
each neuron, the trial-averaged activity for missed trials was appended to that for hit trials, producing 
386 data points per neuron for a total of 2649 neurons (n=1,697 neurons from 40 sessions with nine 
non-lesioned mice; n=952 neurons from 40 sessions with seven lesioned mice). To reduce the dimen-
sionality of this dataset before applying the clustering algorithm, we performed principal components 
analysis (PCA) along the time axis to capture the temporal response profile for each neuron. Guided 
by the ‘elbow’ point in a scree plot visualizing the fraction of variance explained by each PC, we 
decided to project the dataset to the lower dimensional subspace formed by the first nine PCs.

Spectral clustering was used to cluster the resulting data. The affinity matrix was constructed by 
computing a graph of nearest neighbors. The hyperparameters of the clustering algorithm, including 
the number of nearest neighbors and the number of clusters, were optimized by a grid search 
to maximize the mean Silhouette Score for all samples. The Silhouette Score is a measure of the 
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compactness of individual clusters (intra-cluster distance) and the separation amongst clusters (inter-
cluster distance). For a given sample ‍i‍ that belongs to a cluster ‍CI ‍, the Silhouette Score is defined as:

	﻿‍
si =

(
bi − ai

)

max
(
ai, bi

)
‍�

where ‍ai‍ is the mean distance between sample ‍i‍ and all the other samples in the same cluster, and ‍bi‍ 
is the mean distance of sample ‍i‍ to the nearest cluster that sample ‍i‍ is not part of. Let ‍CI∨‍ and ‍CJ∨‍ be 
the number of samples belonging to clusters ‍CI ‍ and ‍CJ ‍, and ‍d

(
i, j
)
‍ be the distance between samples 

‍i‍ and j; ‍ai‍ and ‍bi‍ are defined as:

	﻿‍
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d
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d
(
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The resulting clusters from the hyperparameter search were further examined by plotting clusters 
in pairs against each other with t-distributed Stochastic Neighbor Embedding, a statistical method 
for visualizing high-dimensional data that involves giving each data point a location in a two or three-
dimensional space (van der Maaten and Hinton, 2008).

Population decoding
Logistic regression models were trained on the network activity of each session, i.e., the ΔF/F values of 
all ROIs in each session, to classify hit vs miss trials. This was done on a frame-by-frame basis, meaning 
that each time point (frame) of each session was trained separately. Rather than including all the trials 
in a given session, only trials of intermediate difficulty were used for the decoding analysis. More 
specifically, we only included trials across five sound levels, comprising the lowest sound level that 
exceeded a d’ of 1.5 plus the two sound levels below and above that level. That ensured that differ-
ences in sound level distributions would be small, while still giving us a sufficient number of trials to 
perform the decoding analysis. Sessions were only included if there were at least 15 instances for both 
hit and miss trials. The models were trained with L2 regularization, which gave similar contributions 
to correlated features (i.e. individual neuronal activity) instead of discarding some of the correlated 
features that were also related to behaviorally-relevant information. The strength of the regularization 
for each model was hyperparameter-tuned and the reported results were cross-validated. Specifi-
cally, neuronal data in each session was split into five stratified folds, and each fold preserved the 
percentage of hit and miss trials in a given session. Four folds were used for cross-validated hyper-
parameter search (randomized search drawn from the log-uniform distribution between 1 × 10-4 and 
1 × 102), and the remaining 1 fold was used for evaluating the model after the best hyperparameters 
were refitted on the four folds of data. To more reliably estimate the model results, the evaluation was 
done for each of the five folds for each session and the average of these 5 results was taken as each 
session’s model performance at each timepoint.

The percentage of hit and miss trials was different in each session, and the number of hit trials 
often exceeded the number of miss trials. To include as many trials as possible while preventing the 
models from taking advantage of class imbalances, balancing procedures were performed at both the 
model-level and the metrics-level. First, logistic regression was trained with the class weights adjusted 
inversely proportional to the frequency of each trial type in the training data, giving higher weights 
to the minority class and lower weights to the majority class. Given the total number of trials in the 
training data ‍NT ‍, the number of classes ‍NC‍, and the number of trials for a given class ‍Ni‍, the weight 
for a given class ‍Wi‍ was defined as follows:

	﻿‍ Wi = WT/(NC ∗ Ni)‍�

These weights were then applied to the cost function during the training process to increase the 
penalty for minority class misclassifications and reduce the penalty for majority class misclassifications. 
Second, to avoid the estimated model performance being inflated due to class imbalance, balanced 
accuracy (Brodersen et al., 2010) was used to report the model performance. Balanced accuracy 
was defined as the arithmetic mean of the true positive rate and the true negative rate. For a model 
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performing equally well on either class, the balanced accuracy is the same as the conventional accu-
racy (i.e. the number of correct predictions divided by the total number of predictions). However, for 
a model scoring above chance only because the model takes advantage of the class imbalance (i.e. 
consistently predicts the majority class), the balanced accuracy is at the chance level.

	﻿‍
Balanced accuracy = 1

2
∗
(

Ntrue pos.
Ntrue pos. + Nfalse neg.

+
Ntrue neg.

Ntrue neg. + Nfalse pos.

)
.
‍�

Additionally, dummy models were used as baseline models to compare against the performance 
of the logistic regression models. Dummy models predicted the class labels (i.e. hit or miss trials) 
randomly while taking into account the probability of each class.

To assess whether the model performance was correlated with the number of ROIs recorded in a 
session, Spearman’s correlation coefficient was computed between the number of ROIs in a session 
and the mean model performance over different 1-s time periods relative to stimulus onset (from 2 s 
before to 5 s after stimulus onset).

Statistical tests were conducted to compare the model performance between lesioned and non-
lesioned mice, as well as between the trained models and dummy models. Since the frame rate varied 
slightly with the size of the field of view, the numbers of frames (193–197 frames) per 7-s trial could 
be different across sessions. Thus, model performance was linearly interpolated to make all sessions 
contain the same number of frames before statistical tests were performed at each timepoint. The 
model performance of each session was cross-validated and averaged across folds, and the statistical 
tests were performed on the distributions of the sessions’ model performance. The Shapiro–Wilk test 
was used to determine whether a parametric or nonparametric test should be used, using p<0.05 as a 
criterion. A one-sided Wilcoxon signed-rank test or paired t-test was performed for comparing trained 
vs dummy models, while a one-sided Mann-Whitney U test or t-test was performed for comparing 
trained models for different groups of mice. Because of the smaller sample sizes, the statistical tests 
in Figure 6B were carried out after binning the scores for every two timepoints. Statistical significance 
was defined as p<0.05 after Bonferroni correction.
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