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Abstract Neurobiological investigations of perceptual decision-making have furnished the first 
glimpse of a flexible cognitive process at the level of single neurons. Neurons in the parietal and 
prefrontal cortex are thought to represent the accumulation of noisy evidence, acquired over time, 
leading to a decision. Neural recordings averaged over many decisions have provided support for 
the deterministic rise in activity to a termination bound. Critically, it is the unobserved stochastic 
component that is thought to confer variability in both choice and decision time. Here, we elucidate 
this drift-diffusion signal on individual decisions. We recorded simultaneously from hundreds of 
neurons in the lateral intraparietal cortex of monkeys while they made decisions about the direc-
tion of random dot motion. We show that a single scalar quantity, derived from the weighted sum 
of the population activity, represents a combination of deterministic drift and stochastic diffusion. 
Moreover, we provide direct support for the hypothesis that this drift-diffusion signal approximates 
the quantity responsible for the variability in choice and reaction times. The population-derived 
signals rely on a small subset of neurons with response fields that overlap the choice targets. These 
neurons represent the integral of noisy evidence. Another subset of direction-selective neurons with 
response fields that overlap the motion stimulus appear to represent the integrand. This parsimo-
nious architecture would escape detection by state-space analyses, absent a clear hypothesis.

eLife assessment
This fundamental work quantifies the stochastic dynamics of neural population activity in the lateral 
intraparietal area (LIP) of the macaque monkey brain during single perceptual decisions. These 
single-trial dynamics have been subject to intense debate in neuroscience, and they have significant 
implications for modeling decision-making in various fields including neuroscience and psychology. 
Through a combination of state-of-the-art recordings from many LIP neurons and theory-driven 
data analyses, the authors provide convincing evidence for the notion that single-trial neural 
population dynamics in LIP encode the decision variable postulated by the drift-diffusion model of 
decision-making.

Introduction
Neural signals in the mammalian cortex are notoriously noisy. They manifest as a sequence of action 
potentials (spikes) that approximate non-stationary Poisson point processes. Therefore, to charac-
terize the signal produced by a neuron, electrophysiologists typically combine the spike times from 
many repetitions or trials relative to the time of an event (e.g., stimulus onset) to yield the average 
firing rate of the neuron as a function of time. Such trial-averaged firing rates are the main staple of 
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systems neuroscience (Here and throughout, trial average and across-trial average refer to the mean 
of signal values, over all specified trials at the same time, ‍t‍, relative to a trial event (e.g., motion 
onset)). They are the source of knowledge about spatial selectivity (e.g., receptive fields), feature 
selectivity (e.g., direction of motion, faces vs. other objects), and even cognitive signals associated 
with working memory, anticipation, attention, motor planning, and decision-making. But there is an 
important limitation.

Trial averages suppress signals that vary independently across trials. In many cognitive tasks, such 
as difficult decisions, the variable component of the signal is the most interesting because it is this 
component that is thought to explain the variable choice and response time. This variability is thought 
to arise from a decision process that accumulates noisy evidence in favor of the alternatives and 
terminates when the accumulated evidence for one alternative, termed the decision variable (DV), 
reaches a terminating bound. The DV is stochastic because the integral of noisy samples of evidence 
is biased Brownian motion (or drift-diffusion) and this leads to a stochastic choice and response time 
on each decision. However, the stochastic part of this signal is suppressed by averaging across trials. 
We will use the term drift-diffusion because it is the expression most commonly applied in models 
of decision-making (Ratcliff and Rouder, 1998; Gold and Shadlen, 2007), and we will consider the 
noise part—that is, diffusion—as the signal of interest.

In the setting of difficult perceptual decisions, studied here, bounded drift-diffusion reconciles the 
relationship between decision speed and accuracy. It also explains the trial-averaged firing rates of 
neurons in the lateral intraparietal area (LIP) that represent the action used by monkeys to indicate 
their choice. These firing rate averages show motion-dependent, ramping activity that reflects the 
direction and strength of motion, consistent with the drift component of drift-diffusion (Roitman and 
Shadlen, 2002). Up to now, however, the diffusion component has not been observed, owing to 
averaging.

There is thus a missing link between the mathematical characterization of the decision process 
and its realization in neural circuits, leaving open the possibility that drift-diffusion dynamics do not 
underlie LIP activity (e.g., Latimer et al., 2015), or emerge only at the level of the population, without 
explicit representation by single neurons. We reasoned that these and other alternatives to drift-
diffusion could be adjudicated if it were possible to resolve the DV giving rise to a single decision.

This stratagem is now feasible, owing to the development of high-density Neuropixels probes, 
which are capable of recording from deep sulci in the primate brain. Here we provide the first direct 
evidence for a drift-diffusion process underlying single decisions. We recorded simultaneously from up 
to 203 neurons in area LIP while monkeys made perceptual decisions about the direction of dynamic 
random dot motion (Newsome et al., 1989; Gold and Shadlen, 2007). Using a variety of dimension-
ality reduction techniques, we show that a drift-diffusion signal can be detected in such populations 
on individual trials. Moreover, this signal satisfies the criteria for a DV that controls the choice and 
reaction time (RT). Notably, the signal of interest is dominated by a small subpopulation of neurons 
with response fields that overlap one of the choice targets, consistent with earlier single-neuron 
studies (e.g., Shadlen and Newsome, 1996; Roitman and Shadlen, 2002; Churchland et al., 2011; 
Gold and Shadlen, 2007).

Results
Two monkeys made perceptual decisions, reported by an eye movement, about the net direction of 
dynamic random dot motion (Figure 1a). We measured the speed and accuracy of these decisions as 
a function of motion strength (Figure 1b, circles). The choice probabilities and the distribution of RTs 
are well described (Figure 1b, traces) by a bounded drift-diffusion model (Figure 1c). On 50% of the 
trials, a brief (100 ms) pulse of weak leftward or rightward motion was presented at a random time. 
The influence of these pulses on choice and RT further supports the assertion that the choices and RTs 
arose through a process of integration of noisy samples of evidence to a stopping bound (Figure 1—
figure supplement 1; Stine et al., 2020; Stine et al., 2023; Hyafil et al., 2023).

In addition to the main task, the monkeys performed two control tasks: instructed, delayed 
saccades to peripheral targets and passive viewing of random dot motion (see ‘Methods’). These 
control tasks served to identify, post hoc, neurons with response fields that overlap the choice target 
in the hemifield contralateral to the recording site (‍T

con
in ‍), neurons with response fields that overlap 
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the other choice target (‍T
ips
in ‍), and neurons with response fields that overlap the random-dot motion 

stimulus (‍Min‍; Table 1).
We recorded simultaneously from populations of neurons in area LIP using newly developed 

macaque Neuropixels probes (Trautmann et al., 2023) while monkeys performed these tasks. The 
data set comprises eight sessions from two monkeys (1696–2894 trials per session; Table 2). Our 
primary goal was to identify activity in LIP that relates to the DV, a theoretical quantity that determines 
the choice and RT on each trial. To achieve this, we formed weighted averages from all neurons in 
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Figure 1. Perceptual decisions are explained by the accumulation of noisy evidence to a stopping bound. (a) 
Random dot motion discrimination task. The monkey fixates a central point. After a delay, two peripheral targets 
appear, followed by the random dot motion. When ready, the monkey reports the net direction of motion by 
making an eye movement to the corresponding target. Yellow shading indicates the response fields of a subset 
of neurons in lateral intraparietal cortex (LIP) that we refer to as ‍Tin‍ neurons (target in response field). (b) Mean 
reaction times (top) and proportion of leftward choices (bottom) plotted as a function of motion strength and 
direction, indicated by the sign of the coherence: positive is leftward. Data (circles) are from all sessions from 
monkey M (black, 9684 trials) and monkey J (brown, 8142 trials). Solid lines are fits of a bounded drift-diffusion 
model. (c) Drift-diffusion model. The decision process is depicted as a race between two accumulators: one 
integrating momentary evidence for left; the other for right. The momentary samples of evidence are sequential 
samples from a pair negatively correlated Normal distributions with opposite means (‍ρ = −0.71‍). The decision is 
terminated when one accumulator reaches its positive bound. The example depicts leftward motion leading to a 
leftward decision.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Effect of motion pulses on behavior (adapted from Figure S1 of Stine et al., 2023).

Table 1. Information about individual experimental sessions.

Session 1 2 3 4 5 6 7 8 Mean

Monkey M M M M M J J J

Trials 1797 1696 2256 1859 2076 2449 2799 2894 2228

Neurons 191 90 54 140 107 138 161 203 135.5

%‍T
con
in ‍ 8.9 14.4 16.7 15 17.8 8.7 21.1 13.3 14.5

%‍T
ips
in ‍ 4.2 5.6 13 13.6 6.5 12.3 0.6 2.0 7.2

%‍M
left
in ‍ 5.2 5.6 0 5 3.7 2.9 3.7 7.4 4.2

%‍M
right
in ‍ 1.0 2.2 3.7 1.4 2.8 3.6 2.5 3.0 2.5

https://doi.org/10.7554/eLife.90859
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the sample population, including those with response fields that do not overlap a choice target or 
the motion stimulus. We used several strategies to assign this vector of weights, which we refer to as 
a coding direction in the neuronal state space (NSS). The projection of the spiking activity from the 
population of neurons onto the vector of weights gives rise to a scalar function of time, ‍Sx(t)‍, where 
the superscript ‍x‍ labels the strategy. We focus on such one-dimensional projections because of the 
long-standing hypothesis that the DV is drift-diffusion, which is a scalar function of time.

We first developed a targeted strategy that would reproduce the well-known coherence-dependent 
ramping activity evident in the across-trial averages. This strategy applies regression to best approx-
imate a linear ramp, on each trial, ‍i‍, that terminates with a saccade to the choice target contralateral 
to the hemisphere of the LIP recordings. The ramps are defined on the epoch spanning the decision 
time: from ‍t0 = 0.2‍ s after motion onset to ‍t1 = 0.05‍ s before saccade initiation (black lines in Figure 2—
figure supplement 1) The epoch is motivated by many previous studies (see Gold and Shadlen, 
2007; Shadlen and Kiani, 2013, for reviews). Each ramp begins at ‍fi(t0) = −1‍ and ends at ‍fi(t1) = 1‍. 
The ramp approximates the expectation—conditional on the choice and response time—of the deter-
ministic components of the drift-diffusion signal, which, in addition to the drift, can incorporate (i) a 
time-dependent but evidence-independent urgency signal (Churchland et al., 2008; Drugowitsch 
et al., 2012), and (ii) a dynamic bias signal (Hanks et al., 2011). It can also be viewed as an approx-
imation to firing rates averaged across trials and grouped by contraversive choice and RT quantile 
(Figure 2—figure supplement 2). Importantly, the fit is not guided by an assumption of an underlying 
diffusion process. That is, the ramp coding direction is agnostic to the underlying processes whose 
averages approximate ramps. The weights derived from these regression fits specify a ramp coding 
direction in the state space defined by the population of neurons in the session. The single-trial signal, 

‍Sramp(t)‍, is rendered as the projection of the population firing rates onto this coding direction.
The left side of Figure 2a shows single-trial activity rendered by this strategy. The right side of the 

figure shows the averages of the single-trial responses grouped by signed coherence and aligned to 
motion onset or response time (saccade initiation). These averaged traces exhibit features of the firing 
rate averages in previous studies of single neurons in LIP (e.g., Roitman and Shadlen, 2002). They 
begin to diverge as a function of the direction and strength of motion approximately 200 ms after the 
onset of motion. The traces converge near the time of saccadic response to the contralateral choice 
target such that the coherence dependence is absent or greatly diminished. Coherence dependence 
remains evident through the initiation of saccades to the right (ipsilateral) target, consistent with a 
race architecture—between negatively correlated accumulators—depicted in Figure 1c.

We complemented this regression strategy with principal component analysis (PCA) and use the 
first PC (PC1), which explains ‍44 ± 7‍% of the variance (mean ± s.e. across sessions) of the activity 
between 200 and 600 ms from motion onset (see ‘Methods’). This coding direction renders single-trial 
signals, ‍SPC1(t)‍ (Figure 2b). In a third strategy, we consider the mean activity of neurons with response 
fields that overlapped the contralateral choice target (‍T

con
in ‍ neurons), which were the focus of previous 

single-neuron studies (e.g., Shadlen and Newsome, 1996; Platt and Glimcher, 1999; Roitman and 
Shadlen, 2002). In those studies, the task was modified so that one of the choice targets was placed in 
the neural response field, whereas here we identify neurons post hoc with response fields that happen 
to overlap the contralateral choice target. This difference probably accounts for the lower firing rates 
of the ‍T

con
in ‍ neurons studied here. Figure 2c shows single-trial and across-trial averages from these ‍T

con
in ‍ 

neurons. They too render signals, ‍S
con
Tin (t)‍, similar to those derived from the full population. The ‍T

con
in ‍ 

neurons thus furnish a third coding direction defined by a vector of identical positive weights assigned 
to all ‍T

con
in ‍ neurons and 0 for all other neurons in the population. The emboldened single-trial traces in 

Figure 2 (left) correspond to the same trials rendered by the three coding directions. It is not difficult 

Table 2. Model fit parameters.
κ: scaling of motion strength to drift rate; ‍B0‍: bound height; ‍α‍: linear urgency component; ‍µnd‍: mean 
of the non-decision time; ‍σnd‍: standard deviation of the non-decision time; and ‍C0‍: bias.

Parameter ‍κ‍ ‍B0‍ ‍α‍ ‍µnd‍ ‍σnd‍ ‍C0‍

Monkey M 13.37 1.03 0.4199 0.317 0.039 –0.0144

Monkey J 13.72 1.76 1.3591 0.291 0.055 0.0008

https://doi.org/10.7554/eLife.90859
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to tell which are the corresponding traces, an observation that speaks to their similarity, and the same 
is true for the averages. We will expand on this observation in what follows.

The averages show the deterministic drift component of the hypothesized drift-diffusion process, 
with the slope varying monotonically with the signed motion strength (Figure 2, right). The rise begins 
to saturate as a consequence of the putative termination bound—a combination of dropout of trials 
that are about to terminate and the effect on the distribution of possible diffusion paths imposed by 
the very existence of a stopping bound. This saturation is evident earlier on trials with stronger motion, 
hence shorter RT, on average. The positive buildup rate on the 0% coherence motion represents 
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Figure 2. Population responses from lateral intraparietal cortex (LIP) approximate drift-diffusion. Rows show three 
types of population signals. The left columns show representative single-trial firing rates during the first 300 ms of 
evidence accumulation using two motion strengths: 0 and 25.6% coherence toward the left (contralateral) choice 
target. For visualization, single-trial traces were baseline corrected by subtracting the activity in a 50 ms window 
around 200 ms. We highlight several trials with thick traces (same trials in a–c). The right columns show the across-
trial average responses for each coherence and direction. Motion strength and direction are indicated by color 
(legend) and aligned to motion onset (left) or saccade initiation (right). The gray bars under the motion-aligned 
averages indicate the 300 ms epoch used in the display of the single-trial responses (left panels). The epoch 
begins when LIP first registers a signal related to the strength and direction of motion. Except for saccade-aligned 
response, trials are cut off 100 ms before saccade initiation. Error trials are excluded from the saccade-aligned 
averages, only. (a) Ramp coding direction. The weight vector is established by regression to ramps from -1 to +1 
over the period of putative integration, from 200 ms after motion onset to 100 ms before saccade initiation (see 
Figure 2—figure supplement 1). Only trials ending in left (contralateral) choices are used in the regression. (b) 
First principal component (PC1) coding direction. (c) Average firing rates of the subset of neurons that represent 
the left (contralateral) target. The weight vector consists of ‍

1
N ‍ for each of the ‍N ‍ ‍T

con
in ‍ neurons and 0 for all other 

neurons. Note the similarity of both the single-trial traces and the response averages produced by the different 
weighting strategies.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Derivation of a ramp coding direction in neuronal state space.

Figure supplement 2. Trial-averaged activity grouped by reaction time (RT) quantile.

Figure supplement 3. Trial-averaged activity after subtracting the urgency component.

https://doi.org/10.7554/eLife.90859
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the time-dependent, evidence-independent 
signal that is thought to reflect the cost of time. 
It leads to termination even if the evidence is 
weak, equivalent to collapsing stopping bounds 
in traditional, symmetric drift-diffusion models 
(Drugowitsch et  al., 2012). Removal of this 
urgency signal, ‍u(t)‍, from the non-zero coherence 
traces renders the positive and negative coher-
ence averages symmetric relative to zero on the 
ordinate (Figure 2—figure supplement 3).

The single-trial responses in Figure 2 do not 
look like the averages but instead approximate 
drift-diffusion. We focus on the epoch from 200 
to 500 (or 600) ms from motion onset—that is, 
the first 300 (or 400) ms of the period in which 
the averages reflect the integration of evidence. 
Some traces are cut off before the end of the 
epoch because a saccade occurred 100 ms later 
on the trial. However, most 0% coherence trials 
continue beyond 500 ms (median RT ‍> 600‍ ms). 
The single-trial traces do not rise monotonically 
as a function of time but meander and tend to 
spread apart from each other vertically. For 
unbounded diffusion, the variance would increase 
linearly, but as just mentioned, the existence of 
an upper stopping bound and the limited range 
of firing rates (e.g., non-negative) renders the 
function sublinear at later times (Figure  3a, 
Figure  3—figure supplement 1). The autocor-
relation between an early and a later sample from 
the same diffusion trace is also clearly specified 
for unbounded diffusion. The theoretical values 
shown in Figure  3b and c are the autocorrela-
tions of unbounded diffusion processes that are 
smoothed identically to the neural signals (see 
‘Methods’ and Appendix 1). The autocorrela-
tions in the data follow a strikingly similar pattern. 
These observations support the assertion that the 
coherence-dependent (ramp-like) firing rate aver-
ages observed in previous studies of area LIP are 
composed of stochastic drift-diffusion processes 
on single trials.

Single-trial drift-diffusion signals 
approximate the decision variable
We next evaluate the hypothesis that the drift-diffusion signal, ‍Sx(t)‍, is the DV that controls the choice 
and response time. We have identified several coding directions that produce candidate DVs, and 
as we will see below, there are also other coding directions of interest that can be derived from the 
population. Additionally, PCA indicates that the dimensionality of the data is low, but greater than 
1 (participation ratio = 4.4 ± 1.3; Mazzucato et al., 2016; Gao et al., 2017). Therefore, one might 
wonder whether it is sensible to assume that the DV can be approximated by a scalar measure arising 
from a single coding direction as opposed to a higher dimensional representation. Two decoding 
exercises are adduced to support the assumption.

We constructed a logistic decoder of choice using each neuron’s spike counts in 50 ms bins between 
100 and 500 ms after motion onset. As shown in Figure 4a, this What-decoder (orange) predicts 
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Figure 3. Variance and autocorrelation of the single-
trial signals. The analyses here are based on samples 
of ‍Sramp‍ at six time points during the first 300 ms of 
putative integration, using all 0% and ±3.2% coherence 
trials (‍N = 5927‍). Samples are separated by the width 
of the boxcar filter (51 ms), beginning at ‍t1 = 226‍ 
ms. (a) Variance increases as a function of time. The 
measure of variance is normalized so that it is 1 for 
the first sample. Error bars are s.e. (bootstrap). (b) 
Autocorrelation of samples as a function of time and 
lag approximate the values expected from diffusion. 
The upper triangular portion of the 6 × 6 correlation 
matrix for unbounded diffusion (‍ri,j‍ is represented by 
brightness). The values from the data (‍Sramp‍) are similar 
(right). (c) Nine of the 15 autocorrelation terms in (b) 
permit a more direct comparison of theory and data. 
The lower limb of the C-shaped function shows the 
decay in ‍ri,j‍ as a function of lag (‍j − i‍). This is the top 
row of (b). The upper limb shows the increase in ‍ri,j‍ 
as a function of time (for fixed lag). This is the lower 
diagonal in (b). Error bars are s.e. (bootstrap). Note 
that the autocorrelations incorporate a free parameter, 

‍ϕ ≤ 1‍, that serves to correct for an unknown fraction 
of the measured variance that is not explained by 
diffusion (see ‘Methods’).

The online version of this article includes the following 
figure supplement(s) for figure 3:

Figure supplement 1. Bounds induce sublinear 
increase in variance of diffusion paths.

https://doi.org/10.7554/eLife.90859
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Figure 4. The population signal predictive of choice and reaction time (RT) is approximately one-dimensional. 
Two binary decoders were trained to predict the choice (What-decoder) and its time (When-decoder) using 
the population responses in each session. The When-decoder predicts whether a saccadic response to the 
contralateral target will occur in the next 150 ms, but critically, its accuracy is evaluated based on its ability to 
predict choice. (a) Cross-validated choice decoding accuracy plotted as a function of time from motion onset (left) 
and time to saccadic choice (right). Values are averages across sessions. The What-decoder is either trained at the 
time point at which it is evaluated (time-dependent decoder, orange) or at the single time point indicated by the 
red arrow (‍t = 450‍ ms after motion onset; fixed training-time decoder, red). Both training procedures achieve high 
levels of accuracy. The When-decoder is trained to capture the time of response only on trials terminating with a 
left (contraversive) choice. The coding direction identified by this approach nonetheless predicts choice (green) 
nearly as well as the fixed training-time What-decoder. The black trace shows the accuracy of a What-decoder 
trained on simulated signals using a drift-diffusion model that approximates the behavioral data in Figure 1. Error 
bars signify s.e.m. across sessions. The gray bar shows the epoch depicted in the next panel. (b) The heat map 
shows the accuracy of a decoder trained at times along the abscissa and tested at times along the ordinate. Time 
is relative to motion onset (gray shading in a). In addition to training at ‍t = 450‍ ms, the decoder can be trained at 
any time from ‍300 < t < 500‍ ms (dashed box) and achieve the same level of accuracy when tested at any single 
test time. The orange and red traces in a correspond to the main diagonal (‍x = y‍) and the column marked by the 
red arrow, respectively. (c) Trial-averaged activity rendered by the projection of the population responses along 
the When coding direction, ‍SWhen‍. Same conventions as in Figure 2. (d) Cosine similarity of five coding directions. 
The heatmap shows the mean values across the sessions, arranged like the lower triangular portion of a correlation 
matrix. Cosine similarities are significantly greater than zero for all comparisons (all ‍p<0.001‍, t-test). (e) Correlation 
of single-trial diffusion traces. The Pearson correlations are calculated from ordered pairs of ‍

{
Sx

i (t), Sy
i (t)

}
‍, where 

‍Si(t)‍ are the detrended signals rendered by coding directions, ‍x‍ and ‍y‍, on trial ‍i‍. The detrending removes trial-
averaged means for each signed coherence, leaving only the diffusion component. Reported correlations are 
significantly greater than zero for all pairs of coding directions and sessions (all ‍p<10−23‍, t-test, see ‘Methods’). 
The variability in cosine similarity and within-trial correlation across sessions is portrayed in Figure 4—figure 
supplement 3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Weights are assigned to each of the ‍N ‍ simultaneously recorded neurons in each session 
using logistic regression to approximate a step that takes a value of 0 from 200 ms before motion onset to 150 
ms before saccade initiation, and a value of 1 for the following 100 ms (the last 50 ms before the saccade are 
discarded).

Figure supplement 2. Single-trials and trial-averaged signals furnished by the When- and What-decoders.

Figure supplement 3. Variability in cosine similarity and within-trial correlation across sessions.

Figure supplement 4. Comparison of linear and non-linear choice decoders.

Figure supplement 5. Decoding choice from subsets of neurons.

https://doi.org/10.7554/eLife.90859
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choice as accurately as a decoder of simulated data from a drift-diffusion model (black) using parame-
ters derived from fits to the monkeys’ choice and RT data (see ‘Methods’). The simulation establishes 
a rough estimate of the decoding accuracy that can be achieved, given the stochastic nature of the 
choice, were we granted access to the drift-diffusion signal that actually determines the decision. In 
this analysis, the decoder can use a different vector of weights at each point in time (time-dependent 
coding directions; see Peixoto et al., 2021). However, if the representation of the DV in LIP is one-
dimensional, then a decoder trained at one time should perform well when tested at a different time. 
The red curve in Figure 4a shows the performance of a What-decoder with a fixed training-time (450 
ms after motion onset; red arrow). This decoder performs nearly as well as the decoder trained at 
each time bin. The heatmap (Figure 4b) generalizes this observation. It shows two main features for 
all times ‍300 < t < 500‍ ms (dashed box). First, unsurprisingly, for a What choice decoder trained on 
data at one time ‍t = x‍, the predictions improve as the testing time advances (the decoding accuracy 
increases along any vertical) as more evidence is accrued. Second, and more importantly, decoders 
tested at time ‍t = y‍ perform similarly, independent of when they were trained (there is little variation 
in decoding accuracy along any horizontal). This observation suggests that a single vector of weights 
may suffice to decode the choice from the population response.

The second decoder is trained to predict whether a saccade to the contralateral choice target 
will be initiated in the next 150 ms. This When-decoder is trained by logistic regression to predict a 
binary output: 1 at all time-points that are within 150 ms of an upcoming saccade and 0 elsewhere 
(Figure 4—figure supplement 1). We validated the When-decoder by computing the area under an 
ROC (AUC) using the held-out (odd) trials (mean AUC over all time points: 0.84), but this is tangen-
tial to our goal. Although the When-decoder was trained only to predict the time of saccades, our 
rationale for developing this decoder was to test whether the When coding direction can be used to 
predict the choice. The green trace in Figure 4a shows the accuracy of ‍SWhen(t)‍ to predict the choice. 
The performance is almost identical to the choice decoder, despite being trained on a temporal 
feature of trials ending in the same left choice. This feat is explained by the similarity of signals 
produced by the When- and other coding directions. Note the similarity of the trial-averaged ‍SWhen‍ 
signals displayed in Figure 4c to those in Figure 2 (see also Figure 4—figure supplement 2, right). 
Indeed, the cosine similarity between the When and Ramp coding directions is ‍0.67 ± 0.03‍ (Figure 4d). 
In light of this, it is not surprising that the weighting vectors derived from both the What- and When-
decoders also render single-trial drift-diffusion traces that resemble each other and those rendered by 
other coding directions (Figure 4e). Together these analyses support the assertion that the DV is likely 
to be captured by a single dimension, consistent with Ganguli et al., 2008.

If the one-dimensional signals, ‍Sx(t)‍, approximate the DV, they should explain the variability of 
choice and RT for trials sharing the same direction and motion strength. Specifically, (i) early samples 
of ‍Sx(t)‍ should be predictive of choice and correlate inversely with the RT on trials that result in contra-
versive (leftward) choices, (ii) later samples ought to predict choice better and correlate more strongly 
(negatively) with RT than earlier samples, and (iii) later samples should contain the information present 
in the earlier samples and thus mediate (i.e., reduce the leverage) of the earlier samples on choice and 
RT. Each of these predictions is borne out by the data.

The analyses depicted in Figure 5 allow us to visualize the influence of the single-trial signals, 

‍Sx(t)‍, on the choice and RT on that trial. We focus on the early epoch of evidence accumulation 
(200–550 ms after random dot motion onset) and restrict the analyses to decisions with ‍RT ≥ 670‍ ms 
and ‍coherence ≤ 6.4%‍. The RT restriction eliminates 17% of the eligible trials. Larger values of ‍Sx(t)‍ 
are associated with a larger probability of a left (contraversive) choice and a shorter RT, hence nega-
tive correlation between ‍Sx(t)‍ and RT. We use the term, leverage, to describe the strength of both 
of these associations. The leverage on choice (Figure 5a, black traces) is the contribution of ‍Sx(t)‍ to 
the log odds of a left choice, after accounting for the motion strength and direction (i.e., the coeffi-
cients, ‍β1(t)‍ in Equation 8). The leverage on RT (Figure 5b) is the Pearson correlation between ‍Sx(t)‍ 
and the RT on that trial, after accounting for the effect of motion strength and direction on ‍Sx‍ and 
RT (see ‘Methods’). The leverage is evident from the earliest sign of evidence accumulation, 200 ms 
after motion onset, and its magnitude increases as a function of time, as evidence accrues (Figure 5, 
top). The filled circle to the right of the traces in each graph shows the leverage of ‍Sx‍ at ‍t = 550‍ ms, 
which is 120 ms before any of the included trials have terminated. Both observations are consistent 
with the hypothesis that ‍Sx‍ represents the integral of noisy evidence used to form and terminate the 

https://doi.org/10.7554/eLife.90859
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decision. Two control analyses demonstrate that the degree of leverage on choice and RT do not arise 
by chance: (i) random coding directions in state space produce negligible leverage (Figure 5—figure 
supplement 1, top), and (ii) breaking the trial-by-trial correspondence between neural activity and 
behavior eliminates all leverage (see Reviewer Figure 1 in reply to peer review).

Importantly, the leverage at earlier times is mediated by the later sample at ‍t = 550‍ ms. The blue 
traces in all graphs show the remaining leverage once this later sample is allowed to explain the 
choice and RT—by including, respectively, an additional term in the logistic regression (Equation 9) 
and calculating the partial correlation, conditional on ‍Sx(t = 0.55)‍. We assessed statistical significance 

a bLeverage on choice Leverage on RT
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Figure 5. The drift-diffusion signal approximates the decision variable. The graphs show the leverage of single-
trial drift-diffusion signals on choice and reaction time (RT) using only trials with ‍RT ≥ 0.67‍ s. Rows correspond 
to the same coding directions as in Figure 2. The graphs also demonstrate a reduction of the leverage of the 
samples at ‍t ≤ 0.5‍ s by a later sample of the signal at ‍t = 0.55‍ s. Error bars are s.e.m. across sessions. (a) Leverage 
of single-trial drift-diffusion signals on choice. Leverage is the value of ‍β1‍, the coefficient that multiplies ‍Sx(t)‍ in 
Equation 8. The black traces show the increase in leverage as a function of time. The dashed linestyle at the left 
end of three of the traces indicate values that are not statistically significant (p>0.05, bootstrap shuffle test, see 
‘Methods’). Filled symbols show the leverage at ‍t = 0.55‍ s. The blue curve (mediated) shows the leverage when 
the later sample is included in the regression (Equation 9). Open symbols show the leverage of ‍S

con
Tin ‍ at ‍t = 0.55‍ 

s (same value as the filled symbol in bottom row). The yellow curves (top and middle rows) show the leverage of 
the cross-mediated signal by ‍S

con
Tin (0.55)‍. For all three signals, ‍Sx(t)‍, leverage at t = 0.4 s is significantly mediated 

by ‍Sx(0.55)‍ and cross-mediated by ‍S
con
Tin (0.55)‍ (all ‍p<10−5‍, paired samples t-test). (b) Leverage of single-trial drift-

diffusion signals on response time. Same conventions as in (a). Leverage is the correlation between ‍Sx(t)‍ and RT. 
The mediated leverage is the partial correlation, given the later sample. For all three signals, ‍Sx(t)‍, leverage at t = 
0.4 s is significantly mediated by ‍Sx(0.55)‍ and cross-mediated by ‍S

con
Tin (0.55)‍ (all ‍p<10−8‍, paired samples t-test).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Control analyses bearing on the leverage and mediation results in Figure 5.

Figure supplement 2. The ‍Tin‍ neurons are not discoverable by their weight assignments.

Figure supplement 3. Cross-mediation of single-trial correlations with behavior.

https://doi.org/10.7554/eLife.90859
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of the mediation statistics, ‍ξ
Ch

‍ and ‍ξ
RT

‍ (Equations 7 and 10) in each session for the three signals 
shown in Figure 5 using a bootstrap procedure (see ‘Methods’, Equation 10). Mediation is significant 
in 47 of the 48 comparisons (all p<0.023, median ‍p<10−317

‍). The one non-significant comparison is 

‍ξ
Ch

‍ for ‍S
con
Tin ‍ in session 2 (p=0.73). The mediation is significant when this comparison is included in the 

combined data (‍p<10−9
‍, paired samples t-test). The stark decrease in leverage is consistent with one-

dimensional diffusion in which later values of the signal contain the information in the earlier samples 
plus what has accrued in the interim. Had we recorded from all the neurons that represent the DV, 
we would expect the mediation to be complete (e.g., partial correlation = 0). However, our recorded 
population is only a fraction of the entire population. Indeed, the observed degree of mediation is 
similar to values obtained from simulations of weakly correlated, noisy neurons (Figure  5—figure 
supplement 1, bottom).

There is one additional noteworthy observation in Figure 5 that highlights the importance of the 

‍T
con
in ‍ neurons. The top and middle rows (‍Sramp‍ and ‍SPC1‍) contain a second, open symbol, which is 

simply a copy of the filled symbol from the bottom row (‍S
con
Tin ‍). The yellow traces show significant 

cross-mediation of ‍Sramp‍ and ‍SPC1‍ by the sample, ‍S
con
Tin (t = 0.55)‍ (all ‍p<0.05‍; median ‍p<10−268

‍; bootstrap 
as above). This signal, carried by 9–21% of the neurons, mediates signals produced by the full popu-
lation of 54–203 neurons nearly as strongly as ‍Sramp‍ and ‍SPC1‍ mediate themselves. The observation 
suggests that minimal leverage is gained by sophisticated analyses of the full NSS compared to a 
simple average of ‍T

con
in ‍ neurons. This is both reassuring and disquieting: reassuring because the ‍T

con
in ‍ 

neurons compose the dominant projection from LIP to the portions of the superior colliculus (SC) and 
the frontal eye field involved in the generation of saccades toward the contralateral choice target 
(Paré and Wurtz, 1997; Ferraina et al., 2002); disquieting because the functional relevance of these 
neurons is not revealed by the other coding directions. The weights assigned to the ‍T

con
in ‍ neurons span 

all percentiles (mean IQR: 49–96; mean 71st percentile, ‍AUC = 0.74 ± 0.05‍) in the ramp coding direc-
tion. They contribute disproportionately to PC1 and the What- and When- decoders but not enough 
to stand out based on their weights. Indeed, the ability to predict that a neuron is ‍T

con
in ‍ from its weight 

or percentile is remarkably poor (Figure 5—figure supplement 2).
These observations support the idea that the single-trial signals, ‍Sramp‍, ‍SPC1‍, and ‍S

con
Tin ‍, approximate 

the DV used by the monkey to make its decision. In Figure 5—figure supplement 3, we show that the 
‍SWhat‍ and ‍SWhen‍ coding directions achieve qualitatively similar results. Moreover, a late sample from 

‍Sx(t)‍ mediates the earlier correlation with RT and choice of signals rendered by other coding direc-
tions, ‍Sy(t)‍, at earlier times. Such cross-mediation is consistent with the high degree of cosine similarity 
between the coding directions (Figure 4d). The observation suggests that the DV is a prominent signal 
in LIP, discoverable by a variety of strategies, and consistent with the idea that it is one-dimensional. In 
Figure 4—figure supplement 4, we show that linear and nonlinear decoders achieve similar perfor-
mance, which argues against a non-linear embedding of the DV in the population activity.

Activity of direction-selective neurons in area LIP resembles 
momentary evidence
Up to now, we have focused our analyses on resolving the DV on single trials, paying little attention 
to how it is computed or to other signals that may be present in the LIP population. The drift-diffusion 
signal approximates the accumulation, or integral, of the noisy momentary evidence—a signal approx-
imating the difference in the firing rates of direction-selective (DS) neurons with opposing direction 
preferences (e.g, in area MT; Britten et al., 1996). DS neurons, with properties similar to neurons in 
MT, have also been identified in area LIP (Freedman and Assad, 2006; Shushruth et al., 2018; Fanini 
and Assad, 2009; Bollimunta and Ditterich, 2012), where they are proposed to play a role in motion 
categorization (Freedman and Assad, 2011). We hypothesize that such neurons might participate in 
routing information from DS neurons in MT/MST to those in LIP that contain a choice target in their 
response fields.

We identified such DS neurons using a passive motion viewing task (Figure 6a and b, left). Neurons 
preferring leftward or rightward motion constitute 5–10% of the neurons in our sample populations 
Table 1. Figure 6 shows the average firing rates of 51 leftward-preferring neurons (‍M

left
in ‍, Figure 6a) 

and 26 rightward-preferring neurons (‍M
right
in ‍, Figure 6b) under passive motion viewing and decision-

making. The separation of the two traces in the passive viewing task is guaranteed because we used 
this task to identify the DS neurons. It is notable, however, that the DS is first evident about 100 ms 

https://doi.org/10.7554/eLife.90859
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after the onset of random dot motion, and this latency is also apparent in mean firing rates grouped by 
signed coherence during decision making (Figure 6a and b right). The activity of DS neurons is modu-
lated by both the direction and strength of motion. However, unlike the ‍Tin‍ neurons, the traces asso-
ciated with different motion strengths are mostly parallel to one another and do not reach a common 
level of activity before the saccadic eye movement (i.e., they do not signal decision termination).

In addition to their shorter onset latency, the direction-selectivity of ‍Min‍ neurons precedes the 
choice-selectivity of ‍T

con
in ‍ neurons by ∼100 ms (Figure 6c). The responses bear similarity to DS neurons 

in area MT. Such neurons are known to exhibit choice-dependent activity insofar as they furnish the 
noisy evidence that is integrated to form the decision (Britten et al., 1996; Shadlen et al., 1996). We 
computed putative single trial direction signals by averaging the responses from the left- and right-
preferring DS neurons, respectively. The resulting signals, ‍S

left
Min(t)‍ and ‍S

right
Min (t)‍, have weak leverage on 

choice, but the leverage does not increase as a function of time (Figure 6d, left). This is what would be 
expected if the ‍Min‍ neurons represent the noisy momentary evidence as opposed to the accumulation 
thereof (Mazurek et al., 2003). We failed to detect a correlation between RT and either ‍SMin‍ signal 
(Figure 6d, right). This is surprising, but it could be explained by lack of power—a combination of 
small numbers of ‍Min‍ neurons, narrow sample windows (50 ms boxcar) and the focus on the long RT 
trials. Indeed, we found a weak but statistically significant negative correlation between RT and the 
difference in leftward vs. rightward signals, averaged over the epoch ‍0.1 ≤ t ≤ 0.4 s‍ from motion onset 
(‍p=0.0004; H0‍  : ρ ≥ 0, see ‘Methods’).

We considered the hypothesis that these DS signals are integrated by the ‍T
con
in ‍ neurons to form the 

DV. The heatmap in Figure 6e supports this hypothesis. On each trial, we formed the ordered pairs, 

‍{x, y}‍, where ‍x = S̃left
Min(tx) − S̃right

Min (tx)‍ and ‍y = S̃con
Tin(ty)‍. The tilde in these expressions indicates the use of 
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Figure 6. The representation of momentary evidence in area lateral intraparietal cortex (LIP). (a) Leftward preferring neurons. Left, response to strong 
leftward (blue) and rightward (brown) motion during passive viewing. Traces are averages over neurons and trials. The neurons were selected for 
analysis based on this task, hence the stronger response to leftward is guaranteed. Note the short-latency visual response to motion onset followed 
by the direction-selective (DS) response beginning ∼100 ms after motion onset. Right, Responses during decision-making, aligned to motion onset 
and the saccadic response. Response averages are grouped by direction and strength of motion (color legend). The neurons retain the same direction 
preference during passive viewing and decision-making. The responses are also graded as a function of motion strength. (b) Rightward preferring 

neurons. Same conventions as (a). (c) Cumulative distribution of the times at which individual neurons start showing evidence-dependent activity. 

Evidence dependence emerges earlier in ‍M
left
in ‍ and ‍M

right
in ‍ neurons (purple) than in ‍T

con
in ‍ neurons (green). Arrows indicate the mean onset of evidence-

dependent activity in each signal. The markers at the end of the arrows show the s.e.m. across neurons. (d) Left, leverage of neural activity on choice for 

‍T
con
in ‍ (green), ‍M

left
in ‍ (purple), and ‍M

right
in ‍ (yellow) neurons.Rright, same as left, for the correlation between neural activity and reaction time. The absence 

of negative correlation is explained by insufficient power (see ‘Methods’). (e) Correlation between the neural representation of motion evidence—the 

difference in activity of neurons selective for leftward and rightward motion 
‍

(
Mleft

in − Mright
in

)
‍
—and the neural representation of the decision variable 

‍
(
Scon

Tin
)
‍ across different time points and lags. Horizontal and vertical lines indicate the onset of evidence-dependent activity in each signal. Positive 

correlations in the upper-left triangle indicate that the decision variable at a time point is correlated with earlier activity of the evidence signal.

https://doi.org/10.7554/eLife.90859
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standardized residual values, for each signed motion strength. The heatmap shows the correlation 
of these quantities across trials. If the hypothesis were true, the correlations should be positive for 

‍ty > tx‍ when ‍tx > 100‍ ms and ‍ty > 200‍ ms, and if the operation approximates integration, the level of 
correlation should be consistent at all lags, ‍ty − tx > 100‍ ms. The correlations are significant in the 
epoch of interest, and they differ significantly from the average correlations in the rest of the graph 
(i.e., ‍tx < 100‍, ‍ty < 200‍, or ‍ty < tx‍, p<0.0001 permutation test). Although correlative, the observation 
is consistent with the idea that evidence integration occurs within area LIP, rather than inherited from 
another brain area (Zhang et al., 2022; Bollimunta and Ditterich, 2012).

Discussion
We have observed a neural representation of the stochastic process that gives rise to a single decision. 
This is the elusive drift-diffusion signal that has long been thought to determine the variable choice 
and response time in the perceptual task studied here. The signal was elusive because it is the integral 
of noisy momentary evidence, hence stochastic, and undetectable in the firing rates when they are 
computed as averages over trials. The averages preserve the ramp-like drift component, leaving open 
the possibility that the averages are composed of other stochastic processes (e.g., Latimer et al., 
2015; Cisek et al., 2009). By providing access to populations of neurons in LIP, macaque Neuropixels 
probes (Trautmann et al., 2023) allowed us to resolve, for the first time, the evolution of LIP activity 
during a single decision.

The present findings establish that the ramp-like averages arise from drift-diffusion on single trials, 
and this drift-diffusion signal approximates the DV that arbitrates the choice and RT on that trial. We 
used a variety of strategies to assign a weight to each neuron in the population such that the vector 
of weights defines a coding direction in NSS. The weighted averages render population firing rate 
signals on single trials. Our experience is that any method of assigning the weights that captures a 
known feature of evidence accumulation (or its termination in a saccadic choice) reveals drift-diffusion 
on single trials, and this also holds for data-driven, hypothesis-free methods such as PCA. This is 
because the actual dimensionality of the DV is effectively one—a scalar function of time that connects 
the visual evidence to a saccadic choice (Ganguli et  al., 2008). Thus a weighting established by 
training a decoder at time ‍t = τ ‍ to predict the monkey’s choice performs nearly as well when tested at 
times other than the time the decoder was trained on (i.e., ‍t ̸= τ ‍; Figure 4).

The different strategies for deriving coding directions lead to different weight assignments, but 
the coding directions are linearly dependent (Figure 4d). They produce traces, ‍S(t)‍, that are similar 
(Figure 4e) and suggestive of drift-diffusion. Traces accompanying trials with the same motion coher-
ence meander and spread apart at a rate similar to diffusion (i.e., standard deviation proportional 
to ‍

√
t‍), and they exhibit a pattern of autocorrelation, as a function of time and lag, consistent with 

diffusion (Figure 3). The calculations applied in the present study improve upon previous applications 
(e.g., Churchland et al., 2011; de Lafuente et al., 2015; Shushruth et al., 2018) by incorporating the 
contribution of the smoothing to the autocorrelations. The departures from theory are explained by 
the fact that the accumulations are bounded. The upper bound and the fact that spike rates must be 
non-negative (a de facto lower reflecting bound) limits the spread of the single-trial traces.

The single-trial signals, ‍S
x
i (t)‍, approximate the DV that gives rise to the choice and decision time 

on trial ‍i‍ (Figure 5, Figure 5—figure supplement 3). Support for this assertion is obtained using a 
conservative assay, which quantifies the leverage of the first 300 ms of the signal’s evolution on deci-
sion outcomes—choice and RT—occurring at least 670 ms after motion onset. Naturally, the signals 
do not explain all the variance of these outcomes. The sample size is limited to ‍N ‍ randomly selected, 
often weakly correlated neurons. The sample size and correlation are especially limiting for the ‍T

con
in ‍ 

neurons (‍E(r) = 0.067 ± 0.0036‍). Control analyses show that the degree of leverage on behavior and 
mediation of these relationships by later activity is on par with that obtained from simulated, weakly 
correlated neurons (Figure 5—figure supplement 1). In addition, because they are identified post 
hoc, many have response fields that barely overlap the choice target. Presumably, that is why their 
responses are weak compared to previous single-neuron studies in which the choice targets were 
centered in the response field by the experimenter. Yet even this noisy signal, ‍S

con
Tin ‍, mediates signals 

produced by coding directions using the entire population (Figure 5).

https://doi.org/10.7554/eLife.90859
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The ‍T
con
in ‍ neurons were the first to be identified as a plausible candidate neural representation of 

the DV, based on firing rate averages (Shadlen and Newsome, 1996; Platt and Glimcher, 1999). 
This neural type is also representative of the LIP projection to the region of the SC that represents 
the saccadic vector required to center the gaze on the choice target. (Paré and Wurtz, 1997). In a 
companion study by Stine et al., 2023 we show that the SC is responsible for cessation of integration 
in LIP. Features of the drift-diffusion signal from the ‍T

con
in ‍ neurons are correlated with bursting events in 

corresponding populations of ‍T
con
in ‍ neurons in the SC, including the final saccadic burst that ends the 

decision with a saccade to the contralateral choice target. Stine et al., 2023 also show that inactiva-
tion of ‍T

con
in ‍ neurons in the SC has little effect on ‍S

con
Tin ‍ signals in LIP.

Previous studies of LIP using the random dot motion task focused primarily on the ‍T
con
in ‍ neurons (cf. 

Meister et al., 2013). It was thus unknown whether and how other neurons contribute to the deci-
sion process. The Neuropixels probes used in the present study yield a large and unbiased sample 
of neurons. Many of these neurons have response fields that overlap one of the two choice targets, 
but the majority have response fields that overlap neither the choice targets nor the random dot 
motion. Our screening procedures (delayed saccades and passive motion viewing tasks) do not supply 
a quantitative estimate of their spatial distribution. It is worth noting that neurons with response 
fields that overlap neither of the two choice targets were assigned nonzero weights by the What- and 
When-decoders, and yet, removal of the task-related neurons that represent the choice targets and 
motion (i.e., ‍Tin‍ and ‍Min‍) decreases decoding accuracy more substantially than removing all but the 

‍Tin‍ neurons (Figure 4—figure supplement 5). The accuracy the decoder achieves is likely explained 
by neurons with weak responses that simply failed to meet our criterion for inclusion in the ‍Tin‍ and 

‍Min‍ categories (e.g., neurons with response fields that barely overlap the choice targets or RDM). 
Some neurons outside these groups might reflect normalization signals from the ‍Tin‍ and ‍Min‍ neurons 
(Shushruth et al., 2018; Carandini and Heeger, 2011), imbuing broad, decision-related co-variability 
across the population. It thus seems possible that higher dimensional tasks (e.g., four choices instead 
of two) could decrease correlations among groups of neurons with different response fields.

The fact that the raw averages from a small number of weakly correlated ‍Tin‍ neurons furnish a DV 
on par with that furnished by the full population underscores the importance of this functional class. 
The role of the ‍Min‍ neurons is less well understood. Freedman and colleagues described direction 
selective neurons in LIP, similar to our ‍Min‍ neurons (Freedman and Assad, 2011; Fanini and Assad, 
2009; Sarma et al., 2016). They showed that the neurons represent both the direction of motion and 
the decision in their task. In contrast, we do not observe the evolution of the decision (i.e., DV) by the 

‍Min‍ neurons (Figure 6). The latency of the direction and coherence-dependent signal as well as its 
dynamics resemble properties of DS neurons in area MT. The delayed correlation between ‍Min‍ and ‍Tin‍ 
responses evokes the intriguing possibility that ‍Min‍ neurons supply the momentary evidence, which 
is integrated within LIP itself (Zhang et al., 2022). Future experiments that better optimize the yield 
of ‍Min‍ neurons will be informative, and direct, causal support will require perturbations of functionally 
identified ‍Min‍ neurons, which is not yet feasible. A natural question is why LIP would contain a copy of 
the DS signals that are already present in area MT. We suspect it simplifies the routing of momentary 
evidence from neurons in MT/MST to the appropriate ‍Tin‍ neurons. This interpretation leads to the 
prediction that DS ‍Min‍ neurons would be absent in LIP of monkeys that are naïve to saccadic decisions 
informed by random dot motion, as has been observed in the SC (Horwitz et al., 2004). Further, when 
motion is not the feature that informs the saccadic response—for example, in a color categorization 
task (e.g., Kang et al., 2021)—LIP might contain a representation of momentary evidence for color 
(Toth and Assad, 2002; Sereno and Maunsell, 1998).

The capacity to record from many neurons simultaneously invites characterization of the popu-
lation in NSS, in which the activity of each neuron defines a dimension. Often, population activity 
is confined to a low-dimensional subspace or manifold within the NSS (Vyas et al., 2020). An ever-
more-popular viewpoint is that representations within these subspaces are emergent properties of the 
population—that is, distributed, rather than coded directly by single neurons—a dichotomy that has 
its roots in Barlow’s neuron doctrine (as updated in Barlow, 1994). Indeed, it is tempting to conclude 
that the drift-diffusion signal in LIP is similarly emergent based on our NSS analyses—the identified 
subspaces (i.e., coding directions) combine neurons with highly diverse activity profiles. In contrast, 
grouping neurons by the location of their spatial response field reveals a direct coding scheme: ‍Tin‍ 
neurons directly represent the accumulated evidence for making a particular saccade and ‍Min‍ neurons 

https://doi.org/10.7554/eLife.90859
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represent the momentary evidence. We argue that this explanation is more parsimonious and, impor-
tantly, more principled. Grouping neurons based on spatial selectivity rests on the principle that 
neurons with similar RFs have similar projections, which is the basis for topographic maps in the visual 
and oculomotor systems (Schall, 1995; Silver and Kastner, 2009; Kremkow et al., 2016; Felleman 
and Van Essen, 1991). In contrast, there are no principles that guide the grouping of neurons in state 
space analyses, as the idea is that they may comprise as many dimensions as there are neurons that 
happen to be sampled by the recording device.

The present finding invites both hope and caution. It may be useful to consider a counterfac-
tual state of the scientific literature that lacks knowledge of the properties of LIP ‍Tin‍ neurons—a 
world without Gnadt and Andersen, 1988 and no knowledge of LIP neurons with spatially selective 
persistent activity. In this world we have no reason to entertain the hypothesis that decisions would 
involve neurons that represent the choice targets. We do know about DS neurons in area MT and 
their causal role in decisions about the direction of random dot motion (Salzman et al., 1992; Fetsch 
et al., 2018; Ditterich et al., 2003; Liu and Pack, 2017). We also know that drift-diffusion models 
explain the choice-response time behavior. Guided by no particular hypothesis, we obtain population 
neural recordings in the random dot motion task. We do not perform the saccade and passive viewing 
control experiments. What might we learn from such a dataset? We might apply PCA and/or train a 
choice decoder or possibly a When-decoder. If so, we could discover the drift-diffusion signal and 
we might also infer that the dimensionality of the signal is low. However, we would not discover the 

‍Tin‍ neurons without a hypothesis and a test thereof. We might notice that the coding directions that 
reveal drift-diffusion often render a response at the onset of the choice targets as well as increased 
activity at the time of saccades to the contralateral choice target. These facts might lead us to hypoth-
esize that the population might contain neurons with visual receptive fields and some relationship to 
saccadic eye movements. We might then query individual neurons, post hoc, for these features, and 
ask if they render the drift-diffusion signal too. The inferences could then be tested experimentally 
by including simple delayed saccades in the next experiment. The hope in this counterfactual is that 
data-driven, hypothesis-free methods can inspire hypotheses about the mechanism. The caution is to 
avoid the natural tendency to stop before the hypotheses and tests, thus accepting as an endpoint 
the characterization of population dynamics in high dimensions or a lower dimensional manifold. If LIP 
is representative, these mathematically accurate characterizations may fail to illuminate the neurobi-
ological parsimony.

Methods
Ethical approval declarations
Two adult male rhesus monkeys (Macaca mulatta, Primate Products) were used in the experiments. 
All training, surgery, and experimental procedures complied with guidelines from the National Insti-
tutes of Health and were approved by the Institutional Animal Care and Use Committee at Columbia 
University (protocols AAAN4900 and AC-AAAW4454). A head post and two recording chambers were 
implanted under general anesthesia using sterile surgical procedures (for additional details, see So 
and Shadlen, 2022). One recording chamber allowed access to area LIP in the right hemisphere. The 
other was placed on the midline, allowing access to the SC. Those recordings are described in Stine 
et al., 2023. Here we report only on the neural recordings from LIP, focusing on the epoch of decision 
formation.

Behavioral tasks
The monkeys were trained to interact with visual stimuli presented on a CRT video monitor (Vision 
Master 1451, Iiyama; viewing distance 57  cm; frame rate 75  Hz) using the psychophysics toolbox 
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Task events were controlled by Rex software (Hays 
et al., 1982). The monkeys were trained to control their gaze and make saccadic eye movements 
to peripheral targets to receive a liquid reward (juice). The direction of gaze was monitored by an 
infrared camera (EyeLink 1000; SR Research, Ottawa, Canada; 1 kHz sampling rate). The tasks involve 
stages separated by random delays, distributed as truncated exponential distributions

https://doi.org/10.7554/eLife.90859
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t − tmin
λ tmin ≤ t ≤ tmax

0 otherwise
‍�

(1)

where tmin and tmax define the range, ‍λ‍ is the time constant, and ‍α‍ is chosen to ensure the total prob-
ability is unity. Below, we provide the range (‍tmin‍ to ‍tmax‍) and the exponential parameter ‍λ‍ for all vari-
able delays. Note that because of truncation, the expectation ‍E(t) < tmin + λ‍.

In the main task (Figure 1a), the monkey must decide the net direction of random dot motion and 
indicate its decision when ready by making a saccadic eye movement to the corresponding choice 
target. After acquiring a central fixation point and a random delay (0.25–0.7 s, ‍λ =‍ 0.15), two red 
choice targets (diameter 1 dva) appear in the left and right visual fields. The random dot motion is 
then displayed after a random delay (0.25–0.7 s, ‍λ =‍ 0.4 s) and continues until the monkey breaks fixa-
tion. The dots are confined to a circular aperture (diameter 5 dva; degrees visual angle) centered on 
the fixation point (dot density 16.7 dots⋅dva-2s-1). The direction and strength of motion are determined 
pseudorandomly from ‍±{0, 3.2, 6.4, 12.6, 25.6, 51.2}‍% coherence. The sign of the coherence indicates 
direction (positive for leftward, which is contraversive with respect to the recorded hemisphere). The 
absolute value of coherence determines the probability that a dot plotted on frame ‍n‍ will be displaced 
by ‍∆x‍ on frame ‍n + 3‍ (‍∆t = 40ms‍), as opposed to randomly replaced, where ‍∆x =‍ dva, consistent with 
5 dva⋅s-1 speed of apparent motion (see also Roitman and Shadlen, 2002). The monkey is rewarded 
for making a saccadic eye movement to the appropriate choice target. On trials with 0% coherent 
motion, either saccadic choice is rewarded with probability 1/2. Errors are punished by extending the 
intertrial interval by up to 3 s (see Stine et al., 2023, for additional details). On approximately half of 
the trials, a 100 ms pulse of weak motion (±3.2% or 4.0% coherence for monkeys J and M, respec-
tively) is added to the random dot motion stimulus at a random time (0.1–0.8 s, ‍λ =‍ 0.4) relative to 
motion onset (similar to Kiani et al., 2008). Monkey M performed 9684 trials (five sessions); monkey J 
performed 8142 trials (three sessions). The data are also analyzed in a companion paper that focuses 
on the termination of the decision (Stine et al., 2023).

In the visually instructed delayed saccade task (Hikosaka and Wurtz, 1983), one target is displayed 
at a pseudorandom location in the visual field. After a variable delay (monkey M: 0.4–1.1  s, ‍λ =‍ 
0.3; monkey J: 0.5–1.5 s, ‍λ =‍ 0.2), the fixation point is extinguished, signaling ‘go’. The monkey is 
rewarded for making a saccade to within ±2.5 dva of the location of the target. In a memory-guided 
variant of the task (Gnadt and Andersen, 1988; Funahashi et al., 1989), the target is flashed briefly 
(200 ms) and the monkey is required to make a saccade to the remembered target location when the 
fixation point is extinguished. These tasks provide a rough characterization of the neural response 
fields during the visual, perisaccadic and delay epochs. Neurons are designated ‍T

con
in ‍ if they exhibit 

spatially selective activity at the location of the response target in the visual hemifield contralateral 
to the recorded hemisphere. This determination is made before analyzing the activity in the random 
dot motion task. We refer to the unweighted mean firing rate as ‍S

con
Tin ‍. Neurons are designated ‍T

ips
in ‍ 

if they exhibit spatially selective activity at the location of the response target in the visual hemifield 
ipsilateral to the recorded hemisphere. These analyses were conducted post hoc, after spike sorting.

The passive motion-viewing task is identical to the main task, except there are no choice targets and 
only the strongest motion strength (±51.2% coherence) is displayed for 500 ms (1 s on a small fraction 
of trials in session 1). The direction is left or right, determined randomly on each trial (‍Pleft = 1

2‍). The 
monkey is rewarded for maintaining fixation until the random dot motion is extinguished.

Behavioral analyses
We fit a neurally inspired variant of the drift-diffusion model (Figure 1c) to the choice-RT data from 
each session. The model constructs the decision process as a race between two accumulators: one 
accumulating evidence for left and against right (e.g., left minus right) and one accumulating evidence 
for right and against left (e.g., right minus left). The decision is determined by the accumulator that 
first exceeds its positive decision bound, at which point the decision is terminated. The races are 
negatively correlated with one another, owing to the common source of noisy evidence. We assume 
they share half the variance, ‍ρ = −

√
0.5 ≈ −0.71‍, but the results are robust to a wide range of reason-

able values. The decision bounds are allowed to collapse linearly as a function of time, such that

https://doi.org/10.7554/eLife.90859
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	﻿‍ B(t) = B0 − αt, α ≥ 0‍� (2)

We used the method of images (van den Berg et al., 2016; Shan et al., 2019) to compute the 
probability density of the accumulated evidence for each accumulator (which both start at zero at 
‍t = 0‍) as a function of time (‍t‍) using a time step of 1 ms. The decision time distributions rendered by 
the model were convolved with a Gaussian distribution of the non-decision times, ‍tnd‍, which combines 
sensory and motor delays, to generate the predicted RT distributions. The model has six parameters: 

‍κ, B0, α, µnd, σnd‍, and ‍C0‍, where ‍κ‍ determines the scaling of motion strength to drift rate, ‍C0‍ imple-
ments bias in units of signed coherence (Hanks et al., 2011), ‍µnd‍ is the mean non-decision time, and 

‍σnd‍ is its standard deviation (Table 2). Additional details about the model and the fitting procedure 
are described in van den Berg et al., 2016.

Simulated decision variables
We fit the race model described above to the combined behavioral data across all sessions (separately 
for each monkeys) and used the best-fitting parameters for monkey M (see Table 2) to simulate a total 
of 60,000 trials representing all signed coherences of the motion discrimination task. Each simulated 
trial yields a time series for two DVs, one for each accumulator in the race. We assume that the model-
derived non-decision time (‍tnd = 317‍ ms; Figure 1b) comprises visual and motor processing times at 
the beginning and end of the decision: 200 ms from motion onset to the beginning of evidence inte-
gration, and the remaining 117ms after termination. The latter approximates the variability observed 
in the saccadic latencies in the delayed saccade task and is simulated using a normal distribution, 

‍N (µ,σ)‍, where ‍µ = 117‍ ms and ‍σ = 39‍ ms (Stine et al., 2023). In this variable time period between 
decision termination and the response (saccade), the simulated DVs were assigned the values they 
had attained at the start of this epoch. For all analyses that employ these simulations, we use the DV 
for the left-choice accumulator because the neural recordings were from LIP in the right hemisphere.

Neurophysiology
We used prototype ‘alpha’ version Neuropixels1.0-NHP45 probes (IMEC/HHMI-Janelia) to record the 
activity of multiple isolated single units from the ventral subdivision of area LIP (LIPv; Lewis and Van 
Essen, 2000). We used anatomical MRI to identify LIPv and confirmed its physiological hallmarks with 
single-neuron recordings (Thomas Recording GmbH) before proceeding to multi-neuron recordings. 
Neuropixels probes enable recording from 384 out of 4416 total electrical contacts distributed along 
the 45-mm-long shank. All data presented here were recorded using the 384 contacts closest to the 
tip of the probe (Bank 0), spanning 3.84 mm. Reference and ground signals were directly connected to 
each other and to the monkey’s head post. A total of 1084 neurons were recorded over eight sessions 
(54–203 neurons per session) (Table 1).

The Neuropixels 1.0-NHP45 probe uses a standard Neuropixels 1.0 headstage and is connected 
via the standard Neuropixels1.0 5m cable to the PCI eXtensions for Instrumentation (PXIe) hardware 
(PXIe-1071 chassis and PXI-6141 and PXIe-8381 I/O modules, National Instruments). Raw data were 
acquired using the SpikeGLX software (http://billkarsh.github.io/SpikeGLX/), and single units were 
identified offline using the Kilosort 2.0 algorithm (Pachitariu et al., 2016; Pachitariu et al., 2020), 
followed by manual curation using Phy (https://github.com/cortex-lab/phy).

Neural data analysis
The spike times from each neuron are represented as delta functions of discrete time, ‍si,n(t)‍, on each 
trial ‍i‍ and each neuron ‍n‍ (‍dt = 1‍ ms). The weighted sum of these ‍si,n(t)‍ gives rise to the single-trial 
population signals:

	﻿‍
Sx

i (t) =
∑

n
wnsi,n(t)

‍�
(3)

where the superscript, ‍x‍, identifies the method or source that establishes the weights—that is, the 
coding direction in NSS or the neuron type contributing to a pooled average (e.g., ‍T

con
in ‍). For visu-

alization, the single-trial signals are smoothed by convolution with a truncated Gaussian using the 
MATLAB function, gausswin (width ‍= 80‍ ms, width factor ‍= 1.5‍, ‍σ ≈ 26‍ ms). Unless otherwise speci-
fied, all other analyses employ a 50 ms boxcar (rectangular) filter; values plotted at time ‍t‍ include data 
from ‍t − 24 to t + 25‍ ms.

https://doi.org/10.7554/eLife.90859
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We used several methods to define coding directions in the NSS defined by the population of 
neurons in each session. For PCA and choice decoding, we standardized the single-trial firing rates for 
each neuron using the mean and standard deviation of its firing rate at in the epoch ‍200 ≤ t ≤ 600‍ ms 
after motion onset. This practice led to the exclusion of two neurons (session 1) that did not produce 
any spikes in the normalization window. Those neurons were assigned zero weight.

‍Tin‍ neurons
Neurons were classified post hoc as ‍Tin‍ by visual-inspection of spatial heatmaps of neural activity 
acquired in the delayed saccade task. We inspected activity in the visual, delay, and perisaccadic 
epochs of the task. The distribution of target locations was guided by the spatial selectivity of simul-
taneously recorded neurons in the SC (see Stine et al., 2023, for details). Briefly, after identifying the 
location of the SC response fields, we randomly presented saccade targets within this location and 
seven other, equally spaced locations at the same eccentricity. In monkey J, we also included 1–3 
additional eccentricities, spanning 5–16 degrees. Neurons were classified as ‍Tin‍ if they displayed a 
clear, spatially selective response in at least one epoch to one of the two locations occupied by the 
choice targets in the main task. Neurons that switched their spatial selectivity in different epochs were 
not classified as ‍Tin‍. The classification was conducted before the analyses of activity in the motion 
discrimination task. The procedure was meant to mimic those used in earlier single-neuron studies of 
LIP (e.g., Roitman and Shadlen, 2002) in which the location of the choice targets was determined 
online by the qualitative spatial selectivity of the neuron under study. The ‍T

con
in ‍ neurons in the present 

study were highly selective for either the contralateral or ipsilateral choice target used in the RDM 
task (‍AUC = 0.89 ± 0.01‍ for 97% of neurons, Wilcoxon rank-sum test). Given the sparse sampling of 
saccade target locations, we are unable to supply a quantitative estimate of the center and spatial 
extent of the RFs. We next describe the methods to establish the coding directions.

Ramp direction
We applied linear regression to generate a signal that best approximates a linear ramp, on each trial, ‍i‍, 
that terminates with a saccade to the choice target contralateral to the hemisphere of the LIP record-
ings. The ramps are defined in the epoch spanning the decision time: each ramp begins at ‍fi(t0) = −1‍, 
where ‍t0 = 0.2‍ s after motion onset, and ends at ‍fi(t1) = 1‍, where ‍t1 = tsac − 0.05‍ s (i.e., 50 ms before 
saccade initiation). The ramps are sampled every 25 ms and concatenated using all eligible trials to 
construct a long saw-tooth function (see Figure 2—figure supplement 1). The regression solves for 
the weights assigned to each neuron such that the weighted sum of the activity of all neurons best 
approximates the saw-tooth. We constructed a time series of standardized neural activity, sampled 
identically to the saw-tooth. The spike times from each neuron are represented as delta functions 
(rasters) and convolved with a non-causal 25 ms boxcar filter. The mean and standard deviation of all 
sampled values of activity were used to standardize the activity for each neuron (i.e., Z-transform). 
The coefficients derived from the regression establish the vector of weights that define ‍Sramp‍. The 
algorithm ensures that the population signal ‍Sramp(t)‍, but not necessarily individual neurons, have 
amplitudes ranging from approximately -1 to 1.

We employed a lasso linear regression with ‍λ = 0.005‍. The vector of weights assigned across the 
neurons defines a direction in NSS, ‍Sramp‍, which we use to render the signal ‍Sramp(t)‍ on single trials by 
projecting the data onto this direction. To determine the effect of the regularization term in the lasso 
regression, we recomputed single-trial signals using standard linear regression, without regulariza-
tion. We then calculated the Pearson correlation between single-trial traces generated by projecting 
neural data onto the two coding directions (i.e., with and without regularization). The high correlation 
between single-trial traces (‍mean r = 0.99, across sessions‍) indicates that the findings are not a result of 
the regularization applied. Here and elsewhere we compute the mean ‍r‍ using the Fisher-z transform, 
such that

	﻿‍ r̄ = Zinv (E [
Z(rk)

])
‍� (4)

where ‍Zinv‍ is the inverse Fisher-z.

Principal component analysis (PCA)
We applied standard PCA to the firing rate averages for each neuron using all trials sharing the same 
signed motion coherence in the shorter of two epochs: 200 ms to either 600 ms after motion onset or 

https://doi.org/10.7554/eLife.90859
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100 ms before the median RT for the signed coherence, whichever produces the shorter interval. The 
results of the PCA indicate that the dimensionality of the data is low, but greater than 1. The participa-
tion ratio is 4.4 ± 1.3 (Mazzucato et al., 2016; Gao et al., 2017) and the first three PCs explain 67.1 
± 3.1% of the variance on average (mean ± s.e.m. across sessions). As in all other analyses of neural 
activity aligned to motion onset, we exclude data in the 100 ms epoch ending at saccade initiation on 
each trial. We projected the neural data onto the first PC to generate the signal ‍SPC1‍.

Choice decoder
For each experimental session, we trained logistic choice decoders with lasso regularization (‍λ = 0.01‍) 
on the population activity in 50 ms time bins spanning the first 500 ms after motion onset and the 300 
ms epoch ending at saccade initiation, respectively. Each of the decoders was trained on the even-
numbered trials. Decoder accuracy was cross-validated using the activity of held-out, odd trials at the 
same time point (Figure 4a). For the time bins aligned to motion onset, we also assessed the accuracy 
of the decoders trained on each of the time bins to predict the choice on time bins on which they were 
not trained (Figure 4b; King and Dehaene, 2014). We use the decoder trained on the bin centered 
on ‍t = 450‍ ms to define the What coding direction. We refer to this as the fixed training-time decoder 
to distinguish it from the standard machine-learning decoder, which assigns a potentially distinct 
vector of weights at each time point. We applied a similar analysis to simulated data (see ‘Simulated 
DVs’) to generate the black curve in Figure 4a. Assuming a stochastic drift-diffusion process giving 
rise to choice and response times, the exercise establishes a rough upper bound on decoder accuracy, 
were the actual drift-diffusion process known precisely.

When decoder
This decoder is trained to predict whether a saccade to the left (contralateral) choice target will occur 
within the next 150 ms. We applied logistic regression with lasso regularization (‍λ = 0.01‍) to spike 
counts from each neuron in discrete bins of 25 ms, from 200 ms before motion onset to 50 ms before 
the saccade. We used only trials ending in a left choice (including errors) and trained the decoder on 
the even numbered half of those trials. The concatenation of these trials forms a sequence of step 
functions which are set to 1 if a saccade occurred within 150 ms of the start of the 25 ms time bin and 
0 otherwise (Figure 4—figure supplement 1).

The spike counts were also concatenated across these trials to construct column vectors (one 
per neuron) that match the vector of concatenated step functions. These concatenated vectors, one 
per neuron, plus an offset (‍β0‍), serve as the independent variables of the regression model (one ‍β‍ 
term per neuron). The proportion of ‍β‍ weights equal to zero, controlled by the lasso parameter, ‍λ‍, 
was ‍0.8 ± 0.02‍ across sessions. The weights define the ‍SWhen‍ coding direction, which yields single-
trial signals, ‍SWhen(t)‍. The When-decoder signal is ‍SWhen(t) + β0‍. We validated the When-decoder by 
computing the area under an ROC (AUC) using the held-out (odd-numbered) trials ending in left 
choices (mean AUC over all time points and sessions: ‍0.84 ± 0.024‍, mean ± s.e.).

Our motivation, however, was to ascertain whether the When coding direction also predicts the 
monkey’s choices on all trials—that is, to perform as a What decoder. To this end, we predicted the choice 
using the sign of the detrended ‍SWhen(t)‍, formed by subtracting the average of the signal using all trials:

	﻿‍ S∗i (t) = SWhen
i (t) − ⟨S When

i (t)⟩i‍� (5)

where ‍⟨· · · ⟩i‍ denotes expectation across all trials contributing values at time ‍t‍. The choice accuracy is

	﻿‍

Ai(t) =





1 S∗i (t) > 0 & choicei = left

1 S∗i (t) ≤ 0 & choicei = right

0 otherwise ‍�

The green trace in Figure 4a shows ‍⟨Ai(t)⟩i‍.

Aggregation of data across experimental sessions
To combine single-trial data across sessions (e.g., ‍Sx(t)‍), we first normalize activity within each session 
as follows. Using all trials ending in the same choice, we construct the trial-averaged activity aligned 
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to both motion onset (‍0 ≤ tmotion ≤ 0.6‍ s) and saccade onset (‍−0.6 ≤ tsacc ≤ 0‍ s). This produces four 
traces. The minimum and maximum values (‍amin‍ and ‍amax‍) over all four traces establish the range, zero 
to one, of the normalized signal:

	﻿‍
ŝx(i, t) = sx(i, t) − amin

amax − amin ‍�
(6)

where lowercase ‍̂sx(i, t)‍ is the normalized signal across trials ‍i‍ and time ‍t‍ in an individual session.

Cosine similarity
We computed the cosine similarity between the weight vectors that define coding directions ‍Sramp‍, 
‍SPC1‍, ‍S

con
Tin ‍, ‍S

What‍, and ‍SWhen‍. Mean cosine similarities are portrayed in the heatmap in Figure 4d and 
also in Figure 4—figure supplement 3, top, where they are accompanied by error bars. We eval-
uated the null hypothesis that the mean cosine similarity is ≤0 with t-tests. We also performed two 
control analyses that deploy random coding directions in NSS. For each of the original coding direc-
tions, we obtained 1000 random coding directions as random permutations of the weight assign-
ments. The cosine similarities between pairs of such random directions in state space are shown in 
Figure 4—figure supplement 3, top. The cumulative distribution of cosine similarities under permu-
tation supports p-values less than 1/1000. In a second control analysis, we used random unit vectors 
as random coding directions (normal distribution with mean 0 and scaled to unit length).

Similarity of single-trial signals
We calculated Pearson correlation to quantify the similarity of the signals generated by pairs of 
coding directions, ‍x‍ and ‍y‍. For each trial, i, the detrended signals, ‍S̃

x
i ‍ and ‍S̃

y
i ‍, provide ordered pairs, 

‍{S̃x
i (tj), S̃y

i (tj)}‍ where ‍j‍ indexes successive 50 ms bins between 200 ms after motion onset and 100 ms 
before saccade initiation. We excluded trials comprising less than four such bins. Each trial gives rise 
to a correlation coefficient, ‍ri‍. We report the mean ‍r‍ using Equation 4. The ‍r‍-values for comparisons 
across all pairs of coding directions are summarized in Figure 4e, and variability across sessions is 
portrayed in Figure 4—figure supplement 3, bottom. For each pair of CDs and session, we evaluated 
the null hypothesis, ‍H0 : r̄ ≤ 0‍ (t-test).

We also performed two control analyses that deploy random CDs in NSS. These analyses control 
for the possibility that the correlations observed in the signals are explained by pairwise correlations 
between the neurons, regardless of the signals produced by the weighted sums. (i) We generated 
sets of single-trial traces ‍Srand(t)‍ by projecting the neural responses onto random CDs, defined by 
permuting the weights of each coding direction (‍Sramp‍, ‍SPC1‍, ‍S

con
Tin ‍, ‍S

What‍, and ‍SWhen‍). For each pair of 
CDs, we compute within-trial correlations between ordered pairs of trials using the same method 
applied to the original signals. We repeat this process for a total of 1000 random permutations per 
pair of CDs, per session. (ii) We sample a pair of random weight vectors from standard normal distri-
butions. Each weight vector has a dimension equal to the number of recorded neurons in the session. 
The weight vectors are normalized to sum to 1. We generate random CDs using these weights and 
compute within-trial correlations using the same method applied to the original signals. We repeat 
this process 1000 times per session. For both analyses, we evaluated the null hypothesis that the 
observed correlations are not greater than those produced by the random projections (t-tests using 
the Fisher-z transformed correlations). Mean ± stdev of the mean r-values between ordered pairs for 
both control analyses are summarized in Figure 4—figure supplement 3, bottom.

Leverage of single-trial activity on behavior
The leverage of single-trial signals, ‍Sx(t)‍, on choice and RT was assessed using the earliest 300 ms 
epoch of putative integration (‍0.2 < t < 0.5‍ s from motion onset), restricting analyses to trials with 
RTs outside this range (‍0.67 < RT < 2‍ s). The single-trial signals are smoothed with a 50 ms boxcar 
filter and detrended by subtracting the mean ‍S(t)‍ for trials sharing the same motion strength and 
direction (i.e., signed coherence). The RTs are also expressed as residuals relative to the mean RT, 
using trials sharing the same signed coherence and choice. We include trials with ‍|coh| ≤ 0.064‍ that 
result in choices of the left response target in this analysis. Including trials of ‍|coh| ≤ 0.128‍ produced 
comparable results. The leverage on RT is the Pearson correlation between the residual signals ‍̃S(t)‍ 
at each time ‍0.2 < t ≤ 0.5‍, and ‍R̃T ‍ on that trial, where the tilde indicates residual. Correlations were 
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computed per session and then averaged across sessions (Equation 4). We also show the correlation 
at t = 0.55 s, using the ordered pairs, ‍{S̃(t = 0.55), R̃T}‍. We quantify mediation of the leverage of earlier 
samples by the later sample of ‍Sx‍ by computing partial correlations ‍{S̃(t), R̃T | S̃(t = 0.55)}‍, also notated 

‍RS̃(t),R̃T|̃S(0.55)‍ in Figure 5. We show this mediation at all time points. We also report a mediation statistic 

(‍ξ
RT

‍) using the time point 200 ms after the beginning of putative integration (i.e., ‍S(t = 0.4)‍):

	﻿‍
ξRT = 1 −

R2
S̃(0.4), R̃T | S̃(0.55)

R2
S̃(0.4), R̃T ‍�

(7)

The rationale for using the 400 ms time point is (i) to allow the process to have achieved enough 
leverage on RT so that a reduction is meaningful and (ii) to preserve a substantial gap between this 
time and the sample at ‍t = 0.55‍ s (e.g., to avoid autocorrelations imposed by smoothing). The rare 
cases in which there was no negative correlation between ‍S(t = 0.4)‍ and RT were excluded from this 
summary statistic, ‍ξ

RT
‍, because no mediation is possible (Session 2: ‍Sramp‍ & ‍SPC1‍). When combining 

values of ‍ξ
RT

‍ across sessions, we rectify any ‍RS̃(t),R̃T|̃S(0.55) > 0‍ to zero. This occurs rarely when the medi-
ated correlation is near zero, typically at early times.

We compute the leverage on choice, ‍ξ
Ch

‍, using trials with ‍|coh| ≤ 0.064‍ and the same time points as 
for ‍ξ

RT
‍. Instead of an R-squared measure, we based ‍ξ

Ch
‍ on coefficients derived from logistic regression:

	﻿‍
Pcon(t) = 1

1 + e−
(
βcoh

0 +β1(t)S(t)
) , 0.2 ≤ t ≤ 0.5.

‍�
(8)

where ‍β
coh
0 ‍ is a set of constants that accounts for the proportion of contralateral choices at each signed 

motion strength and ‍β1(t)‍ is the simple leverage of ‍S(t)‍ on choice, analogous to simple correlation. The 
regression analysis was performed separately for each session. The coefficients ‍β1(t)‍ were divided by 
their standard error and then averaged across sessions. This normalization step was implemented to 
control for potential variation in the magnitude of ‍S(t)‍ (and therefore of ‍β1(t)‍) across sessions. Analo-
gous to partial correlation, we include the later time point and fit

	﻿‍
Pcon(t) = 1

1 + e−
(
βcoh

0 +β∗
1 (t)S(t)+β2S(0.55)

)
‍�

(9)

where ‍β
∗
1 (t)‍ is the amount of leverage at time ‍t‍ given the ‍S(0.55)‍. The regression coefficients ‍β

∗
1 (t)‍ were 

averaged across sessions after dividing them by the standard error of the ‍β1(t)‍ coefficients obtained 
from Equation 8. That is, the same normalization factors were used for the mediated and unmediated 
leverage. The summary statistic for choice mediation is defined by

	﻿‍

ξCh(t) =





1 β∗
1 (t) ≤ 0

1 − β∗
1 (t)

β1(t)
β∗

1 (t) > 0

undefined β1(t) ≤ 0 (i.e., mediation is not possible)‍�

(10)

For both types of mediation, we also test whether the earlier ‍S(t)‍ is mediated by the ‍T
con
in ‍ neurons 

by substituting ‍S
con
Tin (0.55)‍ for ‍S(0.55)‍ in Equation 9 and in the expression for partial correlations.

Because the mediation statistics, ‍ξ
RT

‍ and ‍ξ
Ch

‍, are, by their definition, non-negative, we assess 
statistical significance by bootstrapping. For each session, we construct 1000 surrogate data sets 
equal in size to the original data by sampling with replacement. The standard deviation of the 
leverage and mediation values at each time approximates the standard error. We compare the 
distribution of the mediation statistics, ‍ζ ‍, to their distribution under the null hypothesis, ‍H0‍, that 
the values arise by chance, instantiated by breaking the correspondence with the trial giving rise to 
the later sample, ‍Sx(t = 0.55s)‍. The permutation maintains correspondence in signed motion coher-
ence. We compare the distributions of mediation from the bootstrap and ‍H0‍ using the Wilcoxon 
rank-sum test.

To test whether the observed leverage of neural activity on choice and RT is achieved by projec-
tions onto arbitrary coding directions, we generated random weight vectors by permuting the weights 
associated with the first PC for each session. We projected activity onto this random coding direction, 
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applied the mediation analyses described above to this signal, and repeated this process 1000 times 
to produce a null distribution at each time point. The reported p-values represent the probability that 
the observed leverage was generated from this null distribution.

We performed a similar analysis to test whether the observed leverage depends on the trial-to-trial 
correspondence between neural activity and behavior. Here, the null distribution at each time point 
was generated by randomly permuting the trial indices associated with the neural activity and those 
associated with the behavioral measures.

Finally, we used the simulated data from the racing accumulator model to test the degree of 
leverage and mediation expected had we known the ground-truth DV on each trial (Figure 5—figure 
supplement 1). Because the simulated DV is noiseless (and the process is Markovian), the mediation 
is expected to be complete for all time points tested in the analyses. We therefore took two steps to 
make the simulated data more comparable to neural data: (i) we sub-sampled the simulated data to 
match the number of trials in each session. (ii) We generated ‍N ‍ noisy instantiations of the signal for 
each of the sub-sampled, simulated trials, where ‍N ‍ is the number of ‍T

con
in ‍ neurons in each session. The 

added noise is independent across time points and weakly correlated across all ‍N × (N − 1)/2‍ neuron 
pairs (‍r ≈ 0.09‍). We then applied the mediation analyses to the mean of these signals and repeated 
this process 1000 times.

We performed three control analyses to determine whether the results of the mediation analysis 
were specific, meaningful, and comparable to the results obtained for the DV of a race model. To 
showcase that the results are specific, we generated random weight vectors by permuting the weights 
of the PC1 coding direction. We repeated this procedure 1000 times per session and projected the 
data along these directions in NSS to generate ‍Srand‍. We then computed the mediation analyses 
detailed above on these signals and determined significance by comparing the leverage on choice 
and correlation with RT of ‍Sramp‍, ‍SPC1‍, and ‍S

con
Tin ‍ to the null distributions of ‍Srand‍ at each time point.

To estimate an upper limit for the degree of possible leverage and mediation, we simulated 60,000 
trials using the race model that best fits the behavioral data of monkey M (see ‘Simulated DVs’). For 
any noise-free representation of a Markovian integration process, the leverage of an early sample of 
the DV on behavior would be mediated completely by later activity as the latter sample by definition 
encompasses all variability captured by the earlier sample. We, therefore, took two steps to make 
the simulated DVs more comparable to real neural data. (i) For each session, we first subsampled the 
simulated data to match the each session. (ii) To evaluate a DV approximated from the activity of ‍n‍ 
neurons per session rather than the true DV represented by the entire population, we then generated 
‍n‍ noisy instantiations of the signal for each simulated trial. The added noise is independent across 
time points and weakly correlated across neurons (‍r ≈ 0.09‍). We then computed the measured DV 
‍Ssim‍ as the mean activity of these ‍n‍ simulated neurons. We repeated this procedure 1000 times per 
session. Figure 5—figure supplement 1, bottom, displays the mean and standard deviation across 
permutations of the leverage of ‍Ssim(t)‍ on behavior. The simulation results highlight that we would not 
expect the mediation of the leverage on behavior by a later sample to be complete (i.e., zero medi-
ated leverage for all t < 0.55).

Noise correlation between neurons
The mean pairwise correlation between ‍T

con
in ‍ neurons, reported in ‘Results’, is based on all pairs of 

simultaneously recorded ‍T
con
in ‍ neurons in each session and all trials with ‍RT > 0.5‍ s. For each neuron 

and each trial, we compute the time-averaged activity over the epoch ‍0.2 ≤ t ≤ 0.4‍. These scalar 
values are converted to residuals by subtracting the mean (for each neuron) across all trials sharing the 
same signed motion coherence. The residuals from all eligible trials are concatenated for each neuron 
to support the calculation of ‍N × (N − 1)‍ Pearson ‍r‍ values, where N is the number of ‍T

con
in ‍ neurons in 

the session. The mean correlation for all pairs of ‍T
con
in ‍ neurons across all sessions is computed using 

Equation 4.

Direction-selective neurons
We identified DS neurons (‍Min‍ neurons) using the passive motion-viewing task (described above). 
We classified a neuron as ‍Min‍ if it satisfies two criteria. The first criterion is a short-latency response 
to the onset of random dot motion, which we defined as a fivefold increase in firing rate relative 
to baseline in the first 80 ms following motion onset and a greater increase in the rate of rise in 
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activity in the same 80 ms epoch, compared to any rise in activity in the 200 ms preceding motion 
onset. The second criterion is direction selectivity. We calculated the area under the ROC (AUC) 
comparing leftward versus rightward for two separate epochs: (i) ‍0.15 ≤ t < 0.3‍ s and (ii) ‍0.3 ≤ t < 0.5‍ 
s. Neurons were determined to be DS if the AUC in either epoch exceeded 0.6. We excluded one 
neuron from this analysis because it switched its direction preference in the two epochs. We also 
excluded neurons that had previously been classified as ‍Tin‍.

In total, 6 of the 152 ‍T
con
in ‍ neurons fall into this group: three per monkey; at most two in a session. 

Removal of these neurons has negligible effects on the findings as pairs of ‍S
con
Tin ‍ constructed with and 

without removal are strongly correlated (r = 0.9867).

Latency analysis
We estimated the latency of DS responses using the CUSUM method (Ellaway, 1978; Lorteije et al., 
2015). We employed a receiver operating characteristic (ROC) analysis to estimate the selectivity of 
each ‍Min‍ neuron to motion direction. The AUC reflects the separation of the distributions of spike 
counts (100–400 ms after motion onset) on single trials of leftward and rightward motion, respectively. 
We included only correct trials with response times greater than 450 ms and motion strengths above 
10% coherence. For each neuron with ‍AUC > 0.6‍, we computed the difference in spike counts (25 ms 
bins) between correct trials featuring leftward and rightward motion. Subsequently, we accumulated 
these differences over time, following the CUSUM method. The resulting difference is approximately 
zero before the onset of direction selectivity and then either increases or decreases monotonically, 
depending on the preferred motion direction. To identify the transition between these two regimes, 
we fit a dog leg function to the cumulative sum of spikes: a flat line starting at ‍t0 = 0‍ followed by a 
linearly increasing component beginning at ‍t1 > t0‍. The time of the end of the flat portion (between 
0 and 500 ms from motion onset) of the fit was taken as the latency. Estimating latencies based on 
cumulative sums of spikes helps mitigate the effect of neuronal noise. The fitting step reduces the 
effect of the number of trials on latency estimates compared to traditional methods that rely on t-tests 
in moving windows.

Correlations between ‍Min‍ and ‍Tcon
in ‍

The analysis of the correlations shown in Figure 6e is based on the spike counts of the ‍M
left
in ‍, ‍M

right
in ‍, 

and ‍T
con
in ‍ neurons calculated in 25 ms windows. We computed residuals by subtracting from each 

trial and time bin its average over trials of the same signed coherence. The spike count residuals 
were then z-scored independently for each time bin and session. Trials from different sessions were 
concatenated, and the baseline activity—last 100 ms before motion onset—was subtracted from each 
trial. We refer to the resulting signals as ‍S̃

left
Min‍, ‍S̃

right
Min ‍, and ‍S̃

con
Tin‍. Trials with response time less than 0.55 s 

were discarded, and the correlations between the difference, ‍S̃
left
Min − S̃right

Min ‍, and ‍S̃
con
Tin‍ ,were calculated 

for all pairs of time steps between 0 and 500 ms (Figure 6e). Statistical significance was assessed 
using permutation tests, as follows. Two regions of interest (ROIs) were defined based on the time 
from stimulus onset for the ‍Min‍ (‍x‍) and ‍Tin‍ (‍y‍) dimensions. The first region of interest, ‍ROI1‍, is charac-
terized by ‍tx > 100‍, ‍ty > 200‍, and ‍ty > tx‍. According to our hypothesis that the ‍Min‍ neurons represent 
the momentary evidence integrated by ‍T

con
in ‍ neurons, we anticipated high correlations in this region. 

The second region of interest, ‍ROI2‍, is defined by ‍tx > 100‍, ‍ty > 200‍, and ‍ty < tx‍. If contrary to our 
hypothesis ‍Min‍ and ‍Tin‍ signals were influencing each other bidirectionally, we would expect high 
correlations in this region. We calculated the difference in correlations between these two groups, 

‍⟨ρROI1⟩ − ⟨ρROI 2⟩‍, where the expectation is over the time bins within each region of interest. This 
difference was compared to those obtained after randomly shuffling the order of the trials for one 
of the dimensions before calculating the pairwise correlations (‍Nshuffles = 200‍). We assess significance 
with a z-test given the mean and standard deviation of the values obtained under shuffling. The anal-
ysis was repeated with an alternative ‍ROI2‍ defined by ‍tx < 100‍ and ‍ty < 200‍, representing the times 
before direction selectivity is present in at least one of the two dimensions.

Correlations between ‍Min‍ signals and behavior
To assess the leverage of ‍Min‍ signals on choice and RT (Figure 6d), we performed the same logistic 
regression and pairwise correlation analyses as in Figure 5, substituting the ‍M

left
in ‍ and ‍M

right
in ‍ for 

‍Sx‍. The leverage on choice is not mediated by a later sample of either ‍Min‍ signal (‍ξ
Ch ≤ 9.6%‍; 
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not shown), and there is negligible leverage on RT to mediate. We suspect the failure to detect 
leverage of ‍Min‍ is explained by a lack of power, owing to the focus on long RT trials, narrow sample 
windows (50 ms boxcar), and the small number of ‍M

left
in ‍ and ‍M

right
in ‍ neurons. We support this suspi-

cion with a simpler correlation analysis using the difference of the ‍Min‍ signals (standardized as in 
the previous paragraph):

	﻿‍
ψk = mean

(
S̃left

Min(t) − S̃right
Min (t)

)
‍� (11)

on the interval ‍0.1 ≤ t ≤ 0.4‍ s from motion onset, on each trial, k, including trials with contraversive 
choices and ‍RT ≥ 500‍ ms. We calculated the Pearson correlation coefficient between ‍ψk‍ and RT. 
Response times were z-scored independently for each signed motion strength and session. We evalu-
ated the null hypothesis that the correlation coefficient is non-negative. The reported p-value is based 
on a one-tailed t-statistic.

Variance and autocorrelation of smoothed diffusion signals
The analyses in Figure 3 compare the variance and autocorrelation of the single-trial signals, ‍Sramp(t)‍, 
to those expected from unbounded drift-diffusion. To mitigate the effect of the bound, we focus on 
the earliest epoch of putative integration (200–506 ms after motion onset; six 51 ms counting windows) 
and the weakest motion strengths (‍|coh| ≤ 3.2%)‍. The single-trial signals are detrended by the mean 
across trials sharing the same signed motion coherence and baseline corrected by subtraction of 

‍S
ramp
i (t = 0.2)‍ from all time points on each trial ‍i‍.

The variance as a function of time and the autocorrelation as a function of time and lag are well 
specified for the cumulative sum of discrete iid random samples, but the autocorrelation is affected 
by the boxcar filter we applied to render the signals. We incorporated the correction in our character-
ization of unbounded diffusion. The derivation is summarized in Appendix 1, and we provide MATLAB 
code in the GitHub repository. The theoretical values shown in Figure 3 assume a 1 kHz sampling rate 
and standard Wiener process (i.e., samples drawn from a normal distribution with ‍{µ = 0,σ =

√
dt}‍). 

The evolution of variance would be a line from 0 to 1 over the first second of integration. The key 
prediction, shown in Figure 3a, is that the variance of mean single-trial signals, ‍Si(t)‍, over the epoch 
‍26 ± 25‍ ms should double in the epoch ‍(26 + 51) ± 25‍ ms, and triple in the epoch (‍26 + 2 × 51) ± 25‍ 
ms), and so on for each successive non-overlapping running mean. We therefore use arbitrary units, 
normalized to the measured variance of the first point. We do not know the variance of the drift-
diffusion signal that ‍S(t)‍ is thought to approximate, but we assume it can be decomposed—by the law 
of total variance—to a component given by drift-diffusion and components associated with spiking 
and other nuisance factors. We therefore search for a scalar non-negative factor ‍ϕ ≤ 1‍ that multiplies 
all terms in the diagonal of the empirical covariance matrix (i.e., the variance) before normalizing to 
produce the autocorrelation matrix. We search for the value of ‍ϕ‍ that minimizes the sum of squares 
between Fisher-z transformed correlation coefficients in the theoretical and empirical autocorrelation 
matrices (Figure 3b and c). Standard errors of the variance and autocorrelations in Figure 3a and c 
are estimated by a bootstrap procedure respecting the composition of motion strength and direction 
(the s.e. is standard deviation of each variance and autocorrelation term across 500 repetitions of the 
procedure.
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Data availability
Matlab code for all analyses and graphs are available at GitHub (copy archived at Steinemann, 2024). 
The data are deposited at Zenodo.
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Appendix 1
We consider a discrete time (sampling interval ‍dt‍) Wiener process with independent random increments 
‍ϵk‍ on time step ‍k‍ that are zero-mean noise with variance ‍σ

2(ϵk) = dt‍ (i.e., unit variance per second). The 
accumulated evidence (i.e., decision variable, DV) on time step ‍p‍ is

	﻿‍
DVp =

p∑
k=1

ϵk
‍�

(12)

For such a Wiener process,

	﻿‍

Cov
(
DVp, DVq

)
= Cov




p∑
j=1

ϵj,
q∑

k=1
ϵk


 =

p∑
j=1

q∑
k=1

Cov
(
ϵj, ϵk

)

‍�

As the increments ‍ϵk‍ are independent across time, ‍Cov(ϵj, ϵk)‍ is 0 for ‍j ̸= k‍ and ‍dt‍ for ‍j = k‍

	﻿‍
Cov

(
DVp, DVq

)
=

min(p,q)∑
j=1

Cov
(
ϵj, ϵj

)
= min(p, q)dt

‍�

We define the mean DV over a window of ‍±n‍ points as

	﻿‍
MDVn

p = 1
2n + 1

n∑
j=−n

DVp+j
‍�

(13)

We consider two time points ‍p < q‍ with window ‍n‍ such that there is no overlap and hence 

‍p + n < q − n‍

	﻿‍

Cov
(
MDVn

p, MDVn
q
)

= Cov


 1

2n + 1

n∑
j=−n

DVp+j,
1

2n + 1

n∑
k=−n

DVq+k




‍�

	﻿‍
= 1

(2n + 1)2

n∑
j=−n

n∑
k=−n

Cov
(
DVp+j, DVq+k

)
‍�

	﻿‍
= dt

(2n + 1)2

n∑
j=−n

n∑
k=−n

min(p + j, q + k)
‍�

	﻿‍
= dt

(2n + 1)2

n∑
j=−n

n∑
k=−n

p + j
‍�

	﻿‍
= dt

(2n + 1)2 (2n + 1)2p = p · dt
‍�

	﻿‍

Var
(
MDVn

p
)

= Var


 1

2n + 1

n∑
j=−n

DVp+j




‍�

	﻿‍
= 1

(2n + 1)2

n∑
j=−n

n∑
k=−n

Cov
(
DVp+j, DVp+k

)
‍�

	﻿‍
= 1

(2n + 1)2

2n+1∑
j=1

2n+1∑
k=1

Cov
(
DVp−n−1+j, DVp−n−1+k

)
‍�
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	﻿‍
= dt

(2n + 1)2

2n+1∑
j=1

2n+1∑
k=1

min(p − n − 1 + j, p − n − 1 + k)
‍�

	﻿‍

= dt
(2n + 1)2


(2n + 1)2(p − n − 1) +

2n+1∑
j=1

2n+1∑
k=1

min(j, k)



‍�

Given that ‍
∑n

j=1
∑n

k=1 min(j, k) =
∑n

j=1 j2 = n(n + 1)(2n + 1)/6‍

	﻿‍
Var

(
MDVn

p
)

= dt
(2n + 1)2

[
(2n + 1)2(p − n − 1) + (2n + 1)(2n + 2)(4n + 3)/6

]
‍�

	﻿‍
= 3p + 6np − 2n − 2n2

3(2n + 1)
dt

‍�

Therefore, the correlation

	﻿‍

Corr
(
MDVn

p, MDVn
q
)

=
Cov

(
MDVn

p, MDVn
q
)

√
Var

(
MDVn

p
)

Var
(
MDVn

q
)
‍�

	﻿‍

= 3p(2n + 1)√(
3p + 6np − 2n − 2n2

) (
3q + 6nq − 2n − 2n2

)
‍�

In contrast for the point estimates at ‍p‍ and ‍q‍

	﻿‍
Corr

(
DVp, DVq

)
=
√

p
q ‍�

It is useful to re-express the above two equations in terms of actual time ‍tp‍ and ‍tq‍ and window size 
‍tn‍. Substituting for ‍p‍, ‍q‍, and ‍n‍ with ‍tp/dt‍, ‍tq/dt‍ and ‍tn/dt‍

	﻿‍

Corr
(

MDVtn
tp , MDVtn

tq

)
=

3tp
(
2tn + dt

)
√(

3tpdt + 6tntp − 2tndt − 2t2n
) (

3tqdt + 6tntq − 2tndt − 2t2n
)
‍�

	﻿‍

=
3tp

(
2tn + dt

)
√((

3tp − 2tn
)

dt + 6tntp − 2t2n
) ((

3tq − 2tn
)

dt + 6tntq − 2t2n
)
‍�

	﻿‍
Corr

(
DVtp , DVtq

)
=
√

tp
tq ‍�
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