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Abstract Recent studies show that, even in constant environments, the tuning of single neurons 
changes over time in a variety of brain regions. This representational drift has been suggested to be 
a consequence of continuous learning under noise, but its properties are still not fully understood. 
To investigate the underlying mechanism, we trained an artificial network on a simplified naviga-
tional task. The network quickly reached a state of high performance, and many units exhibited 
spatial tuning. We then continued training the network and noticed that the activity became sparser 
with time. Initial learning was orders of magnitude faster than ensuing sparsification. This sparsifi-
cation is consistent with recent results in machine learning, in which networks slowly move within 
their solution space until they reach a flat area of the loss function. We analyzed four datasets from 
different labs, all demonstrating that CA1 neurons become sparser and more spatially informative 
with exposure to the same environment. We conclude that learning is divided into three overlapping 
phases: (i) Fast familiarity with the environment; (ii) slow implicit regularization; and (iii) a steady state 
of null drift. The variability in drift dynamics opens the possibility of inferring learning algorithms 
from observations of drift statistics.

eLife assessment
This study presents a new and important theoretical account of spatial representational drift in the 
hippocampus. The evidence supporting the claims is convincing, with a clear and accessible expla-
nation of the phenomenon. Overall, this study will likely attract researchers exploring learning and 
representation in both biological and artificial neural networks.

Introduction 

What do we mean when we say that the brain represents the external world? One interpretation is 
the existence of neurons whose activity is tuned to world variables. Such neurons have been observed 
in many contexts: place cells (O’keefe and Nadel, 1979; O’Keefe and Dostrovsky, 1971) – which 
are tuned to position in a specific context, visual cells (Hubel and Wiesel, 1962) – which are tuned 
to specific visual cues, neurons that are tuned to the execution of actions (McNaughton et al., 1994) 
and more. This tight link between the external world and neural activity might suggest that, in the 
absence of environmental or behavioral changes, neural activity is constant. In contrast, recent studies 
show that, even in constant environments, the tuning of single neurons to outside world variables 
gradually changes over time in a variety of brain regions, even long after good representations of the 
stimuli were achieved. This phenomenon has been termed representational drift, and has changed 
the way we think about the stability of memory and perception, but its driving forces and properties 
are still unknown (Mankin et al., 2012; Ziv et al., 2013; Driscoll et al., 2017; Deitch et al., 2021; 
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Schoonover et al., 2021; Jacobson et al., 2018) (see Liberti et al., 2022; Sadeh and Clopath, 2022 
for an alternative account).

There are at least two immediate theoretical questions arising from the observation of drift – why 
does it happen, and whether and how behavior is resistant to it (Rule et al., 2019; Driscoll et al., 2022)? 
One mechanistic explanation is that the underlying anatomical substrates are themselves undergoing 
constant change, such that drift is a direct manifestation of this structural morphing (Ziv and Brenner, 
2018). A normative interpretation posits that drift is a solution to a computational demand, such as 
temporal encoding (Rubin et al., 2015), ‘drop- out’ regularization (Aitken et al., 2022), exploration of 
the solution space (Kappel et al., 2015), or re- encoding during continual learning (Rule et al., 2019). 
Several studies also address the resistance question, providing possible explanations on how behavior 
can be robust to such phenomena (Rokni et al., 2007; Susman et al., 2019; Mongillo et al., 2017; 
Kossio et al., 2021).

Here, we focus on the mechanistic question, and leverage analyses of drift statistics for this purpose. 
Specifically, recent studies suggest that representational drift in the CA1 is driven by active experience 
(Khatib et al., 2023; Geva et al., 2023). Namely, rate maps decorrelate more when mice are active 
for a longer time in a given context. This implies that drift is not just a passive process, but rather an 
active learning one. As drift seems to occur after an adequate representation has formed, it seems 
fitting to model it as a form of a continuous learning process.

This approach has been recently explored by Qin et  al., 2023; Pashakhanloo and Koulakov, 
2023. They considered continuous learning in noisy, overparameterized neural networks. Because the 
system is overparameterized, a manifold of zero- loss solutions exists. (Qin et al., 2023) showed that 
for feedforward neural networks (FNNs) trained using Hebbian learning with added parameter noise, 
units change their tuning over time. This was due to an undirected random walk within the manifold 
of solutions. The coordinated drift of neighboring place fields was used as evidence to support this 
view. The phenomenon of undirected motion within the space of solutions seems plausible, as all 
members of this space achieve equally good performance (Figure 1A left). However, there may be 

Figure 1. Two types of possible movements within the solution space. (A) Two options of how drift may look in the 
solution space. Random walk within the space of equally good solutions that is either undirected (left) or directed 
(right). (B) The qualitative consequence of the two movement types. For an undirected random walk, all properties 
of the solution will remain roughly constant (left). For the directed movement there should be a given property that 
is gradually increasing or decreasing (right).

https://doi.org/10.7554/eLife.90069
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other properties of the solutions (Figure 1B) that vary along this manifold, which could potentially 
bias drift in a certain direction (Figure 1A right). It is likely that the drift observed in experiments is a 
combination of both an undirected and directed movement. We will now introduce theoretical results 
from machine learning that support the possibility of directed drift.

Recent work provided a tractable analytical framework for the learning dynamics of Stochastic 
Gradient Descent (SGD) with added noise and an overparameterized regime (Blanc et al., 2020; Li 
et al., 2021; Yang et al., 2023). These studies showed that, after the network has converged to the 
zero- loss manifold, a second- order effect biases the random walk along a specific direction within this 
manifold. This direction reduces an implicit regularizer, determined by the type of noise the network 
is exposed to. The regularizer is related to the Hessian of the loss – a measure of the flatness of the 
loss landscape in the vicinity of the solutions. Since this directed movement is a second- order effect, 
its timescale is orders of magnitude larger than that of the initial convergence.

Consider a biological neural network performing a task. The machine learning (ML) implicit regu-
larization mentioned above requires three components: an overparameterized regime, noise, and 
SGD. Both biological and artificial networks possess a large number of synapses, or parameters, and 
hence can reasonably be expected to be overparameterized. Noise can emerge from the external 
environment or from internal biological elements. It is not reasonable to assume that a precise form of 
gradient descent is implemented in the brain (Bengio et al., 2015), thereby casting doubt on the third 
element. Nevertheless, biologically plausible rules could be considered as noisy versions of gradient 
descent, as long as there is a coherent improvement in performance (Liu et al., 2022; Marschall et al., 
2020). Motivated by this analogy, we explore representational drift in models and experimental data.

Because drift is commonly observed in spatially- selective cells, we base our analysis on a model 
which has been shown to contain such cells (Recanatesi et al., 2021). Specifically, we trained artificial 
neural networks on a predictive coding task in the presence of noise. In this task, an agent moves 
along a linear track while receiving visual input from the walls, such that the goal is to predict the 
subsequent input. We observed that hidden layer units became tuned to the latent variable, which 
is position, in accordance with previous results (Recanatesi et al., 2021). We continued training and 
found that in addition to the gradual change of tuning curves, similar to Qin et al., 2023, we witnessed 
that the fraction of active units decreased slowly while their tuning specificity increased. We show that 
these results align with experimental observations from the CA1 area - namely that when exposed to 
a novel environment, the number of active cells reduces while their tuning specificity increases long 
after the environment is already familiar. Finally, we demonstrated the connection between this spar-
sificiation effect and changes to the Hessian, in accordance with ML theory. That is, changes in activity 
statistics (sparseness) and representations (drift) are the signatures of the movement in solution space 
to a flatter area, until flatness saturates. We conclude that learning is divided into three overlapping 
phases: (i) Fast familiarity with the environment in which representations form; (ii) slow implicit regu-
larization which can be recognized by changes in activity statistics; and (iii) a steady state of null drift 
in which representations gradually change.

Results
Spontaneous sparsification in a predictive coding network
To model representational drift in the CA1 area, we chose a simple model that could give rise to 
spatially- tuned cells (Recanatesi et  al., 2021). In this model, an agent traverses a corridor while 
slightly modulating its angle with respect to the main axis (Figure 2A). The walls are textured by a 
fixed smooth noisy signal, and the agent receives this as input according to its current field of view. 
The model itself is a single hidden layer feedforward network, with the velocity and visual field as 
inputs. The desired output is the predicted visual input in the next time step. The model equations 
are given by:

 ŷt = σ(xtmT + b)nT,  (1)

 σ(x) = max(0, x),  (2)

where  m  and  n  are the input and output matrices, respectively,  b  is the bias vector, and  σ  is the ReLU 
activation function. The vector  σ(xtmT + b)  constitutes the hidden layer, and each element in it is the 
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activation of a given unit for the input at time  t . The task is for the network’s output,  ̂y , to match the 
visual input,  x  of the following time step, resulting in the following loss function:

 f(m, n, b) = Et(ŷt − xt+1)2.  (3)

We train the network using Gradient Descent (GD), while adding update noise to the learning 
dynamics:

 
θτ+1 = θτ − η

∂f(θτ )
∂θτ

+ ξupdate
τ ,

  
(4)

where  θ = (m, n, b)  is the vectorized parameters- vector,  τ   is the current training step and  ξ
update
τ   is 

Gaussian noise. We let the network converge to a good solution, demonstrated by a loss plateau, and 
continue training for an additional period. Note that this additional period can be orders of magnitude 
longer than the initial training period. The network quickly converged to a low loss and stayed at the 
same loss during the additional training period (Figure 2B). Surprisingly, when looking at the activity 
of units within the hidden layer, we noticed that it slowly became sparse (see methods for definitions 

Figure 2. Continuous noisy learning leads to drift and spontaneous sparsification. (A) Illustration of an agent in a corridor receiving high- dimensional 
visual input from the walls. (B) Loss as a function of training steps (log scale). Zero loss corresponds to a mean estimator. Note the rapid drop in loss at 
the beginning, after which it remains roughly constant. (C) Mean spatial information (SI, blue) and fraction of units with non- zero activation for at least 
one input (red) as a function of training steps. (D) Rate maps sampled at four different time points (columns). Maps in each row are sorted according to 
a different time point. Sorting is done based on the peak tuning value to the latent variable. (E) Correlation of rate maps between different time points 
along training. Only active units are used.

https://doi.org/10.7554/eLife.90069
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of sparseness). This sparsification did not hurt performance, because individual units became more 
informative (Figure 2C), as quantified by the average Spatial Information (SI, see methods). When 
looking at the rate maps of units, i.e., their tuning to position, one can observe an image similar to 
representational drift observed in experiments (Ziv et al., 2013) – namely that neurons changed their 
tuning over time (Figure 2D). Additionally, their tuning specificity increased in accordance with the SI 
increase. By observing the correlation matrix of the rate maps over time, it is apparent that there was 
a gradual change that slowed down (Figure 2E). To summarize, we observed a spontaneous sparsi-
fication over a timescale much longer than the initial convergence, without introducing any explicit 
regularization.

At first glance, these results might seem inconsistent with the experimental descriptions of drift 
reported in the literature in which all metrics are stationary while only representations change (Ziv 
et  al., 2013). We suggest that there exists an intermediate phase between initial familiarity and 
stationary activity metrics, which is consistent with the notion of drift, that exhibits a gradual change 
in activity statistics. It seems that most experimental paradigms require a long pre- exposure, longer 
than needed to become fully familiarized with the environment, thus missing the suggested effect. 
We thus analyzed four datasets, from four different labs, in which we believe that the familiarization 
stage was shorter than in other studies. Some of the analyses were present in the original papers, and 
others are novel using publicly available data. Three experiments start from a novel environment and 
one from a relatively short pre- exposure. As shown in Figure 3, all datasets are consistent with our 
simulations - namely that the fraction of active cells reduces while the mean SI per cell increases over 

Figure 3. Experimental data consistent with simulations. Data from four different labs show sparsification of CA1 spatial code, along with an increase 
in the information of active cells. Values are normalized to the first recording session in each experiment. Error bars show standard error of the mean. 
(A) Fraction of place cells (slope=-0.0003 p < .001) and mean spatial information (SI) (slope=0.002, p < .001) per animal over 200 min (Khatib et al., 
2023). (B) Number of cells per animal (slope=-0.052, p = .004) and mean SI (slope=0.094, p < .001) over all cells pooled together over 10 days. Note 
that we calculated the number of active cells rather than fraction of place cells because of the nature of the available data (Jercog et al., 2019b). 
(C) Fraction of place cells (slope=-0.048, p = .011) and mean SI per animal (slope=0.054, p < .001) over 11 days (Karlsson and Frank, 2008). (D) Fraction 
of place cells (slope=-0.026, p < .001) and mean SI (slope=0.068, p < .001) per animal over 8 days (Sheintuch et al., 2023).

https://doi.org/10.7554/eLife.90069
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a long timescale. See Methods section for a full description of the data sets and analyses, along with 
another paper (Geva et al., 2023) in which activity statistics are stationary, for comparison.

Generality of the phenomenon
The theoretical considerations (Blanc et al., 2020; Li et al., 2021), simulation results, and experi-
mental results from multiple labs all suggest very general and robust phenomena.

To explore the sensitivity of our results to specific modeling choices, we systematically varied 
many of them. Specifically, we replaced tasks (see below) and simulated different activation functions. 
Perhaps most important, we varied the learning rules, as SGD is not a biologically plausible one. We 
used both Adam (Kingma and Ba, 2014) and RMSprop (Hinton et al., 2012), from the ML litera-
ture. We also used Stochastic Error- Descent (SED) (Cauwenberghs, 1992), which does not require 
gradient calculation and is more biologically plausible (6). For SGD, we also ran simulations with label 
noise instead of update noise. Finally, we replaced the task with either a simplified predictive coding, 
random mappings, or smoothed random mapping. The motivation for different tasks is twofold. First, 
there is some arbitrariness in the predictive task we chose. Second, the interpretation of drift as a 
result of continuous learning in the presence of noise, suggests that this effect goes beyond the 
specific phenomenon of place cells. That is, drift within the solution space should occur in every type 
of task and scenario, and could be identified outside the scope of spatial representations. All 1151 
simulations, except a negligible few, demonstrated an initial, fast phase of convergence to low loss, 
followed by a much slower phase of directed random motion within the low- loss space.

Figure 4. Generality of the results. Summary of 616 simulations with various parameters, excluding stochastic gradient descent (SGD) with label noise 
(see Table 2). (A) Fraction of active units normalized by the first timestep for all simulations. Red line is the mean. Note that all simulations exhibit a 
stochastic decrease in the fraction of active units. See Figure 4—figure supplement 1 for further breakdown. (B) Dependence of sparseness (top) and 
sparsification time scale (bottom) on noise amplitude. Each point is one of 178 simulations with the same parameters except noise variance. (C) Learning 
a similarity matching task with Hebbian and anti- Hebbian learning using published code from Qin et al., 2023. Performance of the network (blue) and 
fraction of active units (red) as a function of training steps. Note that the loss axis does not start at zero, and the dynamic range is small. The background 
colors indicate which phase is dominant throughout learning (1 - red, 2 - yellow, 3 - green).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Noisy learning leads to spontaneous sparsification.

https://doi.org/10.7554/eLife.90069
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The results of the simulations supported our main conclusion – sparsification dynamics were not 
sensitive to most of the parameters. For almost all of the simulations, excluding SGD with label noise, 
the fraction of active units gradually reduced, long after the loss converged (Figure 4A, Figure 4—
figure supplement 1 for further breakdown). For label noise, a slow directed effect was observed but 
the dynamics were qualitatively different – as predicted by theory (Li et al., 2021) and explained in 
the next section. The fraction of active units did not reduce as much, but the activity of the units did 
sparsify (Figure 5—figure supplement 1). One qualitative difference observed between simulations 
was that the timescales could vary by orders of magnitude as a function of the noise scale (Figure 4B 
bottom, see methods for details). Additionally, apart from simulations that did not converge due 
to too large timescales, the final sparsity was the same for all networks with the same parameters 
(Figure 4B top), in accordance with results from Qin et al., 2023. In a sense, once noise is introduced, 
the network is driven to maximal sparsification in a stochastic manner. For Adam, RMSprop and SED 
sparsification ensued in the absence of any added noise. For SED the explanation is straightforward, 
as the parameter updates are driven by noise. For Adam and RMSprop, we suggest that in the vicinity 
of the zero- loss manifold, the second moment acts as noise. In some cases, the networks quickly 
collapsed to a sparse solution, most likely as a result of the learning rate being too high, in relation to 
the input statistics (Mulayoff et al., 2021). Importantly, for GD without noise, there was no change 
after the initial convergence.

As a further test of the generality of this phenomenon, we consider the recent simulation from 
Qin et al., 2023 in which representational drift was shown. The learning rule used in this work was 
very different from the ones we applied, and more biologically plausible. We simulated that network 
using the published code and found the same type of dynamics as shown above. Namely, the network 
initially converged to a good solution followed by a longer period of sparsification (Figure 4C). Note 
that in the original publication (Qin et al., 2023) the focus was on the stage following this sparsifica-
tion, in which the network indeed maintained a constant fraction of active cells.

In conclusion, we see that noisy learning leads to three phases under rather general conditions. 
The first phase is the learning of the task and convergence to the manifold of low- loss solutions. The 
second phase is directed movement on this manifold, driven by a second- order effect of implicit 
regularization. The third phase is an undirected random walk within the sub- manifold of low loss 
and maximum regularization. Table 1 summarizes these three phases and their signature in network 
metrics. It is important to note that these are not consecutive phases but rather overlapping ones – 
they occur simultaneously, but due to their different time scales one can identify when each phase is 
dominant. A rough delineation of when each phase is dominant can be seen in Figure 4C background 
colors – in the first phase (red) the loss function converged, in the second phase (yellow) the fraction 
of active units reduced substantially. In the third phase (red) both were stationary but the tuning of 
units continued to change, as shown in the original paper (Qin et al., 2023). We speculate that most 
experimental studies about drift demonstrated only the third phase of null drift, because they famil-
iarized the animals to the environment for a substantial time period prior to recording. We refer to 
the second phase as a type of drift, because it happens after learning has finished and also features a 
gradual change in representations.

Mechanism of sparsification
What are the mechanisms that give rise to this observed sparsification? As illustrated in Figure 1, 
solutions in the zero- loss manifold have identical loss, but might vary in some of their properties. The 
authors of Blanc et al., 2020 suggest that noisy learning will slowly increase the flatness of the loss 
landscape in the vicinity of the solution. This can be demonstrated with a simple example. Consider a 
two- dimensional loss function. The function is shaped like a valley with a continuous one- dimensional 
zero- loss manifold at its bottom (Figure 5A). Crucially, the loss on this one- dimensional manifold is 

Table 1. The three phases of noisy learning.

Phase Duration Performance Activity statistics Representations

learning of task short changing changing changing

directed drift long stationary changing changing

null drift endless stationary stationary changing

https://doi.org/10.7554/eLife.90069
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exactly zero, while the vicinity of the manifold becomes systematically flatter in one direction. We 
simulated gradient descent with added noise on this function from a random starting point (red dot). 
The trajectory quickly converged to the zero- loss manifold, and began a random walk on it. This walk 
was clearly biased towards the flatter area of the manifold, as can be seen by the spread of the trajec-
tory. This bias could be comprehended by noting that the gradient was orthogonal to the contour 
lines of the loss, and therefore had a component directed towards the flat region.

Figure 5. Noisy learning leads to a flat landscape. (A) Gradient Descent dynamics over a two- dimensional loss function with a one- dimensional zero- loss 
manifold (colors from blue to yellow denote loss). Note that the loss is identically zero along the horizontal axis, but the left area is flatter. The orange 
trajectory begins at the red dot. Note the asymmetric extension into the left area. (B) Fraction of active units is highly correlated with the number of non- 
zero eigenvalues of the Hessian. (C) Update noise reduces small eigenvalues. Log of non- zero eigenvalues at two consecutive time points for learning 
with update noise. Note that eigenvalues do not correspond to one another when calculated at two different time points, and this plot demonstrates 
the change in their distribution rather than changes in eigenvalues corresponding to specific directions. The distribution of larger eigenvalues hardly 
changes, while the distribution of smaller eigenvalues is pushed to smaller values. (D) Label noise reduces the sum over eigenvalues. Same as (C), but 
for actual values instead of log.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Label and update noise impose different regularization over the Hessian with distinct signatures in activity statistics.

https://doi.org/10.7554/eLife.90069
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In higher dimensions, flatness is captured by the eigenvalues of the Hessian of the loss. Because 
these eigenvalues are a collection of numbers, different scenarios could lead to minimizing different 
aspects of this collection. Specifically, according to Blanc et al., 2020, update noise should regu-
larize the sum of the log of the non- zero eigenvalues while label noise should do the same for the 
sum of eigenvalues. In our predictive coding example, where update noise was added, each inac-
tivated unit translates into a set of zero- rows in the Hessian (see methods), and thus also into a set 
of zero- eigenvalues (Figure 5B). The slope of the regularizer approaches infinity as the eigenvalue 
approaches zero, and thus small eigenvalues are driven to zero much faster than large eigenvalues 
(Figure 5C). So in this case, update noise leads to an increase in the number of zero eigenvalues, 
which are manifested as a sparse solution. Another, perhaps more intuitive, way to understand these 
results is that units below the activation threshold are insensitive to noise perturbations. In other 
scenarios, in which we simulated with label noise, we indeed observed a gradual decrease in the sum 
of eigenvalues (Figure 5D). For a more intuitive demonstration of this phenomenon, see Figure 5—
figure supplement 1.

Discussion
We showed that representational drift could arise from ongoing learning in the presence of noise, 
after a network has already reached good performance. We suggest that learning is divided into three 
overlapping phases: a fast initial phase, where good performance is achieved, a second slower phase 
in which directed drift along the low- loss manifold leads to an implicit regularization and finally, a third 
undirected phase ensues once the regularizer is minimized. In our results, the directed component 
was associated with sparsification of the neural code. We verified the existence of this phenomenon 
in experimental data from four different labs. It is important to note that sparseness was related to 
flatness of the loss landscape in the specific case of a single hidden layer feedforward neural network 
and update or label noise. For other architectures and noise types, the change in activity statistics will 
most likely be different and calls for further work. The CA1 region is known to have little recurrent 
connections, which possibly explains why these results match.

Interpreting drift as a learning process has recently been suggested by Qin et  al., 2023; 
Pashakhanloo and Koulakov, 2023. Both studies focused on the final phase in which the statistics 
of the representations were constant. Experimentally, (Deitch et al., 2021) reported a decrease in 
activity at the beginning of the experiment, which they suggested was correlated with some behav-
ioral change, but we believe it could also be a result of the directed drift phase. (Nguyen et al., 2022) 
also reported a slow directed change in representation long after familiarity with the stimuli. There is 
another consequence of the timescale separation. Unlike in the setting of drift experiments, natural 
environments are never truly constant. Thus, it is possible that the second phase of learning never 
stops because the task is slowly changing. This would imply that the second, directed, phase may be 
the natural regime in which neural networks reside.

Here, we reported directed drift in the space of solutions of neural networks. This drift could 
be observed by examining changes to the representation of external world variables, and hence is 
related to the phenomenon of representational drift. Note, however, that representations are not a 
full description of a network’s behavior (Brette, 2019). The statistics of representational changes can 
be used as a window into changes of network dynamics and function.

The phenomenon of directed drift is very robust to various modeling choices, and also consistent 
with recent theoretical results (Blanc et al., 2020; Li et al., 2021) The details of the direction of the 
drift, however, are dependent on specific choices. Specifically, which aspects of the Hessian are mini-
mized during the second phase of learning, as well as the timescale of this phase, depend on the 
specifics of the learning rule and the noise in the system. This suggests an exciting opportunity – infer-
ring the learning rule of a network from the statistics of representational drift.

Our explanation of drift invoked the concept of a low- loss manifold – a family of network configu-
rations that have nearly identical performance on a task. The definition of low- loss, however, depends 
on the specific task and context analyzed. Challenging a system with new inputs could dissociate two 
configurations that otherwise appear identical (Turner et al., 2021). It will be interesting to explore 
whether various environmental perturbations could uncover the motion along the low- loss manifold 
in the CA1 population. An important subject relating to perturbations is that of remapping – the 
phenomenon in which place cells change their tuning in response to a change in the environment or 
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change in context. One can, therefore, speculate that, as the network moves to flatter areas of the 
loss landscape, becoming more robust to noise and thus to perturbations, the probability for remap-
ping given the same environmental change will systematically decrease. A functional interpretation 
of remapping as latent state (context) inference is given by Sanders et al., 2020. The authors also 
summarize results from a series of morph experiments and offer a prediction similar to ours (Fig. 7 
there) – that discrepancies between remapping probabilities can be explained as testing at different 
points of training. Beyond such abstract models, for future work, it is also possible to mechanistically 
model multiple environments and study remapping probabilities through them (Low et al., 2023).

Machine learning has been suggested as a model tool for neuroscience research (Richards et al., 
2019; Marblestone et  al., 2016; Saxe et  al., 2021). However, the implicit regularization in ML 
has not been studied to explain representational drift in neuroscience, and may have been done 
without awareness of this phenomenon. It’s worth noting that this isn’t a phenomenon specific to 
neural networks, but rather a general property of overparameterized systems that optimize a cost 
function. Importing insights from this domain into neuroscience shows the utility of studying general 
phenomena in systems that learn. For example, another complex learning system in which a similar 
idea has been proposed is evolution – ‘survival of the flattest’ suggests that, under a high mutation 
rate, the fittest replicators are not just the ones with the highest fitness, but also with a flat fitness 
function which is more robust to mutations (Codoñer et al., 2006). One can hope that more such 
insights will arise as we open our eyes.

Code availability
The code for this project is available at https://github.com/Aviv-Ratzon/DriftReg, (copy archived at 
Aviv- Ratzon, 2024).

Materials and methods
Predictive coding task
The agent is moving in an arena of size  (Lx, Ly) , with constant velocity in the  y  direction of  V0 . The 
agent’s heading direction is θ and it changes at every time step by  ∆θ ∼ G(0,σ2

θ) , the agent’s visual 
field has an angle  θvis  and is represented as a vector of size  Lvis . The texture of the walls is generated 
from a random Gaussian vector of size  Lwalls = 2(Lx + Ly)Lvis , smoothed with a Gaussian filter with 

 σ
2 = KsmoothLwalls . At each time step the agent receives the visual input from the walls, determined by 

the intersection points of its visual field with the walls. When the agent reaches a distance of  LyLbuffer  
from the wall, it turns in the opposite direction.

Tuning properties of units
For each unit we calculated a tuning curve. We divided the arena into 100 equal bins and computed 
the number of time steps in each bin and the mean unit activation. We then obtained the tuning curve 

Figure 6. Illustration of sparsity metrics.

https://doi.org/10.7554/eLife.90069
https://github.com/Aviv-Ratzon/DriftReg
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by dividing the mean activity for each bin by the occupancy. We treated movement in each direction 
as a separate location. We calculated the spatial information (SI) of the tuning curves for each unit:

 
SI =

∑
i

pi
ri
r̄

log2
ri
r̄   

(5)

where  i  is the index of the bin,  pi  is the probability of being in the bin,  ri  is the value of the tuning 
curve in the bin and  ̄r  is the unit’s mean activity rate. Active unit was defined as a unit with non- zero 
activation for at least one input.

Measuring sparsity
We measure sparsity using two metrics: Active fraction, and fraction active units. These can be calcu-
lated from the activation matrix (Figure 6), where each row corresponds to a single unit, each column 
corresponds to an input and the values of the cells are the activations of a given unit for a given input. 
We can then binarize this matrix, giving a value of 1 to cells with non- zero activations. The active frac-
tion is the mean over all cells of the matrix. The fraction of active units is the fraction of rows with at 
least one non- zero value. Note that ‘units’ refers to hidden layer units.

Simulations
For the random simulations, we train each network for 107 training steps while choosing random 
learning algorithm and parameters. The ranges and relevant values of parameters are specified in 
Table 2. For Adam and SED there was no added noise.

Sparsification timescale
To produce Figure 4B bottom, we fitted an exponential curve over the curve of fraction of active units 
for each simulation and extracted the time constant of the exponential. To simplify this fit, we shifted 
each curve such that it plateaus at zero. We also clipped the length of the curves at the point in which 
they reach 90% of their final value to avoid fitting noise in the plateau after convergence. Note that we 
did this calculation to a subset of 178 simulations with the same parameters and varying noise scale. 
We chose this set of parameters because it exhibited a relatively ‘nice’ exponential curve. As can be 
seen in Figure 4A, some simulations exhibit a long plateau in the fraction of active units followed by 
a sudden start of the sparsification process. This type of plateau followed by a phase transition was 
described in previous works (Saxe et al., 2013; Schuessler et al., 2020). For some of the simulations 
finding the timescale of sparsification is not straightforward and rather noisy, thus for simplicity sake, 
we chose to calculate it only over the mentioned subset.

Stochastic error descent
The equation for parameter updates under this learning rule is given by:

 θτ+1 = θτ − η(f(θτ + ξτ ) − f(θτ ))ξτ   (6)

Table 2. Parameter ranges for random simulations.

Parameter Possible values

learning algorithm {SGD, Adam, SED}

noise type {update, label}

number of samples O’keefe and Nadel, 1979; Susman et al., 2019

initialization regime {lazy, rich}

task {abstract predictive, random, random smoothed}

input dimension O’keefe and Nadel, 1979; Susman et al., 2019

output dimension O’keefe and Nadel, 1979; Susman et al., 2019

noise variance (label/update) [0.1,1]/[0.01,0.1]

hidden layer size 100

https://doi.org/10.7554/eLife.90069
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In this learning rule, the parameters are randomly perturbed at each training step by a Gaussian 
noise denoted by  ξτ   and then updated in proportion to the change in loss.

Experimental data
We present here a detailed description of the analyses performed for each dataset. Table 3 summa-
rizes the differences between them, along with an additional publication about CA1 drift Geva et al., 
2023 in which stationary statistics were reported. The p- values for the regression slopes were calcu-
lated using a t- test where the null hypothesis is that the coeffecient is equal to zero. The regression 
included an intercept parameter.

Khatib et al., 2023 - The results presented here were also shown in the paper, and a full descrip-
tion is available there. Only frames where the mice moved faster than 

 
1 cm

s  
 were analyzed. We calcu-

lated the fraction of place cells out of all recognized cells, place cells were classified using a shuffle 
test. We also used the published code from Sheintuch et al., 2022 to verify that the increase in SI is 
sustained under bias corrections. Note that we treated the linear track as one- dimensional and sepa-
rated the two different running directions, bins were  4cm  in length. The metrics were averaged over 
cells pooled together from all animals. Data is not publicly available.

Jercog et al., 2019a - The results presented here are novel. The published data features rate maps 
and full trajectories, without spike data. Only neurons with an average activity rate of over  0.1Hz  were 
included. Because of this, we calculated only the number of active neurons each day rather than the 
fraction and could not classify which were place cells. We calculated the binned occupancy maps 
from the trajectories and used them with the published rate maps to calculate SI. Data is available at: 
https://crcns.org/data-sets/hc/hc-22/about-hc-22.

Karlsson et al., 2015 - The results presented here are novel. The data features spikes and trajec-
tories. We filtered the data to include time bins when the animals moved faster than 

 
1 cm

s  
 and only 

neurons from CA1. We used the published code from Sheintuch et al., 2022 to calculate the fraction 
of place cells along with SI, and verified that the increase in SI is sustained under bias corrections. For 
the occupancy map we treated the entire W- shaped arena as a square and used bins of approximately 
 4cm  length. This was done for the sake of simplifying the analysis, a more accurate method would be 
to consider separately each linear track and movement direction. Note that in this dataset animals 
spent varying amounts of time in two different environments. We pooled together for each animal the 
data of cells from either environment according to experience time in them. For example, if the animal 
visited environment A on day 4 for the 4th time and had 20 active cells, and visited environment B on 
day 6 for the 4th time and had 30 active cells, we pooled together the entire 50 cells for day 4 of this 
animal. Data is available at: https://crcns.org/data-sets/hc/hc-6/about-hc-5.

Table 3. Description of experimental datasets.

Khatib et al., 
2023 Jercog et al., 2019b Karlsson et al., 2015

Sheintuch 
et al., 2023

Geva et al., 
2023

Familiarity 3–5 days novel novel novel 6–9 days

Species mice mice rats mice mice

# Animals 8 12 9 8 8

Recordings 
days

1 day 10 days max. 11 days 10 days 10 days

Session length 200 min 40 min 15–30 min 20 min 20 min

Recording type calcium imaging electrophysiology electrophysiology calcium 
imaging

calcium 
imaging

Arena linear track square or circle W- shaped linear or L- 
shaped track

linear track

Activity metric fraction of place 
cells decrease

number of active cells 
decrease

fraction of place cells 
decrease

fraction of 
place cells 
decrease

fraction of 
place cell 
stationary

Mean SI change increase increase increase increase stationary

https://doi.org/10.7554/eLife.90069
https://crcns.org/data-sets/hc/hc-22/about-hc-22
https://crcns.org/data-sets/hc/hc-6/about-hc-5
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Sheintuch et al., 2023 - The results presented here were also shown in the paper. The data features 
various metrics calculated from the activity. We averaged the fraction of place cells and mean SI over 
animals for each day. Data is available at: https://github.com/zivlab/cell_assemblies, (copy archived 
at zivlab, 2023).

Label noise
Label noise is introduced to the loss function given by the following formula:

 f(θτ ) = Et(ŷt − xt+1 + ξlabel
τ )2,  (7)

where  ξ
label
τ   is Gaussian noise.

Gradient descent dynamics around the zero-loss manifold
The function we used for the two- dimensional example was given by:

 L(x, y) = (xy)2,  (8)

which has zero loss on the  x  and  y  axes. For small enough update noise, GD will converge to the 
vicinity of this manifold (the axes). We consider a point on the  x - axis:  (x0, 0) , and calculate the direction 
of the gradient near that point. Because we are interested in motion along the zero- loss manifold, we 
consider a small perturbation in the orthogonal direction  (x0, 0 + ∆y)  where  x0 >> 1  and  |∆y| << 1 . Any 
component of the gradient in the  x  direction will lead to motion along the manifold. The update step 
at this point is given by:

 

−∇L(x0, 0 + ∆y) = −2x0


(∆y)2

x0∆y




  
(9)

One can observe that the step has a large component in the  y  direction, quickly returning to the 
manifold. There is also a smaller component in the  x  direction, reducing the value of  x . Reducing  x  
also reduces the Hessian’s eigenvalues:

 

HL(x0, 0) = 2


0 0

0 x2
0




  
(10)

 

λ1,2 = {0, x2
0}, v1,2 =





1

0


 ,


0

1






  
(11)

Thus, it becomes clear that the trajectory will have a bias that reduces the curvature in the  y  
direction.

For general loss functions and various noise models, rigorous proofs can be found in Blanc et al., 
2020, and a different approach can be found in Li et al., 2021. Here, we will briefly outline the intu-
ition for the general case. Consider again the update rule for GD:

 θ ← θ − η∇L(θ).  (12)

In order to understand the dynamics close to the zero- loss manifold, we consider a point θ, for 
which  L(θ) = 0  expand the loss around it:

 
L(θ + δθ) = L(θ) + ∇TL(θ)δθ + 1

2
δθTHδθ.

  
(13)

We can then take the gradient of this expansion with respect to θ:

 
∇θL(θ + δθ) = ∇θL(θ) + ∇θ∇T

θL(θ)δθ + ∇θ( 1
2
δθTHδθ)

  
(14)

 
= 0 + Hδθ + ∇θ( 1

2
δθTHδθ).

  
(15)

https://doi.org/10.7554/eLife.90069
https://github.com/zivlab/cell_assemblies
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The first term is zero, because the gradient is zero on the manifold. The second term is the largest 
one, as it’s linear in  δθ . Note that the Hessian matrix has zero eigenvalues in directions on the zero- 
loss manifold, and non- zero eigenvalues in other directions. Thus, the second term corresponds to 
projecting  δθ  in a direction that is orthogonal to the zero- loss manifold. The third term can be inter-
preted as the gradient of some auxiliary loss function. Thus, we expect gradient descent to mini-
mize this new loss, which corresponds to a quadratic form with the Hessian. This is the reason for 
the implicit regularization along the manifold. Note that the auxiliary loss function is defined by  δθ , 
and thus different noise statistics will correspond, on average, to different implicit regularizations. In 
conclusion, the update step will have a large component that moves the parameter vector towards 
the zero- loss manifold, and a small component that moves the parameter vector on the manifold in a 
direction that minimizes some measure of the Hessian.

Hessian and sparseness
In the main text, we show that the implicit regularization of the Hessian leads to sparse representa-
tions. Here, we show this relationship for a single- hidden layer feed- forward neural network with ReLU 
activation and Mean Squared Error loss:

 f(xi) = σ(xtmT + b)nT
  (16)

The gradient and Hessian at the zero- loss manifold are given by Nacson et al., 2023:

 

∇θf(xi) =




∂f
∂m
∂f
∂b
∂f
∂n




=




n ⊙ 1(xi; θ) ⊗ xi

n ⊙ 1(xi; θ)

(xi · nT + b) ⊙ 1(xi; θ)




  

(17)

 
∇2

θL(x; θ) =
∑

i
∇θf(xi)∇θf(xi)T,

  
(18)

where  1(xi; θ)  is an indicator vector denoting whether each unit is active for some input  xi . Sparseness 
means that a unit has become inactive for all inputs. All the partial derivatives of input, output and 
bias weights associated with such a unit are zero, and thus the relevant rows of the Hessian are zero 
as well. Thus, every inactive unit leads to several zero eigenvalues.
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