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Abstract Mathys et al. conducted the first single-nucleus RNA-seq (snRNA-seq) study of Alzhei-
mer’s disease (AD) (Mathys et al., 2019). With bulk RNA-seq, changes in gene expression across cell 
types can be lost, potentially masking the differentially expressed genes (DEGs) across different cell 
types. Through the use of single-cell techniques, the authors benefitted from increased resolution 
with the potential to uncover cell type-specific DEGs in AD for the first time. However, there were 
limitations in both their data processing and quality control and their differential expression analysis. 
Here, we correct these issues and use best-practice approaches to snRNA-seq differential expres-
sion, resulting in 549 times fewer DEGs at a false discovery rate of 0.05. Thus, this study highlights 
the impact of quality control and differential analysis methods on the discovery of disease-associated 
genes and aims to refocus the AD research field away from spuriously identified genes.

eLife assessment
This paper reports a useful finding on the impact of choices of quality control and differential anal-
ysis methods on the discovery of disease-associated gene expression signatures. The study provides 
a solid comparison of the data process by re-analysis of a large-scale snRNA-seq dataset for Alzhei-
mer's disease. This paper would be of interest to the community as to rigorous analyses for large-
scale single-cell datasets.

Introduction
Mathys et al., 2019 undertook the first single-nucleus RNA-seq (snRNA-seq) study of Alzheimer’s 
disease (AD). The authors profiled the transcriptomes of approximately 80,000 cells from the prefrontal 
cortex, collected from 48 individuals – 24 of which presented with varying degrees of AD pathology. 
(Mathys et al., 2019) data processing and quality control (QC) strategy for their snRNA-seq data was 
state of the art at this time. Furthermore, the authors took extra measures in an attempt to ensure 
the reliability of their results. Here, we reanalyse this data as not a criticism of the study, but as an 
endeavour to raise awareness and provide recommendations for rigorous analysis of single-cell and 
single-nucleus RNA-seq data (sc/snRNA-seq) for future studies. Most importantly, we aim to ensure 
that the AD research field does not focus on spuriously identified genes.

Results and discussion
Our questions of Mathys et al., 2019 focus around their data processing and their differential expres-
sion (DE) analysis (Figure 1). Firstly, in relation to their processing approach, the authors discussed 
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Figure 1. Pseudobulk differential expression results in far less dubious disease-related genes. (a, b) The log2 fold 
change and -log10 false discovery rate (FDR) of the differentially expressed genes (DEGs) from the authors’ original 
work (Mathys et al.) and our reanalysis (Our analysis). In (b), we have marked an FDR of 5 × 10–7, dashed grey line, 
to highlight how small the p-values from Mathys et al.’s analysis are. For (a, b), n is based on the number of DEGs: 
26 for our analysis and 23,923 for Mathys et al. (c–g) show the Pearson correlation between the cell counts after 
quality control (QC) and the number of DEGs identified - n is the 6 cell types tested. For (f, g) analysis, the samples 
have been randomly mixed between case and control patients - n = 100 random permutations. The different cell 
types are astrocytes (Astro), excitatory neurons (Exc), inhibitory neurons (Inh), microglia (Micro), oligodendrocytes 
(Oligo), and oligodendrocyte precursor cells (OPC).

https://doi.org/10.7554/eLife.90214
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the high percentages of mitochondrial reads and low number of reads per cell present in their data. 
This is indicative of low cell quality (Ilicic et al., 2016); however, we believe the authors’ QC approach 
may not capture all of these low-quality cells. Moreover, the authors did not integrate the cells from 
different individuals to account for batch effects. As the field has matured since the authors’ work was 
published, dataset integration has become a common step in sc-RNA-seq protocols and is recom-
mended by some to remove confounding sources of variation (Heumos et  al., 2023; Amezquita 
et  al., 2020; Tran et  al., 2020). To gain advantage of these recent approaches, we used scFlow 
(Khozoie et al., 2021) to reprocess the authors’ data. This pipeline included the removal of empty 
droplets, nuclei with low read counts and doublets, followed by embedding and integration of cells 
from separate samples and cell typing. scFlow combines best-practice approaches for processing sc/
snRNA-seq datasets; see ‘Materials and methods’ for a detailed explanation of these steps. Repro-
cessing resulted in 50,831 cells passing QC, approximately 20,000 less than the authors’ postpro-
cessing set with differing cell-type proportions (Figures 2 and 3).

With regards to data quality, it is worth noting that over 99% of nuclei had less than 200 genes 
expressed (Table 1). While this QC step was not unique to our reprocessing, the authors made 
the same exclusion in their analysis (Mathys et al., 2019), it highlights the relatively low quality 
of the data which may be attributable to the early stage of snRNA-seq technology of the time. 
For example, Brase et al.’s recent study of snRNA-seq of autosomal-dominant AD (Brase et al., 
2023) used a more stringent cut-off for the minimum number of expressed genes and still kept 
27% (122 times more) of the assayed cells after all QC steps. Moreover, the authors discussed the 
high percentages of mitochondrial reads in their data. The differences in approaches to filtering 
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Figure 2. The nuclei that were removed from our quality control approach as their proportion of mitochondrial 
reads were ≥10%, but kept in the authors’. (a) shows the proportion of mitochondrial reads across the different 
cell types. (b) gives the number of removed nuclei which were kept by the authors. The different cell types are 
astrocytes (Ast), excitatory neurons (Ex), inhibitory neurons (In), microglia (Mic), oligodendrocytes (Oli), and 
oligodendrocyte precursor cells (Opc).
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based on the proportion mitochondrial reads accounts for the notable discrepancy in the number of 
nuclei after QC between our approach and the authors’. Our approach used a 10% cut-off for the 
proportion of mitochondrial reads in a nuclei, as set out in Amezquita et al.’s best-practice guide-
lines (Amezquita et al., 2020), which is less stringent than Seurat’s guidelines (5%) (Hao et al., 
2021) or that from Heumos et al., 2023 (8% from a median absolute deviations [MAD]-based cut-
off selection). Conversely, the authors filtered out high mitochondrial read nuclei based on clusters 
from their t-SNE projection of the data (Mathys et  al., 2019). Even at our lenient cut-off, over 
16,000 nuclei that were removed in our QC pipeline were kept by the authors’ Figure 2, explaining 
the discrepancy in the number of nuclei after QC. Based on Figure 2, it is clear that the authors’ 

Table 1. Overview of the aggregated number of cells across samples removed at each step of the 
quality control (QC) as part of scFlow.
Note that cells can fail QC for more than one check, so only the total failed and total passed rows 
will sum to 100%.

QC steps Total cells Percentage

Pre-QC 35,389,440

Total failed 35,337,874 99.85

 � Minimum library size (n < 200) 35,307,281 99.77

 � Maximum library size 4742 0.01

 � Minimum expressed genes (n < 200) 35,312,434 99.78

 � Maximum library size/expressed genes (MAD> 4) 2149 0.01

 � Proportion of mitochondrial genes (≥ 0.1) 1,097,738 3.10

 � Multiplets (pK = 0.0054) 581 0.00

Total passed 51,566 0.15

MAD, median absolute deviation.
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Figure 3. The proportion of cells left after quality control (QC) from the authors’ processing approach (Mathys et 
al.) and our standardised pipeline approach – scFlow (Our analysis).
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approach was ineffective at removing nuclei with high proportions of mitochondrial reads which is 
indicative of cell death (Heumos et al., 2023; Ilicic et al., 2016) – both excitatory and inhibitory 
nuclei with higher than 75% reads from the mitochondria were kept in the final processed dataset 
by the authors. We have made the data from our alternative processing approach publicly avail-
able (through Synapse: https://doi.org/10.7303/syn51758062.1) so that researchers can utilise this 
resource free of low-quality nuclei.

Our second question of Mathys et al., 2019 is their DE approach. The authors conducted a DE 
analysis between the controls and the patients with AD pathology, concentrating on six neuronal 
and glial cell types; excitatory neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes, 
and oligodendrocyte precursor cells, derived from the Allen Brain Atlas (Tasic et  al., 2018). They 
performed downstream analysis on their identified differentially expressed genes (DEGs) and investi-
gated some of the most compelling genes in more detail. Therefore, all findings put forward by their 
paper were based upon the validity of their DE approach. However, for this approach, the authors 
conducted a two-part, cell- and patient-level analysis. The cell-level analysis took each cell as an 
independent replicate, and the results of which were compared for consistency in directionality and 
rank of their DEGs against their patient-level analysis, a Poisson mixed model. The authors identi-
fied 1031 DEGs using this combinatorial approach – DEGs requiring a false discovery rate (FDR) < 
0.01 in the cell-level and an FDR < 0.05 in the patient-level analysis. It is important to note that this 
cell-level DE approach, also known as pseudoreplication, overestimates the confidence in DEGs due 
to the statistical dependence between cells from the same patient not being considered (Murphy 
and Skene, 2022; Squair et  al., 2021; Zimmerman et al., 2021; Lazic, 2010). When we inspect 
all DEGs identified at an FDR of 0.05 from the authors’ cell-level analysis, this number increases to 
14,274. Pseudobulk DE analysis has recently been proven to give optimal performance compared 
to both mixed models and pseudoreplication approaches (Murphy and Skene, 2022; Squair et al., 
2021; Crowell et al., 2020; Soneson and Robinson, 2018). It aggregates counts to individuals, thus 
accounting for the dependence between an individual’s cells.

Here, to compare the effect of the different DE approaches in isolation, we apply a pseudobulk 
DE approach (Chen et al., 2016) to the authors’ original processed data. We found 26 unique DEGs 
when considering the six cell types used by the authors (Table 2). This was 549 times fewer DEGs 
than that reported originally at an FDR of 0.05. When we compare these DEGs, we can see that the 
absolute log2 fold change (LFC) of our DEGs is 15 times larger than the authors’; median LFC of 2.34 
and 0.16, despite the authors’ DEGs having an FDR score 8000 times smaller; median FDR of 2.89 × 
10–7and 0.002 (Figure 1a and b). Although we examined a high correlation in the genes’ fold change 
values across our pseudobulk analysis and the authors’ pseudoreplication analysis (Pearson R of 0.87 
for an adjusted p-value of 0.05, Table 3), the p-values and resulting DEGs vary considerably. The corre-
spondence in fold change values is expected given the approaches are applied to the same dataset, 
whereas the probabilities, which pertain to the likelihood that a gene’s expressional changes is related 
to the case/control differences in AD, importantly do not align. We can show that this stark contrast 
is just an artefact of the authors taking cells as independent replicates and thus artificially inflating 
confidence by considering the Pearson correlation between the number of DEGs found and the cell 
counts (Figure 1c–e). There is a near perfect, positive correlation between DEG and cell counts for the 
authors’ pseudoreplication analysis (Figure 1c) and for the 1031 genes from the authors’ combinato-
rial approach (Figure 1d) which is not present in our pseudobulk reanalysis (Figure 1e).

A further point which questions the authors’ DE approach is that they identified the vast majority 
of DEGs in the more abundant, neuronal cell types (Mathys et al., 2019). However, an increase in the 
number of cells is not the same as an increase in sample size since these cells are not independent 
from one another – they come from the same sample. Therefore, an increase in the number of cells 
should not necessarily result in an increase in the number of DEGs, whereas an increase in the number 
of samples would. This point is the major issue with pseudoreplication approaches which overesti-
mate confidence when performing DE due to the statistical dependence between cells from the same 
patient not being considered (Squair et al., 2021; Lazic, 2010). In our opinion, it makes more sense 
to identify the majority of large effect size DEGs in microglia which recent work has established is 
the primary cell type by which the genetic risk for AD acts (Skene and Grant, 2016; McQuade and 
Blurton-Jones, 2019). This is what we found with our pseudobulk DE approach – 96% of all DEGs 
were in microglia (Table 2), whereas only 3% of the authors’ DEGs were in microglia.

https://doi.org/10.7554/eLife.90214
https://doi.org/10.7303/syn51758062.1


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Neuroscience

Murphy et al. eLife 2023;12:RP90214. DOI: https://​doi.​org/​10.​7554/​eLife.​90214 � 6 of 12

Although it has been proven that pseudoreplication approaches result in false positives by artifi-
cially inflating the confidence from non-independent samples, we wanted to investigate the effect 
of the approach on the authors’ dataset. We ran the same cell-level analysis approach – a Wilcoxon 
rank-sum test and FDR multiple-testing correction – 100 times whilst randomly permuting the patient 
identifiers (Figure 1f). We would expect to find minimal DEGs with this approach given the random 
mixing of case and control patients. However, this pseudoreplication approach consistently found 
high numbers of DEGs, and we observe the same correlation between the number of cells and the 
number of DEGs as with the authors’ results. We did not observe the same pattern when running the 
same analysis with pseudobulk DE (Figure 1g). As a result, we conclude that integrating this pseu-
doreplication approach with a mixed model like the authors proposed just artificially inflates the test 
confidence for a random sample of the genes resulting in more false discoveries in cell types with 
bigger counts.

Up to this point, to compare the effect of the DE approaches in isolation, we analysed the same 
processed data from the authors as opposed to our reprocessed data. We also performed pseudobulk 

Table 2. The differentially expressed genes from our reanalysis using the same processed data the 
authors used and pseudobulk differential expression approach.

Cell logFC logCPM LR p-Value adj_pval HGNC

Mic 2.70178913 6.99794619 26.1418415 3.17E-07 0.00061349 ACRBP

Mic 1.48930071 8.06240877 28.6361217 8.73E-08 0.00019303 APOC1

Mic 1.09327669 8.64199769 21.5323014 3.48E-06 0.00336416 CD81

Mic –1.4157681 7.93884875 23.9955467 9.66E-07 0.00135806 CD83

Mic 3.3782727 6.86183548 32.0804401 1.48E-08 4.58E-05 CLEC1B

Mic 2.84072452 6.74370542 21.7745509 3.07E-06 0.00316269 EGF

Mic 2.55769658 6.78345087 18.0468872 2.16E-05 0.01699007 ELOVL7

Mic –1.2056098 8.33197499 22.6644045 1.93E-06 0.00229576 IFI44L

Mic –1.6616069 7.15366639 16.4801274 4.92E-05 0.03306938 IFI6

Mic –1.9809425 7.00396289 17.9180823 2.31E-05 0.01699007 IFIT3

Mic 2.76502672 6.72978805 20.6543637 5.50E-06 0.00472825 ITGA2B

Mic 1.90963403 7.01552233 16.3200189 5.35E-05 0.03448474 MAP1A

Mic –1.8194508 8.26208887 45.2221008 1.76E-11 1.36E-07 NAMPT

Mic 2.0945044 7.11048456 20.8068524 5.08E-06 0.00462318 NEXN

Mic –2.3789762 6.93896985 22.3912441 2.22E-06 0.00245752 NR4A2

Mic –2.8553462 6.73713862 22.8029868 1.79E-06 0.00229576 NR4A3

Mic 3.32873829 6.84942721 30.955327 2.64E-08 6.81E-05 PF4

Mic 3.4213986 6.87326383 33.2621657 8.05E-09 3.11E-05 PKHD1L1

Mic 3.64525677 6.93422174 38.661272 5.04E-10 2.60E-06 PPBP

Mic 2.30482679 8.10570443 60.7932697 6.34E-15 9.81E-11 PTPRG

Mic –1.0382468 8.11450266 15.5968273 7.84E-05 0.04850839 RORA

Mic 2.54636649 6.69202981 17.2532606 3.27E-05 0.02300507 SDPR

Mic –0.9629617 8.8434334 17.9319131 2.29E-05 0.01699007 SYTL3

Mic –1.4215374 7.99629806 25.4736272 4.48E-07 0.00077092 TMEM2

Mic 2.98901596 6.77276641 24.2100819 8.64E-07 0.00133637 TUBB1

Opc –2.8274718 5.03371292 22.1334581 2.54E-06 0.04176231 EGR1

CPM - Counts per Million, LR - fold change ratio, HGNC - HUGO Gene Nomenclature Committee.

https://doi.org/10.7554/eLife.90214
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DE on our reprocessed data and found 16 unique 
DEGs (Table  4). It is worth noting that the fold 
change correlation between our two DE analyses 
(reprocessed data vs authors’ processed data) on 
the identified DEGs is only moderate (Pearson R 
of 0.57) and is lower than that of the correlation 
between pseudoreplication and pseudobulk on 
the same dataset (Table  3). This highlights the 
effect that the low quality high mitochondrial read 
cells have on DE analysis.

In conclusion, the authors’ analysis has been 
highly influential in the field with numerous studies 
undertaken based on their results, something we 
show has uncertain foundations. However, we 
would like to highlight that the use of pseudorep-
lication in neuroscience research is not isolated to 
the authors’ work; others have used this approach 
(Fernandes et  al., 2020; Lui et  al., 2021; 
Wakhloo et  al., 2020), and their results should 
be similarly scrutinised. Here, we provide our 
processed count matrix with metadata and also 

the DEGs identified using an independently validated, DE approach so that other researchers can use 
this rich dataset free from spurious nuclei or DEGs. While the number of DEGs found here is signifi-
cantly lower, much greater confidence can be had that these are AD-relevant genes. The low number 
of DEGs found may also cause concern given the sample size and cost of collection and sequencing of 
such datasets. However, the increasing number of snRNA-seq studies being conducted for AD creates 
the opportunity to conduct differential meta-analyses to increase power. Further work is required in 
the field to develop methods to conduct such analysis, integrating studies and accounting for their 

Table 3. Pearson correlation between our 
pseudobulk differential expression analysis 
and the authors’ pseudoreplication analysis on 
all genes found to be significant at different 
adjusted p-value cut-offs from the authors’ 
pseudoreplication analysis.

Pseudoreplication 
adjusted p-value 
cut-off

Number 
of genes 
compared

Pearson 
correlation

0.01 20,152 0.8646269

0.05 23,903 0.8708275

0.1 26,382 0.8721126

0.25 32,117 0.8764692

0.5 42,022 0.8751554

1 84,467 0.826248

Table 4. The differentially expressed genes from our reanalysis using the reprocessed data and 
pseudobulk differential expression approach.

Cell logFC logCPM LR p-Value adj_pval ensembl_id HGNC

OPC –4.1544663 4.92100803 21.6911445 3.20E-06 0.04985906 ENSG00000166573 GALR1

Astro –4.5845276 4.7965143 22.2367847 2.41E-06 0.037634 ENSG00000137959 IFI44L

Micro –3.7616619 7.32875316 26.8149688 2.24E-07 0.00077905 ENSG00000077238 IL4R

Micro –2.0681446 7.88736441 17.5929095 2.74E-05 0.0346187 ENSG00000105835 NAMPT

Micro –1.6757556 7.58472506 19.1736829 1.19E-05 0.02076348 ENSG00000118257 NRP2

Micro –3.1556403 6.85232653 19.2064627 1.17E-05 0.02076348 ENSG00000135363 LMO2

Micro –3.4339265 6.9290472 19.5975589 9.56E-06 0.02076348 ENSG00000138135 CH25H

Micro –2.8183109 6.77500676 16.907959 3.92E-05 0.04550806 ENSG00000142408 CACNG8

Micro 2.90076647 8.34560617 45.5144266 1.52E-11 2.11E-07 ENSG00000144724 PTPRG

Micro 3.25867589 6.91671013 16.5519147 4.73E-05 0.0490155 ENSG00000163106 HPGDS

Micro –2.0290905 7.12321166 16.4746746 4.93E-05 0.0490155 ENSG00000171612 SLC25A33

Micro –3.4657301 6.93307221 19.7883301 8.65E-06 0.02076348 ENSG00000172243 CLEC7A

Micro –4.172807 7.16813583 34.3515807 4.60E-09 3.20E-05 ENSG00000174600 CMKLR1

Micro –3.1984588 6.87310555 18.5335889 1.67E-05 0.0232342 ENSG00000227531 RP11-202G18.1

Micro 3.40562887 6.9381703 18.5526502 1.65E-05 0.0232342 ENSG00000228058 RP11-552D4.1

Micro 4.46073301 7.66559163 29.7716679 4.86E-08 0.00022549 ENSG00000253496 RP11-13N12.1

https://doi.org/10.7554/eLife.90214
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heterogeneity, similar to that which has been done for bulk RNA-seq (Rau et al., 2014). Some such 
approaches have already been made in COVID-19 research which could be leveraged for neurode-
generative disease (Garg et al., 2021).

Materials and methods
Processing of sc/snRNA-seq dataset
The data reprocessing was conducted with scFlow (Khozoie et  al., 2021), the steps of which are 
discussed in the following two sections.

Quality control of snRNAseq data
The raw snRNA-seq data (10.7303/syn18485175) and the ROSMAP metadata (10.7303/syn3157322) 
were downloaded from https://www.synapse.org/ upon acquiring appropriate approval. Downstream 
primary analyses of gene–cell matrices were performed using our scFlow pipeline (Khozoie et al., 
2021). To determine ambient RNA profile and distinguish true nuclei from empty droplets, empty-
Drops was used with a lower parameter of <100 counts, an alpha cut-off of ≤0.001, and with 10,000 
Monte Carlo iterations (Lun et al., 2019). This approach has been recommended as best practice in 
the literature (Amezquita et al., 2020). Nuclei were then filtered for ≥200 total counts and ≥200 total 
expressed genes, which was defined as a minimum of 2 counts in at least three cells. We excluded 
any nuclei with total counts or total expressed genes with more than 4 MAD defined by an adaptive 
thresholding method. Nuclei were excluded if the proportion of counts mapping to mitochondrial 
genes was more than 10%, as set out in best-practice guidelines (Amezquita et al., 2020). Doublets 
were identified using the DoubletFinder algorithm, with a doublets-per-thousand-cells increment 
of eight cells (recommended by 10X Genomics), and a pK value of 0.005 (McGinnis et al., 2019). 
DoubletFinder was shown to be the best overall performing method in a recent benchmark (Xi and 
Li, 2021). The aggregated number of cells and proportions dropped at each step is given in Table 1 
while a comparison of the proportion of cells in each cell type after reprocessing compared to the 
authors’ processed data is given in Figure 2. All files from the scFlow run, including QC statistics, are 
available in the GitHub repository in the scFlow_files folder (copy archived at Murphy, 2023). This 
includes sample-level genes and cells’ QC numbers.

Integration and clustering
The linked inference of genomic experimental relationships (LIGER) package was used to calculate 
integrative factors across samples (Welch et al., 2019). LIGER was recently found to be one of the top 
performing methods for batch-effect correction (Tran et al., 2020). LIGER parameters used included k: 
30; lambda: 5.0; thresh: 0.0001; max_iters: 100; knn_k: 20; min_cells: 2; quantiles: 50; nstart: 10; reso-
lution: 1; num_genes: 3000; and centre: false. Two-dimensional embeddings of the LIGER integrated 
factors were calculated using the Uniform Manifold Approximation and Projection (UMAP) algorithm 
with the following parameters: pca_dims: 50; n_neighbours: 35; init: spectral; metric: euclidean; n_
epochs: 200; learning_rate: 1; min_dist: 0.4; spread: 0.85; set_op_mix_ratio: 1; local connectivity: 
1; repulsion_strength: 1; negative_sample_rate: 5; and fast_sgd: false (McInnes et al., 2020). The 
Leiden community detection algorithm was used to detect clusters of cells from the 2D UMAP (LIGER) 
embeddings; a resolution parameter of 0.001 and a k value of 50 were used (Traag et al., 2019). This 
approach has been noted as best practice by a recent review (Heumos et al., 2023). Automated cell 
typing of the detected clusters was performed as previously described using the Expression Weighted 
Celltype Enrichment algorithm in scFlow against a previously generated cell-type data reference from 
the Allen Human Brain Atlas (Hodge et al., 2019; Skene and Grant, 2016). The top five marker genes 
for each automatically annotated cell type were determined using Monocle 3 and validated against 
canonical cell-type markers (Trapnell et al., 2014).

DE analysis
All DE analyses were conducted using pseudobulk DE approach with sum aggregation and edgeR LRT 
(Chen et al., 2016). Pseudobulk aggregates nuclei within a biological replicate (an individual) for each 
cell type, reducing the dropout issue in single-cell data and avoiding the false inflation of confidence 
from non-independent samples of pseudoreplication approaches (Squair et al., 2021; Murphy and 

https://doi.org/10.7554/eLife.90214
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Skene, 2022). The DE analysis pipeline is available at GitHub repository (copy archived at Murphy, 
2023). This is a general use pipeline which can be run for any single-nucleus or single-cell transcrip-
tomic dataset. Note that we report DEGs across AD and controls using the same processed data the 
authors used (Table 2) and using our reprocessed data (Table 4).

Code availability
The DE analysis pipeline is available at GitHub repository (copy archived at Murphy, 2023). This is a 
general use pipeline which can be run for any single-nucleus or single-cell transcriptomic dataset. The 
config file containing all the parameters used and QC overview file for the scFlow run is also available 
in this repository.
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