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Abstract Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-
mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in 
a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin 
protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, 
we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer 
for cones. Our goal was to learn more of TXNIP’s structure-function relationships for cone survival, 
as well as determine the optimal cell type expression pattern for cone survival. The C-terminal 
half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP 
cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-
interactor which regulates metabolism, improved the survival of cones alone and was additive for 
cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP inter-
acts with several proteins in the RPE to indirectly support cone survival, with some of these interac-
tions different from those that lead to cone survival when expressed only in cones.

eLife assessment
This fundamental study advances our understanding of the cell specific treatment of cone photore-
ceptor degeneration by Txnip. The evidence supporting the conclusions is compelling with rigorous 
genetic manipulation of Txnip mutations. The work will be of broad interest to vision researchers, 
cell biologists and biochemists.

Introduction
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that affects one in ~4000 people 
worldwide (Hartong et al., 2006). The disease first manifests as poor night vision, likely due to the 
fact that many RP disease genes are expressed in rod photoreceptors, which initiate night vision. 
Cone photoreceptors, which are required for daylight, color, and high acuity vision, also are affected, 
as are the retina-pigmented epithelial (RPE) cells (Chrenek et al., 2012; Napoli et al., 2021; Napoli 
and Strettoi, 2023; Wu et al., 2021), which support both rod and cone photoreceptors. However, 
cones and RPE cells typically do not express RP disease genes. Nonetheless, RP cones lose function 
and die after most of the rods in their immediate neighborhood die. While it is not entirely clear what 
causes cone death, there are data suggesting problems with metabolism, oxidative stress, lack of 
trophic factors, oversupply of chromophore, and inflammation (Komeima et al., 2006; Mohand-Said 
et al., 1998; Punzo et al., 2009; Xue et al., 2023; Zhao et al., 2015). We have been pursuing gene 
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therapy to address some of these problems. Our hope is to create therapies that are disease-gene 
agnostic by targeting common problems for cones across disease gene families. One of our strategies 
is aimed at cone metabolism. Several lines of evidence suggest that RP cones do not have enough 
glucose, their main fuel source (Reviewed in Xue and Cepko, 2023). We found that overexpression 
of TXNIP, an α-arrestin protein with multiple functions, including glucose metabolism, prolonged the 
survival of cones and cone-mediated vision in three RP mouse strains (Xue et al., 2021). Regarding 
the mechanism of rescue, we found that it relied upon the utilization of lactate by cones. In addition, 
cones treated with Txnip showed improved mitochondrial morphology and function. As TXNIP is 
known to bind directly to thioredoxin, we tested a Txnip allele with a single amino acid (aa) change, 
C247S, which abolishes the interaction with thioredoxin (Patwari et al., 2006). This allele provided 
better rescue than the wild-type (wt) Txnip allele, ruling out its interaction with thioredoxin as required 
for cone rescue. These findings inspired us to further modify Txnip in various ways to look for better 
rescue, as well as to explore potential mechanisms for Txnip’s action. To this end, we also tested a 
related α-arrestin protein, as well as an interacting partner, for rescue effects.

Results
Arrdc4 reduces rd1 cone survival
As TXNIP is a member of the α-arrestin protein family, we explored whether another family member 
might prolong RP cone survival. There are six known α-arrestins in mammals (Puca and Brou, 2014). 
Among them, arrestin domain-containing protein 4 (ARRDC4) is the closest to TXNIP in amino acid 
sequence, sharing ~60% similar amino acids with TXNIP (Figure 1A). ARRDC4 is thought to have 
functions that are similar to those of TXNIP in regulating glucose metabolism in vitro (Patwari et al., 
2009). Like TXNIP and other α-arrestins, ARRDC4 is composed of three domains: a N-terminal arrestin 
(Arrestin N-) domain, a C-terminal arrestin (Arrestin C-) domain, and an intrinsically disordered region 
(IDR) at the C-terminus. Because an IDR lacks a stable 3D structure under physiological conditions, 
previous studies using crystallography did not reveal the full structure of the TXNIP protein (Hwang 
et al., 2014). None of the other α-arrestins have been characterized structurally. To begin to examine 
potential similarities in structure among some of these family members, we utilized an artificial intel-
ligence (AI) algorithm, AlphaFold-2, to visualize the predicted 3D full structure of ARRDC4 (Jumper 
et al., 2021). Similar to TXNIP, ARRDC4 is predicted to have a ‘W’ shaped arrestin structure, which is 
composed of the Arrestin N- and C-domains, plus a long IDR which looks like a tail (Figure 1B).

Arrdc4 was tested for its ability to prolong cone survival in rd1 mice using AAV-mediated gene 
delivery, as was done for Txnip previously (Xue et al., 2021). Expression of Arrdc4 was driven by a 
cone-specific promoter, RO1.7, derived from human red opsin (Krol et al., 2010; Wang et al., 1992; 
Ye et al., 2016). The vector was packaged into the AAV8 serotype capsid. AAV-Arrdc4 was injected 
sub-retinally into P0 rd1 mouse eyes along with AAV-H2BGFP, which is used to trace the infection and 
to label the cone nuclei for counting. At P50, the treated retinas were harvested and flat-mounted 
for further quantification of cones within the central retina, the area that first degenerates. Unlike 
Txnip, the cone counts were much lower in Arrdc4 treated retina relative to the AAV-H2BGFP control 
(Figure 1C and D).

Evaluation of cone survival using Txnip deletion alleles expressed in 
the RPE
We previously showed (Xue et al., 2021) that overexpressing the Txnip wt allele in the RPE using an 
RPE-specific promoter, derived from the human BEST1 gene (Esumi et al., 2009), did not improve 
RP cone survival. The wt allele removes the glucose transporter from the plasma membrane, thus 
preventing the RPE from taking up glucose for its own metabolism, and preventing it from serving as a 
conduit for glucose to flow from the blood to the cones. However, a triple mutant, Txnip.C247S.LL351 
and 352AA, improved cone survival when expressed only in the RPE (Xue et al., 2021). The C247S 
mutation eliminates the interaction with thioredoxin, and enhances the Txnip rescue when expressed 
in cones (Xue et al., 2021). The LL351 and 352AA mutations eliminate a clathrin-binding site, which 
is required for Txnip’s interaction with clathrin-coated pits for removal of GLUT1 from the cell surface 
(Wu et al., 2013). We previously proposed a model in which Txnip.C247S.LL351 and 352AA promotes 
the use of lactate by the RPE (Xue et al., 2021), as we found was the case when Txnip was expressed 
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in cones. Although the RPE normally uses lactate in wt animals, in RP, it is hypothesized that it retains 
the glucose that it normally would deliver to cones (Reviewed in Hurley, 2021). The retention of 
glucose by the RPE is thought to be due to a reduction in lactate supply, as rods normally provide 
lactate for the RPE, and with rod loss that source would be greatly diminished. If the RPE can utilize 
lactate in RP, perhaps using lactate supplied by the blood, and the LL351 and 352AA mutation impairs 
the ability of TXNIP to remove the glucose transporter from the plasma membrane, this allele of Txnip 

Figure 1. Effect of arrestin domain containing protein 4 (Arrdc4) on cone survival in retinitis pigmentosa mice. 
(A) Amino acid sequences of mouse TXNIP and mouse ARRDC4. In the full-length alignment (421 amino acid), 
Identity: 172/421, 40.86%; Similarity: 246/421, 58.43%; Gaps: 28/421, 6.65%. Color code: identical, black; similar, 
blue; not similar, red. (B) Predicted 3D protein structures of mouse TXNIP and mouse ARRDC4 by artificial 
intelligence (AI) algorithm AlphaFold-2. Abbreviations: Arr N-, N-terminal arrestin domain; Arr C-, C-terminal 
arrestin domain. (C) Representative P50 rd1 flat-mounted retinas after P0 subretinal infection with AAV8-RO1.7-
Arrdc4 (1×109 vg/eye), plus AAV8-RedO-H2BGFP (2.5×108 vg/eye), or control eyes infected with AAV8-RedO-
H2BGFP, 2.5×108 vg/eye alone. (D) Quantification of H2BGFP-positive cones within the center of P50 rd1 retinas 
transduced with Arrdc4, and control (same as in C). The number in the round brackets ‘()’ indicates the number of 
retinas within each group. Error bar: standard deviation. Statistics: two-tailed unpaired Student’s t-test. **** p<or 
<< 0.0001. RedO: red opsin promoter; RO1.7: a 1.7 kb version of red opsin promoter. AAV: adeno-associated virus.

The online version of this article includes the following source data for figure 1:

Source data 1. This file contains the source data of Figure 1D.

https://doi.org/10.7554/eLife.90749
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may then allow glucose to flow from the blood to the cones via the GLUT1 transporter. The expres-
sion of Txnip.C247S.LL351 and 352AA allele thus has the potential to address the proposed glucose 
shortage of RP cones. However, we noted two caveats. One is that the survival of cones was not as 
robust as when Txnip was expressed directly in cones. In addition, the rd1 retina in the FVB strain used 
here, even without any treatment, shows holes in the cone layer, which appear as ‘craters.’ An RP rat 
model presents a similar pattern (Ji et al., 2014; Ji et al., 2012; Zhu et al., 2013). When Txnip.C247S.
LL351 and 352AA are expressed in the RPE, there are more craters in the photoreceptor layer. We 
note that these craters are common only in the rd1 allele on the FVB background, i.e., not as common 
on other inbred mouse strains that also harbor the rd1 allele, so the meaning of this observation is 
unclear.

Arrestins are well-known for their protein-protein interactions via different domains. Different 
regions of TXNIP are known to directly associate with different protein partners to affect several 
different functions. For example, the N-terminus is sufficient to interact with KPNA2 for TXNIP’s local-
ization to the nucleus (Nishinaka et al., 2004), while the C-terminus of TXNIP is critical for interac-
tions with COPS5, to inhibit cancer cell proliferation (Jeon et al., 2005). The C-terminus of TXNIP is 
also necessary for inhibition of glycolysis, at least in vitro, through an unclear mechanism (Patwari 
et al., 2009). Based on these studies, we made several deletion alleles of Txnip, and expressed them 
in the RPE using the Best1 promoter. We assayed their ability to clear GLUT1 from the RPE surface 
(Figure 2A), as well as promote cone survival (Figure 2B–G). To enable automated cone counting 
and trace the infection, we co-injected an AAV (AAV8-RedO-H2BGFP-WPRE-bGHpA) encoding an 
allele of GFP fused to histone 2B (H2BGFP), which localized to the nucleus. As the red opsin promoter 
was used to express this gene, H2BGFP was seen in cone nuclei, but not in the RPE, if AAV8-RedO-
H2BGFP-WPRE-bGHpA was injected alone. However, when an AAV that expressed in the RPE, i.e., 
AAV8-Best1-Sv40intron-(Gene)-WPRE-bGHpA, was co-injected with AAV8-RedO-H2BGFP-WPRE-
bGHpA, H2BGFP was expressed in the RPE, along with expression in cones (Figure 2A). We speculate 
that this is due to concatenation or recombination of the two genomes, such that the H2BGFP comes 
under the control of the RPE promoter. This may be due to the high copy number of AAV in the RPE, 
as it did not happen in the reverse combination, i.e., AAV with an RPE promoter driving GFP and a 
cone promoter driving another gene. It was previously observed that the AAV genome copy number 
was »10 fold lower in cones than in the RPE (Wang et al., 2020).

To assay GLUT1, we focused on the basal surface of the RPE, as it is easier to score than the 
apical surface, where its processes are intertwined with those of the retina, where GLUT1 is also 
expressed. The 149-397aa portion of Txnip.C247S (C.Txnip.C247S) had the highest activity for GLUT1 
removal from the RPE basal surface in vivo, while the 1-228aa portion (N.Txnip) failed to remove 
GLUT1 (Figure 2A and Figure 2—figure supplement 1). As predicted by ColabFold, an AI algorithm 
based on AlphaFold-2 (Mirdita et al., 2022), the Arrestin C-domain, which is part of C.Txnip.C247S, 
but is not present in the N-domain of TXNIP, interacts with the intracellular C-terminal IDR of GLUT1 
(Figure  2—figure supplement 2). These results are consistent with these predictions, in that the 
C-terminal portion of TXNIP is sufficient to bind and clear GLUT1 from cell surface, while the N-do-
main is not.

Cone survival was assayed in vivo following infection of rd1 with these missense and deletion alleles 
at P0 and sacrifice at P50 (Figure 2B–G). Similar to Best1-wt Txnip (Xue et al., 2021), Best1-Txnip.
C247S did not show significant improvement of cone survival, ruling out the C247S mutation alone 
as promoting the cone survival by Best1-Txnip.C247S.LL351 and 352AA. In addition, Best1-N.Txnip 
(1-228aa) and Best1-sC.Txnip (255-397aa, sC: short C-) failed to improve cone survival. However, 
Best1-C.Txnip.C247S (149-397aa), Best1-C.Txnip.C247S.LL351 and 352AA (149-397aa), and Best1-nt.
Txnip.C247S320 (1-320aa, nt: no-tail) promoted significant cone survival compared to the corre-
sponding control retinas. Best1-N.Txnip and Best1-sC.Txnip-treated rd1 retina did not have increased 
numbers of craters, while all other vectors increased the number of craters. These results suggest that 
the C-terminal portion of TXNIP expressed in the RPE is required for RP cone survival, for a function(s) 
that is unrelated to the removal of GLUT1, or to the mechanism that leads to an increase in craters.

Evaluation of Txnip deletion alleles for autonomous cone survival
Our previous study used the human red opsin promoter, ‘RedO,’ in AAV to drive the expression 
of Txnip in rd1 cones, with a low level of expression in some rods. This same strategy was used to 
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Figure 2. Txnip deletions expressed only within retinal pigmented epithelium (RPE) cells: effects on GLUT1 removal and cone survival. (A) Glucose 
transporter 1 (GLUT1) expression in P20 wild-type eyes infected with control (AAV8-RedO-H2BGFP, 2.5×108 vg/eye), or a Txnip allele (2.5×108 vg/
eye) plus RedO-H2BGFP (2.5×108 vg/eye), as indicated in each panel. Txnip deletions are detailed in Figure 4. GLUT1 intensity from basal RPE is 
quantified in Figure 2—figure supplement 1. Magenta: GLUT1; green: RedO-H2BGFP for infection tracing; gray: DAPI. (B, D, F) Representative P50 
rd1 flat-mounted retinas after P0 infection with one of seven different Txnip alleles expressed only within the RPE, as indicated in the figure, or control 
eyes infected with AAV8-RedO-H2BGFP, 2.5×108 vg/eye alone. (C, E, G) Quantification of H2BGFP-positive cones within the center of P50 rd1 retinas 
transduced with indicated vectors, as shown in B, D, F. The number in the round brackets ‘()’ indicates the number of retinas within each group. Error 
bar: standard deviation. Statistics: ANOVA and Dunnett’s multiple comparison test for C and E; two-tailed unpaired Student’s t-test for G. C.Txnip.CS: 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.90749


 Research advance﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Xue et al. eLife 2023;13:RP90749. DOI: https://doi.org/10.7554/eLife.90749 � 6 of 14

evaluate whether the aforementioned deletion alleles of Txnip could prolong cone survival. Neither 
N.Txnip (1-228aa) nor C.Txnip.C247S (149-397aa) promoted significant improvement in rd1 cone 
survival. However, nt.Tnxip.C247S301 (1-301aa) and nt.Txnip.C247S320 (1-320aa) promoted survival of 
rd1 cones: 47% and 63% more cones than the control GFP virus, respectively (Figure 3A and B). 

C-terminal portion of Txnip.C247S; C.Txnip.CS.LLAA: C-terminal portion of Txnip.C247S.LL351 and 352AA; nt.Txnip.CS320: no tail Txnip (1-320aa). NS: 
not significant, p>0.05, *p<0.05, **p<0.01, ****p<or << 0.0001. Best1: Best1 promoter.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. This file contains the source data of Figure 2C, E and G and Figure 2—figure supplement 1.

Figure supplement 1. Txnip deletions expressed only within retinal pigmented epithelium (RPE) cells: quantification of the Glucose transporter 1 
(GLUT1) level within the basal surface of the RPE.

Figure supplement 2. Predicted protein-protein interactions of TXNIP and Glucose transporter 1 (GLUT1) by an algorithm, ColabFold, based on 
AlphaFold-2.

Figure 2 continued

Figure 3. Tests of Txnip alleles on cone survival. (A) Representative P50 rd1 flat-mounted retinas after P0 infection 
with 1 of 5 different Txnip alleles (AAV8-RedO- N.Txnip /C.Txnip.C247S/ nt.Txnip.C247S1-301/nt.Txnip.C247S1-320 or 
AAV8-CMV-Txnip.C247S, ≈1×109 vg/eye, plus AAV8-RedO-H2BGFP, 2.5×108 vg/eye), or control eyes infected with 
AAV8-RedO-H2BGFP, 2.5×108 vg/eye alone. (B, C) Quantification of H2BGFP-positive cones within the center of 
P50 rd1 retinas transduced with AAV8-RedO- N.Txnip /C.Txnip.C247S/ nt.Txnip.C247S1-301/nt.Txnip.C247S1-320 or 
AAV8-CMV-Txnip.C247S, and control (same as in A). The number in the round brackets ‘()’ indicates the number of 
retinas within each group. Error bar: standard deviation. Statistics: ANOVA and Dunnett’s multiple comparison test 
for B; two-tailed unpaired Student’s t-test for C. NS: not significant, ****p<or << 0.0001.

The online version of this article includes the following source data for figure 3:

Source data 1. This file contains the source data of Figure 3B and C.

https://doi.org/10.7554/eLife.90749
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In comparison, the full-length Txnip.C247S promoted an increase of 97% in cones in our previous 
study (Xue et  al., 2021). These results show that the full-length Txnip provides the most benefit 
in terms of RP cone survival. To determine if expression of this allele might give increased survival 
when expressed in both the RPE and in cones, we used a CMV promoter to drive expression, as CMV 

Figure 4. Summary of various alleles of Txnip in this and previous study (Xue et al., 2021). ‘Retinal pigmented 
epithelium (RPE) Glucose transporter 1 (GLUT1) Removal’ refers to the amount of GLUT1 immunohistochemical 
signal on the basal surface following expression in the RPE using the Best1 promoter. ‘Cone Rescue: Expression 
in RPE’ refers to cone rescue following expression only in the RPE using the Best1 promoter. ‘Cone Rescue: 
Expression in Cones’ is due to expression only in cone photoreceptors using the RedO promoter. Abbreviations: 
Y (x%): Yes with x% increase compared to AAV-H2BGFP control; N: No; NT: Not tested. N.TXNIP, N-terminal 
portion of TXNIP; C.TXNIP.C247S, C-terminal portion of TXNIP.C247S mutant allele; sC.TXNIP: a shorter version 
of C-terminal portion of TXNIP; nt.TXNIP.C247S, no tail version TXNIP.C247S mutant allele; Arrestin N-, N-terminal 
arrestin domain; Arrestin C-, C-terminal arrestin domain; PPxY, a motif where P is proline, x is any amino acid and Y 
is tyrosine.

https://doi.org/10.7554/eLife.90749
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expresses highly in both cell types (Xiong et al., 2015). CMV-Txnip.C247S provided a 38% rescue 
(Figure 3A and C), which is lower than RedO-Txnip.C247S (97%) alone. These and previous results 
are summarized in Figure 4.

Inhibiting Hsp90ab1 prolongs rd1 cone survival
To further investigate the potential mechanism(s) of cone survival induced by Txnip, we considered 
the list of protein interactors that were identified in HEK293 cells using biotinylated protein interac-
tion pull-down assay plus mass spectrometry (Forred et al., 2016). Forred et al. identified a subset 
of proteins that interact with Txnip.C247S, the mutant that provides better cone rescue than the wt 
Txnip allele (Xue et al., 2021). As we found that Txnip promotes the use of lactate in cones, and 
improves mitochondrial morphology and function, we looked for TXNIP interactors that are relevant 
to mitochondria. We identified two candidates, PARP1 and HSP90AB1. PARP1 mutants have been 
shown to protect mitochondria under stress (Hocsak et al., 2017; Szczesny et al., 2014). Accordingly, 
in our previous study, we crossed the null PARP1 mice with rd1 mice, to ask if mitochondrial improve-
ments alone were sufficient to induce cone rescue. We found that it was not. In our current study, we 
thus prioritized HSP90AB1 inhibition, which had been shown to improve skeletal muscle mitochon-
drial metabolism in a diabetes mouse model (Jing et al., 2018).

Three shRNAs targeting different regions of the mRNA of Hsp90ab1 (shHsp90ab1) were delivered 
by AAV into the retinas of wt mice. Knock-down was evaluated using an AAV encoding a FLAG-tagged 
HSP90AB1 that was co-injected with the AAV-shRNA. All three shRNAs reduced the HSP90AB1-FLAG 
signal compared to the shNC, the non-targeting control shRNA (Figure 5A and B), suggesting that 
they are able to inhibit the expression of HSP90AB1 protein in vivo. The promotion of cone survival 
was then tested in rd1 mice using these shRNA constructs. The two shRNAs with the most activity 
in reducing the FLAG-tagged HSP90AB1 signal, shHsp90ab1(#a), and shHsp90ab1(#c), were found to 
increase the survival of rd1 cones at P50 (Figure 5C and D). To determine if this effect was capable of 
increasing the Txnip rescue, the shRNAs were co-injected with Txnip.C247S. A slight additive effect 
of shHsp90ab1 and Txnip.C247S was observed (Figure 5E and F). We also asked if there might be an 
effect of the knock-down of Hsp90ab1 on a Parp1 loss of function background. We did not observe 
any rescue effect of the shRNAs on this background (Figure 5G and H).

Discussion
In RP, the RPE cells and cones degenerate due to non-autonomous causes after the death of rods. 
Although the causes of cone death are not entirely clear, one model proposes that they do not have 
enough glucose, their main fuel source (Hurley, 2021; Punzo et al., 2009; Xue and Cepko, 2023). In 
a previous study, we found that Txnip promoted the use of lactate within cones and led to healthier 
mitochondria. The mechanisms for these effects are unclear, and we sought to determine what 
domains of TXNIP might contribute to these effects, as well as explore alleles of Txnip that might be 
more potent for cone survival. We further tested the rescue effects of several alleles when expressed 
in the RPE, a support layer for cones, through which nutrients, such as glucose, flow to the cones from 
the choriocapillaris. The results suggest that Txnip has different mechanisms for Txnip-mediated cone 
survival when expressed in the RPE versus in cones.

The C-terminal portion of Txnip.C247S (149-397aa) expressed within the RPE, but not within 
cones, delayed the degeneration of cones (Figure 2). The full-length Txnip.C247S expressed within 
cones, but not within the RPE, was the most effective configuration for cone survival (Figure 3). The 
expression of full-length Txnip.C247S in both the RPE and cones did not provide better rescue than 
in cones alone. As TXNIP has several domains that presumably interact with different partners, it is 
possible that these different effects on cone survival are due to the interaction of different TXNIP 
domains with different partners in the RPE versus the cones, or different results from the interactions 
of the same domains and partners in the two cell types. The N-terminal half of TXNIP (1-228aa) might 
exert harmful effects in the RPE, that negate the beneficial effects from the C-terminal half, suggested 
by the observation that its removal, in the C-terminal 149–397 allele, led to better cone survival 
when expressed in the RPE (Figure 2). In cones, the C-terminal half, including the C-terminal IDR tail, 
may cooperate with the N-terminal half, or negate its negative effects, to benefit RP cone survival. 

https://doi.org/10.7554/eLife.90749
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Figure 5. Effect of knockdown of Hsp90ab1 in retinitis pigmentosa cones in vivo. (A) AAV8-RO1.7-Hsp90ab1-
FLAG (1×109 vg/eye) co-injected with shNC (non-targeting shRNA control, AAV8-RedO-shRNA, 1×109 vg/
eye) or co-injected with Hsp90ab1 shRNAs #a, #b, #c (AAV8-RedO-shRNA, 1×109 vg/eye) in P20 wild-type (wt) 
retina, all also injected with AAV8-RedO-H2BGFP (2.5×108 vg/eye) to track the infection. Magenta: anti-FLAG; 
green: anti-GFP; gray: DAPI. Right panel: (B) The quantification of FLAG intensity from multiple fields of inner 
segment regions in A. The number in the square brackets ‘[]’ indicates the number of images taken from regions 
of interest of one retina, in each condition. (C) Representative P50 rd1 flat-mounted retinas injected with shNC, 
shHsp90ab1(#a), shHsp90ab1(#b), or shHsp90ab1(#c) (AAV8-RedO-shRNAs, 1×109 vg/eye, plus AAV8-RedO-
H2BGFP, 2.5×108 vg/eye). (D) Quantification of H2BGFP-positive cones within the center of P50 rd1 retinas 
transduced with shNC, shHsp90ab1(#a, #b, #c) (same as in C). (E) Representative P50 rd1 flat-mounted retinas with 
H2BGFP (gray)-labeled cones transduced with Txnip.C247S or Txnip.C247S+shHsp90ab1 (AAV8-RedO-Txnip.
C247S, 1×109 vg/eye; AAV8-RO1.7-shHsp90ab1(#a or #c), 1×109 vg/eye; plus AAV8-RedO-H2BGFP, 2.5×108 vg/
eye). (F) Quantification of H2BGFP-positive cones within the center of P50 rd1 retinas transduced with Txnip.

Figure 5 continued on next page
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However, the C-terminal half is not sufficient for cone rescue when expressed in cones, as the 149–397 
allele did not rescue.

The C-terminal half of TXNIP apparently affects cone survival differently when expressed within the 
two cell types. This notion is informed by the different rescue effects of expression of the 149–397 
allele, which rescues cones when expressed in the RPE, but not when expressed in cones. This domain 
loses the cone rescue activity if it loses aa 149–254, when expressed in the RPE, as shown by the 
255–397 allele. In cones, the rescue activity is present in the 1–301 and the 1–320 allele, but is lost in 
the 149–397 allele. It is possible that effects on protein structure cause this loss, or that an interaction 
between N-terminal and C-terminal domains is required for cone rescue within cones.

One TXNIP function that likely is important to these effects in the two cell types is TXNIP’s removal 
of the glucose transporter from the plasma membrane. The LLAA TXNIP mutant is unable to effec-
tively remove the transporter, due to its loss of interaction with clathrin (Wu et al., 2013). When this 
mutant allele is expressed in the RPE, it leads to improved cone survival, in contrast to the wt allele. 
This might be due to better health in the RPE, when it is able to take up glucose to fuel its own 
metabolism, and/or to provide glucose to cones. When the LLAA allele is expressed in cones, it also 
promotes cone survival, though not as well as the wt allele (Xue et al., 2021). The wt allele might 
be more beneficial in cones if it is part of the mechanism that forces cones to rely more heavily on 
lactate vs. glucose. All of these observations of cone rescue from expression within cones suggest 
that cone rescue relies on activities that reside in both the N and C-terminal portions, including the 
ability of TXNIP to interact with clathrin. However, it will be important to probe structural alterations 
and stability of TXNIP in cones and RPE when these various alleles are expressed to further support 
these hypotheses.

ARRDC4, the most similar α-arrestin protein to TXNIP that also has Arrestin N- and C- domains, 
accelerated RP cone death when transduced via AAV (Figure 1). This observation suggests that TXNIP 
has unique functions that protect RP cones. Recently, ARRDC4 has been proposed to be critical for 
liver glucagon signaling, which could be negated by insulin (Dagdeviren et al., 2023). The impli-
cation of this potential role regarding RP cone survival is unclear, but interestingly, the activation of 
the insulin/mTORC1 pathway is beneficial to RP cone survival (Punzo et al., 2009; Venkatesh et al., 
2015).

Regarding potential protein interactions beyond the glucose transporter, the interaction of TXNIP 
with thioredoxin is apparently negative for cone survival, as we found in our previous study with the 
C247S allele. This is most easily understood by the release of thioredoxin from TXNIP, whereupon 
it can play its anti-oxidation role, which would be important in the RP retina which exhibits oxida-
tive damage. It also would free TXNIP to interact with other partners, of which there are several, 
though many also depend upon C247 (Forred et al., 2016). Another partner interaction suggested 
by previous studies and explored here is the interaction with HSP90AB1 (Figure 5). HSP90AB1 inter-
acts with both the wt and C247S alleles (Forred et al., 2016). Little is known about the function of 
HSP90AB1. Knocking down Hsp90ab1 improved mitochondrial metabolism of skeletal muscle in a 
diabetic mouse model (Jing et al., 2018). Knocking out HSP90AA1, a paralog of HSP90AB1 which has 
14% different amino acids, led to rod death and correlated with PDE6 dysregulation (Munezero et al., 
2023). Inhibiting HSP90AA1 with small molecules transiently delayed cone death in human retinal 

C247S or Txnip.C247S+shHsp90ab1 (same as in E). (G) Representative P50 Parp1-/- rd1 flat-mounted retinas with 
H2BGFP (gray)-labeled cones transduced with shNC (non-targeting shRNA control, AAV8-RedO-shRNA, 1×109 
vg/eye; plus AAV8-RedO-H2BGFP, 2.5×108 vg/eye) or shHsp90ab1 (AAV8-RedO-shRNA #a or #c, 1×109 vg/eye; 
plus AAV8-RedO-H2BGFP, 2.5×108 vg/eye). (H) Quantification of H2BGFP-positive cones within the center of P50 
Parp1-/- rd1 retinas transduced with shNC or shHsp90ab1 (same as in G). Error bar: standard deviation. Statistics: 
ANOVA and Dunnett’s multiple comparison test for B and D; two-tailed unpaired Student’s t-test for F and H. NS: 
not significant, p>0.05, *p<0.05, **p<0.01, ***p<0.001 ****p<or << 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. This file contains the source data of Figure 5B, D, F and H.

Figure supplement 1. Predicted 3D protein structures of HSP90AB1 and PARP1.

Figure supplement 2. Predicted 3D protein interactions among TXNIP, HSP90AB1, and PARP1 by AI algorithm 
AlphaFold Multimer from two angles of view.

Figure 5 continued
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organoids under low glucose conditions (Spirig et al., 2023). However, the exact role of HSP90AA1 in 
photoreceptors needs to be clarified, and the implications for HSP90AB1 in RP cones are still unclear.

Here, we found that sh-mediated knock-down of Hsp90ab1 enhanced cone survival in rd1 mice. 
This rescue seems to be dependent on PARP1, another binding partner of wt TXNIP and Txnip.
C247S (Forred et al., 2016). As shown by PARP1 knock-out mice, PARP1 is deleterious to mito-
chondrial heath under stressful conditions (Hocsak et al., 2017; Szczesny et al., 2014; Xue et al., 
2021). When we examined a possible rescue effect of PARP1 loss on rd1 cone survival, we did not 
see a benefit, indicating that the TXNIP-mediated rescue is not due solely to its beneficial effects 
on mitochondria, nor does TXNIP-mediated rescue rely upon PARP1 (Xue et  al., 2021). These 
results indicate that the Txnip rescue is more complex than inhibition of HSP90AB1, and a PARP1-
independent mechanism is involved. It is possible that HSP90AB1 directly interacts with PARP1, 
and this interaction is critical for shHsp90ab1 to benefit RP cones. We looked into the predicted 3D 
structures of HSP90AB1 and PARP1 using AlphaFold-2 (Figure 5—figure supplement 1), but did 
not gain additional insight into such interactions. We also explored AlphaFold Multimer, which is 
an algorithm predicting the interaction of multiple proteins based upon AlphaFold-2 (Evans et al., 
2021), and noticed that the Arrestin-C domain of TXNIP linked PARP1 and HSP90AB1 together in 
one of the predicted models (Figure 5—figure supplement 2). Despite the unclear mechanism, 
combining Hsp90ab1 inhibition with Txnip.C247S could be a potential combination therapy to 
maximize the protection of RP cones.

Materials and methods
Key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody
GLUT1 (rabbit 
monoclonal) Abcam ab115730 IHC (1:500)

Genetic reagent (M. 
musculus) Arrdc4 cDNA GeneCopoeia Cat. #: Mm26972 NCBI: NM_001042592.2

Genetic reagent (M. 
musculus) Hsp90ab1 cDNA GeneCopoeia Cat. #: Mm03161 NCBI: NM_008302.3

Software, algorithm
Protein 3D structure 
prediction AlphaFold-2

TXNIP (M. musculus); ARRDC4 (M. musculus); 
HSP90AB1 (M. musculus); PARP1 (M. musculus)

Jumper et al., 2021;
https://alphafold.ebi.ac.uk

Software, algorithm
Protein 3D interaction 
prediction ColabFold AlphaFold2_mmseqs2

Mirdita et al., 2022;
Ovchinnikov, 2021;
https://github.com/sokrypton/​
colabfold

Software, algorithm
Protein 3D interaction 
prediction COSMIC2 AlphaFold2 – Multimer

Evans et al., 2021;
http://cosmic-cryoem.org/tools/​
alphafoldmultimer/

Software, algorithm
Protein 3D structure 
viewer RCSB PDB Mol* 3D Viewer

To visualize the 3D structure of 
proteins ​in.​pdb files https://www.​
rcsb.org/3d-view

The material and methods in this study are similar to those used in our previous study (Xue et al., 
2021). The cone number of the central retina is defined as the counts of H2BGFP-positive cells within 
the central portion of the retina. New reagents and algorithms used in this study are listed in the 
Key resources table above. Txnip deletion alleles were cloned from the Txnip plasmid using Gibson 
assembly (Figure 4). The following sense strand sequences were used to knock down the Hsp90ab1: 
shHsp90ab1(#a) 5′- ​GCAT​​CTAC​​CGCA​​TGAT​​TAAA​C-3′; shHsp90ab1(#b) 5′- ​CCAG​​AAGT​​CCAT​​CTAC​​
TATA​T-3′; shHsp90ab1(#c) 5′- ​CCTG​​AGTA​​CCTC​​AACT​​TTAT​C-3′. In almost all experiments, other than 
as noted, one eye of the mouse was treated with control (AAV8-RedO-H2BGFP, 2.5×108 vg/eye), and 
the other eye was treated with the experimental vector plus AAV8-RedO-H2BGFP, 2.5×108 vg/eye. 
For RPE basal surface GLUT1 quantification, multiple regions of interest (ROI) were selected from at 
least three eyes of each condition, and the mean intensity of the ROI was measured using ImageJ 
software. Statistics are listed in each figure legend.

https://doi.org/10.7554/eLife.90749
https://alphafold.ebi.ac.uk
https://github.com/sokrypton/colabfold
https://github.com/sokrypton/colabfold
http://cosmic-cryoem.org/tools/alphafoldmultimer/
http://cosmic-cryoem.org/tools/alphafoldmultimer/
https://www.rcsb.org/3d-view
https://www.rcsb.org/3d-view
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