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Abstract Humans make irrational decisions in the presence of irrelevant distractor options. There 
is little consensus on whether decision making is facilitated or impaired by the presence of a highly 
rewarding distractor, or whether the distractor effect operates at the level of options’ component 
attributes rather than at the level of their overall value. To reconcile different claims, we argue that 
it is important to consider the diversity of people’s styles of decision making and whether choice 
attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset 
investigating the same experimental paradigm, we demonstrated that people used a mix of both 
approaches and the extent to which approach was used varied across individuals. Critically, we iden-
tified that this variability was correlated with the distractor effect during decision making. Individuals 
who tended to use a multiplicative approach to compute value, showed a positive distractor effect. 
In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending 
towards an additive approach. Findings suggest that the distractor effect is related to how value 
is constructed, which in turn may be influenced by task and subject specificities. This concurs with 
recent behavioural and neuroscience findings that multiple distractor effects co-exist.

eLife assessment
This manuscript provides a valuable demonstration that distractor effects in multi-attribute decision-
making correlate with the form of attribute integration (additive vs. multiplicative). The evidence 
supporting the conclusions is convincing, but there are questions about how to interpret the find-
ings. The manuscript will be interesting to decision-making researchers in neuroscience, psychology, 
and related fields.

Introduction
Psychologists, economists, and neuroscientists have been interested in whether and how decision 
making is influenced by the presence of unchooseable distractor options. Rationally, choices ought to 
be unaffected by distractors, however, it has been demonstrated repeatedly that this is not the case 
in human decision making. For example, the presence of a strongly rewarding, yet unchooseable, 
distractor can either facilitate or impair decision making (Chau et al., 2014; Louie et al., 2013; Webb 
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et al., 2020). Which effect predominates depends on the distractor’s interactions with the chooseable 
options, which, in turn, are a function of their values (Chau et al., 2020).

Intriguingly, most investigations have considered the interaction between distractors and choose-
able options either at the level of their overall utility or at the level of their component attributes, but 
not both (Chau et al., 2014; Chau et al., 2020; Gluth et al., 2018). Recently, however, one study has 
considered both possible levels of option-distractor interactions and argued that the distractor effect 
operates mainly at the attribute level rather than the overall utility level (Cao and Tsetsos, 2022). 
When the options are comprised of component attributes (for example, one feature might indicate 
the probability of an outcome if the option is chosen, while the other might indicate the magnitude of 
the outcome), it is argued that the distractor exerts its effects through interactions with the attributes 
of the chooseable options. However, as has been argued in other contexts, just because one type of 
distractor effect is present does not preclude another type from existing (Chau et al., 2020; Kohl 
et al., 2023). Each type of distractor effect can dominate depending on the dynamics between the 
distractor and the chooseable options. Moreover, the fact that people have diverse ways of making 
decisions is often overlooked. Therefore, not only may the type of distractor effect that predominates 
vary as a function of the relative position of the options in the decision space, but also as a function of 
each individual’s style of decision making.

Multiple distractor effects have been proposed. At the level of the overall utility of the choice, the 
divisive normalization model suggests that the presence of a valuable distractor can impair decision 
accuracy and this is sometimes known as a negative distractor effect (Kohl et al., 2023; Louie et al., 
2013; Webb et al., 2020). Conversely, an attractor network model suggests the opposite – a valu-
able distractor can improve decision accuracy by slowing down decision speed and this is sometimes 
known as a positive distractor effect (Chang et al., 2019; Chau et al., 2014; Chau et al., 2020; Kohl 
et al., 2023). At the other level, the level of choice attributes, the selective integration model empha-
sises that individual attributes of the distractor interact with individual attributes of the chooseable 
options and distort the way they are integrated. Although these models are sometimes discussed as 
if they were mutually exclusive, it is possible that some, if not all, of them can co-exist. For example, 
in a two-attribute decision making scenario, each option and distractor falls at different points in a 
two-dimensional decision space defined by the two component attributes. Whether the distractor 
facilitates or impairs decision accuracy depends on the exact locations of the chooseable options and 
distractor (Dumbalska et al., 2020). Alternatively, the decision space can be defined by the sum of 
and differences in the two chooseable options’ overall values, and it has been shown that positive and 
negative distractor effects predominate in different parts of this decision space (Chau et al., 2020; 
Kohl et al., 2023). Hence, it is unlikely that the distractor affects decision making in a single, mono-
tonic way. In addition, although most studies focused on analyzing distractor effects at the group 
level, they often involved a mix of individuals showing positive and negative distractor effects (Chang 
et al., 2019; Webb et al., 2020). It is possible that such variability in distractor effects could be related 
to variability in people’s ways of combining attributes during decision making.

Options that we choose in everyday life are often multi-attribute in nature. For example, a job-
seeker may consider the salary and the chance of successfully getting the job before submitting the 
application. An ideal way of combining the two attributes (the salary and success rate) is by calculating 
their product, that is, employing the Expected Value model or a multiplicative rule (Neumann and 
Morgenstern, 2007). However, it has been argued that, instead of following this ideal rule, people 
use a simpler additive rule to combine attributes, in which individual attributes of the same option 
are added together often via a weighted-sum procedure (Cao and Tsetsos, 2022; Farashahi et al., 
2019). As such, it is easy to take a dichotomous view that people either use a multiplicative or additive 
rule in their decision making. Intriguingly, however, recently it has been shown that, at the level of 
each individual human or monkey, decision making involves a combination of both rules (Bongioanni 
et al., 2021; Scholl et al., 2014). The two computational strategies may rely on distinct neuronal 
mechanisms, one in parietal cortex estimating the perceptual differences between stimuli, leading to 
an additive rule, and a more sophisticated one in prefrontal cortex tracking integrated value, leading 
to a multiplicative rule. It is possible to devise a composite model by having a single parameter (an 
integration coefficient) to describe, for each individual decision maker, the extent to which decision-
making is based on multiplication or addition. In other words, the integration coefficient captures indi-
vidual differences in people’s and animals’ degree of attribute combination during decision making 
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(Figure 1). For clarity, we stress that the same mathematical formula for additive value can be inter-
preted as meaning that (1) subjects first estimate the value of each option in an additive way (value 
integration) and then compare the options, or (2) subjects compare the two magnitudes and sepa-
rately compare the two probabilities without integrating dimensions into overall values. On the other 
hand, the mathematical formula for multiplicative value is only compatible with the first interpretation. 
In this paper we focus on attribute combination styles (multiplicative versus additive) and do not make 
claims about the order of the operations. More particularly, we consider whether individual differ-
ences in combination styles could be related to different forms of distractor effect.

In the current study, we re-analysed data collected from three different laboratories that involved 
144 human participants choosing between two options in the presence of a distractor (Figure 1a 
and b; Chau et al., 2014; Chau et al., 2020; Gluth et al., 2018). Recently, the data have been fitted 
using a multiplicative rule, additive rule, and a multiplicative rule with divisive normalization (Cao 
and Tsetsos, 2022). It was argued that participants’ choice behaviour was best described by the 
additive rule and that the previously reported positive distractor effect was absent when utility was 
estimated using the additive rule. Here, we fitted the data using the same models and procedures, 

Figure 1. The multi-attribute decision making task (Chau et al., 2014; Gluth et al., 2018). (a) On the control Two-Option Trials, participants were 
presented with two options associated with different levels of reward magnitude and probability, each in the form of a rectangular bar surrounded by 
an orange box. On the experimental Distractor Trials, three options were presented. Two options were subsequently surrounded by orange boxes 
indicating that they could be chosen, while a third option was surrounded by a purple box indicating that it was an unchooseable distractor. (b) The 
association between stimulus colour and orientation to reward magnitude and probability, respectively. Participants were instructed to learn these 
associations prior to task performance. (c) Plots illustrating utility estimated using (left) a purely multiplicative rule and (right) a purely additive rule (here 
assuming equal weights for probability and magnitude). By comparing their corresponding plots, differences in the utility contours are most apparent 
in the bottom-left and top-right corners. This is because in the multiplicative rule a small value in either the magnitude or probability produces a small 
overall utility (blue colours). In contrast, in the additive rule the two attributes are independent – a small value in one attribute and a large value in 
another attribute can produce a moderate overall utility (green colours). (Middle) Here, we included a composite model that combines both rules. The 
composite model involves an integration coefficient ‍η‍ that controls the relative contributions of the multiplicative and additive rules.

© 2014, Springer Nature. Panels a and b are reproduced from Chau et al., 2014, by permission of Springer Nature (copyright, 2014). This figure is not 
covered by the CC-BY 4.0 licence and further reproduction of this panel would need permission from the copyright holder.
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but also considered an additional composite model to capture individual variations in the relative 
use of multiplicative and additive rules (Figure 1c). We found that this composite model provides 
the best account of participants’ behaviour. Given the overlap in neuroanatomical bases underlying 
the different methods of value estimation and the types of distractor effects, we further explored the 
relationship. Critically, those who employed a more multiplicative style of integrating choice attributes 
also showed stronger positive distractor effects, whereas those who employed a more additive style 
showed negative distractor effects. These findings concur with neural data demonstrating that the 
medial prefrontal cortex (mPFC) computes the overall values of choices in ways that go beyond simply 
adding their components together, and is the neural site at which positive distractor effects emerge 
(Barron et al., 2013; Bongioanni et al., 2021; Chau et al., 2014; Fouragnan et al., 2019; Noonan 
et al., 2017; Papageorgiou et al., 2017), while divisive normalization was previously identified in the 
posterior parietal cortex (PPC; Chau et al., 2014; Louie et al., 2011).

Results
This study analysed empirical data acquired from human participants (five datasets; N=144) 
performing the multi-attribute decision-making task described in Figure 1; Chau et al., 2014; Gluth 
et al., 2018. Participants were tasked with maximising their rewards by choosing between options 
that were defined by different reward magnitudes (‍X ‍) and probabilities (‍P‍), depicted as rectangular 
bars of different colours and orientations, respectively (Figure 1b). The task involved, as a control, 
Two-Option Trials, on which participants were offered two options. It also involved Distractor Trials, 
in which two chooseable options were presented alongside a distractor option that could not be 
selected. The two chooseable options and the unchosen distractor option are referred to as the 
higher value (‍HV ‍), lower value (‍LV ‍), and distractor value (‍DV ‍), based on their utility. We began our 
analyses by assuming utility as Expected Value (i.e. ‍EV = X × P‍).

The distractor effect was absent on average
We used a general linear model (GLM), GLM1, to examine whether a distractor effect was present 
in the choice behaviour of participants. GLM1 included 3 regressors to predict the choice of the 
HV option: an ‍HV − LV ‍ term that represents the choice difficulty (i.e. as the difference in value 
between HV and LV becomes smaller, it becomes more difficult to select the better option), a 
‍DV − HV ‍ term that represents the relative distractor value, and a ‍

(
HV − LV

) (
DV − HV

)
‍ interaction 

term that examines whether the distractor effect was modulated as a function of choice difficulty. 
Similar approaches have been used previously (Cao and Tsetsos, 2022; Chau et  al., 2014; Chau 
et  al., 2020; Gluth et  al., 2018; Kohl et  al., 2023). On Distractor Trials (Figure  2a), the results 
of GLM1 showed a positive ‍DV − HV ‍ effect [‍β = 0.0835‍, ‍t

(
143

)
= 3.894‍, ‍p = 0.000151‍] and ‍HV − LV ‍ 

effect [‍β = 0.486‍, ‍t
(
143

)
= 20.492‍, ‍p < 10−43

‍], and a negative ‍
(
HV − LV

) (
DV − HV

)
‍ interaction effect 

Figure 2. A distractor effect was absent, when the way participants combined choice attributes was ignored. Although a positive distractor effect 
(indicated by the DV-HV term) was present on both (a) Distractor and (b) Two-Option Trials, (c) the distractor effects in the two trial types were not 
significantly different when they were compared in a single analysis [indicated by the ‍

(
DV − HV

)
T ‍ term]. Error bars indicate standard error. * p<0.05, ** 

p<0.01, *** p<0.001.

https://doi.org/10.7554/eLife.91102
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[‍β = −0.0720‍, ‍t
(
143

)
= −3.668‍, ‍p = 0.000344‍]. However, Cao and Tsetsos (Cao and Tsetsos, 2022) 

suggested that the same analysis should be applied to the control Two-Option Trials. As such, 
each control trial should be analysed by including a hypothetical distractor identical to the actual 
distractor that was present in the matched experimental Distractor Trials. Moreover, Cao and Tsetsos 
suggest specific methods for trial matching (Cao and Tsetsos, 2022). Theoretically, a distractor effect 
should be absent when GLM1 is applied to analyse these control trials because the distractor was 
not truly present. Consistent with the findings of Cao and Tsetsos, 2022, the Two-Option Trials 
(Figure  2b) displayed a significant ‍DV − HV ‍ effect [‍β = 0.0685‍, ‍t

(
143

)
= 2.877‍, ‍p = 0.00463‍] and a 

‍
(
HV − LV

) (
DV − HV

)
‍ interaction effect [‍β = −0.0487‍, ‍t

(
143

)
= −2.477‍, ‍p = 0.0144‍], alongside the 

expected ‍HV − LV ‍ effect [‍β = 0.635‍, ‍t
(
143

)
= 27.975‍, ‍p < 10−59

‍].
One key test to examine whether a distractor effect was present was to compare the strength 

of distractor effects on the experimental Distractor Trials and the control Two-Option Trials. This 
was achieved by adapting GLM1 into GLM2 and then matching the control Two-Option Trials and 
Distractor Trials (here we followed exactly the approach suggested by Cao and Tsetsos. More details 
are presented in the section GLM analysis of relative choice accuracy). In addition to the regressors 
involved in GLM1, GLM2 included a binary variable ‍T ‍ to describe the trial type (i.e. 0=Two-Option 
Trials and 1=Distractor Trial). Then, all original GLM1 regressors were multiplied by this variable ‍T ‍. 
Hence, the presence of a ‘stronger’ distractor effect on Distractor Trials than on control trials should be 
manifested in the form of a significant ‍

(
DV − HV

)
T ‍ effect or ‍

(
HV − LV

) (
DV − HV

)
T ‍ effect. However, 

the results showed that neither the ‍
(
DV − HV

)
T ‍ nor the ‍

(
HV − LV

) (
DV − HV

)
T ‍ term was significant. 

While these results may seem to suggest that a distractor effect was not present at an overall group 
level, we argue that the precise way in which a distractor affects decision making is related to how 
individuals integrate the attributes.

Identifying individual variabilities in combining choice attributes
During multi-attribute decision making, people integrate information from different attributes. 
However, the method of integration can be highly variable across individuals and this, in turn, may 
have an impact on how a distractor effect manifests. Hence, it is imperative to first consider individual 
differences in how participants integrate the choice attributes. Previous work has demonstrated that 
choice behaviour may not be adequately described using either additive or multiplicative models, 
but rather a combination of both (Bongioanni et al., 2021). We fitted these models exclusively to 
the Two-Option Trial data and not the Distractor Trial data, ensuring that the fitting (especially that of 
the integration coefficient) was independent of any distractor effects, and tested which model best 
describes participants’ choice behaviours. In particular, we included the same set of models suggested 
by Cao and Tsetsos, which included an EV model, an additive utility (AU) model, and an EV model 
combined with divisive normalisation. In addition, we included a composite model which utilises an 
integration coefficient to incorporate both additive and multiplicative methods of combining option 
attributes. A larger integration coefficient suggests that an individual places more weight on using a 
multiplicative rule than an additive rule.

When a Bayesian model comparison was performed, the results showed that the composite model 
provides the best account of participants’ choice behaviour (Figure  3; exceedance probability = 
1.000, estimated model frequency = 0.879). Figure 3c, d, and e show the fitted parameters of the 
composite model: ‍η‍, the integration coefficient determining the relative weighting of the additive and 
multiplicative value (‍M = 0.324‍, ‍SE = 0.0214‍); ‍γ‍, the magnitude/probability weighing ratio (‍M = 0.415‍, 
‍SE = 0.0243‍); and ‍ϑ‍, the inverse temperature (‍M = 9.643‍, ‍SE = 0.400‍). Our finding that the average 
integration coefficient ‍η‍ was 0.325 coincides with previous evidence that people were biased towards 
using an additive, rather than a multiplicative rule. However, it also shows that rather than being 
fully additive (‍η‍=0) or multiplicative (‍η‍=1), people’s choice behaviour is best described as a mixture 
of both. Figure 3—figure supplement 1 shows the relationships between all the fitted parameters. 
Figure 3—figure supplement 2 reports an additional Bayesian model comparison performed while 
including a model with nonlinear utility functions based on Prospect Theory (Kahneman and Tversky, 
1979) with the Prelec formula for probability (Prelec, 1998). Consistent with the above finding, the 
composite model provides the best account of participants’ choice behaviour (exceedance probability 
= 1.000, estimated model frequency = 0.720).

https://doi.org/10.7554/eLife.91102
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Multiplicative style of integrating choice attributes was associated with 
a significant positive distractor effect
It has been shown that evaluations of choices driven by more than just an additive combination of 
attribute features depend on the medial and/or adjacent ventromedial prefrontal cortex (Bongioanni 
et al., 2021; Papageorgiou et al., 2017). On the other hand, a positive distractor effect is also linked 
to the modulation of decision signals in a similar prefrontal region (Chau et al., 2014). On the basis 
of these findings, we expected that a positive distractor effect may be highly related to the use of 
a multiplicative method of choice evaluation, given their similar anatomical associations. As such, 
we proceeded to explore how the distractor effect (i.e. the effect of ‍

(
DV − HV

)
T ‍ obtained from 

GLM2; Figure 2c) was related to the integration coefficient (‍η‍) of the optimal model via a Pearson’s 
correlation (Figure 4). As expected, a significant positive correlation was observed [‍r

(
142

)
= 0.282‍, 

‍p = 0.000631‍]. We noticed that there were 32 participants with integration coefficients that were close 
to zero (below 1×10–6). The correlation remained significant even after removing these participants 
[r(110)=0.202, p=0.0330].

This correlation could be driven by three possible patterns of distractor effect. First, greater 
integration coefficients (i.e. being more multiplicative) could be related to more positive distractor 
effects. Second, smaller integration coefficients (i.e. being more additive) could be related to more 
negative distractor effects. Third, both positive and negative distractor effects could be present but 

Figure 3. A Bayesian model comparison showed that the composite model provides the best account of participants’ choice behaviour. (a) The 
posterior probability of each model in accounting for the behaviour of each participant. (b) A model comparison demonstrating that the composite 
model (COMP) is the best fit model, compared to the additive utility (AU), expected value (EV), and expected value and divisive normalisation (EV +DN) 
models. Histograms showing each participant’s fitted parameters using the composite model: (c) Values of the integration coefficient (‍0 ≤ η ≤ 1‍), (d) 
magnitude/probability weighing ratio (‍0 ≤ γ ≤ 1‍), and (e) inverse temperature (‍ϑ‍).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Scatterplots illustrating the correlation between the fitted parameters.

Figure supplement 2. A Bayesian model comparison showed that the composite model provides the best account of participants’ choice behaviour 
even when a model with utility curvature based on Prospect Theory (Kahneman and Tversky, 1979) with the Prelec formula for probability (Prelec, 
1998) is also considered.

https://doi.org/10.7554/eLife.91102
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appeared separately in predominantly multiplicative and additive individuals respectively. To test 
which was the case, we used the mean integration coefficient value to divide the participants into 
two groups [Multiplicative Group (N=71) and Additive Group (N=73)]. We then analysed the data 
from each group using GLM2 (Figure 5b and c). We found that the distractor effect, reflected in 
the ‍

(
DV − HV

)
T ‍ term, was significantly greater in the Multiplicative Group than the Additive Group 

(Figure 5; ‍t
(
142

)
= 3.792‍, ‍p = 0.00022‍). Critically, the distractor effects were significant within each 

of the individual groups but bore opposite signs: the distractor effect was positive in the Multiplica-
tive Group [‍β = 0.105‍, ‍t

(
70

)
= 3.438‍, ‍p = 0.000991‍] but negative in the Additive Group [‍β = −0.0725‍, 

‍t
(
72

)
= −2.053‍, ‍p = 0.0437‍].

Finally, we performed three additional analyses that revealed comparable results to those shown in 
Figure 5. In the first analysis, reported in Figure 5—figure supplement 1, we added an ‍HV + LV ‍ term 

Figure 4. Participants showing a more multiplicative style of combining choice attributes into an overall value also showed a greater distractor effect. 
A scatterplot illustrating a positive correlation between the integration coefficient (‍η‍) and the distractor term (i.e. ‍

(
DV − HV

)
T ‍) obtained from GLM2 

(Figure 2c). A significant positive correlation was observed [‍r
(
142

)
= 0.282‍, ‍p = 0.000631‍].

https://doi.org/10.7554/eLife.91102
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to the GLM, because this term was included in some analyses of a previous study that used the same 
dataset (Chau et al., 2020). In the second analysis, we added an ‍

(
HV + LV

)
T ‍ term to the GLM. We 

noticed that this change led to inflation of the collinearity between the regressors, so we also replaced 
the (DV−HV) term by the DV term to mitigate the collinearity (Figure 5—figure supplement 2). In the 
third analysis, reported in Figure 5—figure supplement 3, we replaced the utility terms of GLM2. 
Since the above analyses involved using HV, LV, and DV values defined by the normative Expected 
Value model, here, we re-defined the values using the composite model prior to applying GLM2. 
Overall, in the Multiplicative Group a significant positive distractor effect was found in Figure 5—
figure supplement 1. In the Additive Group a significant negative distractor effect was found in 
Figure 5—figure supplements 1 and 3. Crucially, all three analyses demonstrated the consistent 
trend that the distractor effects were different and opposite between the Multiplicative Group and 
the Additive Group.

Discussion
It has been widely agreed that humans make irrational decisions in the presence of distractor options. 
However, there has been little consensus on how exactly distractors influence decision making. Does 
a seemingly attractive distractor impair or facilitate decision making? Does the distractor influence 
decision making at the level of overall utility or individual choice attributes? Often, one assumption 
behind these questions is that there is only a single type of distractor effect. Here, we demonstrated 
that, instead of a unidirectional effect, the way a distractor influences decision making depends on 
individuals’ styles of integrating choice attributes during decision making. More specifically, those 
who employed a multiplicative style of integrating attributes were prone to a positive distractor effect. 
Conversely, those who employed an additive style of integrating attributes were prone to a negative 
distractor effect. These findings show that the precise way in which distractors affect decision making 
depends on an interaction between the distractor value and people’s style of decision making.

At the neuroanatomical level, the negative distractor effect is mediated by the PPC, where signal 
modulation described by divisive normalization has been previously identified (Chau et al., 2014; 

Figure 5. Significant distractor effects were found when participants’ styles of combining choice attributes were considered. (a) A positive distractor 
effect, indicated by the ‍

(
DV − HV

)
T ‍ term, was found in the Multiplicative Group, whereas a negative distractor effect was found in the Additive 

Group. The ‍
(
DV − HV

)
T ‍ term was also significantly different between the two groups. Plots showing all regression weights of GLM2 when the data of 

the (b) Multiplicative Group and (c) Additive Group were analysed. The key ‍
(
DV − HV

)
T ‍ term extracted in (a) is highlighted in blue and yellow for the 

Multiplicative Group and Additive Group, respectively. Error bars indicate standard error. * p<0.05, ** p<0.01, *** p<0.001.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The distractor effects shown in Figure 5 remained significant after including an extra ‍HV + LV ‍ term in GLM3.

Figure supplement 2. The distractor effect between groups were maginally significant following the introduction of the ‍
(
HV + LV

)
T ‍ term to GLM3 

and changing the ‍DV − HV ‍ terms to ‍DV ‍ to prevent collinearity between the regressors.

Figure supplement 3. The positive distractor effect in the Multiplicative Group shown in Figure 5 remained significant after replacing the utility 
function based on the normative Expected Value model with values obtained by using the composite model.

https://doi.org/10.7554/eLife.91102
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Louie et al., 2011). The same region is also crucial for perceptual decision making processes (Shadlen 
and Shohamy, 2016). The additive heuristics for combining choice attributes are closer to percep-
tual evaluation because distances in this subjective value space correspond linearly to differences in 
physical attributes of the stimuli, whereas normative (multiplicative) value has a non-linear relationship 
with them (Figure 1c). The same would apply even with a different choice of cues, as long as the 
information is conveyed by two independent visual features. It is well understood that many sensory 
mechanisms, such as those in primates’ visual systems or fruit flies’ olfactory systems, are subject to 
divisive normalization (Carandini and Heeger, 2011). Hence, the additive heuristics that are more 
closely based on sensory mechanisms could also be subject to divisive normalization, leading to nega-
tive distractor effects in decision making.

In contrast, the positive distractor effect is mediated by the mPFC (Chau et al., 2014; Fouragnan 
et al., 2019). Interestingly, the same or adjacent interconnected mPFC regions have also been linked to 
the mechanisms by which representational elements are integrated into new representations (Barron 
et al., 2013; Klein-Flügge et al., 2022; Law et al., 2023; Papageorgiou et al., 2017; Schwarten-
beck et al., 2023). In a number of situations, such as multi-attribute decision making, understanding 
social relations, and abstract knowledge, the mPFC achieves this by using a spatial map represen-
tation characterised by a grid-like response (Constantinescu et al., 2016; Bongioanni et al., 2021; 
Park et al., 2021) and disrupting mPFC leads to the evaluation of composite choice options as linear 
functions of their components (Bongioanni et al., 2021). These observations suggest a potential link 
between positive distractor effects and mechanisms for evaluating multiple component options and 
this is consistent with the across-participant correlation that we observed between the strength of 
the positive distractor effect and the strength of non-additive (i.e. multiplicative) evaluation of the 
composite stimuli we used in the current task. Hence, one direction for model development may 
involve incorporating the idea that people vary in their ways of combining choice attributes and each 
way is susceptible to different types of distractor effect.

The current finding involves the use of a composite model that arbitrates between the additive 
and multiplicative strategies. While the additive strategy is a natural and simple approach for inte-
grating non-interacting pieces of information, to some extent, participants also used the multipli-
cative strategy that was optimal in the current experiment. A general question for such composite 
models is whether people mix two strategies in a consistent manner on every trial or whether there 
is some form of probabilistic selection occurring between the two strategies on each trial such that 
only one strategy is used on any given trial while, on average, one strategy is more probable than the 
other. It would also be interesting to examine whether a composite model is appropriate in contexts 
where the optimal solution is additive or subtractive, such as those concerning quality and price. 
Further examination of these situations would require an independent estimation of subjective values 
in quantitative terms, such as by pupillometry or functional neuroimaging. Better understanding of 
this problem will also provide important insight into the precise way in which distractor effects operate 
at the single-trial level.

Other studies have provided evidence suggesting that multiple forms of distractor effects can 
co-exist. For example, when people were asked to choose between three food items, most people 
were poorer at choosing the best option when the worst option (i.e. the distractor) was still an 
appealing option (Louie et al., 2013; Webb et al., 2020). In other words, most people showed nega-
tive distractor effects, which is predicted by divisive normalization models (Carandini and Heeger, 
2011; Louie et  al., 2013). However, it is noticeable that the degree of negative distractor effect 
varies across individuals and some even showed the reverse, positive distractor effect. Similarly, it has 
been shown in social decision making that choice utility was best described by a divisive normaliza-
tion model (Chang et al., 2019). However, at the same time, a positive distractor effect was found in 
choice behaviour, such that greater distractor values were instead associated with more choices of the 
best option, suggesting a positive distractor effect. The effect became even more robust when indi-
vidual variability was considered in a mixed-effects model. Together, these results suggest that divisive 
normalization (which predicts negative distractor effects) and positive distractor effect may co-exist, 
but that they predominate in different aspects of decision making.

In the current study and in previous work, we have used or made reference to models of decision 
making that assume a noisy process of choice comparison occurs such as recurrent neural networks 
and drift diffusion models (Shadlen and Shohamy, 2016; Wang, 2008). Under this approach, positive 

https://doi.org/10.7554/eLife.91102
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distractor effects are predicted when the comparison process becomes more accurate because of an 
impact on the noisy process of choice comparison (Chau et al., 2020; Kohl et al., 2023). However, it 
is worth noting that another class of models might assume that a choice representation itself is inher-
ently noisy. According to this approach, on any given decision, a sample is drawn from a distribution of 
value estimates in a noisy representation of the option. Thus, when the representation is accessed, it 
might have a certain value on average but this value might vary from occasion to occasion. As a conse-
quence, the value of a distractor that is ‘drawn’ during decision between two other options may be 
larger than the distractor’s average value and may even exceed the value drawn from the less valuable 
choice option’s distribution on the current trial. On such a trial, it may become especially clear that 
the better of the two options has a higher value than the alternative choice option. Louie et al., 2013 
suggest an explanation approximately along these lines when they reported a positive distractor effect 
during some decisions. Such different approaches share theoretical origins (Shadlen and Shohamy, 
2016) and make related predictions about the impact of distractors on decision making.

Indeed, it is possible that multiple forms of distractor effects can co-exist because of their different 
neuroanatomical origins. In humans and monkeys, a positive distractor effect was found in decision 
signals in the mPFC (Chau et al., 2014; Fouragnan et al., 2019), whereas divisive normalization was 
found in decision signals in the PPC (Chau et al., 2014; Louie et al., 2011). As such, it should be 
expected that while these opposite distractor effects might sometimes diminish one another, disrup-
tion in one of the brain regions might result in the expression of the distractor effect related to the 
other brain region. Indeed, this idea is supported by empirical data showing that the parietal-related, 
negative distractor effect was more prominent in humans and monkeys with a lesion in the mPFC 
(Noonan et al., 2010; Noonan et al., 2017). In addition, the prefrontal-related, positive distractor 
effect was more prominent after the parietal cortex was transiently disrupted using transcranial 
magnetic stimulation (Kohl et al., 2023). These findings concur with the general notion that decision 
making is mediated by a distributed neural circuit, rather than a single, localised brain region.

Methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm MATLAB R2022a MATLAB RRID:SCR_001622

Multi-attribute decision-making task and datasets
The current study re-analysed five published datasets of empirical data based on a multi-attribute 
decision-making task (Chau et al., 2014; Gluth et al., 2018). The experimental task involved partic-
ipants making a decision between two options in the absence (Two-Option Trials) or presence 
(Distractor Trials) of a third distractor option that could not be chosen. During each trial, two or three 
stimuli associated with different reward magnitudes and probabilities (represented by colours and 
orientations) were randomly presented in selected screen quadrants (Figure 1). Immediately following 
stimulus onset (0.1 s), options that were available for selection were surrounded by orange boxes, 
while the distractor option that could not be selected was surrounded by a purple box. The choice of 
the participant was indicated by the change in colour of the surrounding box from orange to red. At 
the end of each trial, the edge of each stimulus changed to yellow if the choice was rewarded, and to 
grey if the choice was not rewarded. A total of 144 human participants were included in the analysis 
with data from the original fMRI dataset [N=21; (Chau et al., 2014)] and additional replication exper-
iments (Experiments 1, 2, 3, and 4) performed by Gluth and colleagues [N=123; (Gluth et al., 2018)].

GLM analysis of relative choice accuracy
The choice accuracy data from the Two-Option Trials and Distractor Trials were analysed separately 
using GLM1:

	﻿‍ Logit
(
accuracy

)
= β0 + β1z(HV−LV

) + β2z(DV−HV
) + β3z(HV−LV

)z(DV−HV
) + ε‍�

where ‍HV ‍, ‍LV ‍, and ‍DV ‍ refer to the values of the chooseable higher value option, chooseable lower 
value option, and distractor, respectively. Here, values (except those in Figure 5—figure supplement 
3) are defined as Expected Value (EV), calculated by multiplying magnitude and probability of reward. 

https://doi.org/10.7554/eLife.91102
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‍z
(

x
)
‍
 refer to the z-scoring of term ‍x‍, which were applied to all terms within the GLMs. The unexplained 

error is represented by ‍ε‍. Trials in which the distractor or an empty quadrant were mistakenly chosen 
were excluded from the analysis. Fitting was performed using MATLAB’s glmfit function by assuming 
a binomial linking function.

A binary variable (‍T ‍) encoding trial type (i.e. 0=Two-Option Trials and 1=Distractor Trials) was 
introduced to combine both two-option and distractor trial types into a single GLM used to assess 
distractor-related interactions:

The choice accuracy data of the Two-Option Trials and Distractor Trials were analysed together 
using GLM2, which followed exactly the procedures described by Cao and Tsetsos, 2022:

	﻿‍

Logit
(
accuracy

)
= β0 + β1z(HV−LV

) + β2z(DV−HV
) + β3z(HV−LV

)z(DV−HV
) + β4T + β5z(HV−LV

)T +

β6z(DV−HV
)T + β7z(HV−LV

)z(DV−HV
)T + ε ‍�

We focused on the relative accuracy of Distractor Trials compared to Two-Option trials by consid-
ering the proportion of H choices among trials with H or L choices and excluding a small number 
of D-choice trials. We also identified matched Two-Option Trials for each distractor trial. The 150 
Distractor Trials yielded 149 unique conditions exhibiting a unique combination of probability (P) and 
magnitude (X) attributes across the three options (H, L, and D). However, the 150 Two-Option Trials 
contained only 95 unique conditions carrying a unique combination of P and X across the two avail-
able options (H and L). As the distractor and Two-Option Trials do not exhibit ‘one-to-one’ mapping, 
some Distractor Trials will have more than one matched Two-Option Trials. The different counts of 
matched Two-Option Trials were used as ‘observation weights’ in the GLM. Through identifying all 
matched Two-Option Trials of every distractor trial, the baselining approach introduces ‘trial-by-trial 
baseline accuracy’ as a new dependent variable as described by Cao and Tsetsos, 2022.

Computational modelling
To determine which model best describes participants’ choice behaviour, we followed the procedures 
carried out by Cao and Tsetsos, 2022. We fitted three models to choice data from the control Two-
Option Trials, namely the Expected Value (EV) model, Additive Utility (AU) model, and the Expected 
Value and Divisive Normalisation (EV  +DN) model. In this study, we also included an additional 
composite (additive and multiplicative) model. For each model, we applied the softmax function as 
the basis for estimating choice probability:

	﻿‍
p
(
choice = i

)
= eϑUi

Σ2
j=1eϑUj

‍�

where ‍Ui‍ refers to the utility of option i (either the HV or LV option) and ‍ϑ‍ refers to the inverse 
temperature parameter. Four models were used to estimate the options’ utility ‍Ui‍, based on their 
corresponding reward magnitude ‍Xi‍ and probability ‍Pi‍ (both rescaled to the interval between 0 and 
1). The four models were the Expected Value model, Additive Utility model, Expected Value and Divi-
sive normalisation model, and Composite model:

Expected value (EV) model
This model employs a multiplicative rule for estimating utility:

	﻿‍ Ui = Xi × Pi‍�

Additive utility (AU) model
This model employs an additive rule for estimating utility based on the magnitude ‍Xi‍ and probability 

‍Pi‍ as follows:

	﻿‍ Ui = γXi +
(
1 − γ

)
Pi‍�

where ‍γ‍ is the magnitude/probability weighing ratio (‍0 ≤ γ ≤ 1‍).

https://doi.org/10.7554/eLife.91102
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Expected value and divisive normalisation (EV+DN) model
We included the EV +DN model following the procedures carried out by Cao and Tsetsos, 2022. 
Compared to the EV models, here utilities were normalised by the inputs of all values as follows:

	﻿‍ EVi = Xi × Pi‍�

	﻿‍
Ui = EVi

ΣN
j=1EVj ‍�

where ‍EVi‍ , ‍Xi‍ , and ‍Pi‍ denote expected value, reward magnitude, and reward probability of option 
i, respectively.

Composite model
We further explored the possibility that behaviour may be described as a mixture of both additive AU 
and multiplicative EV models (Bongioanni et al., 2021; Scholl et al., 2014):

	﻿‍ Ui = η
(
Xi × Pi

)
+
(
1 − η

) (
γXi +

(
1 − γ

)
Pi
)
‍�

where ‍γ‍ is the magnitude/probability weighing ratio (‍0 ≤ γ ≤ 1‍) and ‍η‍ is the integration coefficient 
(‍0 ≤ η ≤ 1‍) determining the relative weighting of the additive and multiplicative value. Simulations 
reported by Bongioanni and colleagues (Bongioanni et al., 2021) prove that the composite model 
can be accurately discriminated from the simple additive and multiplicative models, even if the latter 
ones include non-linear distortions of the magnitude and probability dimensions. Additional simu-
lations have shown that the fitted parameters can be recovered with high accuracy (i.e. with a high 
correlation between generative and recovered parameters).

Model fitting and comparison
The empirical choice probabilities generated from the model predictions were used to calculate the 
binomial log-likelihood, following the procedures described by Cao and Tsetsos, 2022:

	﻿‍ LL ∝ pe log
(
pm

)
+
(
1 − pe

)
log

(
1 − pm

)
‍�

here, ‍pe‍ and ‍pm‍ represent the empirical and model-predicted ‍p
(
H over L

)
‍, respectively.

Model fitting was performed on the behavioural data to maximise the log-likelihood summed over 
trials. A grid of randomly generated starting values for free parameters of each model was used 
to fit each participant’s data at least 10 times to avoid local optima. Model fitting was performed 
using MATLAB’s fmincon function with the maximum number of function evaluations and iterations 
set to 5000 and the optimality and step tolerance set to ‍10−10‍. The variational Bayesian analysis (VBA) 
toolbox (Daunizeau et al., 2014; Rigoux et al., 2014) was used to calculate each model’s poste-
rior frequency and protected exceedance probability. Aligning with the methods used by Cao and 
Tsetsos, 2022, only the trials where H or L responses were made were included in the analysis. Trials 
in which participants opted for the unchooseable D were excluded.

Fivefold cross-validation was performed for model comparison. First, this involved dividing the 
150 trials for each participant into five folds. Four random folds of trials would be randomly selected 
to generate best-fitting parameters used to calculate the log-likelihood summed across trials in the 
unchosen fold. We repeated this process five times for each unchosen fold and computed the average 
log-likelihood across cross-validation folds to generate the cross-validated log-likelihood for each 
model. We then simulated each model’s behaviour using the best-fitting parameters obtained during 
model fitting. The simulated behaviour was cross-fitted to all models to calculate the log-likelihoods 
summed over trials. Lastly, the goodness-of-fit for the models were evaluated using Bayesian model 
comparison.
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