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Abstract Hippocampal replay – the time-compressed, sequential reactivation of ensembles of 
neurons related to past experience – is a key neural mechanism of memory consolidation. Replay 
typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple 
(SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neuro-
degenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay 
would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which 
SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This 
training protocol increased the prevalence of task-relevant replay during the targeted neurofeed-
back period by changing the temporal dynamics of SWR occurrence. This increase was also asso-
ciated with neural and behavioral forms of compensation after the targeted period. These findings 
reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an 
effective strategy for modulating hippocampal replay.

eLife assessment
This study tests the effects of using neurofeedback, in the form of reward delivery when large sharp 
wave-ripples (SWRs) are detected, on neurophysiological and behavioral measures. The results are 
important, and the authors provide convincing evidence that the rate of SWRs increased prior 
to reward delivery and decreased in the period after reward delivery, with no significant effect on 
memory performance. The ability to manipulate SWR rate in a naturalistic way is an exciting new 
tool for studies that seek to understand the function of SWRs.

Introduction
Across species, memory is central to adaptive behavior. Key memory processes are coordinated by the 
hippocampus, where highly plastic neural ensembles are thought to rapidly encode ongoing experi-
ence. Subsequently, patterns of neural activity associated with past experience are ‘replayed’ during 
offline states, such as sleep and pauses in ongoing behavior (Findlay et al., 2020). Replay events tend 
to coincide with sharp wave ripples (SWRs), characteristic bursts of high-frequency oscillatory activity 
in the CA1 region of the hippocampus that coordinate spiking activity in a wide range of cortical 
and subcortical brain regions (Buzsáki, 2015; Joo and Frank, 2018; Skelin et al., 2019; Todorova 
and Zugaro, 2020). The brain-wide coordination of activity during SWRs is thought to enable their 
proposed role in storing and maintaining memory traces in distributed hippocampal-cortical circuits 
(Frankland and Bontempi, 2005; Kaefer et al., 2022; Klinzing et al., 2019).
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Disrupting SWRs impairs learning and alters memory performance, establishing the necessity of 
SWRs for intact memory-guided behavior (Aleman-Zapata et al., 2022; Ego-Stengel and Wilson, 
2010; Girardeau et al., 2009; Jadhav et al., 2012; Nokia et al., 2012; Todorova and Zugaro, 2020). 
The importance of SWRs to memory function is further underscored by observations of reductions 
and abnormalities in SWRs concurrent with memory impairment in several rodent models of neuro-
logical disease (Gillespie et al., 2016; Iaccarino et al., 2016; Jones et al., 2019; Prince et al., 2021; 
Sanchez-Aguilera and Quintanilla, 2021; Stoiljkovic et al., 2018). These findings raise the compel-
ling possibility that driving or enhancing SWRs in cases where they are compromised could confer 
therapeutic benefit.

Indeed, a small number of previous studies have demonstrated positive manipulations of SWRs. 
Electrical stimulation and optogenetics have been used to evoke exogenous SWRs (Ishikawa et al., 
2014; Jiang et al., 2018; Stark et al., 2015; Stark et al., 2014, Oliva et al., 2020) or to enhance 
existing SWRs (Fernández-Ruiz et al., 2019; Maingret et al., 2016). While compelling, some limita-
tions remain. In some cases, studies have demonstrated the selective engagement of subsets of 
hippocampal neurons (Fernández-Ruiz et al., 2019; Oliva et al., 2020), but whether these manipu-
lations preserve the full diversity or accuracy of naturally occurring replay events remains unknown. 
Further, endogenous SWRs tend to occur within permissive windows influenced by cortical activity 
states (Battaglia et al., 2004; Isomura et al., 2006) and neuromodulatory tone (Novitskaya et al., 
2016; Vandecasteele et al., 2014); it is unclear whether exogenous events evoked outside of such 
states recruit downstream targets or engage brain-wide coordination as endogenous SWRs do. 
Finally, both electrical and optogenetic interventions are suboptimal for translation to human use. 
Both approaches would require invasive procedures, and clinical use of optogenetics in the brain faces 
even more fundamental barriers (White et al., 2020).

These limitations motivated us to take an alternative approach. Neurofeedback, wherein subjects 
are given real-time external feedback that allows them to alter their own brain states, has been shown 
to enable modulation of patterns of brain activity across species (Sitaram et al., 2017). The efficacy 
of neurofeedback-based therapy has been established for some clinical indications, such as ADHD 
and stroke, but the use of neurofeedback for memory-related symptoms has shown variable efficacy 
(Staufenbiel et al., 2014; Wang and Hsieh, 2013) and is still in early stages (Jiang et al., 2022; Klink 
et al., 2021; Trambaiolli et al., 2021). Moreover, most neurofeedback paradigms target the modula-
tion of oscillatory activity in specific frequency bands linked to cognitive functions, such as gamma or 
theta (Engelhard et al., 2013; Reiner et al., 2014; Wang and Hsieh, 2013) or overall activity levels 
(Klink et al., 2021), rather than focusing on specific memory-related hippocampal activity patterns 
(e.g. SWRs).

We therefore asked whether providing external positive neurofeedback coupled to SWRs would 
effectively drive SWR occurrence, a possibility consistent with prior work using intracranial stimulation 
of a reward-related brain region to achieve operant conditioning of SWRs (Ishikawa et al., 2014). 
Specifically, we set out to determine whether subjects could learn to use noninvasive positive neuro-
feedback to achieve a SWR-conducive state and increase SWR generation. Further, since the replay 
during SWRs is thought to be central to their function, we also sought to evaluate whether SWR-based 
neurofeedback could drive replay events with physiologically relevant spatial content.

We were able to develop a neurofeedback training paradigm for rats that increases the rates of 
SWRs and replay during the targeted neurofeedback period. Importantly, SWRs during the targeted 
period were reliably associated with replay events which represented a range of spatial content 
consistent with that seen in our previous study of replay in a very similar task (Gillespie et al., 2021). 
Interestingly, we also observed some compensatory changes outside of the targeted neurofeedback 
period. Our results demonstrate the efficacy of a neurofeedback strategy to modulate hippocampal 
replay in young, healthy animals. Further, they suggest that SWR generation during task performance 
is influenced by homeostatic regulation on the timescale of seconds, an important factor to consider 
when developing strategies to drive SWRs and replay therapeutically.

https://doi.org/10.7554/eLife.90944
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Results
A neurofeedback paradigm to promote SWRs
To reinforce SWR activity, our neurofeedback paradigm linked the online detection of large SWRs with 
positive reinforcement: delivery of a tone and food reward (Figure 1A). We embedded the neuro-
feedback requirement into a flexible spatial memory task (Figure 1B) that we have studied exten-
sively (Gillespie et al., 2021), allowing us to compare neural and behavioral data from subjects that 
perform the task with neurofeedback manipulation to those without the manipulation component. All 
subjects performed the same overall task, which comprised structured trials consisting of three steps 
(Figure 1C): first, initiating a trial by nosepoking at the home port; second, maintaining a nosepoke 
at whichever center port illuminates (randomly assigned on each trial) for a duration determined by 
the port’s criteria (see below); and finally, choosing one of eight arms to visit before returning to the 
home port to initiate the next trial.
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Figure 1. A neurofeedback paradigm to promote SWRs. (A) Schematic of the neurofeedback (NF) protocol: while 
subject’s nose remains in the neurofeedback port, SWRs (yellow) are detected in real time. Top trace: raw CA1 LFP; 
bottom trace: ripple filtered (150–250 Hz) CA1 LFP. During the neurofeedback interval, the first event exceeding 
a set standard deviation (sd) threshold (red line) triggers the delivery of a sound cue and food reward to the rat. 
(B) Top-down view of the maze environment. Reward ports are indicated by rectangles. (C) The rules of the spatial 
memory task for each of the behavioral cohorts. (D) Experimental timeline for each behavioral cohort.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A neurofeedback paradigm to promote SWRs.

https://doi.org/10.7554/eLife.90944
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Here we present data from two cohorts of animals. In the manipulation cohort, one center port 
served as the neurofeedback port and the other served as the delay port. At the neurofeedback port, 
the subject had to maintain its nose in the port until a suprathreshold SWR was detected, which trig-
gered delivery of a tone and food reward (Figure 1A, Figure 1—figure supplement 1A and B; and 
see Methods). The pre-reward period at the center port on neurofeedback trials is thus considered the 
‘targeted interval’ for neurofeedback. At the delay port, the subject was required to maintain its nose 
in the port for an unpredictable amount of time. The delay period length was randomly chosen from 
the pre-reward duration of recent neurofeedback trials, such that the amount of time spent waiting 
at each of the center ports was approximately matched (Figure 1—figure supplement 1C; and see 
Methods). Delay trials thus serve as an internal control for each subject, allowing us to assess the spec-
ificity of any neurofeedback effect. In the control cohort, whose data have been presented previously 
(Gillespie et al., 2021), both center ports required the subject to maintain its nose in the port for an 
unpredictable delay period (see Methods), after which a tone and food reward was delivered.

The memory aspect of this task is required at the third step of each trial: at any given time, one 
of the eight arms provides a large food reward; the others provide nothing. Over multiple trials, the 
subject must sample arms to discover which one provides reward and remember to return to that loca-
tion on subsequent trials. Occasionally, the rewarded arm changes, prompting the subject to return 
to sampling different arms to find the new goal location (Gillespie et al., 2021). Before implant, all 
subjects were pretrained on a delay-only version of this task, as summarized in the experimental time-
lines in Figure 1D. Once performance stabilized, a microdrive containing 30 independently movable 
tetrodes was implanted targeted to dorsal CA1 (Figure 1—figure supplement 1D). After implant, 
subjects were given several days to recover; during this time tetrodes were gradually lowered into the 
CA1 cell layer and the animal was briefly re-trained to perform the delay-only version of the task. The 
control cohort of subjects continued such performance for many days (Gillespie et al., 2021).

For subjects in the manipulation cohort, the neurofeedback component of the task was then 
introduced. Each day, 4–6 CA1 tetrodes were used for online SWR detection (Figure 1—figure 
supplement 1A; and see Methods). Because we use just a small subset of tetrodes, our online 
detection algorithm does not detect every SWR event identified by our offline detection strategy, 
which incorporates all CA1 tetrode data. This strategy provides two important benefits. First, it 
means that rewards are provided to SWR events on an unpredictable, variable schedule – an operant 
conditioning regime which drives robust, persistent task engagement (Ferster and Skinner, 1957). 
Second, we choose a different subset of tetrodes each day (see Methods) to ensure that subjects 
cannot learn to trigger the algorithm and earn reward by repeatedly producing a single firing 
pattern corresponding to specific units on those tetrodes. Initially, the threshold for online SWR 
detection is set to a low value, requiring only small SWRs to trigger reward. SWR size, as defined 
by the peak amplitude of the event, can be generally described by a long-tailed distribution, with 
larger events occurring less frequently than smaller events (Yu et al., 2017). Starting with a low 
threshold ensures that the animals received feedback relatively rapidly and remained engaged 
early in training.

Over subsequent days of training, the size threshold for SWR detection at the neurofeedback port 
was gradually increased, requiring the subject to generate larger and larger SWR events on neuro-
feedback trials in order to proceed with the task (Figure 1—figure supplement 1E). We then main-
tained the threshold at a high level for several additional days of behavior (‘stable period’).

Neurofeedback training increases SWR rate during the targeted 
interval
In response to the increasing SWR detection threshold, subjects in the manipulation cohort success-
fully produced increasingly large trigger events at the neurofeedback port over the course of training 
(Figure  2—figure supplement 1A). This result confirms that our feedback criteria were enforced 
as designed and that subjects were capable of meeting the criteria. As the detection threshold was 
raised, subjects could have met the neurofeedback criteria simply by waiting much longer for increas-
ingly rare suprathreshold events. This was not the case: instead, subjects produced large SWR events 
much faster than would have been predicted based on the initial prevalence of similarly sized events 
(Figure 2—figure supplement 1B). This suggests that subjects learned a strategy for generating large 
events that allowed them to meet the neurofeedback criteria more efficiently.

https://doi.org/10.7554/eLife.90944


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Gillespie et al. eLife 2023;12:RP90944. DOI: https://​doi.​org/​10.​7554/​eLife.​90944 � 5 of 21

We reasoned that two candidate strategies could have enabled subjects to limit their wait times: 
learning to increase the average size of SWR events or learning to increase the rate of SWR event 
generation across all sizes. To evaluate these possibilities, we quantified differences both between the 
two cohorts and between trial types of the neurofeedback cohort. When evaluating the significance of 
differences between the neurofeedback and delay trial types within each manipulation cohort subject, 
we used ranksum tests, since this approach allows us to capitalize on the large numbers of measure-
ments collected from each rat without assuming that they were normally distributed. To quantify 
systematic group effects of cohort, we used linear mixed-effects models (see Methods), since this 
approach allows us to appropriately account for correlations between measurements taken from each 
subject (Yu et al., 2022).

First, to assess whether subjects learned to directly increase the size of SWR events, we quantified 
the mean size of SWRs that occured pre-reward at the center ports on neurofeedback and delay trials 
during behavioral epochs from the stable period. Importantly, to account for the structure of the task, 
we excluded suprathreshold events detected by our online algorithm during both neurofeedback 
and delay trials (see Methods). These analyses revealed that subjects did not consistently increase 
SWR size: only two out of four subjects showed very slight but significant increases (Figure 2—figure 
supplement 1C). We also found no difference in SWR size between either trial type in the manipula-
tion cohort and the control cohort (Figure 2—figure supplement 1C, inset). Instead, when we quan-
tified the number of events of each size per behavioral epoch, we found that within the manipulation 
cohort, neurofeedback trials contained roughly twice as many events relative to delay trials for all SWR 
sizes (Figure 2—figure supplement 1D). These results rule out our first candidate strategy and indi-
cate that subjects met the neurofeedback criteria efficiently by modulating SWR rate, not event size.

The increase in SWR rate pre-reward was associated with striking differences in when SWRs 
occurred both within and across cohorts that were evident even in individual trials (Figure 2A). To 
assess how SWR rate was changing during the time spent at the center ports, we calculated SWR rate 
in 0.5 s bins throughout the time subjects spent nosepoked at the center ports, aligning each trial 
to reward delivery (Figure 2B). We excluded the trigger SWR of neurofeedback trials from analysis, 
since it is guaranteed to occur just prior to reward delivery in each neurofeedback trial and causes a 
large spike in SWR rate. Subjects in the manipulation cohort all showed high, stable SWR rates before 
reward delivery, with neurofeedback trials showing higher SWR rate than delay trials. By contrast, 
subjects in the control cohort rarely generated SWRs during the pre-reward period but showed much 
higher SWR rates than the manipulation cohort after reward delivery.

To quantify these effects, we calculated the mean SWR rate over each portion of the time at the 
center ports (Figure 2C): the pre-reward period (left), the post-reward period (middle), and the total 
port period (pre +post; right). Indeed, we found that during the pre-reward period, SWR rates were 
approximately twice as high on neurofeedback compared to delay trials, and both trial types from the 
manipulation cohort had much higher rates than trials from the control cohort (Figure 2C, left). This 
effect was not dependent on the trigger SWR, as excluding suprathreshold events from both neuro-
feedback and delay trials did not change the result (Figure 2—figure supplement 1E). This finding 
indicates that the neurofeedback training caused far more SWRs to occur prior to reward delivery at 
both center ports in the manipulation cohort, with the most pronounced effect occurring on neuro-
feedback trials.

These patterns differed after the reward at the center ports, where SWR rate was slightly but 
significantly higher during delay trials compared to neurofeedback trials in the manipulation cohort 
subjects but was overall indistinguishable between the cohorts (Figure 2C, middle). Relative to the 
pre-reward period, SWR rates were maintained at a high level during neurofeedback trials, while they 
increased substantially during delay and control trials (Figure 2—figure supplement 1F). Note that 
the slightly lower SWR rate post-reward on neurofeedback trials compared to delay trials could not 
be explained by a refractory period following the trigger SWR (Figure 2—figure supplement 1G). 
When considering both pre- and post-reward periods together, the neurofeedback trials still showed 
higher SWR rates than delay trials within the manipulation cohort, but the differences between 
each trial type and the control cohort were not significant (Figure 2C, right). This surprising result 
suggested that the pre-reward effects on SWR rate in the manipulation cohort were followed by 
some compensatory effects post-reward that resulted in a net normalization of total SWR rate across 
cohorts.

https://doi.org/10.7554/eLife.90944
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Figure 2. Neurofeedback training enhances SWR rate during targeted interval. (A) Example CA1 raw LFP traces and ripple filtered LFP traces 
(150–250 Hz) with SWRs highlighted in yellow, from the time spent at a center port on a neurofeedback (NF) trial (top) and a delay trial (middle) from a 
manipulation subject and a trial from a control subject (bottom). (B) SWR rate calculated in 0.5 s bins during the pre- and post-reward periods, aligned 
to the time of reward delivery (dashed lines) for subjects in the manipulation (top row) and control (bottom row) cohorts. Trigger SWRs on NF trials are 
excluded from the rate calculation, and time bins with fewer than 100 trials contributing data are not shown. Vertical bars indicate S.E.M. (C) SWR rate 
calculated during the pre-reward period (left), post-reward period (middle) and for the total time at the center port (right). Manipulation cohort n=1892, 

Figure 2 continued on next page
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Quantifying SWR count, rather than rate, provided further explanation for these surprising find-
ings. We quantified the number of SWRs during pre-reward, post-reward, and total center port times 
(Figure 2D). Our SWR count results were completely consistent with the SWR rate findings during 
the pre-reward period (Figure 2D, left) and largely consistent when considering the total center port 
time (Figure 2D, right). However, we found striking differences during the post-reward period, during 
which we saw a clear reversal of the pre-reward effect on SWR counts: neurofeedback trials contained 
fewer SWRs than delay trials, and both trial types contained far fewer SWRs post-reward than trials 
from the control cohort (Figure 2D, center). Since post-reward SWR rates were not different between 
the cohorts, the count results indicated that the compensatory effect must involve the amount of time 
spent at the port post-reward.

Indeed, we found clear differences in the amount of time that subjects chose to spend at the port 
after reward delivery. Here it is important to remember that in contrast to the pre-reward dwell time, 
which is imposed by task constraints, the post-reward dwell time is not externally constrained. It was 
notable, therefore, that neurofeedback trials had slightly but significantly shorter post-reward periods 
than delay trials (Figure 2E). Even more strikingly, subjects in the manipulation cohort remained at 
the port for approximately half as long as subjects in the control cohort (Figure 2E, inset), despite all 
trial types receiving the same amount of reward. The difference in dwell time could not be explained 
by the control cohort having fewer days of task experience than the manipulation cohort, since post-
reward dwell time tended to increase, rather than decrease, over subsequent days of performance 
within the control cohort (Figure 2—figure supplement 1H). Together, these findings suggest that 
both covert and overt processes regulate SWR generation. Animals learned to modulate their SWR 
rate when required during the pre-reward period of neurofeedback trials and did so covertly, without 
displaying obvious behavioral correlates. A subsequent overt change in behavior – leaving the well 
early – was then associated with lower numbers of SWRs post-reward in the neurofeedback cohort.

Of course, the subjects’ behavior during the time spent at the ports could have substantial impact 
on SWR generation processes. In particular, since SWRs are associated with periods of immobility, we 
wanted to ensure that the increase in SWRs prior to reward delivery during neurofeedback trials was 
not driven by differences in movement during this time. In general, the requirement for subjects to 
remain nosepoked forces subjects to remain in the same position; however, small head movements 
are possible. The mean speeds of the head-mounted LEDs while the subjects were nosepoked were 
below our cutoff for immobility (4  cm/s) for all trial types, however, we did observe a slightly but 
significantly lower mean speed during the pre-reward period on neurofeedback trials compared to 
delay trials and trials from the control cohort (Figure 3A). To assess whether this difference could 

684, 1157, and 1602 NF trials and 2022, 640, 1201, and 1552 delay trials; control cohort n=2490, 2629, 2027, and 3021 trials. For the pre-reward period, 
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× 10–23, 8.588x10–49, 6.180x10–4, and 7.127x10–257. Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort trials: p=4.075 × 10–18; 
manipulation cohort delay trials vs control cohort trials: p=1.835 × 10–18. For C-E, all within-subject ranksum p-values are corrected using the Benjamini-
Hochberg method and all groupwise comparisons are performed using linear mixed effects models (see Methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neurofeedback training enhances SWR rate during targeted interval.

Figure 2 continued

https://doi.org/10.7554/eLife.90944
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affect SWR rates, we selected the quartile of neurofeedback trials with the highest mean speeds and 
compared them to the quartiles of delay and control cohort trials with the lowest mean speeds. Even 
with much higher mean speeds (Figure 3B), the neurofeedback trials showed higher SWR rates than 
control and delay trials (Figure 3C). This analysis suggests that movement differences during the time 
spent at the center ports cannot explain the increased SWR rates observed prior to reward during 
neurofeedback trials.

The surprising stability of total SWR rate and count at both center ports across the two cohorts, 
despite changes in when those SWRs occurred relative to reward delivery, suggests that some regu-
latory mechanisms keep SWR generation within a set range for the center port phase of this task. We 
therefore asked whether we could detect evidence for this regulation on a trial-by-trial basis. Strict 
regulation within a single trial would predict that, for instance, trials with many SWRs prior to reward 
would likely have fewer SWRs post-reward. However, we did not find evidence for such a relation-
ship consistently: the correlation coefficients between pre-reward and post-reward SWR counts were 
positive in some subjects and negative in others, and always very small in magnitude, indicating a 
weak relationship (r=–0.084, 0.130. 0.118, and –0.061 and p=1.47 × 10–7, 3.84x10–6, 8.60x10–9, and 
6.01x10–4, for each subject in the manipulation cohort, respectively). Similarly, we did not find consis-
tent correlations between pre-and post-reward SWR rate nor dwell time. These results suggest that 
while compensatory regulation of SWR generation may be evident across hundreds of trials, high 
variability in SWR rate, count, and dwell time across trials may prevent consistent detection of this 
effect at the level of single trials.

Neurofeedback training preserves replay content during SWRs
SWRs are thought to support memory storage as a result of the specific patterns of spiking activity 
(replay) seen during these events (Gridchyn et al., 2020). Thus, we wanted to assess whether our 
SWR manipulation also increased replay during the targeted pre-reward period. As hippocampal CA1 
neurons often fire reliably at particular locations in space (‘place cells’) while an animal moves through 
an environment, replay content has most often been studied with regard to its spatial content. Specif-
ically, spatial content can be assessed by using a model that relates neural firing to specific locations in 
space. Inverting this ‘encoding model’ yields a ‘decoding model’ that can predict the spatial locations 
represented by the neural spiking within SWRs (Zhang et al., 1998).
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Figure 3. Speed does not account for differences in SWR rate. (A) Mean head velocity (smoothed), during pre-reward time at the center ports. Trial n 
are the same as in (E); manipulation cohort ranksum comparisons between NF and delay trials: p=2.447 × 10–223, 2.760x10–85, 3.247x10–80, and 9.077x10–36. 
Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort trials: p=1.260 × 10–7; manipulation cohort delay trials vs control 
cohort trials: p=1.121 × 10–4. (B) Mean head velocity for subsets of trials: the quartile of trials with the lowest mean head velocities are shown for the 
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trials. Manipulation cohort n=473, 171, 289, and 400 NF trials and 505, 160, 300, and 388 delay trials; control cohort n=624, 794, 423, and 913 trials. 
Manipulation cohort ranksum comparisons between NF and delay trials: p=1.342 × 10–160, 1.053x10–55, 9.488x10–98, and 4.751x10–130. Inset: Groupwise 
comparisons. Manipulation cohort NF trials vs control cohort trials: P=0.989; manipulation cohort delay trials vs control cohort trials: p=4.196 × 10–4. 
(C) SWR rate for the pre-reward period for the subset of trials included in G, showing that even in neurofeedback trials with equal or higher velocities 
than delay or control trials, the SWR rate remains significantly elevated. Trial n are the same as in (G); manipulation cohort ranksum comparisons 
between NF and delay trials: p=3.923 × 10–11, 1.155x10–8, 1.902x10–18, and 5.081x10–6. Inset: Groupwise comparisons. Manipulation cohort NF trials 
vs control cohort trials: p=1.019 × 10–6; manipulation cohort delay trials vs control cohort trials: p=7.958 × 10–3. For all panels, ranksum p-values are 
corrected using the Benjamini-Hochberg method and all groupwise comparisons are performed using linear mixed effects models.
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We used a clusterless state-space model (Chen et al., 2012; Deng et al., 2016; Denovellis et al., 
2021; Kloosterman et al., 2014) identical to the one we used previously to characterize the spatial 
content of replay for the animals in the control cohort (Gillespie et al., 2021). Briefly, we first project 
the 2D maze environment to 1D (Figure 4A). We next use times when the animal is moving through 
the maze to build a model that relates amplitude features of detected spikes to the location on the 1D 
maze where they were observed. We then can predict the spatial representation of spikes observed 
during movement (Figure 4B) and during SWRs (see Methods).

As expected, we observed a wide range of spatial representations during SWRs (Figure 4C). We 
define replay events as SWRs which predominantly contain spatial representations that are consistent 
with how a subject can experience the environment: those which represent a single location or a 
continuous trajectory through space (see Methods). These events frequently represent the subject’s 
current location (‘local’ replay; Figure 4C, left two events) as well as locations or trajectories that 
encompass distant regions of the maze environment (‘remote’ replay; Figure 4C, middle four events). 
In small subset of cases, SWRs contain a mixture of disjoint spatial representations with no single 
location clearly dominant (fragmented events; Figure 4C, right), which do not meet our replay criteria 
and are excluded from analysis.

Across a variety of measures, we found that neurofeedback training preserved replay content. In 
SWRs during the pre-reward period, there was no difference in the fraction of SWRs that qualified as 
replay between the two cohorts, and within each manipulation cohort subject, there was no consistent 
difference between neurofeedback and delay trials (Figure 4D).

Replay of remote locations has been proposed to play a particularly important role in updating 
or maintaining memory in the absence of direct experience (Gillespie et  al., 2021; Gupta et al., 
2010; Ólafsdóttir et  al., 2015). Consistent with our SWR findings, we find much higher rates of 
remote replay during the pre-reward period in neurofeedback trials compared to delay trials within 
the manipulation cohort, and low rates of remote replay during this time in trials from the control 
cohort (Figure 4E). However, if we consider both the pre-and post-reward periods combined, we find 
no difference in remote replay rate between the two cohorts for either trial type (Figure 4F). Within 
the manipulation cohort, neurofeedback trials have slightly but significantly higher rates of remote 
replay than delay trials over the combined pre- and post-reward period.

Prior work demonstrated that replay events in this task were enriched for specific, relevant past 
experiences that change as a function of goal location (Gillespie et al., 2021), and we saw the same 
biases in replay content in the manipulation cohort. We classified remote replay events based on the 
behavioral significance of the maze arm they represented and used a generalized linear model to 
assess how behavioral categories influence the likelihood of replay of a given arm (see Methods). As 
previously seen in the control cohort, we observed consistently enhanced representation of previous 
goal locations in replay events during the pre-reward period in both neurofeedback and delay trials 
within the manipulation cohort (Figure 4G). Similarly, we replicated the reduced prevalence of replay 
representing the immediately previously visited arm and a slightly increased prevalence of replay of 
the arm associated with the upcoming choice in both trial types of the manipulation cohort. These 
results also remain unchanged when we analyzed replay events during both pre- and post-reward time 
at the center ports (Figure 4—figure supplement 1).

Together, these results indicate that while the timing of replay is altered by the neurofeedback 
training, the content and behavioral relevance is preserved.

Neurofeedback does not alter behavioral performance in a trial-by-trial 
manner
Finally, we wanted to assess whether neurofeedback training would have an impact on the perfor-
mance of the spatial memory task. Since SWRs and remote replay rate were generally indistinguish-
able between the manipulation and control cohorts when the total time at the center ports was 
considered, we did not expect to find a large difference in behavior between the two cohorts. Within 
the manipulation cohort, however, neurofeedback trials generally showed higher SWR and remote 
replay rates, providing an opportunity to measure any behavioral consequences of the neurofeed-
back training. Our previous findings (Gillespie et  al., 2021), suggested that SWRs and replay do 
not drive trial-by-trial choice behavior in this task, so we did not predict that the increase in SWRs 
on individual neurofeedback trials would necessarily improve performance on those trials. On the 

https://doi.org/10.7554/eLife.90944
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Figure 4 continued on next page
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other hand, we speculated that the requirement to generate SWRs could serve as a distracting or 
cognitively demanding additional aspect of neurofeedback trials that could impair subsequent arm 
choice on those trials, and if so, this would be an important factor to consider when designing future 
implementations of the neurofeedback paradigm.

We used several metrics to quantify task performance. First, during trials when the subject had 
not yet discovered a new goal arm (‘search’ trials), optimal behavior dictates that the animal should 
sample each arm without repeating visits to unrewarded arms until the goal arm is found. To measure 
performance on these trials, we quantified search efficiency: the fraction of search trials when the 
subject visits an arm not yet sampled. The manipulation cohort subjects show a slight improvement 
in search efficiency compared to control subjects, which only reached significance on delay trials 
(Figure 5A). However, rather than relating to the neurofeedback training, this difference could have 
been driven by the additional days of experience that the manipulation cohort has on the task, since 
the control cohort showed a subtle but consistent increase in this performance measure over time 
(Figure 5—figure supplement 1). Consistent with this possibility, we find no significant difference in 
this metric between neurofeedback and delay trials. We next asked whether ‘redundant’ search trials 
– when the subject chooses to sample an arm it has already visited – tended to be neurofeedback or 
delay trials. We found no bias toward either of the two trial types: neurofeedback trials accounted for 
approximately half of redundant search trials for each subject (Figure 5B), indicating that neither the 
neurofeedback nor delay trial type was consistently overrepresented among the trials with suboptimal 
behavior.

To quantify performance during trials when the goal arm had already been discovered by the 
subject and should be chosen again (‘repeat’ trials), we measured the fraction of subsequent trials 
during which the subject correctly visited the goal arm. We also saw no difference between the two 
cohorts or between neurofeedback and delay trials on this measure (Figure 5C). Within the manipu-
lation cohort, we also found that error trials, when subjects do not choose to visit a known goal arm, 
were equally distributed between neurofeedback and delay trials (Figure 5D). Overall, these results 
suggest that on a single-trial timescale, the neurofeedback manipulation had neither a beneficial nor 
detrimental effect on behavior, in line with our previous findings (Gillespie et al., 2021).

Discussion
We demonstrate that neurofeedback can be used to substantially alter the occurrence of SWRs and 
replay in rat subjects. Compared to a control cohort receiving no manipulation, subjects that expe-
rienced several weeks of neurofeedback training developed striking changes in when SWRs tended 
to occur. These subjects learned to greatly increase the rate of SWRs prior to reward delivery at the 
center ports, a period when subjects in the control cohort tended to have very few SWRs. This effect 
was strongest on the trials when SWRs were required (neurofeedback trials), and weaker but still 
evident on delay trials, when they were not. Importantly, we found that the neurofeedback training 
preserved behaviorally relevant, interpretable spatial replay during SWRs, and resulted in an increased 

Manipulation cohort n=37, 14, 18, and 26 behavioral epochs per subject for each trial type and control cohort n=24, 32, 23, and 33 behavioral epochs. 
Manipulation cohort ranksum comparisons between NF and delay trials: p=0.1813, 0.5978, 0.0273, and 0.6738. Inset: Groupwise comparisons. 
Manipulation cohort NF trials vs control cohort trials: p=0.5523; manipulation cohort delay trials vs control cohort trials: p=0.2098. (E) Rate of remote 
replay events during pre-reward period. Manipulation cohort n=1843, 558, 1011, and 1513 NF trials and 1982, 535, 1038, and 1447 delay trials; control 
cohort n=2058, 2509, 1879, and 2795 trials per subject, respectively. Manipulation cohort ranksum comparisons between NF and delay trials: p=6.507 × 
10–126, 9.703x10–30, 2.991x10–79, and 6.293x10–55, respectively. Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort trials: p=9.073 
× 10–4; manipulation cohort delay trials vs control cohort trials: p=0.4304. (F) Rate of remote replay events during the pre- and post-reward periods 
combined. Trial n are the same as in (E). Manipulation cohort ranksum comparisons between NF and delay trials: p=7.666 × 10–47, 1.573x10–6, 1.044x10–16, 
and 5.768x10–6. Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort trials: p=0.6644; manipulation cohort delay trials vs 
control cohort trials: p=0.1477. (G) Generalized linear model coefficients quantify the extent to while replay of an arm is modulated by its behavioral 
relevance. Manipulation cohort n=1661, 392, 866, and 1281 NF trials and 1705, 367, 894, and 1213 delay trials per subject; control cohort n=1458, 
1636, 1464, and 2181 trials, respectively. For panels D-F, all ranksum p-values are corrected using the Benjamini-Hochberg method and all groupwise 
comparisons are performed using linear mixed effects models (see Methods).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Replay content is consistent when considering all replay at the center ports.

Figure 4 continued
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rate of remote replay on neurofeedback trials compared to delay trials. These results indicate that 
rapid neurofeedback is an effective approach to modulate physiologically relevant, memory-related 
patterns of activity in the hippocampus.

These results substantially extend a prior demonstration of operant conditioning of SWRs (Ishi-
kawa et al., 2014) in three important ways. First, we used external feedback (food reward) as the 
reinforcer instead of intracranial stimulation, a change which makes the paradigm more amenable 
to clinical translation. Second, we administer the training in the context of a spatial memory task, 
which allows us to show that the neurofeedback training itself does not impose a cognitive burden. 
Finally, we show that the SWR events observed in the neurofeedback condition contain interpretable, 
behaviorally relevant spatial replay, suggesting that they are likely to contribute to normal replay 
function. Our findings also extend existing neurofeedback approaches by modulating the occurrence 
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Figure 5. Neurofeedback does not alter behavioral performance. (A) During trials when the subject is searching for a new goal location, we quantify the 
fraction of trials in which the subject chooses an arm that has not yet been sampled. Manipulation cohort ranksum comparisons between neurofeedback 
(NF) and delay trials: p=0.9562, 0.7509, 0.7509, and 0.9562, respectively. Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort 
trials: p=0.5425; manipulation cohort delay trials vs control cohort trials: p=0.0069. (B) The fraction of redundant search trials per epoch which are NF (vs 
delay). Two-sided sign test vs 0.5: p=0.1102, 0.2668, 1, and 1, respectively. (C) During trials when the subject has discovered the goal arm, the fraction of 
subsequent trials in which the goal arm is visited (‘correct’ choice). Manipulation cohort ranksum comparisons between NF and delay trials: p=0.7202, 
0.7202, 0.8123, and 0.7202. Inset: Groupwise comparisons. Manipulation cohort NF trials vs control cohort trials: p=0.6946; manipulation cohort delay 
trials vs control cohort trials: p=0.2857. (D) The fraction of error repeat trials which are NF trials. Two-sided sign test: p=0.3770, 0.7744, 1, and 0.0227, 
respectively. For all panels, manipulation cohort n=37, 14, 18, and 26 behavioral epochs per subject, respectively, and control cohort n=24, 32, 23, and 
33 behavioral epochs. For (A) and (C), all ranksum p-values are corrected using the Benjamini-Hochberg method and all groupwise comparisons are 
performed using linear mixed effects models.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Search efficiency increases with experience.
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of discrete memory-related events in the hippocampus, in contrast to longer-timescale modulation of 
continuous oscillations (Engelhard et al., 2013; Klink et al., 2021; Reiner et al., 2014; Wang and 
Hsieh, 2013).

Additionally, our neurofeedback paradigm extends existing approaches for positive manipulations 
of SWRs. First, we show that SWRs during the targeted interval contain robust and diverse replay 
that represents experiences relevant to the current state of the behavioral task, indicating that our 
method of SWR promotion recruits physiologically relevant ensembles during SWRs, does not overly 
prescribe which ensembles participate in SWRs, and allows replay content to evolve and adapt to 
changing task demands. Further, because subjects learn to modulate SWR rate, rather than simply 
generating a single suprathreshold event on command, it is likely that they learn to engage an SWR-
permissive state during the targeted interval in which brain-wide neural activity and neuromodulatory 
tone also enter a SWR-permissive realm. This increases the likelihood that manipulated events could 
recruit downstream brain regions in physiologically relevant ways. Gaining experimental control over 
this SWR-permissive state offers compelling future opportunities to dissect extrahippocampal neural 
activity patterns and neuromodulatory influences on SWR generation.

Our results also revealed evidence for unexpected conservation of SWR rate and counts over the 
total time spent at the center ports. Despite the dramatic increase in SWR rate prior to reward delivery, 
we found that the overall number of SWRs produced was not different between the manipulation and 
control cohorts when the post-reward period was also taken into consideration. One can imagine 
that the existence of compensatory, potentially homeostatic, regulation of SWRs could be critical for 
adaptive behavior: an excess of replay could lead to intrusive, rigid memory or loss of behavioral flexi-
bility, while too little could lead to forgetting or memory interference. Such possibilities are supported 
by evidence for important synaptic scaling properties of SWRs (Norimoto et al., 2018) and a prior 
finding that electrical disruption of SWRs during sleep caused increased SWR occurrence over longer 
timescales (Girardeau et al., 2014). Our results show that this regulation occurs during waking as 
well as during sleep, and further suggest that it occurs on short timescales, such as between pre- and 
post-reward periods at the center port in the current task. Moreover, our findings identify evidence for 
multiple systems that could interact to regulate SWR occurrence: in addition to learning to modulate 
SWR rate directly, subjects also learned to use behavioral strategies, such as changing the amount of 
time spent at a port, that had the effect of normalizing SWR counts.

In the context of a potential therapeutic manipulation, our study provides both a cautionary result 
and cause for optimism. We did not observe an improvement in behavioral performance due to the 
neurofeedback manipulation. This is consistent with prior results showing a decoupling between 
replay and trial-by-trial decisions in this task (Gillespie et al., 2021) and others (Carey et al., 2019); 
we predict that longer timescale manipulations of SWR rate (such as moving to blocks of neurofeed-
back vs delay trials rather than randomly interleaving the two trial types) would affect memory consol-
idation and would show behavioral impacts. We also observed evidence for compensatory changes in 
the overall number of SWRs and replay events between the two cohorts prior to the memory-guided 
decision phase of the trial (outer arm choice). This suggests that in our young and healthy subjects, 
various homeostatic mechanisms act to maintain SWRs and the associated replay events at advanta-
geous levels, potentially limiting the extent to which we are able to shift SWR rates beyond normal 
levels.

At the same time, our study demonstrates that it is possible to use behavioral feedback to modu-
late the rates of SWRs and associated replay events during a specific time period. In subjects with 
compromised SWRs, such as rodent models of Alzheimer’s disease, even a moderate increase in 
SWRs or replay could move the system back towards healthy levels and potentially improve memory 
performance. Since the neurofeedback paradigm depends on the occurrence of at least a low endog-
enous rate of SWR occurrence, it would be important to implement neurofeedback training as a 
relatively early interventional strategy prior to extensive neurodegeneration, and training may take 
longer in aged or impaired subjects. Our results also raise the possibility that reduced SWR rates 
in disease models could be caused by a failure of homeostatic regulatory mechanisms. If this is the 
case, then a neurofeedback approach may even more effectively promote SWRs in the disease case, 
because it will not have to overcome internal regulation. Our current findings therefore serve as useful 
‘proof-of-concept’ results that can inform and shape the implementation and optimization of SWR-
focused neurofeedback interventions in disease models. Importantly, when combined with minimally 
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invasive techniques for detecting SWRs and replay in humans, such as MEG (Liu et al., 2019; Nour 
et al., 2021), this technique could be further adapted to patient populations to assess whether SWR-
triggered neurofeedback in humans could lead to similar enhancement or restructuring of replay, and 
ultimately whether such an intervention could be therapeutic.

Methods
Resource availability
Lead Contact
Requests for further information, resources, or code should be directed to and will be fulfilled by the 
lead contact, Anna Gillespie (​annagill@​uw.​edu).

Materials availability
No new reagents were generated by this study.

Experimental model and subject details
Data from four male Long-Evans rats (Charles River RRID:RGD_2308852; aged 4–9 months; 450–550 g) 
comprise the neurofeedback cohort of animals included in this study. We also include data from a 
cohort of four additional male Long Evans rats used for a previous study who did not receive neuro-
feedback training (Gillespie et al., 2021). All animals were kept on a 12 hr light-dark cycle (lights 
on 6am-6pm) with ad libitum access to food (standard rat chow) in a temperature- and humidity- 
controlled facility. Beginning 1 week prior to and extending throughout behavioral training and data 
acquisition, rats were singly housed and food restricted to a maximum of 85% of free-feeding weight. 
All procedures were approved by the Institutional Animal Care and Use Committee at the University 
of California, San Francisco (Protocol # AN191130).

Method details
Behavioral training
Food-restricted rats first complete two 40 min sessions of training on a linear track to receive liquid 
food reward (evaporated milk +5% sucrose) from automated, photogated reward ports at each end 
of the track. Motivated subjects (>50 rewards on final session) advance to learn a complex spatial 
memory task. This task takes place on a large, walled maze equipped with reward ports, the same 
as used in Gillespie et al., 2021. Pretraining occurs as described in Gillespie et al., 2021; briefly, 
subjects are gradually taught to reliably perform the task, with each trial consisting of an initiation 
poke at the home port and small (50 µL) reward delivery, then an extended dwell period at whichever 
of the two central ports illuminates, and finally a visit to one of the arm ports. During pretraining, both 
center ports require the rat to keep its nose in the port for a delay period, randomly chosen from a 
range, up to 5–10 s. After the delay is complete, a tone plays and a small reward (50 µL) is delivered. 
Finally, the subject must choose one arm to visit; only one out of the eight arms will deliver reward at 
any given time, so the rat must visit different arms over several trials to discover the goal arm. The rat 
must remember this location and return to it on subsequent trials to receive a large reward (150 µL) 
at the arm port. After a certain number of rewards earned at the goal arm (10-15), the goal arm will 
change, causing the rat to need to search among arms to find the new goal location. Later in training, 
goal locations are changed after 4–12 repeat visits. Any deviation from the trial structure described 
results in a 30–45 s ‘timeout’ during which all ports deilluminate; no reward will be delivered from any 
port until the timeout period is up and the subject initiates a new trial at the home port. Pretraining 
continues until the subject can perform reliably; usually 14 days of training with several 30–60 min 
training epochs per day.

Neural implant
Best performing subjects are selected for surgery and allowed ad libitum food access without behav-
ioral training for at least 5 days prior to implant. Each implant houses 30 independently moveable 
nichrome tetrodes (12.7 um, California Fine Wire), cut at an angle and gold plated to a final imped-
ance of 210–350 kOhms. The implant is stereotactically positioned such that each of the bilateral 
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cannulae containing 15 tetrodes is centered at 3.6–4 mm AP, ± 2.6 mm ML relative to skull bregma. 
A screw placed over cerebellum serves as global reference. Subjects were allowed at least 5 and up 
to 10 days for recovery after surgery, with ad libitum food and daily tetrode lowering until dorsal CA1 
cell layer is reached. One tetrode per hemisphere is targeted to the corpus callosum to serve as a local 
reference for each cannula.

Online SWR detection and neurofeedback training
After recovery, manipulation cohort subjects are allowed 1–2 days of the pretraining task paradigm 
to resume reliable performance before beginning the neurofeedback phase of training. One center 
port becomes the neurofeedback port, at which subjects must hold their nose in the port until a 
suprathreshold SWR is detected in order to trigger a sound cue and reward. The other port (delay 
port) also requires subjects to hold their nose in the port, but the sound cue and reward is delivered 
after a certain amount of time, independent of neural activity. This approach constrains the behavior 
of the animal to be overtly similar during both trial types. Delay times are chosen from the latencies 
until trigger SWR generation from the 8 prior neurofeedback trials, which results in the times spent 
at neurofeedback and delay ports being approximately yoked over the course of the epoch. We did 
not use the more traditional approach used in SWR intervention studies in which the manipulation 
is performed at a fixed offset after SWR detection (Fernández-Ruiz et al., 2019; Girardeau et al., 
2009; Jadhav et al., 2012), because in our paradigm this would introduce a systematic difference in 
the time spent waiting for reward at the two ports and would thus risk biasing the subject’s behavior. 
The neurofeedback/delay port locations were counterbalanced across subjects. Subjects complete 
two to three 30–90 min behavioral epochs each day; 30-min rest epochs in a small rest box precede 
and follow each behavioral epoch.

During behavioral epochs, SWRs are detected online by monitoring the smoothed envelope of 
ripple filtered (100–400 Hz) LFP from 4 to 6 CA1 cell layer tetrodes (Figure 1—figure supplement 
1A). The mean ‍µest‍ and standard deviation ‍σest‍ of the absolute value of the ripple filtered trace for 
each tetrode is calculated using an iterative procedure Jadhav et al., 2012:
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Here, x is the absolute value of the ripple filtered LFP, sampled at 1500 Hz, and ‍Nsmooth‍ is the 
number of samples used for smoothing (10,000). Values are measured prior to each behavioral epoch 
while the subject is alert and active in the rest box, allowed to stabilize, fixed, and used to determine 
the SWR detection threshold for the subsequent behavioral epoch. During behavior, the envelope ‍vest‍ 
of the ripple filtered LFP from the monitored tetrodes is calculated and smoothed using an asymmet-
rical iterative estimator that allows for rapid detection of power increases Jadhav et al., 2012:
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‍) and ‍gi‍ is a moving average of 1.2 

and the last 19 values of ‍gi‍ when the envelope was increasing (‍
�x� > vest

(
n − 1

)
‍). SWR detection is trig-

gered when the ripple envelope of 2 or more tetrodes crosses the detection threshold simultaneously. 
Trigger detection is followed by a delay of 50–100ms before the sound cue and reward is delivered 
(75ms for rat1, 100ms for rat2, 50ms for rat3 and rat4; see Figure 1—figure supplement 1B), in order 
to minimize the chance of aborting or interrupting the ongoing SWR event with abrupt stimuli. The 
set of detection tetrodes changes each day and always includes tetrodes from each hemisphere. The 
threshold for trigger SWR detection is gradually raised, across 14–20 days, from 4 sd to 16–20 sd, 
and then is maintained at the maximum threshold for 7–10 days (Figure 1—figure supplement 1E). 
Within each behavioral epoch, the detection threshold starts low (4 sd) and is raised to the maximum 
threshold for that day over the course of the first ~10 neurofeedback trials.

Data collection and processing
Continuous 30 kHz neural data, environmental events (port beam breaks, lights, reward delivery, online 
SWR triggers, etc), online position tracking of a head-mounted LED array, and 30 Hz overhead video 
were collected and synchronized using a SpikeGadgets data acquisition system. LFP was generated 
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by filtering between 0.1 and 300 Hz and was referenced to a tetrode located in ipsilateral corpus 
callosum. In parallel, the continuous signal was referenced and filtered between 600 and 6000 Hz, and 
spike events were detected when the voltage exceeded 100 μV on any channel of a tetrode.

Offline SWR detection
SWRs were detected offline using a consensus method incorporating information from all CA1 cell 
layer tetrodes (Figure 1—figure supplement 1A). LFP traces were filtered for ripple band activity 
(150–250 Hz), squared, summed over tetrodes, smoothed with a 4ms sd gaussian kernel, and the 
square root was taken (Kay et al., 2016). The resultant consensus trace was used for event detection 
with a threshold set 2 sd above the behavioral epoch mean and a minimum suprathreshold duration 
of 15ms. SWR start time was defined as the time when the consensus trace crossed epoch baseline 
prior to threshold crossing and end time was when the consensus trace returned to baseline (Gillespie 
et al., 2021). SWR size was calculated as the maximum threshold value at which the event would have 
been detected (in units of sd), and SWR length was calculated as the difference between start and 
end times for each event.

Histology
At the conclusion of data collection, tetrode locations were marked with electrolytic lesions and the 
subject was transcardially perfused with paraformaldehyde 24 hr later. The brain was fixed, sectioned 
into 50 μm slices, and Nissl stained to enable the localization of tetrode tips (Sosa et al., 2020).

Quantification and statistical analysis
All analyses were performed using custom code written in Matlab 2020a (Mathworks) and Python 3.6.

Statistical tests
All quantification of manipulation cohort trials (with the exception of Figure  2—figure supple-
ment 1A,B) use only trials from the stable period of neurofeedback training. For the control cohort, 
trials from all days of reliable post-implant task performance are used. Groupwise comparisons are 
performed using generalized mixed-effects models to account for and measure both individual vari-
ability and group effects. Using the Matlab fitglme function, we construct a model in which each 
sample (SWR event features, trials, etc) is assigned to an individual subject as well as to a cohort 
(manipulation or control). Linear models are used for rate, dwell time, SWR amplitude, and proportion 
measures, while a Poisson distribution is used for count measures. Each model is designed to compare 
samples from all trials of the control group to samples from neurofeedback and delay trials from 
the neurofeedback cohort for a specific time period (for instance, pre-reward-delivery at the center 
ports). To compare neurofeedback and delay trials within each manipulation cohort subject, we use 
nonparametric ranksum tests. We then perform post-hoc correction for multiple comparisons using 
the Benjamini-Hochberg method to control false discovery rate (Groppe, 2022).

Neurofeedback wait time prediction
For each behavioral session during the first ~7 days of pretraining and during early stages of neuro-
feedback training, SWRs occurring during center port times (pre-and post- reward) were binned by 
size and occurrence rate was calculated by dividing the number of SWRs within a given bin by the 
total time spent at the center port, cumulative over all behavioral epochs. Occurrence rates were 
only calculated for size bins containing at least 10 events. For later days, a predicted wait time was 
generated for each neurofeedback trigger event based on the occurrence rate calculated for that 
size of event. Events without a valid occurrence rate size bin were excluded from analysis. For each 
subject, actual and predicted wait times at the neurofeedback port were concatenated over behav-
ioral sessions and smoothed with a 200-trial moving average (Figure 2—figure supplement 1B).

SWR size quantification
The structure of the neurofeedback phase of the task guarantees that each neurofeedback trial 
includes exactly one suprathreshold SWR event: the pre-reward period continues until the first supra-
threshold event occurs and then immediately ends. However, no such criteria is enforced upon delay 
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trials. Therefore, comparing SWR size taking all events during the pre-reward period of each trial type 
results in a biased comparison. To control for this bias, the suprathreshold SWR at the end of each 
neurofeedback trial as well as any suprathreshold SWRs detected during delay trials are excluded 
from certain analyses (Figure 2—figure supplement 1C, D, and E).

Timewise SWR rate quantification
Each trial, from initial center port nosepoke to exit from the center port, was divided into 0.5 s bins 
and the count of SWRs in each time bin was calculated. Trials were aligned to the tone/food reward 
delivery and the mean and S.E.M. for each time bin was calculated across all trials and converted 
to Hz. Only bins with at least 100 trials contributing data were included. The trigger SWR for each 
neurofeedback trial was excluded from analysis to avoid a large spike in the trace just prior to reward 
delivery that distracted from the comparisons between the SWR rates before and after the trigger 
event.

Clusterless decoding
Marks were calculated for each event as the amplitude of the spike waveform on each of the four 
tetrode channels at the time of peak amplitude following threshold crossing. Bayesian marked point 
process clusterless decoding with a state space movement model was performed as described in 
Denovellis et al., 2021 and exactly as implemented for this maze environment in Gillespie et al., 
2021. Briefly, tracked position was linearized such that positions in the central 2D area of the maze 
were collapsed onto a single line extending from the home well to the edge of the arms. Linear-
ized position was binned into 5  cm bins. The encoding model comprised of all marks from CA1 
tetrodes collected when the subject was moving >4 cm/s, and 2ms time bins were used. Two move-
ment models were included: one with an equal probability of moving one position bin forward, back, 
or staying in the same position (continuous state), and one with an equal probability of moving to any 
other possible position bin (fragmented state). A uniform discrete transition matrix governed transi-
tions between movement states, and a resultant joint posterior was computed. For the decoding of 
movement times the spike being decoded was always excluded from the encoding model.

Replay content analysis
Events were categorized as interpretable if the probability of the continuous movement model 
exceed a 0.8 threshold during the event and if at least 30% of the posterior density was in a single 
maze segment. Interpretable events were categorized as local if the majority of posterior density was 
located in the same maze segment as the animal’s current position and remote otherwise. Poisson 
generalized linear models were used to quantify the effect of a given behavioral arm category on 
the likelihood of replay (Gillespie et al., 2021). Search and repeat trials from the second goal block 
onwards were used for GLM analysis (so that all trials included a valid previous goal option). Using 
the MATLAB fitglm function, we constructed one binary predictor per arm category (previous arm, 
future arm, and previous goal arm); each trial contributed one entry per maze arm with a one if the 
arm was described by the category and a zero if it was not. The response variable for each entry was 
the number of replays of the arm seen on that trial. The resultant model coefficients were converted 
to fold change by exponentiation and confidence intervals were calculated using MATLAB’s coefCI 
function.
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