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Abstract Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal 
cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothe-
sized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin 
degradation, but computational modeling has not yet explored these two phenomena together 
systematically. Here, we used a two-pronged modeling approach to determine how age-related 
myelin changes affect a core cognitive function: spatial working memory. First, we built a multi-
compartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including 
myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This 
model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after 
demyelination and subsequent remyelination. Next, we incorporated the single neuron results into 
a spiking neural network model of working memory. While complete remyelination nearly recovered 
axonal transmission and network function to unperturbed levels, our models predict that biologically 
plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial 
working memory impairment with aging. The present computational study unites empirical data 
from ultrastructure up to behavior during normal aging, and has broader implications for many 
demyelinating conditions, such as multiple sclerosis or schizophrenia.

eLife assessment
This manuscript reports a valuable computational study of the effects of axon de-myelination and 
re-myelination on action potential speed and propagation failure. The manuscript presents solid 
evidence for the effects of de- and re-myelination in different models of working memory, with 
potential implications in disorders such as multiple sclerosis. The exposition of the manuscript is 
targeted for researchers interested in biophysical models of cognitive deficits.

Introduction
Normal aging often leads to impairment in some cognitive domains, as evidenced by reduced perfor-
mance on learning and memory tasks in both humans (Albert, 1993; Salthouse et al., 2003; Fisk and 
Sharp, 2004; Rhodes, 2004; Sorel and Pennequin, 2008) and non-human primates (Moore et al., 
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2006; Shamy et al., 2011; Moore et al., 2017; Comrie et al., 2018; Chang et al., 2022; Moore et al., 
2023). In the rhesus monkey, age-related working memory decline is accompanied by sublethal struc-
tural and functional changes in vascular elements, individual pyramidal neurons, glial cells, and white 
matter pathways (reviews: Hof and Morrison, 2004; Luebke et al., 2010; Peters and Kemper, 2012; 
Morrison and Baxter, 2012). It is well documented that cortical neurons do not die during normal 
aging but rather undergo a number of morphological and physiological alterations, particularly in the 
monkey dorsolateral prefrontal cortex (dlPFC), the critical cortical circuit for working memory. For 
example, during normal aging Layer 3 pyramidal neurons in rhesus monkey dlPFC exhibit a significant 
loss of dendritic spines and synapses (Chang et al., 2005; Peters et al., 2008; Chang et al., 2022), 
and electrophysiological changes observed both in vitro (Chang et al., 2005; Ibañez et al., 2019; 
Chang et al., 2022) and in vivo during a spatial working memory task (Wang et al., 2011). Perhaps 
most strikingly, extensive myelin dystrophy during normal aging has been observed in both gray and 
white matter (Peters et al., 2001; Bowley et al., 2010; review: Peters, 2007), including in monkey 
dlPFC (Peters and Sethares, 2002; Peters and Sethares, 2003; review: Peters, 2009). Ultrastructural 
studies reveal that 3–6% of myelin sheaths in dlPFC exhibit age-related alterations including splitting 
of the major dense line of the myelin sheath, balloons, and redundant myelin (Figure 1; Peters and 
Sethares, 2002). Remyelination has also been observed across the adult lifespan in monkey dlPFC 
and there is a 90% increase in the number of paranodal profiles in aged versus young monkeys, indi-
cating higher numbers of internodal myelin sheaths with aging (Peters and Sethares, 2003). Aged 
subjects also had a significant proportion of abnormally short and thin myelin sheaths (Peters and 
Sethares, 2003). The hypothesized mechanism to explain these findings (review:Peters, 2009) is 
that myelin degradation begins as oligodendrocytes degenerate due to oxidative stress, and that 
axons accumulate dense inclusions in spaces between the lamellae of their associated myelin sheaths. 
As oligodendrocytes die, the associated sheaths detach from the axolemma, leaving bare axonal 
sections (complete demyelination). Subsequently, surviving mature oligodendrocytes remyelinate the 
bare segments, but with shorter and thinner sheaths. It is highly plausible that the altered sheaths 
lead to a slowdown of signal propagation that contributes to cognitive slowing/impairment with 
aging. Indeed, several of the changes that pyramidal neurons undergo with aging correlate with the 
degree of observed cognitive impairment (review: Luebke et al., 2010; Peters and Kemper, 2012; 
Shobin et al., 2017; Moore et al., 2023), including myelin dystrophies and remyelination (Peters 
and Sethares, 2002; Peters and Sethares, 2003; Dimovasili et al., 2023). However, which changes 
are the key determinants of age-related cognitive decline has not yet been firmly established (Konar 
et al., 2016; Motley et al., 2018; Cleeland et al., 2019). This is in part due to the difficulty of isolating 

Figure 1. Electron photomicrographs (transverse sections) depicting age-related alterations in myelinated nerve fibers of area 46 of the rhesus monkey 
dorsolateral prefrontal cortex (dlPFC). (A) Neuropil from a 10-year-old monkey. Healthy and compact myelin is visible as thick outlines surrounding nerve 
fibers which have been sectioned at their internodes. (B) Neuropil from a 27-year-old monkey. Arrows indicate dystrophic myelin surrounding nerve 
fibers, presenting a splitting of the major dense line of the myelin sheaths (left and right arrows) and balloons (left and middle arrows). Scale bar = 5 μm. 
Images are from the archives of Alan Peters and prepared as in Peters and Sethares, 2002.

https://doi.org/10.7554/eLife.90964
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some individual neuronal features (e.g. firing rate, synapses, myelin) empirically, while controlling for 
concomitant changes in others. Thus, computational models become essential to predict how age-
related changes in individual neurons affect cognitive impairment.

Numerous modeling studies have explored the potential relationships between axon parameters 
and action potential (AP) conduction velocity (CV) (Rushton, 1951; Goldman and Albus, 1968; Brill 
et al., 1977; Moore et al., 1978; Waxman, 1980; Chomiak and Hu, 2009). Others have sought the 
most appropriate way to model the axon (e.g. Blight, 1985; Richardson et al., 2000; McIntyre et al., 
2002; Gow and Devaux, 2008; Dekker et al., 2014). Demyelination has been modeled frequently in 
the context of disease (review: Coggan et al., 2015), showing that loss of myelin leads to slower AP 
CV and sometimes to AP failure. Remyelination of axons with shorter, thinner internodes decreases 
CV in models of both large- and small-diameter axons (Lasiene et al., 2008; Powers et al., 2012; 
Scurfield and Latimer, 2018). However, to our knowledge, the effects of widespread demyelination 
and remyelination on AP propagation in a broad population of axons have not been explored system-
atically. There have also been studies of how CV and myelin alterations impact network synchrony 
in phase oscillator models (Karimian et al., 2019; Pajevic et al., 2014; Noori et al., 2020; Pajevic 
et al., 2023), but not in spiking neural networks that can predict the mechanisms underlying working 
memory. Our recent network model revealed that the empirically observed age-related increase in AP 
firing rates in prefrontal pyramidal neurons (modeled through an increased slope of the f-I curve) and 
loss of up to 30% of both excitatory and inhibitory synapses (modeled as a decrease in connectivity 
strength) can lead to working memory impairment (Ibañez et al., 2019), but this model did not incor-
porate the known changes to myelin structure that occur during normal aging.

This study unites models at two different scales – multicompartment models of dlPFC pyramidal 
neurons and a spiking network model simulating spatial working memory – to investigate how age-
related myelin degradation (represented by demyelination) and remyelination affect signal transmis-
sion and working memory precision. Higher degrees of demyelination led to slower propagation and 
eventual failure of APs along the axons of the multicompartment models. In the network models, 
an increase in AP failure rate resulted in progressive working memory impairment, whereas slower 
conduction velocities, in the range observed in the multicompartment models, had a negligible effect. 
Sufficient remyelination of all previously demyelinated segments led to a recovery of signal transmis-
sion and working memory performance. However, our study indicates that empirically observed levels 
of myelin changes, if uncompensated by other factors, would lead to substantial working memory 
impairment with aging.

Results
Progressive demyelination causes CV slowing and AP failures in model 
neurons
To simulate myelin alterations in individual neurons, we adapted our multicompartment model tuned 
to data from rhesus monkey dlPFC (Rumbell et al., 2016) by attaching an axon model that captured 
nodes and detailed myelinated segments (Gow and Devaux, 2008; Scurfield and Latimer, 2018). 
Myelinated segments included an internode with adjacent juxtaparanodes and paranodes, and tight 
junctions between the innermost myelin lamella and axolemma (see Methods; Figure 2A and B). 
We applied demyelination and remyelination perturbations to a cohort of 50 young (control) neuron 
models, with axonal parameters varying within biologically plausible ranges (Table 1; Figure 2—figure 
supplement 1A and B). To simulate demyelination, we removed lamellae from selected myelinated 
segments; for remyelination we replaced a fraction of myelinated segments by two shorter and thinner 
segments with a node in between. As such, a ‘fully remyelinated axon’ had all the demyelinated 
segments subsequently remyelinated, but with fewer lamellae and additional nodes compared to the 
unperturbed control case, consistent with empirical observations (Peters, 2009). The CV in control 
models varied across the cohort and in response to myelin alterations (Figure 2C; Figure 2—figure 
supplement 1). Myelin alterations could also cause AP failures. CV changes and AP failures were more 
sensitive to variations along some dimensions of the parameter space than to others (e.g. myelinated 
segment length versus axon diameter), explored further below.

AP propagation was progressively impaired as demyelination increased (Figure 3): CV became 
slower, eventually leading to AP failure. Removing 25% of lamellae had a negligible effect on CV, 

https://doi.org/10.7554/eLife.90964
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regardless of how many segments were affected. However, when all lamellae were removed, CV 
slowed drastically – by 38±10% even when just 25% of the segments were demyelinated in this way, 
and 35±13% of APs failed. When 75% of segments lost all their lamellae, CV slowed by 72±8% and 
45±13% of APs failed. Responses to demyelination sometimes varied widely across the cohort. We 
employed Lasso regression to identify key parameters that contributed to CV changes, since those 

Figure 2. Action potential (AP) transmission in the single neuron model. (A) Cartoon of the model with a close-up view of unperturbed, demyelinated, 
and remyelinated segments (not to scale). The paranodes, juxtaparanodes, and internodes (shown in different shades of red) were insulated by myelin 
lamellae, adjacent to unmyelinated nodes (dark gray). During demyelination, lamellae were removed from a subset of segments; middle cartoon shows 
two lamellae remaining, indicating 50% lamellae removed relative to an unperturbed myelinated segment. During remyelination, select myelinated 
segments were replaced with two shorter myelinated segments separated by a new node; bottom cartoon shows remyelination with 50% of lamellae 
restored relative to unperturbed segments. At right are shown membrane potential traces simulated at the initial segment (top, dashed line) and 
near the distal end of one axon (here, 1.9 cm long) in the unperturbed, demyelinated, and remyelinated cases. Traces correspond to signals in a distal 
node and subsequent paranode, juxtaparanode, and internode respectively (colors indicating the axonal sections as in left panels). Demyelinating 
75% of segments by removing 50% of their lamellae resulted in a 70% reduction in conduction velocity (CV), and failure of one AP. Remyelination of all 
affected segments with the same 50% of lamellae recovered the failed AP, and 98% of the CV delay relative to the demyelinated case (in 1 of the 30 
simulated trials). (B) Close-up view of an AP simulated in the distal end of the unperturbed axon: suprathreshold in the node and subthreshold along 
the myelinated segment, indicating saltatory conduction. (C) Distribution of the 50 models of the cohort across two dimensions of parameter space: 
myelinated segment length and axon diameter. Grayscale shade of each model represents the mean CV change across three demyelination conditions: 
25%, 50%, 75% of segments losing lamellae, averaged over 30 randomized trials and lamellae removal conditions.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution of parameters and conduction velocities in the single neuron model cohort.

Table 1. Axon parameter ranges for Latin hypercube sampling (LHS) construction.

Parameter

Values

Minimum Maximum

Axon diameter (μm), measured at nodes 0.5 1.02

Node length (μm) 0.25 2.02

Myelinated segment length (μm) 50 200

Number of myelin lamellae 5 20

Lamella thickness (μm) 0.013 0.019

Scale factor for leak conductance 0.1 1

Scale factor for NaF maximal conductance 0.1 1

Scale factor for KDR maximal conductance 0.1 1

https://doi.org/10.7554/eLife.90964
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changes preceded AP failures (Figure 3—figure supplement 1A and C). Five of the 12 parameters 

analyzed contributed to CV changes during demyelination. Among them, myelinated segment length 

had the largest magnitude with a negative weight indicating that models with longer myelinated 

segments show more CV slowing in response to a given demyelination perturbation. Scale factors for 

leak and sodium conductance, axoplasm resistance, and tight junction resistance also controlled CV 

changes during demyelination.

Figure 3. Effects of demyelination on conduction velocity (CV) and action potential (AP) failures in the single neuron model. (A) Heat maps showing CV 
change (reduction relative to the CV of the corresponding unperturbed models, measured in %) in response to select demyelination conditions across 
the 50 cohort axons (see Methods). Axons arranged vertically in increasing order of myelinated segment length (longest at the bottom). The three 
blocks from left to right show increasing numbers of demyelinated segments in each axon (25%, 50%, and 75% of segments respectively), illustrated by 
cartoons on top. Within each block, individual columns correspond to the percentage of myelin lamellae removed from each demyelinated segment 
(shown in cartoons below). Color of each box indicates the mean CV change across 30 trials of each condition, ranging from 0% (no effect) to –100% (AP 
failure). Overall, AP propagation was increasingly impaired with increasing levels of demyelination. Mean CV change (B) and percentage of AP failures 
(C) versus the percentage of lamellae removed for all demyelination conditions simulated. Colors represent the percentages of segments demyelinated, 
from 10% (light red) to 75% (black). Error bars represent mean ± SEM, averaged across all cohort axons (n=50) and 30 trials each.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Statistical analysis of parameters contributing to conduction velocity (CV) changes after demyelination and remyelination.

https://doi.org/10.7554/eLife.90964
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Remyelination leads to partial recovery from CV slowing and AP 
failures
We next examined the extent to which remyelination with shorter and thinner segments, occurring 
after demyelination, restored axonal AP propagation (Figure  4). We first assumed that affected 
segments had been previously completely demyelinated, i.e., losing all their lamellae (see Methods; 
Figure 4A–C). Most remyelinated models showed CV recovery from 0% to 100%, except for a few 
cases in which CV increased relative to the unperturbed models (Figure 4—figure supplement 1A; 
see Discussion). The CV recovered more as both the remyelination and the lamellae restoration 
percentages increased. When all demyelinated segments were subsequently remyelinated with suffi-
cient lamellae – and none of the perturbed segments were bare – the CV recovered substantially and 
almost no AP failed (Figure 4B and C). The initial fraction of demyelination also affected CV recovery, 
but in a more subtle way. When all demyelinated segments were remyelinated, there was a positive 
relationship between the initial demyelination rate and the CV recovery: CV recovered more when 
75% of the segments were demyelinated (Figure 4B, black lines) than when only 25% were affected. 
This finding is consistent with observations of Scurfield and Latimer, 2018, in which axons with more 
transitions between long (unperturbed) and short (remyelinated) segments had slower CV (Figure 4—
figure supplement 2). When incomplete remyelination left some segments bare (Figure 4B, colored 
lines), there was a negative relationship between the initial amount of demyelination and CV recovery: 
axons with more bare segments had reduced electrical insulation, and therefore recovered less.

We also simulated remyelination after a milder partial demyelination, where affected segments 
initially lost only half their lamellae (Figure 4D). Overall trends were similar to, but less severe than, 
those for the complete demyelination case (Figure 4E and F; Figure 4—figure supplement 1B). The 
variability in CV recovery across different remyelination conditions and across the model cohort was 
similar. There were also fewer AP failures under partial demyelination conditions, relative to the corre-
sponding complete demyelination cases (Figure 4C vs. Figure 4F).

Results for the percentage of AP failures (Figure 4C and F) were consistent with those for CV 
recovery. Remyelinating all previously demyelinated segments, even adding just 10% of lamellae, 
brought AP failure rates down to 14.6±5.1%. Remyelinating all affected segments with 75% of 
lamellae (the maximal amount of remyelination) nearly eliminated AP failures (1.8±1.1%). Incomplete 
remyelination, where some segments were still demyelinated, still had relatively high AP failure rates. 
For example, when one eighth of segments were remyelinated with the maximal amount of lamellae 
and one eighth were left bare, 25.7±11.5% of APs failed across the cohort (Figure 4C, red dashed line 
and arrow). AP failure rates were slightly lower when starting with partial demyelination: 10.6±7.6% of 
APs failed in the analogous paradigm (Figure 4F, red dashed line and arrow). In short, combinations 
of demyelinated and remyelinated segments often led to sizable CV delays and AP failures. Applying 
Lasso regression to CV recovery after remyelination (Figure 3—figure supplement 1C and D) found 
10 of the 12 parameters contributed significantly; only myelin length and axoplasm resistance were 
omitted. Comparing these parameters with empirical data, when available, may help estimate the 
severity of CV delays and AP failures in the cortex of aging rhesus monkeys.

AP failures impair performance in a neural network model of working 
memory
Equipped with the quantification of impaired AP transmission due to myelin alterations in the single 
neuron model, we next elucidated how these impairments affected neural circuit function in PFC. We 
focused on spatial working memory because the underlying neural network mechanisms have been 
studied and modeled in detail (e.g. Compte et al., 2000; Hansel and Mato, 2013; Ibañez et al., 
2019). We built on a previous spiking neural network model that accounts for many experimental 
findings (Hansel and Mato, 2013). It consists of 16,000 excitatory and 4000 inhibitory integrate-
and-fire neurons (see Methods). Neurons are coupled through excitatory synapses with AMPA and 
NMDA receptors, and inhibitory synapses with GABA receptors. Recurrent excitatory synapses are 
facilitating, as has been empirically observed in PFC (Hempel et al., 2000; Wang et al., 2006), which 
promotes robust and reliable persistent activity despite spatial heterogeneities in the connectivity or 
in the intrinsic properties of the neurons.

We first simulated the classical oculomotor delayed response task (DRT, Figure 5A) in a cohort 
of 10 young (control) networks with different random connectivities and intact AP transmission (see 

https://doi.org/10.7554/eLife.90964
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Figure 4. Conduction velocity (CV) recovery in response to remyelination. (A) Cartoons illustrating representative remyelination conditions after select 
segments were completely demyelinated. Top row shows an unperturbed axon with eight myelinated segments. Second row: 50% of segments are 
completely demyelinated. Third row: 25% of the demyelinated segments in second row (one in total) are remyelinated with two shorter segments, 
each with 25% of lamellae restored. Fourth row: 75% of the demyelinated segments in the second row (three in total) are remyelinated with two 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.90964
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Methods). For appropriate levels of excitation and inhibition, a localized activity bump forms during 
the cue period, and this bump persists through the delay period. The center of the bump encodes the 
remembered spatial location (Figure 5B, i; Compte et al., 2000; Hansel and Mato, 2013). Successful 
trials require a sufficiently strong activity bump throughout the delay period, quantified by the memory 
strength (Figure 5C, blue line). If the memory strength decreases over time (e.g. caused by the demy-
elination/remyelination conditions discussed below) the memory duration – the period during which 
the network can retain the stimulus– becomes limited (Figure 5C). Moreover, due to random fluctua-
tions, the activity bump diffuses along the network during the delay period. This leads to trial-to-trial 
variability in the cue position read out from the network activity, modeling the variability of recalled 
spatial locations observed empirically (Figure 5B, right panels; Wimmer et al., 2014). This memory 
diffusion increases with the delay duration, consistent with decreasing working memory precision 
observed experimentally (Figure 5D; Funahashi et al., 1989). The bump movement during the delay 
also has a directed component, i.e., a systematic bias clockwise or counterclockwise away from the 
cue location, caused by heterogeneities in the network connectivity (Figure  5B, right panels and 
Figure 5E; Hansel and Mato, 2013). This memory drift is a possible explanation for delay-dependent 
systematic biases in working memory observed experimentally (see Discussion). However, because 
of their established relationship with working memory performance, in the following we focus on 
memory duration, corresponding to complete forgetting, and memory diffusion, corresponding to 
working memory precision.

To investigate how myelin alterations affect working memory maintenance, we explored in the 
network model the same demyelination and remyelination conditions as we did in the single neuron 
model. Because our network model consists of point neurons (i.e. without detailed axons), we incor-
porated CV slowing as an effective increase in synaptic transmission delays (see Methods). To simulate 
AP failures, we adjusted the AP failure rate to the values given by the single neuron model, by creating 
a probabilistic model of spike transmission from the excitatory presynaptic neurons to both the excit-
atory and inhibitory postsynaptic neurons (see Methods). We found that propagation delays, even 
larger than those quantified with the single neuron model, had no effect on the network performance. 
Only unrealistically long delays led to a slight decrease in performance (Figure 5—figure supplement 
2). This was as expected because, by design, the network operates in an asynchronous state with 
irregular neural activity in which the timing of individual spikes does not affect network function. AP 
failures, on the other hand, did have a large impact. For AP failure probabilities matched to the distri-
bution of AP failure probabilities across the cohort of 50 single neurons above, we observed a decay of 
the activity bump (i.e. reduced memory strength over time) in the network model. This can ultimately 
lead to extinction of the activity bump during the delay period, representing complete forgetting of 
the remembered stimulus (reduced memory duration; Figure 5B, ii and iii, Figure 5C, and Figure 6—
figure supplement 1A). For a mild reduction of the bump amplitude, memory duration was not 
affected (Figure 5C, purple line) but memory diffusion increased compared to the control network 
(Figure  5B, iii and Figure  5D). This increase in memory diffusion is consistent with mathematical 

shorter segments, each with 50% of lamellae restored. Mean CV recovery (B) and percentage of action potential (AP) failures (C) versus the percentage 
of lamellae restored for all simulated remyelination conditions after complete demyelination. (D) Cartoons illustrating representative remyelination 
conditions after partial demyelination. Top row shows an unperturbed axon with eight myelinated segments. Second row: 50% of segments are partially 
demyelinated (with 50% of lamellae removed). Third row: 50% of the demyelinated segments in second row (two in total) are remyelinated with two 
shorter segments, each with 50% of lamellae restored. Mean CV recovery (E) and percentage of AP failures (F) versus the percentage of lamellae 
restored for all simulated remyelination conditions after partial demyelination. CV recovery in both cases (B and E) was calculated with respect to the 
CV change for the complete demyelination (see Methods). In panels (B, C, E, and F), the x-axis refers to the percentage of myelin lamellae restored 
relative to unperturbed segments, starting at 0% (no remyelination). Line styles represent the percentage of segments initially demyelinated, from 25% 
(dashed) to 75% (thick solid). Colors represent the extent of remyelination, from 25% (light red) to 100% (black). Shown are mean values, averaged across 
all cohort axons (n=50) and 30 trials each. For readability, error bars (representing ± SEM) are shown only for the condition of 50% demyelination of 
segments.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Conduction velocity (CV) recovery in response to remyelination across the model cohort.

Figure supplement 2. Transitions between myelinated segments of dissimilar lengths affect response to perturbations.

Figure 4 continued

https://doi.org/10.7554/eLife.90964
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Figure 5. Action potential (AP) failures impair working memory performance in a spiking neural network model. (A) Schematic of the delayed response 
task. Subjects fixate at the center of a computer screen and need to remember a cue stimulus, presented at one out of eight locations throughout the 
delay period, before indicating the remembered location with an eye movement. (B) Excitatory neuron activity for a cue stimulus presented at 135° 
of an (i) unperturbed control network, (ii) a network with demyelination, and (iii) a network with remyelination. Left: Single-trial raster plot showing the 
activity for each neuron (labeled by its preferred direction) during the precue (fixation), cue and delay periods of the task. The cue period is indicated 
by the gray shading. Middle: Average spike counts of the excitatory neurons during the delay period. The points show average spike rates of individual 
neurons and the solid line the average over 500 nearby neurons. Right: Trajectory of the bump center (i.e. the remembered cue location) read out from 
the neural activity across the cue and delay periods using a population vector (see Methods). Thin lines correspond to individual trials and the solid line 
to the trial average. (ii) Shows the effect of AP failure probabilities corresponding to demyelination of 25% of the myelinated segments by removing 75% 

Figure 5 continued on next page
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analysis of firing rate models showing that the bump diffusion depends inversely on the squared bump 
amplitude (Kilpatrick and Ermentrout, 2013; Esnaola-Acebes et al., 2022).

Impact of demyelination and remyelination on working memory
We then systematically characterized changes in memory duration and memory diffusion by comparing 
working memory performance in the cohort of 10 control networks with the performance of those 
networks perturbed corresponding to varying degrees of demyelination and remyelination. In each 
of the 10 networks, we set the AP failure rate of the excitatory neurons according to the distribution 
of failure probabilities of the neurons in the single neuron cohort for the given demyelination or 
remyelination condition. Thus, we took into account the heterogeneity of demyelination and remy-
elination effects from our single neuron cohort (Figure 3A; Figure 4—figure supplement 1). Note 
that this heterogeneity originates from differences in axon properties, but probabilities of failure for 
all neurons in the network correspond to the same degree of demyelination (Figure 6). We will also 
consider networks that contain different combinations of axons with either intact or perturbed myelin 
(Figure 7 and Figure 8).

Demyelination impairs working memory performance compared to control 
networks
We found that the memory duration was not affected when removing up to 55% of myelin lamellae 
per myelinated segment, regardless of the percentage of axonal segments that were altered along 
an axon (Figure 6A, left panel). However, when between 55% and 75% of the myelin lamellae were 
removed, the memory duration began to decrease, depending on the percentage of axonal segments 
that were demyelinated. In this case, increasing the percentage of demyelinated segments from 10% 
to 50% led to a progressive impairment, whereas an increase to 75% of the segments did not impair 
memory duration further. Finally, in cases where 100% of the myelin lamellae were removed, the 
memory duration dropped to ≤1 s, regardless of the percentage of segments that were demyelinated. 
In a similar trend, memory diffusion increased, i.e., working memory became less precise starting 
when removing between 25% and 50% of the myelin lamellae (Figure  6B, left panel). Again, we 
found a progressive impairment, depending on the percentage of myelin lamellae removed and the 
percentage of myelinated segments affected, with a ceiling effect when more than 50% of segments 
were demyelinated.

Complete remyelination recovers network function
We observed that remyelination of all previously demyelinated segments (100%), independently of the 
degree of demyelination, recovered the memory duration to the control networks-like performance 
(Figure 6A, middle and right panels; black lines). However, working memory precision is not fully recov-
ered in all these cases, indicated by an increase in the diffusion constant (Figure 6B). The performance of 
control networks was completely recovered only when 75% of the myelin lamellae were added back to 

of the myelin lamellae. (iii) Corresponds to AP failure probabilities for remyelination of 50% of the demyelinated segments by adding 75% of the myelin 
lamellae back, after previous partial demyelination of 25% of the segments. (C) Memory strength as a function of time and corresponding memory 
duration (horizontal bars; memory strength ≥0.4; see Methods). (D) Working memory diffusion (trial-to-trial variability of bump center) during the cue 
and delay periods. The inset shows a close-up of the diffusion for control networks. A similar increase of working memory diffusion with demyelination 
is also observed in networks with overall higher diffusion (Figure 5—figure supplement 1). When demyelination is restricted to a part of the network, 
diffusion only increases in the perturbed zone (Figure 5—figure supplement 3). (E) Working memory drift (systematic memory errors). Note that the 
remyelination curve (purple dotted line) in (E) superimposes the young curve (blue solid line). The red dashed line represents the demyelination case. 
The performance measures in (C–E) were obtained by averaging across 280 trials and 10 networks, either control (B, i) or perturbed (B, ii–iii).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Increased working memory diffusion in spiking networks with spatially correlated background inputs.

Figure supplement 2. Effect of propagation delays on control and perturbed networks.

Figure supplement 3. Effect of spatially heterogeneous demyelination of the model neurons according to their preferred angle.

Figure supplement 4. Action potential (AP) failures impair working memory performance in a network model with activity-silent memory traces.

Figure supplement 5. Effect of propagation delays on control and perturbed activity-silent network models.

Figure 5 continued
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the remyelinated segments. Thus, despite the new shorter and thinner myelin sheaths compared to the 
original intact ones, complete remyelination is able to recover control, unperturbed network function.

Incomplete remyelination leads to partial recovery
We studied the effect of incomplete remyelination (remyelination of 25–75% of previously demyelin-
ated segments) after both complete and partial demyelination (Figure 6A and B, middle and right 
panels, respectively). When we remyelinated between 25% and 75% of the previously completely 
demyelinated segments, we did not observe a significant recovery of the memory duration (Figure 6A, 
middle panel; memory duration ‍≲‍ 1 s in all cases). Memory diffusion was partly recovered compared to 
the complete demyelination case (compare left and middle panels in Figure 6B) when 50–75% of the 
demyelinated segments were remyelinated, but it remained far from the performance of the control 
network. In sum, incomplete remyelination was unable to restore network function when bare axon 
(completely demyelinated) segments were present. However, when we remyelinated between 25% 
and 75% of the previously only partially demyelinated segments, both memory duration and memory 
diffusion were restored closer to the values of the control networks (Figure 6A and B, right panel).

Figure 6. Working memory function in the network model is impaired by demyelination and recovered by sufficient remyelination. (A) Memory duration 
and (B) diffusion constant for simulations of the delayed response task, as in Figure 5, for a systematic exploration of the effect of action potential (AP) 
failure probabilities corresponding to the different demyelination and remyelination conditions explored with the single neuron model. Left panel: 
Demyelination, realized by removing a fraction of myelin lamellae from a fraction of myelinated segments. Middle panel: Remyelination with two 
shorter and thinner myelin sheaths, with a node in between, of the previously completely demyelinated segments. Right panel: Same as the middle 
panel but for partial demyelination (removal of 50% of the myelin lamellae) rather than complete demyelination. In all cases, the performance measures 
were obtained by averaging across the 10 perturbed cohort networks and the 280 trials simulated for each network. The average memory duration 
for the 10 unperturbed, control networks in the cohort (averaged across 280 trials) was 4 s, and the average diffusion constant was 0.064 (both values 
corresponding to the case of 0% of myelin lamellae removed in the left panels of (A) and (B), respectively; not shown). Error bars represent mean ± SEM, 
averaged across all networks and trials.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Memory strength decreases for different degrees of demyelination and remyelination.

Figure supplement 2. Increase of memory drift for different degrees of demyelination and remyelination.

https://doi.org/10.7554/eLife.90964


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Ibañez et al. eLife 2023;12:RP90964. DOI: https://doi.org/10.7554/eLife.90964 � 12 of 29

Alternative working memory mechanisms
Working memory in our neural network is maintained in an attractor state with persistent neural activity 
(Compte et al., 2000; Hansel and Mato, 2013). Other mechanisms have been proposed, including 
that working memory maintenance may rely on activity-silent memory traces (Mongillo et al., 2008; 
Stokes, 2015; Barbosa et al., 2020). In activity-silent models, a slowly decaying transient of synaptic 
efficacy preserves information without the need for persistent ongoing activity. We implemented 
an activity-silent model, to our knowledge the first one for continuous spatial locations, and tested 
how working memory performance is affected by AP failures and propagation delays. We found that 
AP failures corresponding to demyelination caused working memory errors qualitatively similar to 
the delay-active network (Figure 5—figure supplement 4). On the other hand, increasing propaga-
tion delays did not lead to additional working memory errors, unless we include unrealistically high 
values (uniform distribution in the range of 0–100 ms; Figure 5—figure supplement 5). These results 
are qualitatively similar to the delay-active network model. Thus, our main findings do not critically 
depend on the exact working memory mechanism (active vs. activity-silent).

Simulated heterogenous myelin alterations match empirical data
Up to this point we have studied network models with AP failure probabilities corresponding to a 
single degree of myelin alterations (i.e. with all excitatory neurons in the network having AP failure 
rates matched to those of the single neuron cohort for one particular demyelination or remyelination 
condition). Next, we sought to reveal the effect on working memory performance of more biologically 

Figure 7. Reduced normal myelin is associated with decreased working memory performance in the network model. (A) Schematic of the quantification 
of unperturbed, normal myelin sheaths in groups of neurons containing intact and demyelinated axons with different proportions of demyelinated 
segments (see Methods). Vertical red lines indicate cross-sectional planes that mimic electron microscopy images capturing cross sections of different 
axonal parts. (B) Memory duration and (C) diffusion constant vs. the percentage of normal myelin sheaths. Linear regressions show significant positive 
correlations in both cases (memory duration: r=0.703, p=3.86 × 10–10; diffusion constant: r=–0.802, p=1.26 × 10–14). Circles: All the demyelinated 
segments in the perturbed axons in the groups were bare segments (all myelin lamellae removed). Squares: All the demyelinated segments in the 
perturbed axons had 75% of the myelin lamellae removed. Black horizontal bars indicate the percentage of normal sheaths observed in electron 
microscopy images from young and aged rhesus monkeys dorsolateral prefrontal cortex (dlPFC) (Peters and Sethares, 2002).

https://doi.org/10.7554/eLife.90964
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realistic network models, where excitatory neurons in the networks were perturbed according to a 
combination of different demyelination or remyelination conditions. That is, we simulated networks 
with excitatory neurons having AP failure probabilities matched to both neuronal axons with intact 
and with altered myelin sheaths in different degrees, as likely occurs in the aging brain (Figure 1).

Fewer normal myelin sheaths lead to decreased network performance
We ran network model simulations combining AP failure probabilities corresponding to groups 
of neurons containing either intact axons or axons presenting different degrees of demyelination 
(Figure 7A; Methods). Quantifying the average degree of demyelination in each simulated network 
allowed us to predict working memory deficits for a degree of demyelination that is within the empir-
ically observed range of 90–100% normal myelin (Peters and Sethares, 2002). We observed that the 
performance was impaired – memory duration significantly decreased (Figure 7B), and memory diffu-
sion significantly increased (Figure 7C) – when the percentage of normal sheaths decreased. These 
results are consistent with an experimentally observed increased cognitive impairment in various 
learning and working memory tasks (including the delayed recognition span task, a spatial working 
memory task) with an age-related decrease of the percentage of normal sheaths in dlPFC of rhesus 
monkeys (Peters and Sethares, 2002). Importantly, our results indicate that myelin alterations alone 
can account for significant working memory impairment, pointing to demyelination as a key factor in 
age-related working memory decline.

Figure 8. A higher proportion of new myelin sheaths impairs working memory in the network model. (A) Schematic of the quantification of new myelin 
sheaths in groups of neurons containing intact and partly remyelinated axons. Vertical purple lines indicate cross-sectional planes that model electron 
microscopy images capturing cross sections of different axonal parts. (B) Memory duration and (C) diffusion constant vs the percentage of new myelin 
sheaths. Linear regressions show significant negative correlations in both cases (memory duration: r=–0.852, p=4.92 × 10–7; diffusion constant: r=0.607, 
p=0.003). The remyelinated axons in the groups have different proportions of segments remyelinated after partial demyelination, by adding 25% of the 
myelin lamellae back. Black horizontal bars indicate the percentage of paranodal profiles observed in electron microscopy images from young and aged 
rhesus monkeys dorsolateral prefrontal cortex (dlPFC) (Peters and Sethares, 2003).

https://doi.org/10.7554/eLife.90964
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Shorter and thinner myelinated segments impair working memory
To predict the effects of remyelination on working memory for the empirically observed range of axon 
remyelination, we simulated network models that contained a combination of model neurons with 
intact axons and with axons containing different proportions of remyelination (Figure 8A; Methods). 
Empirical studies have found an age-dependent increase in the percentage of paranodal profiles, 
indicative of more and shorter myelin sheaths, from 5% in young monkeys to 17% in aged monkeys 
(Peters and Sethares, 2003). Here, we used different proportions of incomplete remyelination as 
studied in Figure 6 (axons with either 25%, 50%, or 75% of their segments remyelinated), and we 
quantified the overall percentage of new myelin sheaths in the networks. We simulated networks with 
up to a 45% of new myelin sheaths and we observed that performance was significantly impaired 
compared to the young, control networks with intact myelin: memory duration decreased to almost 
1 s (Figure 8B) and diffusion constant increased (Figure 8C). This is consistent with empirical findings 
showing that cognitive impairment for a cohort of 18 young and aged rhesus monkeys increased 
with an increase of the percentage of paranodal profiles in the dlPFC (Peters and Sethares, 2003). 
Therefore, both demyelination and incomplete remyelination lead to impaired performance in our 
networks, compared to networks with intact myelin sheaths.

Discussion
This multi-level computational study explored how age-related myelin degradation (demyelination) 
and remyelination affect AP propagation in individual axons and working memory precision in spiking 
neural networks. We found that these myelin changes lead to AP failures which, if uncompensated by 
other factors, predict working memory decline with aging.

Myelin changes affect AP propagation in a cohort of model neurons
The novelty of our neuron model lies in its systematic exploration of a combination of different myelin 
perturbation types known to occur in myelin dystrophies, across a wide range of biologically feasible 
models. Our single neuron model assumed that age-related myelin dystrophies (e.g. Figure  1) 
alter the insulative properties of lamellae analogously to demyelination, and examined interactions 
between demyelination and remyelination. Past studies of myelin dystrophy examined how either 
demyelination or remyelination of all segments affected AP propagation for a few representative axon 
morphologies. For example, Scurfield and Latimer, 2018, explored how remyelination affected CV 
delays, finding that axons with more transitions between long and short myelinated segments had 
slower CV (Figure 4—figure supplement 2), and was first to explore how remyelination interacts 
with tight junctions. However, their study did not couple remyelination and demyelination together 
or examine AP failures. Other basic findings from our single neuron cohort are consistent with past 
modeling studies, including that demyelination caused CV slowing and eventual AP failures (Steph-
anova et al., 2005; Stephanova and Daskalova, 2008; Naud and Longtin, 2019), and, separately, 
that remyelination with shorter and thinner myelinated segments led to CV slowing (Lasiene et al., 
2008; Powers et al., 2012; Scurfield and Latimer, 2018). However, by assuming that some previ-
ously demyelinated segments were remyelinated while others were not, we found that models could 
have much higher AP failure rates than previously reported. Such a scenario, in which individual axons 
have some segments that are normal, some demyelinated, and some remyelinated, is likely to occur. 
We also found a few neurons in our cohort showing a CV increase after remyelination, which has not 
generally been reported before and is likely due to an interplay between ion channels in the new 
nodes and altered electrotonic lengths in the perturbed myelinated segments (e.g. Moore et al., 
1978; Naud and Longtin, 2019).

Since our single neuron cohort sampled a wide range of parameter space, we used Lasso regres-
sion to identify which of the complex, interacting parameters contributed most to CV delays (which 
preceded AP failures). Parameters including axon diameter, node length, length of myelinated 
segments, and nodal ion channel densities predicted how our models responded to demyelination 
and remyelination; these findings are consistent with past modeling studies over more limited param-
eter ranges (e.g. Goldman and Albus, 1968; Moore et  al., 1978; Babbs and Shi, 2013; Young 
et  al., 2013; Schmidt and Knösche, 2019). Better empirical measurements of these parameters 
in monkey dlPFC, e.g., from three-dimensional electron microscopy studies or single neuron axon 
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studies combined with markers for myelin, would help predict the extent to which myelin dystrophy 
and remyelination along individual axons with aging affect AP propagation.

Another important feature of our multicompartment model is that it was constrained by morpho-
logical and physiological data in rhesus monkey dlPFC –an extremely valuable dataset from an animal 
model with many similarities to humans (Upright and Baxter, 2021; Tarantal et al., 2022). While 
beyond the scope of the current study, this computational infrastructure – with a detailed axon, initial 
segment, soma, and apical and basal dendrites – enables simultaneous investigations of signal propa-
gation through the dendritic arbor and axon. Our model can also be extended to explore interactions 
between spatially localized myelin perturbations (such as those seen in multiple sclerosis) and axon 
collateralization (Sengupta et al., 2023), which would affect the distance dependence of AP failures. 
Integrating such results from single neuron models into network models of working memory, as we 
have done here, is a powerful way to connect empirical data across multiple scales.

Myelin changes impair working memory function
With the spiking neural network model, we found that increasing probabilities of AP failure, corre-
sponding to higher degrees of demyelination, gradually impaired working memory precision and 
the time during which stimulus information can be held in memory. Complete remyelination of all 
previously demyelinated segments restored performance to the control network level. In contrast to 
the strong impact of AP failures on network function, introducing propagation delays to mimic AP 
slowing, in the time range of the delays quantified with the single neuron model, did not have an effect 
(Figure 5—figure supplement 2 and Figure 5—figure supplement 5). This is because the network 
operates in an asynchronous state in which the dynamics are primarily governed by the statistics of 
neuronal activity (e.g. firing rates), rather than precise spike timings (van Vreeswijk and Sompolinsky, 
1996; Hansel and Mato, 2013). While highly irregular persistent activity is indeed observed in PFC 
during working memory tasks (Compte et al., 2003), at the mesoscopic level oscillations of the local 
field potentials and synchronization also play an important role (Gregoriou et al., 2009; Liebe et al., 
2012; Buschman et al., 2012; Salazar et al., 2012). AP slowing may alter these neural oscillations 
and synchrony which could lead to further working memory impairment not captured by our network 
model. In addition to age-related changes in memory duration and precision, our network model 
predicts an age-related increase in systematic errors (bias) due to an increased drift of the activity 
bump (Figure 6—figure supplement 2). Moreover, if demyelination is spatially localized in a part of 
the network, the model predicts a repulsive bias away from the memories encoded in the affected 
zone (Figure 5—figure supplement 3). Delay-dependent systematic working memory errors have 
been observed in behavioral experiments (Panichello et al., 2019; Bae, 2021; Stein et al., 2021) 
and it would be interesting to test whether those biases also change with aging. In addition to the 
prefrontal cortex, working memory is likely sustained by interactions between several fronto-parietal 
brain areas (Leavitt et al., 2017; Christophel et al., 2017). Our future work will include development 
of large-scale models of working memory (Mejías and Wang, 2022), incorporating myelin alterations 
in local circuits and in inter-area connections.

For biologically realistic combinations of neurons with intact and demyelinated axons, our network 
model predicts that myelin dystrophies alone would lead to spatial working memory impairment with 
aging (Figure  7). This result supports the observation that cognitive impairment increases as the 
percentage of normal myelin sheaths decreases (Peters and Sethares, 2002). In addition, combining 
neurons containing either intact or incompletely remyelinated axons, we found that spatial working 
memory is still impaired in the context of incomplete remyelination (Figure 8). Our result explains two 
separate empirical findings. One study showed a positive correlation between cognitive impairment 
and a higher percentage of new, shorter and thinner, myelin sheaths (Peters and Sethares, 2003). 
In our single neuron model, insufficiently remyelinated axons with an array of long unperturbed, long 
thin, and new shorter and thinner segments had slower CV and more AP failures compared to unper-
turbed axons. This caused WM errors in the network model. A second study found that, with aging, 
oligodendroglia has a decreased capacity for effective maturation, remaining in a progenitor state 
without being able to produce new myelin. This low capacity for remyelination was correlated with 
spatial working memory impairment in the monkeys (Dimovasili et al., 2023). Our models showed 
that axons with demyelinated segments, or otherwise poorly insulated myelin sheaths, experience 
delayed and even failed AP propagation, which in turn led to working memory impairment. Therefore, 

https://doi.org/10.7554/eLife.90964
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it is reasonable to assume that ineffective remyelination may lead to working memory impairment. 
In fact, complete remyelination of all previously demyelinated segments with sufficient myelin, with 
fewer transitions between long and short segments, led to full recovery of working memory function. 
Our findings also suggest that differences in the degree of demyelination or remyelination (Figures 7 
and 8) may account for the cognitive variability observed across individuals with aging, which encom-
pass individuals with both good (successful agers) and impaired (unsuccessful agers) cognitive func-
tion (Lacreuse et al., 2005; Moore et al., 2006; Moss et al., 2007; Moore et al., 2017).

Conclusions
The multiscale modeling approach we employed here extends our prior framework for studying how 
changes in the aging monkey dlPFC might affect working memory (review: Luebke et al., 2010). Our 
previous work (Ibañez et al., 2019) modeled increased AP firing rates observed in vitro together with 
the loss of both excitatory and inhibitory synapses, and quantified how these alterations affected 
working memory performance. Aged networks which compensated the loss of excitatory and inhib-
itory synapses with higher firing rates in individual pyramidal neurons successfully retained memory 
of the DRT stimulus. In addition, networks in which we also decreased the overall excitatory drive to 
pyramidal neurons reproduced the lower firing rates during performance of DRT in aged monkeys, 
reported in Wang et al., 2011. Such decreased excitation could arise from AP failures induced by 
myelin dystrophy, as shown here. It has also been hypothesized that the hyperexcitability of dlPFC 
pyramidal neurons observed in vitro with aging could be a homeostatic mechanism to compensate 
for AP disruptions due to dystrophic myelin (Luebke et  al., 2010). The multicompartment model 
used here is particularly well suited to simultaneous modeling of alterations in the soma, dendrites, 
synapses, and axon of individual pyramidal neurons. This can include pathological changes to the 
nodes of Ranvier (reviewed in Arancibia-Carcamo and Attwell, 2014Arancibia-Carcamo and 
Attwell, 2014) or to the metabolism of axons after demyelination (Gerevich et  al., 2023), which 
were not modeled here. The effects of such changes can then be incorporated into our DRT model, 
or models of other working memory tasks.

Myelin dystrophy occurs in many neurological conditions, including multiple sclerosis, schizo-
phrenia, bipolar disorder, autism spectrum disorders, and after traumatic brain injury (Franklin and 
Ffrench-Constant, 2008; Takahashi et al., 2011; Armstrong et al., 2016; Gouvêa-Junqueira et al., 
2020; Galvez-Contreras et al., 2020; Simkins et al., 2021; Valdés-Tovar et al., 2022). As in normal 
aging working memory is often one of the most vulnerable cognitive functions in these conditions, 
especially schizophrenia or autism spectrum disorders (Wang et al., 2017; Hahn et al., 2018; Gold 
and Luck, 2023). Since we found that myelin changes alone can account for working memory impair-
ment, our study points to myelin degradation as a key factor in working memory decline with normal 
aging and, perhaps, in neuropathological conditions.

Methods
The single neuron and network models for this study are available on ModelDB (https://modeldb.
science), accession number 2014821.

Single neuron model
To simulate age-related myelin dystrophies in individual neurons, we used a biophysically detailed 
multicompartment model of a rhesus monkey dlPFC Layer 3 pyramidal neuron (Rumbell et al., 2016), 
executed in the NEURON simulation environment (Carnevale and Hines, 2006). The soma, apical, 
and basal dendritic arbors were constructed schematically, scaled to the overall surface area of a 
three-dimensional morphological reconstruction from empirical data (68 compartments total; details 
in Rumbell et al., 2016). Ion channel conductances and kinetics were fit to electrophysiological data 
obtained in vitro from the same neuron. In addition to passive membrane dynamics, the model included 
two sodium channels (fast inactivating, NaF; and non-inactivating persistent, NaP), three potassium 
channels (delayed rectifier, KDR; muscarinic receptor-suppressed, KM; transient inactivating A-type, 
KA), a high-threshold non-inactivating calcium channel (CaL), a calcium-dependent slow potassium 
channel (KAHP), and the hyperpolarization-activated anomalous rectifier channel (AR). Because our 
prime focus was quantifying alterations in AP propagation along the axon under dystrophic myelin 
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conditions, we augmented the axon hillock and initial segment of the Rumbell et al., 2016, model (5 
compartments each) by attaching nodes and myelinated segments from a detailed axon model (Gow 
and Devaux, 2008; Scurfield and Latimer, 2018). To the initial segment we attached 101 nodes (13 
compartments each) alternating with 100 myelinated segments. Each myelinated segment was bound 
by a group of four paranodes (5 compartments each) on either side, with an internode flanked by two 
juxtaparanodes (9 and 5 compartments each, respectively) sandwiched between the paranode groups 
(Figure 2A). On both ends of a myelinated segment the extreme outward paranode interfaced with 
the adjoining node. Segments between successive nodes were endowed with myelin lamellae (wraps), 
and with tight junctions between the innermost lamella and the axolemma necessary for improving 
insulation and accurate modeling of AP propagation in nerve fibers with diameters less than 0.9 μm as 
often observed in PFC. Axon compartments included passive membrane dynamics as well as the NaF 
and KDR channels in the nodes. Simulations used a fixed 0.025 ms time step.

As done during in vitro electrophysiological experiments (Chang et al., 2005; Ibañez et al., 2019) 
and past modeling studies (Coskren et al., 2015; Rumbell et al., 2016), we first applied a holding 
current to stabilize the somatic membrane potential at –70 mV, then injected a current step into the 
somatic compartment for 2 s. We recorded the somatic firing rate, as well as the CV of APs propa-
gating from the first node after the initial segment (proximal to the soma) and the penultimate node 
(at the distal end), and the percentage of APs that failed. The CV changes in response to myelin 
alterations were relatively insensitive to variations in the magnitude of suprathreshold somatic current 
steps (Figure 2—figure supplement 1C), and whether the current was constant or included Gaussian 
noise. Therefore, here we quantified CV changes and AP failures from responses to constant +380 pA 
current steps only.

Building a cohort of control model neurons
Recognizing that the effects of myelin dystrophy may depend on the physical dimensions of an axon, 
we constructed a cohort of neuron models that were consistent with empirical measurements of 
axonal morphology in young adult rhesus monkeys. To form this ‘control’ model cohort, we identi-
fied five parameters of axonal morphology which have been measured empirically in rhesus monkey 
cortex: axon diameter (Peters et al., 2001; Bowley et al., 2010; DL Rosene et al., unpublished obser-
vations), node length (Peters and Sethares, 2003), length of myelinated segments (Waxman, 1980), 
number of myelin lamellae (Peters and Sethares, 2003), and thickness of each lamella (Moore et al., 
1978; Peters and Sethares, 2003). We also defined three scale factors defining the ratio of leak, NaF, 
and KDR conductances in our nodes relative to those of the Scurfield and Latimer, 2018, model, 
assuming an upper bound of 1 for each. This gave a total of eight parameters with associated feasible 
parameter ranges that we varied (Table 1); other parameters including tight junction resistivity, myelin 
resistivity, and myelin capacitance were held fixed at values from Scurfield and Latimer, 2018. We 
then used the space-filling Latin hypercube sampling design (Morris and Mitchell, 1995; Rumbell 
et al., 2016; Ibañez et al., 2019) to identify a set of 1600 points in parameter space that maximized 
the minimum distance between all pairs of points. We simulated each model specified by these points, 
and had several selection criteria for identifying biologically plausible models. First, we constrained 
somatic firing rates within ranges observed empirically in Layer 3 pyramidal neurons of rhesus monkey 
dlPFC: firing 13–16  Hz in response to the  +380  pA current step and silent when no current was 
injected (Chang et  al., 2005; Ibañez et  al., 2019). We also required CVs of 0.3–0.8  m/s (rhesus 
monkey corpus callosum, DL Rosene et al., unpublished observations), and ensured that simulated 
APs were suprathreshold in the nodes and subthreshold in the juxtaparanode and internode regions, 
indicating saltatory conduction. Of the 1600 simulated models, 138 met these criteria; for the present 
study, we randomly selected 50 models to comprise the young, control model cohort. Along most 
dimensions, the chosen cohort was approximately normally distributed (Figure  2—figure supple-
ment 1). The g-ratio (ratio of axon to fiber diameter) among models in the cohort was 0.71±0.02, with 
total axon lengths of 1.2±0.1 cm.

Simulating myelin alterations
We assumed that the effect of all myelin dystrophies observed empirically (e.g. Figure 1) could be 
modeled by removing lamellae from myelinated segments (demyelination, which reduces electrical 
insulation), and that remyelination could be modeled by replacing myelinated segments with two 

https://doi.org/10.7554/eLife.90964


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Ibañez et al. eLife 2023;12:RP90964. DOI: https://doi.org/10.7554/eLife.90964 � 18 of 29

shorter and thinner segments with a node in between. Evidence suggests that aging affects oligoden-
drocytes in several ways, including the ability for oligodendrocyte precursor cells to mature (Dimo-
vasili et  al., 2023). Knowing that individual oligodendrocytes myelinate axons of many different 
neurons, but without data quantifying how oligodendrocyte dystrophy affects myelination in indi-
vidual axons, we assumed that myelin alterations were randomly distributed. To simulate demye-
lination, we varied two independent factors: the percentage of myelinated segments selected for 
demyelination along an axon (demyelination percentage), and the percentage of myelin lamellae 
removed from those segments (lamellae removal percentage). For each demyelination percentage 
(10%, 25%, 50%, and 75%; Figure 3), we generated 30 randomized lists of segments to demyelinate. 
Then for each of the 30 trials, each lamellae removal percentage was applied (25%, 50%, 55%, 60%, 
65%, 70%, 75%, and 100%) to the chosen segments, for all 50 models in the control cohort. We then 
simulated the +380 pA current step, calculating the CV and the number of APs that propagated to the 
distal end of the axon. For each perturbation, we defined the CV change as the percentage change 
in CV induced relative to the CV of the corresponding unperturbed model. We also computed, for 
each perturbation, the percentage of AP failures at the distal axon end, relative to the number of APs 
observed at the first node.

To simulate remyelination three factors were varied: the percentage of myelinated segments 
initially demyelinated (demyelination percentage: 25%, 50%, 75%); the percentage of those affected 
segments which were then remyelinated (remyelination percentage: 25%, 50%, 75%, 100%); and the 
percentage of lamellae restored with remyelination (lamellae restoration percentage: 10%, 25%, 50%, 
75%). We performed these remyelination simulations under two demyelination conditions: where the 
initially demyelinated segments had lost all their lamellae (‘complete demyelination’), or had lost half 
their lamellae (‘partial demyelination’). Sample remyelination perturbations shown in Figure 4. Remy-
elination was performed by replacing an affected (previously demyelinated) segment with two shorter 
segments, each including paranodes, juxtaparanodes, and an internode, and a new node between 
them that was identical to existing nodes. The number of lamellae on the shorter segments was 
determined by the lamellae restoration percentage. As before, for each demyelination percentage 
(25%, 50%, and 75%), we generated 30 randomized lists of segments to demyelinate. Segments 
to remyelinate were decided based on remyelination percentage. For example, in the case of 50% 
remyelination, every alternate (previously) demyelinated segment was remyelinated. Then for each 
trial, we applied each combination of remyelination percentage and lamellae restoration percentage 
to the chosen segments, for all models in the cohort, and simulated the current clamp protocol. For 
each remyelination condition, in addition to computing the percentage of AP failures, we defined CV 
recovery as the percentage improvement in CV relative to the CV change for the completely demye-
linated case. For example, if a control model had a CV of 1 m/s, and a CV of 0.6 m/s after complete 
demyelination, then the CV change was –0.4/1.0 = –40%. If a subsequent remyelination condition 
led to a CV of 0.8 m/s (an increase of 0.2 m/s over the demyelinated case), the CV recovery was 
0.2/0.4=50%.

Statistical assessment of parameter importance
To identify which parameters of the multicompartment model had the greatest influence on axonal 
responses to demyelination and remyelination perturbations, we used least absolute shrinkage and 
selection operator (Lasso) regression (Tibshirani, 1996; James et al., 2021) implemented in MATLAB 
R2022a (Mathworks, Natick, MA, USA). Lasso fits a regression model to response variable, given 
predictor variables (observations of predictors) by selecting coefficients that minimize the quantity

	﻿‍

n∑
i=1


yi − β0 −

p∑
j=1

βjxij




2

+ λ

p∑
j=1

��βj
�� ,

‍�

for a given value of James et al., 2021. The former quantity is the residual sum of squares of the 
model. The latter quantity is the absolute sum of coefficients; including it in the minimization shrinks 
some coefficients to zero when ‍λ‍ is sufficiently large, enabling Lasso to perform feature selection. The 
tuning parameter was selected to minimize the 10-fold cross-validation error; then for the selected 
value of λ, the regression was repeated using all available data. A total of 12 parameters served as 
predictor variables for the Lasso regression. We started with 6 of the 8 parameters used to construct 
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the cohort (axon diameter, node length, myelin length, and scale factors for leak, NaF, and KDR 
conductances), and combined two other parameters (number of myelin lamellae and lamella thick-
ness) into one quantity: myelin thickness (their product). Past studies (Goldman and Albus, 1968; 
Koles and Rasminsky, 1972; Moore et al., 1978; Gow and Devaux, 2008) identified several other 
parameters that affect axonal propagation, including the g-ratio, axoplasmic resistance, axon capac-
itance, myelin resistance, myelin capacitance, and tight junction resistance. We added five of these 
parameters to the seven cohort parameters as predictor variables, omitting only g-ratio due to its high 
correlation with axon diameter and myelin thickness. We created response variables summarizing the 
effects of demyelination and remyelination on CV in each of the 50 members of the model cohort. 
AP failures were recorded as CV change of –100%. We did not include AP failure rates as a response 
variable, since CV changes precede AP failures. For demyelination, we averaged the CV change for 
all randomized trials in which 100% of lamellae were removed from 25%, 50%, and 75% of segments. 
For remyelination, we averaged the CV recovery in all randomized trials in which 25%, 50%, or 75% of 
segments were completely demyelinated, and then all affected segments were remyelinated as two 
shorter segments with 75% of lamellae added back. To facilitate comparison, we z-scored all predictor 
and response variables before performing Lasso separately on each response. We tested the predic-
tive ability of the Lasso models by randomly selecting another 50 of the 138 models from the original 
hypercube that met the inclusion criteria, then simulating the specific myelin alteration protocols that 

Table 2. Network model parameters.

Parameter Value

‍gEea‍ ‍533.3/
√

KE mV · ms‍

‍gEen‍ ‍490.64/
√

KE mV · ms‍

‍gEia‍ ‍67.2/
√

KE mV · ms‍

‍gEin‍ ‍7.4/
√

KE mV · ms‍

‍gIE ‍ ‍−138.6/
√

KI mV · ms‍

‍gII ‍ ‍−90.6/
√

KI mV · ms‍

‍τE ‍ ‍20 ms‍

‍τI ‍ ‍10 ms‍

‍τa‍ ‍3 ms‍

‍τn‍ ‍50 ms‍

‍τg‍ ‍4 ms‍

‍τd ‍ ‍200 ms‍

‍τf ‍ ‍450 ms‍

‍U ‍ ‍0.03‍

‍VT ‍ ‍20 mV‍

‍VR‍ ‍−3.33 mV‍

‍σEE ‍ 30°

‍σEI ‍ 35°

‍σIE ‍ 30°

‍σII ‍ 30°

‍I
ext
E ‍ ‍1.66

√
KE mV‍

‍I
ext
I ‍ ‍1.5355

√
KE mV‍

‍Imax,E ‍ ‍0.24 mV‍

‍εE ‍ 61.2°
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comprised the demyelination and remyelination response variables. We computed Pearson’s correla-
tion coefficient between the z-scored predicted vs. observed responses.

Spiking neural network model
We adapted a neural network model (Hansel and Mato, 2013) to simulate the neural circuit in the 
dlPFC underlying spatial working memory during the oculomotor DRT (Figure 5A). The network model 
is composed of ‍N = 20, 000‍ leaky integrate-and-fire neurons, ‍NE = 16, 000‍ excitatory (E) neurons (80%) 
and ‍NI = 4000‍ inhibitory (I) neurons (20%) with sparse probabilistic connections among all neuronal 
populations. A full description of this probabilistic version of the ring model can be found in Hansel 
and Mato, 2013. Here, we describe the essential features of the network and summarize all the 
parameter values in Table 2. The range of the interactions is represented by the parameters ‍σEE‍ , ‍σEI ‍ 
, ‍σIE‍ , and ‍σII ‍ . Each neuron receives ‍K = 500‍ total inputs, where ‍KE = 0.8 K ‍ are excitatory inputs and 

‍KI = 0.2 K ‍ are inhibitory inputs. The subthreshold membrane potential of each excitatory and inhibi-
tory neuron (‍i‍) in the network is described by

	﻿‍
τE

dVE,i
dt

= −VE,i + Irec
E,i

(
t
)

+ Iext
E + Icue

E,i
(
t
)

,
‍�

	﻿‍
τI

dVI,i
dt

= −VI,i + Irec
I,i

(
t
)

+ Iext
I ,

‍�

where ‍τE‍ and ‍τI ‍ are the membrane time constants for the E and I neurons, respectively. ‍I
rec
E/I,i(t)‍ is the 

total recurrent synaptic current that each neuron receives from all the other neurons in the network 
connected to it. ‍I

ext
E/I ‍ is a constant background input, representing internal brain currents that come 

from outside the network. ‍I
cue
E,i (t)‍ represents the transient sensory input to each E neuron, associated 

to a given direction of the stimulus, and only active during the cue period of the task. An AP is fired 
each time that the membrane potential of a neuron reaches the threshold value, ‍VT ‍ . The voltage of 
the membrane is reset to the baseline value, ‍VR‍ , immediately after.

The total recurrent synaptic current for each neuron, ‍I
rec
E/I,i(t),‍ is given by

	﻿‍ Irec
E/I,i

(
t
)

= Ia
E/I,i

(
t
)

+ In
E/I,i

(
t
)

+ Ig
E/I,i

(
t
)

,‍�

where subindices ‍a‍ and ‍n‍ represent the excitatory AMPA and NMDA glutamatergic receptors, and 

‍g‍ an inhibitory GABA receptor. Each synaptic current is given as in Hansel and Mato, 2013, with 
synaptic decay time constants for each receptor, ‍τa, τn‍ , and ‍τg‍ , respectively. Short-term plasticity was 
incorporated to the excitatory-to-excitatory synaptic connections through the variables ‍u‍ and ‍x‍, given 
by Markram et al., 1998

	﻿‍
τf

dui
dt

= U − uI ‍�

	﻿‍
τd

dxi
dt

=
(
1 − xI

)
.
‍�

‍x‍ and ‍u‍ are updated as ‍x → x (1 − u)‍ and ‍u → u + U ∗ (1 − u)‍ , each time that there is a presynaptic 
spike. The variable ‍x‍ represents the amount of available neurotransmitter resources in the presyn-
aptic terminal and ‍u‍ is the utilization parameter, indicating the residual calcium level (Bertram et al., 
1996; Zucker and Regehr, 2002; Mongillo et al., 2008). With each spike, amount ‍ux‍ of the available 
resources is used to produce the postsynaptic current. Thus, ‍x‍ is reduced, representing neurotrans-
mitter depletion, and ‍u‍ is increased, representing the calcium influx into the presynaptic terminal and 
its effect on release probability. Between spikes, ‍x‍ and ‍u‍ recover to their baseline levels (‍x = 1‍ and 
‍u = U ‍; ‍0 < x < 1‍) with time constants ‍τd‍ and ‍τf ‍ . We set ‍τf > τd‍ so that they facilitate signal transmission 
(Tsodyks et al., 1998).

The sensory input current to excitatory neuron ‍i‍ during the cue period, and for a specific location 
of the stimulus, ‍I

cue
E,i (t)‍, is given by

	﻿‍ Icue
E,i

(
t
)

= Imax,Ee
−

1
2

(
θi − θcue

εE

)2

,‍�

https://doi.org/10.7554/eLife.90964


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Ibañez et al. eLife 2023;12:RP90964. DOI: https://doi.org/10.7554/eLife.90964 � 21 of 29

where ‍θi‍ is the preferred direction of the neuron ‍i‍, given by its position on the ring, ‍θcue‍ is the cue 
direction, and ‍Imax,E‍ and ‍εE‍ are the amplitude and the width of the sensory input current, respectively.

Network simulations with spatially modulated correlations
To introduce spatially modulated correlations in the model (Figure  5—figure supplement 1), we 
reduced the strength of the constant background inputs to excitatory and inhibitory neurons, ‍I

ext
E ‍ and 

‍I
ext
I ‍ , by a factor of 0.5 and provide additional external input from a population of Poisson neurons. 

The parameters were chosen such that the time-averaged total input (the sum of the reduced constant 
input and the inputs from the Poisson population) is the same as in our default network without 
Poisson inputs. The external population is composed of  ‍Next‍ = 16,000 Poisson neurons that fire with 
a constant firing rate of  ‍rext‍ = 9.72 Hz. These neurons are connected through AMPA synapses to 
excitatory neurons in the network with a strength of ‍g

ext
Ea = 0.5 gEia‍ and to inhibitory neurons with a 

strength of ‍g
ext
Ia = 0.4625 gEia‍ . The average total number of synaptic inputs from Poisson neurons that 

a neuron receives is  ‍Kext‍ = 1000. Crucially, the connections from the Poisson population to neurons 
in the network are spatially structured, with a Gaussian connection profile similar to the recurrent 
connections in the network (ring structure) and with the interaction range determined by  ‍σext‍ = 20°. 
Thus, neurons in the network receive shared inputs with a spatial structure and this leads to spatial 
correlations in the network neurons (Rosenbaum et al., 2017).

Simulating a cohort of young (control) networks
Using the Brian2 simulator (based on Python), we simulated 10 different networks, all with the same 
parameters, but each with a different connectivity profile. For each network, we ran 280 trials, with 
different initial conditions and cue positions. All networks performed the DRT – with 2  s fixation 
period, 1 s cue period, and 4 s delay period – and maintained the memory of the stimulus during the 
whole delay period of the task (Figure 5B, i and Figure 5—figure supplement 1A, left panel).

Modeling the effects of demyelination and remyelination in the 
network model
Modeling AP propagation failures in the network
The network model is composed of point neurons without an explicit model of the axon. To effectively 
model the AP failures at the distal end of the axons quantified with the single neuron model under the 
different demyelination and remyelination conditions, the AP failure rate was adjusted to the values 
produced by the single neuron model. To do this, we perturbed the 10 control networks by designing 
a probabilistic model of spike transmission from the excitatory presynaptic neurons to both the excit-
atory and inhibitory postsynaptic neurons. From the single neuron model, for each demyelination/
remyelination condition, we quantified the probability of AP failure for each of the neurons in the 
control cohort, as well as the percentage of those neurons that shared the same probabilities of failure. 
That is, the percentage of neurons that had probability of failure = 0, probability of failure = 1 or any 
other probability. Then, we computed the probability of transmission, ‍ptransmission = 1 − pfailure‍ , and we 
specified ‍ptransmission‍ for the corresponding percentages of excitatory neurons in the networks. Thus, 
in the network model, we took into account the heterogeneity observed in the single neuron model 
under each demyelination/remyelination condition.

Modeling conduction velocity slowing in the network
To explore the effect of CV slowing along the axons of model neurons, we simulated 20 young, control 
networks and 20 perturbed networks with AP failure rates adjusted for the case of single model 
neurons with 50% of the segments demyelinated along the axons by removing 60% of the myelin 
lamellae (we ran 280 trials for each network). Then, we added random delays uniformly distributed 
with a minimum value of 0 ms in both cases, a maximum value of 100 ms in the control networks, and 
a maximum values of 40 and 85 ms in the perturbed networks, in both the AMPA and NMDA excit-
atory connections to both E and I neurons (Figure 5—figure supplement 2). These large values were 
chosen because we wanted to illustrate the potential effect of CV slowing in our network and smaller, 
more realistic, values did not have any effect.

https://doi.org/10.7554/eLife.90964
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Quantification of normal myelin sheaths in groups of model neurons 
containing both intact and demyelinated axons
We created different groups of 50 total model neurons containing, among those 50, different random 
amounts of neurons with intact axons and with demyelinated axons, with either 10%, 25%, 50%, or 
75% of segments demyelinated. In each group, the distribution of the demyelinated segments along 
the altered axons was also randomly chosen among the 30 possible distributions simulated with the 
single neuron model. We sorted the axons in each group by locating their origin aligned in the same 
position and, up to the maximum length of the shortest axon, we divided the axons longitudinally 
in sections of 0.5 μm, and calculated the percentage of normal, unperturbed myelin sheaths in each 
section (Figure 7A). Then, we averaged across all sections and we picked 60 groups that had over 
80% of normal myelin sheaths. According to the proportion of intact and demyelinated axons (with 
either 10%, 25%, 50%, or 75% of segments affected) in each group, we adjusted the distribution of AP 
transmission probability (‍ptransmission‍ ;‍ptransmission = 1‍ for intact axons) in 1 of the 10 control networks. To 
do this we considered that the perturbed axons in 40 of the groups were completely demyelinated (all 
lamellae removed) and that in the remaining 20 groups, they had 75% of lamellae removed.

Quantification of new myelin sheaths in groups of model neurons containing 
both intact and remyelinated axons
We again created different groups of 50 total model neurons containing different random amounts 
of neurons with intact and remyelinated axons. The remyelinated axons had either 25%, 50%, or 75% 
of segments remyelinated (with two shorter and thinner myelin sheaths), following previous demye-
lination of either 25%, 50%, or 75% of the segments. In each group, the distribution of the remyelin-
ated segments along the altered axons was randomly chosen among the 30 possible distributions. 
As before, we sorted the axons in each group by locating their origin aligned in the same position, 
we divided the axons longitudinally in sections of 0.5 μm (up to the maximum length of the shortest 
axon), and calculated the percentage of remyelinated segments in each section (Figure 8A). Then, 
we averaged across all sections, we multiplied by two to calculate the number of new myelin sheaths, 
and we picked 22 groups that had below 45% of new myelin sheaths. According to the proportion of 
intact and remyelinated axons (with different percentages of remyelinated segments) in each group, 
we adjusted the distribution of ‍ptransmission‍ in the same control network as before for the case of remy-
elination following partial demyelination by adding 25% of the lamellae back.

Measures of working memory performance
The remembered location was obtained using a population vector decoder and network performance 
was quantified by the following four measures that describe the quality of the activity bump main-
taining a memory of the stimulus during the delay period: the memory strength, the memory duration, 
the drift rate, and the diffusion constant.

Memory strength
The memory strength was defined as the modulus ‍M(t)‍ of the population vector, ‍Z(t)‍, which character-
izes the spatial modulation of the excitatory neuronal activity at time t, given by

	﻿‍
Z
(
t
)

=
∑

j rj
(
t
)

eiθj

∑
j rj

(
t
) = M

(
t
)

eiΨ
(
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‍rj(t)‍ is the firing rate of neuron ‍j‍ with preferred direction ‍θj‍ . Firing rates ‍rj(t)‍ were estimated as 
spike counts in a 250 ms window. A memory strength ‍M(t)‍ close to 0 indicates homogeneous activity 
of the network and ‍M(t)‍ close to 1 indicates a sharply modulated activity (Figure 5C).

Decoded cue location
‍Ψ(t)‍ is the argument of ‍Z(t)‍ and indicates the remembered stimulus location. That is, the center of the 
activity bump (Figure 5B).
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Memory duration
The memory duration was defined as the time from the delay onset until the time where the memory 
strength decayed below a fixed threshold that we set at 0.4. That is, the memory duration is the 
interval during which the bump of neural activity is reliably maintained (Figure 5C).

Memory drift
The drift was defined as the bias of the estimator, which is given by

	﻿‍ best(t) = ⟨Φ(t)⟩ − θcue.‍�

That is, the difference of the trial average of the estimates ‍Φ(t)‍ and the true value ‍θcue‍ (Esnaola-
Acebes et al., 2022; Figure 5E). The drift rate is the slope of a linear fit of the drift during the memory 
duration time (Figure 6—figure supplement 2).

Memory diffusion
The diffusion was defined as the variance of the estimator, given by

	﻿‍
σ2

est(t) =
⟨

(Φ(t) − ⟨Φ(t)⟩)2
⟩

,
‍�

the variation of the estimates about their mean value (Esnaola-Acebes et al., 2022; Figure 5D). The 
diffusion rate is the slope of a linear fit of the diffusion during the memory duration time (Figure 6B).
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