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Sensitive remote homology 
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Abstract Accurately detecting distant evolutionary relationships between proteins remains an 
ongoing challenge in bioinformatics. Search methods based on primary sequence struggle to accu-
rately detect homology between sequences with less than 20% amino acid identity. Profile- and 
structure- based strategies extend sensitive search capabilities into this twilight zone of sequence 
similarity but require slow pre- processing steps. Recently, whole- protein and positional embeddings 
from deep neural networks have shown promise for providing sensitive sequence comparison and 
annotation at long evolutionary distances. Embeddings are generally faster to compute than profiles 
and predicted structures but still suffer several drawbacks related to the ability of whole- protein 
embeddings to discriminate domain- level homology, and the database size and search speed of 
methods using positional embeddings. In this work, we show that low- dimensionality positional 
embeddings can be used directly in speed- optimized local search algorithms. As a proof of concept, 
we use the ESM2 3B model to convert primary sequences directly into the 3D interaction (3Di) 
alphabet or amino acid profiles and use these embeddings as input to the highly optimized Fold-
seek, HMMER3, and HH- suite search algorithms. Our results suggest that positional embeddings as 
small as a single byte can provide sufficient information for dramatically improved sensitivity over 
amino acid sequence searches without sacrificing search speed.

eLife assessment
This important study addresses the problem of detecting weak similarity between protein 
sequences, a procedure commonly used to infer homology or assign putative functions to unchar-
acterized proteins. The authors present a convincing approach that combines recently developed 
protein language models with well- established methods. The benchmarks provided show that the 
proposed tool is fast and accurate for remote homology detection, making this paper of general 
interest to all researchers working in the fields of protein evolution and genome annotation.

Introduction
A common method for assigning a putative function to a protein sequence is to find sequences with 
experimentally determined functions that have similarities in sequence, structure, or evolutionary 
origin to the unannotated sequence (Loewenstein et  al., 2009). Direct comparisons of primary 
sequence, for example using BLASTP (Camacho et al., 2009), are fast and reliable but show poor 
ability to detect homologs with less than about 20% identity to the query (Rost, 1999). Popular 
approaches for higher sensitivity sequence searches involve using sequence profiles, for example 
with PSI- BLAST (Altschul et al., 1997), HMMER3 (Eddy, 2011), HH- suite3 (Steinegger et al., 2019), 
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or MMseqs2 (Steinegger and Söding, 2017). Sequence profiles are derived from multiple sequence 
alignments (MSAs) and are often modeled as profile hidden Markov models (HMMs), for example 
in HMMER and HH- suite. Profile HMMs model each position as the probability of each amino acid 
at the position together with insertion and deletion probabilities. Because of their reliance on the 
construction of MSAs, profile- based methods can have high computational overhead for database 
construction, query preparation, or both.

Protein structure searches also show higher sensitivity than sequence searches (Jambrich et al., 
2023). Until recently, the utility of structure searches for protein annotation was limited by the lack of 
extensive reference databases and the inability to predict structures quickly and reliably for sequences 
lacking experimentally determined structures. In the past several years, accurate protein structure 
prediction programs such as AlphaFold2 (Jumper et al., 2021) and ESMFold (Lin et al., 2023) have 
led to a massive increase in the size of databases of predicted protein structures. Coupled with fast 
structure search algorithms such as Foldseek (van Kempen et al., 2024), RUPEE (Ayoub and Lee, 
2019), and Dali (Holm, 2022), structure prediction programs provide another powerful tool for remote 
homology detection. Foldseek achieves fast structure search by encoding the tertiary interactions of 
each amino acid in the 20- letter 3D interaction (3Di) alphabet. By using a structure alphabet of the 
same size as the amino acid alphabet, Foldseek can leverage optimized sequence search algorithms 
originally developed for amino acid sequences (Steinegger and Söding, 2017; van Kempen et al., 
2024). Structure search methods suffer from some of the same drawbacks as profile- based methods, 
including the computational cost of converting primary sequences to predicted structures.

Emerging methods for protein annotation and remote homology detection rely on deep neural 
networks taking protein sequences as inputs and producing either a classification from a controlled 
vocabulary (Bileschi et  al., 2022; Sanderson et  al., 2023), a natural language description (Gane 
et al., 2022), positional embeddings, or a sequence embedding. Positional embeddings are fixed 
length vectors for each amino acid position of the protein. Positional embeddings produced by 
popular protein language models (pLMs) usually have large dimensions such as 1024 for ProtT5- 
XL- U50 (Elnaggar et al., 2021) and 2560 for ESM- 2 3B (Lin et al., 2023). Sequence embeddings 
represent an entire sequence and are often calculated by element- wise averaging of the positional 
embeddings. Positional and sequence embeddings can be used for remote homology detection by 
using them to calculate substitution matrices in pairwise local alignments (Kaminski et  al., 2023; 
Pantolini et al., 2024; Ye and Iovino, 2023), or by k- nearest neighbors searches (Hamamsy et al., 
2022; Schütze et al., 2022), respectively.

While each of these emerging methods shows promise for improving sensitivity of protein search 
and annotation, they suffer various limitations. Classification models and methods relying on sequence 
embeddings struggle at discriminating individual domains of multi- domain proteins (Bileschi et al., 
2022). Methods relying on large positional embeddings are space inefficient, and current search 
implementations are slow compared to other methods. Smaller positional embeddings would be 
more amenable to algorithmic optimizations using single instruction multiple data (SIMD) capabilities 
of central processing units (CPUs) that contribute to the speed of optimized sequence search algo-
rithms (Buchfink et al., 2021; Eddy, 2011; Kilinc et al., 2023; Steinegger et al., 2019).

An embedding is an alternative vector representation of the input data which, preferably, makes 
the input data more suitable for some downstream task. We recognized that profile HMMs and 3Di 
sequences are types of protein positional embeddings with dimensionality as low as 1 (3Di sequences) 
to about 25 (profile HMMs, including amino acid frequencies and state transition probabilities), that 
are more suitable than amino acid sequences for the task of remote homology detection. We tested 
the hypothesis that the ESM- 2 3B pLM (Lin et al., 2023) could be used to directly convert primary 
amino acid sequences into profile HMMs compatible with HMMER3 or HH- suite, and 3Di sequences 
compatible with Foldseek, providing a sequence search workflow leveraging the speed and sensitivity 
advantages of profile and structure search algorithms with an accelerated query preparation step 
enabled by the pLM.

https://doi.org/10.7554/eLife.91415
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Results
Using ESM-2 3B to generate small positional embeddings
ESM- 2 was already pretrained on the masked language modeling task (Devlin et al., 2019; Lin et al., 
2023) of predicting amino acid distributions at masked positions of input sequences, therefore no 
additional fine- tuning was necessary to induce it to produce probabilities compatible with profile 
HMM tools (Figure 1A). Positional amino acid frequencies predicted by ESM- 2 3B resembled those 
found in MSAs built from sequence searches; Figure 2 shows an example comparison of logos of HMM 
profiles (Wheeler et al., 2014) derived from the 4HBT Pfam profile and the YBGC_HELPY___14–90 
sequence from the seed alignment. The example is cherry picked in terms of the profile length, to be 
short enough to look nice as a figure, but it is not cherry picked for agreement between the profiles; 
it was the first short one we looked at.

To produce Foldseek- compatible 3Di sequences, we trained a two- layer 1D convolutional neural 
network (CNN) to convert positional embeddings from the last transformer layer of ESM- 2 3B into 
3Di sequences, we then unfroze the last transformer layer and fine- tuned it together with the CNN. 
The fine- tuned model, which we call ESM- 2 3B 3Di (Figure 1B), converted amino acids to 3Di with an 
accuracy of 64% compared to a test set of 3Di sequences derived from AlphaFold2- predicted struc-
tures. Training and test sets were derived from a random split of the Foldseek AlphaFold2 UniProt50 
dataset (Jumper et al., 2021; van Kempen et al., 2024; Varadi et al., 2022), a reduced- redundancy 
subset of the UniProt AlphaFold2 structures (see Methods for details).

Comparison of newly developed embedding methods
To evaluate the capacity of small embeddings to improve search sensitivity, we generated predicted 
profiles and 3Di sequences from clustered Pfam 32 splits (Bileschi et al., 2022) and converted them 
into formats compatible with various search tools (Figure 1C). Pfam (Mistry et al., 2021) is a set of 
manually curated MSAs of families of homologous protein domains. Some families presumed to have 
a common evolutionary origin are further grouped into clans. In the clustered splits, each family is 
divided into train and test groups such that each sequence in the test group has less than 25% identity 
to the most similar protein in the train group (Bileschi et al., 2022). The sensitivity of a search algo-
rithm is evaluated by the ability to match sequences from the test groups to their corresponding train 
group at the family or clan level.

Methods using predicted profiles (Figure  3A, B) and those using predicted 3Di sequences 
(Figure  3C, D) both showed greater accuracy than phmmer (amino acid to amino acid) searches 
across all identity bins, and hmmscan (amino acid to profile HMM) searches on test sequences below 
20% identity to the closest train sequence. Converting query sequences to hhsuite compatible profiles 
using ESM- 2 3B and searching against databases built from ESM- 2 predicted profiles of training 
sequences (Figure 3A, B, line 6) or profiles built from family- wise MSAs of the training sequences 
themselves (Figure 3A, B, line 5) gave improved accuracy at low identity bins compared to phmmer 
and hmmscan.

Foldseek searches where both the queries and database consisted of 3Di sequences produced by 
ESM- 2 3B 3Di (Figure 3C, D, line 7) performed the best overall of all new methods tested. Foldseek 
considers both 3Di and amino acid sequences in its alignments and can therefore be conceptualized 
as using a 2- byte embedding. Running Foldseek in 3Di- only mode (line 8), a 1- byte embedding, led to 
a decrease in accuracy but still outperformed phmmer across all identity bins, and hmmscan on bins 
below 20% identity. We also tried creating HMMER3 profiles from predicted 3Di sequences (line 9). 
These performed worse than single- sequence Foldseek searches. Patching HMMER3 to use 3Di- de-
rived background frequencies and Dirichlet priors (line 10) did not improve performance. Further-
more, we noticed that HMMER3 runs very slowly on 3Di sequences and profiles, presumably because 
the prefiltering steps were not optimized with 3Di sequences in mind.

While faster than MSA construction or full structure prediction, pLM embedding still has non- trivial 
computational overhead. This limits the possibility of using methods based on pLM embeddings to 
perform sensitive homology searches against large metagenomic databases such as the 2.4 billion 
sequence Mgnify database (Richardson et al., 2023). It would be desirable to have search methods 
where the database can remain as amino acid sequences or other cheaply calculated representations 
and the queries can be processed with more expensive methods. To this end, we tested hmmsearch 
using ESM- 2 3B generated profiles as queries against amino acid databases (Figure 3A and B, lines 

https://doi.org/10.7554/eLife.91415
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Figure 1. Schematics of embedding models and the experimental design. (A) ESM- 2 3B can be directly used to predict amino acid probability 
distributions at masked positions. Our implementation uses seven passes. The second pass is shown in the figure. (B) ESM- 2 3B 3Di, a fine- tuned ESM- 2 
3B with a small convolutional neural network (CNN) top model can be used to predict 3D interaction (3Di) sequences from amino acid sequences. 
(C) Data flow from amino acid sequences through embedding models and other programs to produce files used in homology searches. Bold words 
correspond to line labels in Figure 3.

https://doi.org/10.7554/eLife.91415
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3 and 4). This is similar to a two- iteration PSI- BLAST (Altschul et al., 1997) or JackHMMER (Johnson 
et al., 2010) search where the first search and MSA- building step is replaced by a pLM embedding 
step. Curiously, hmmsearch using profiles built directly from the pLM probabilities (line 3) had the 
lowest accuracy of any algorithm. Nevertheless, profiles processed with hmmbuild from HMMER3, 
applying HMMER3 Dirichlet priors on top of the pLM probabilities (line 4), had better family predic-
tion accuracy than phmmer at all but the highest identity bin, and accuracy on par with hmmscan at 
18% identity and lower.

Benchmarking of ESM-2 3B 3Di against emerging and established 
search methods
ESM- 2 3B 3Di coupled to Foldseek search performed the best out of all the new methods we 
proposed on the clustered Pfam benchmark. To examine the performance of ESM- 2 3B 3Di- based 
search against other emerging methods, we used the SCOPe40 benchmark (Figure 4; Chandonia 
et al., 2019; van Kempen et al., 2024), which has previously been used to evaluate Foldseek- based 
search methods (Heinzinger et al., 2023; van Kempen et al., 2024). The SCOPe40 benchmark is 
convenient because the dataset is much smaller than the clustered Pfam dataset, 11,211 vs 1,339,083 
sequences. The small size of the dataset allowed us to compare compute- intensive methods, such as 
predicting AlphaFold2 structures for the entire dataset and then running Foldseek. In the SCOPe40 
benchmark, the criteria for true positives (TPs) vary depending on the level of classification: for family, 
TPs are matches within the same family; for superfamily, TPs are matches sharing the same superfamily 

Figure 2. Logos related to the example test sequence YBGC_HELPY___14–90 from the 4HBT family. (A) 4HBT family hmm from Pfam 32. (B) hmmbuild 
with default settings on a multiple sequence alignment (MSA) of the top 100 hits supplied by an online blast search (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) of YBGC_HELPY___14–90 against the NCBI clustered nr database. (C) hmmbuild with default settings on the MSA sampled from the ESM- 2 3B 
positional probabilities for YBGC_HELPY___14–90. (D, E) hmmbuild with Dirichlet priors disabled on the same MSAs as for (B, C), respectively. All logos 
were generated by uploading the corresponding.hmm file to https://skylign.org/ (Wheeler et al., 2014).

https://doi.org/10.7554/eLife.91415
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://skylign.org/
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Figure 3. Homology detection accuracy. Test sequences were binned based on percent identity to the closest training sequence in the same family and 
annotated based on the top scoring hit from a search against the entire set of training sequences or training sequence family profiles, depending on 
the algorithm. (A, C) Family recovery accuracy by bin. (B, D) Clan recovery accuracy. (A, B) Compare amino acid profile- based methods. (C, D) Compare 
Foldseek- based methods. Dashed lines are controls. There are a total of 21,293 test sequences. 12,246 test sequences have clan assignments.

https://doi.org/10.7554/eLife.91415
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but not the same family; and for fold, TPs are matches sharing the same fold but are not the same 
superfamily. Any hits from different folds (but not from different families or superfamilies) are consid-
ered false positives (FPs). Calculating the metric in this way has the effect that ‘Family’ is a metric of 
homolog detection at the closest evolutionary distance (Figure 4A), ‘Superfamily’ is a metric of detec-
tion of more distant homologs (Figure 4B), and ‘Fold’ is a metric of very distant homolog detection 
or detection of evolutionarily unrelated proteins with similar folded structures (Figure 4C). All 11,211 
proteins were used as queries for timing, but for sensitivity calculations, only the 3566 proteins with 
at least one other family member, at least one other superfamily member, and at least one other fold 
member were considered.

We benchmarked against Foldseek using experimentally determined structures, 3Di sequences 
predicted by ProstT5 (Heinzinger et al., 2023), and 3Di sequences derived from structures predicted 
by AlphaFold2 (Jumper et al., 2021; Mirdita et al., 2022). We also benchmarked a method based 
on local alignment of large positional embeddings, pLM- BLAST (Kaminski et  al., 2023). Protein 
sequence search with pHMMER search was included as a control.

The Foldseek- based methods all performed similarly on the SCOPe40 benchmark at all three 
homology levels, all outperforming pLM- BLAST and far outperforming pHMMER (Figure  4). At 
the superfamily level, AlphaFold2- predicted structures provided the best average sensitivity. 3Di 
sequences generated by different methods could be used as queries against databases built from 
3Di sequences generated by other methods, but with some degradation of sensitivity compared 
to searches where both query and database 3Di sequences were generated by the same method 
(Figure 4E).

Figure 4. SCOPe40 benchmark. Cumulative distribution plots of the number of queries attaining each level of sensitivity to the first false positive fold 
at the (A) family, (B) superfamily, and (C) fold level. (D) Data preparation, search times, and average sensitivity at the superfamily level. (E) Comparison of 
average sensitivity at the superfamily level of Foldseek run with queries and databases prepared by different methods.

https://doi.org/10.7554/eLife.91415
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For each method, we also timed the data preparation time and search time (Figure 4D). pHMMER 
uses protein sequences directly and does not require a database building step, so database and 
query preparation are not needed. For data preparation time, AlphaFold2 structure prediction was 
by far the slowest, taking nearly 2 weeks on our hardware (Methods), and ProstT5 was the fastest, 
converting all protein sequences to 3Di sequences in just 6 min. For search time, the Foldseek- 
based methods were the fastest. pLM- BLAST was much slower than Foldseek- based methods, 
which makes sense because it is doing the same types of Smith- Waterman alignments as Foldseek, 
but with positional encodings more than 500 times as large. Pre- filtering is used in both methods, 
but evidently the pre- filtering in pLM- BLAST is not enough to compensate for the slowness of the 
alignment step.

Discussion
We tested several schemes for using the ESM- 2 3B pLM to recode protein sequences into formats 
compatible with profile HMM or structure search tools with the hope of enhancing search sensitivity 
compared to primary sequence searches, but with less computational overhead than MSA construc-
tion or full structure prediction. The most successful of our efforts came from fine- tuning ESM- 2 3B to 
convert protein sequence into 3Di sequences and running Foldseek structure search.

Compared to other emerging methods for neural- network- driven remote homology detection, 
ESM- 2 3B 3Di coupled to Foldseek enabled faster and more sensitive search than pLM- BLAST 
(Kaminski et al., 2023), and was slower but had similar sensitivity to ProstT5 (Heinzinger et al., 2023) 
coupled to Foldseek. Furthermore, 3Di sequences predicted by ESM- 2 3B 3Di or by ProstT5 seem 
to be compatible with Foldseek searches against experimental or AlphaFold2- generated structures 
(Figure 4E), enabling a sequence annotation workflow where large numbers of proteins, for example 
from a newly sequenced genome, can be quickly annotated with high sensitivity by pLM- based 
conversion to 3Di sequences followed by Foldseek search against existing databases of experimental 
or predicted structures, for example the protein data bank (Berman et al., 2000) or the AlphaFold 
Protein Structure Database (Varadi et al., 2022).

There are many possible directions for future development of improved embeddings, faster 
conversion and search programs, and comprehensive reference databases. It is significant that a 
1- byte embedding, the predicted 3Di sequences run in 3Di- only Foldseek searches, was among the 
top performing models. This result suggests that positional embeddings as small as a single byte 
can provide sufficient information for dramatically improved sensitivity over amino acid sequence 
searches. The 3Di alphabet was not developed to maximize remote homology search sensitivity, 
but to model tertiary interactions in protein structures. In future work, small positional embeddings 
optimal for local alignment could be learned directly from a differentiable alignment algorithm (Petti 
et al., 2023) instead of relying on proxy tasks of amino acid or 3Di prediction.

Finally, asymmetric architectures where embedding a database sequence is cheaper than embed-
ding a query, analogous to searches with profile HMM queries against primary sequence databases, 
could be a powerful method for improving search sensitivity against large and growing reference 
databases. Some first steps in that direction could be conversion to profile HMM- style embeddings in 
a single pass, rather than the seven we required, and predicting state transition probabilities, which 
may lead to improved search performance. We hazzve made our model training, search, and data 
analysis code publicly available. We hope our results and code will serve as a springboard for further 
exploration of the utility of low- dimensionality positional embeddings of protein sequences.

Methods
Alignments
Unless otherwise noted, MSAs were made using MAFFT (v7.505) (Katoh and Standley, 2013) 
with options --anysymbol --maxiterate 1000 --globalpair. Protein alignments used the 
BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992). 3Di alignments used the 3Di substi-
tution matrix from Foldseek (van Kempen et al., 2024; Steinegger Lab, 2022; https://github.com/ 
steineggerlab/foldseek/blob/master/data/mat3di.out).

https://doi.org/10.7554/eLife.91415
https://github.com/steineggerlab/foldseek/blob/master/data/mat3di.out
https://github.com/steineggerlab/foldseek/blob/master/data/mat3di.out


 Short report      Computational and Systems Biology

Johnson et al. eLife 2023;12:RP91415. DOI: https:// doi. org/ 10. 7554/ eLife. 91415  9 of 15

Patching HMMER3 with background frequencies and Dirichlet priors 
for 3Di
We created a fork of the HMMER3 program (Eddy, 2011), replacing amino acid background frequen-
cies and Dirichlet priors with values calculated from the 3Di alphabet instead of the amino acid alphabet 
(GitHub, copy archived at Johnson, 2024b; https://github.com/seanrjohnson/hmmer3di/commit/ 
347ee45cd1fb5fc5984b2a3e3e188afbde4b8d2f). To generate a set of 3Di MSAs, we converted the 
AlphaFold UniProt Foldseek database (Jumper et al., 2021; van Kempen et al., 2024; Varadi et al., 
2022) to a 3Di fasta file. We then looked up every sequence name from the Pfam 35 seed file in the 
UniProt 3Di fasta file and, for cases where the corresponding sequence was identifiable, extracted 
the sub- sequence corresponding to the Pfam 35 seed. 3Di seeds from each profile were aligned 
using MAFFT. MSA columns with more than 10 rows were used to calculate background frequencies 
and Dirichlet priors using the HMMER3 program esl- mixdchlet fit with options -s 17 9 20. Amino acid 
background frequencies and Dirichlet priors in the HMMER3 source code were then replaced with the 
newly calculated 3Di background frequencies and Dirichlet priors. We call the patched HMMER3 as 
HMMER3Di.

Fine-tuning ESM-2 3B to convert amino acid sequences into 3Di 
sequences
A 1D CNN was added on top of ESM- 2 3B. The CNN takes as input position- wise embeddings from 
the last transformer layer of ESM- 2 3B. The CNN consists of two layers, the first layer has 2560 input 
channels (the size of the embeddings from ESM- 2 3B), and 300 output channels, kernel size 5, stride 1, 
padding 3. The second layer has 300 input channels and 21 output channels (one for each 3Di symbol 
plus a padding symbol), kernel size 5, stride 1, padding 1. The model was trained with a weighted 
cross- entropy loss function using weights of 0.1 * the diagonal from 3Di substitution matrix. The 
neural network was implemented in PyTorch (Paszke et al., 2019).

Training data were derived from the Foldseek AlphaFold2 UniProt50 dataset (Jumper et al., 2021; 
van Kempen et al., 2024; Varadi et al., 2022), a reduced- redundancy subset of the UniProt Alpha-
Fold2 structures. The Foldseek database was downloaded using the Foldseek ‘databases’ command 
line program, converted into protein and 3Di fasta files, filtered to remove sequences smaller than 
120 amino acids and larger than 1000 amino acids, and split into train, validation, and test subsets, 
90%:5%:5% (33,924,764:1,884,709:1,884,710 sequences).

With ESM- 2 layers frozen, the CNN was trained on the task of converting amino acids to 3Di 
sequences using the AdamW optimizer with learning rate 0.001, weight decay 0.001, and exponential 
learning rate decrease (gamma 0.98, applied every 100 batches). Training sequences were randomly 
selected in batches of 15 sequences. Training proceeded for 1301 batches, leading to a training accu-
racy of about 58%.

The last transformer layer of ESM- 2 was then unfrozen and training restarted from the saved 
weights, with the same training parameters. Training continued for another 24,001 batches of 10 
random training sequences. Accuracy on the final training batch was 65%. Using the final trained 
weights, test sequences were converted to 3Di at an accuracy of 64.4%. We call the fine- tuned model 
ESM- 2 3B 3Di.

The trained weights are available on Zenodo. The training code is available on GitHub (copy 
archived at Johnson, 2024a). The model training code should be useful for fine- tuning ESM- 2 to 
convert amino acid sequences to various other kinds of sequences, such as secondary structure codes.

Pfam 32 clustered splits
Pfam 32 clustered splits (Bileschi et al., 2022) were downloaded from: https://console.cloud.google. 
com/storage/browser/brain-genomics-public/research/proteins/pfam/clustered_split. Data for 
mapping of individual Pfam 32 families to clans were downloaded from: https://ftp.ebi.ac.uk/pub/ 
databases/Pfam/releases/Pfam32.0/. The sequences from the train, dev, and test splits were sorted 
into unaligned fasta files according to their split and family (aa seq).

Predicting 3Di sequences
Each training and test sequence was converted into a predicted 3Di sequence (predicted 3Di) using 
the ESM- 2 3B 3Di model described above. MAFFT alignments were made of both the amino acid 

https://doi.org/10.7554/eLife.91415
https://github.com/seanrjohnson/hmmer3di
https://github.com/seanrjohnson/hmmer3di/commit/347ee45cd1fb5fc5984b2a3e3e188afbde4b8d2f
https://github.com/seanrjohnson/hmmer3di/commit/347ee45cd1fb5fc5984b2a3e3e188afbde4b8d2f
https://doi.org/10.5281/zenodo.8174959
https://github.com/seanrjohnson/esmologs
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/proteins/pfam/clustered_split
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/proteins/pfam/clustered_split
https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/
https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/
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and predicted 3Di training and test sequences for each family. HMMER3 profiles were built from the 
alignments using either unaltered HMMER3 (predicted 3Di hmmer profile), or HMMER3Di (predicted 
3Di hmmer3Di profile).

Predicting profiles to generate HH-suite hhm files and HMMER3 hmm 
files from single sequences
Positional amino acid probabilities were calculated for unaligned train and test sequence using 
pretrained ESM- 2 3B in the following algorithm.

1. Prepend sequence with M. This is because ESM- 2 3B has a strong bias toward predicting M as 
the first amino acid in every sequence, and most Pfam domains do not start with M.

2. Mask the first, eighth, etc. position in the sequence
3. Run a forward pass of ESM- 2 3B over the masked sequence.
4. Save the logits for each of the 20 amino acid tokens for each masked position.
5. Shift the masks one position to the right.
6. Repeat steps 3 through 5 another six times until logits have been saved for every position.
7. Use the softmax function to calculate the amino acid probabilities at each position from the 

logits.

Note that in our actual implementation, a single forward pass was run on a batch of seven copies 
of the input sequence, each with different masking.

The hyperparameter of seven passes over the input sequence was chosen semi- empirically. Ideally, 
masking would be done one position at a time, such that each position benefits from the context of 
the rest of the sequence. In practice, masking individual positions is prohibitively slow. We experi-
mented with different masking distances in a non- systematic way and found that probabilities derived 
from seven passes gave similar probabilities as masking each position individually. In addition, in the 
original ESM- 2 pretraining, 15%, approximately 1/7, of positions were masked at each training step, 
so our masking of every 7th position resembles the training conditions.

The positional probabilities were written directly as an HH- suite  compatible. hhm file (predicted 
hhsuite profile). A 40 sequence fasta MSA file was written where each sequence was randomly sampled 
from the probability distribution. Hmmbuild was run with default settings on the sampled MSA 
(predicted hmmer profile, with Dirichlet priors applied) and with the -pn;on; setting, which disables 
adjustments to the probability distribution based on Dirichlet priors (predicted hmmer profile, without 
Dirichlet priors applied).

Building HH-suite hhm and HMMER3 hmm profiles from train amino 
acid MSAs
The amino acid MSA for each training family were converted into an HH- suite database (aa hhsuite 
profile) with the following bash script:

echo '#'$profile_name >msa/${profile_name}.a3m 
hhfilter -i $MSA_FASTA -a msa/${profile_name}.a3m -M 50 -id 90; 
hhconsensus -i msa/${profile_name}.a3m -o consensus/${profile_name}.a3m 
hhmake -name $base -i consensus/${profile_name}.a3m -o hhm/${base}.hhm 
ffindex_build -s  db_ hhm. ffdata db_hhm.ffindex hhm 
ffindex_build -s  db_ a3m. ffdata db_a3m.ffindex consensus 
cstranslate -f -x 0.3 c 4 -I a3m -i db_a3m -o db_cs219

HMMER3 profiles were built by calling hmmbuild with default settings on the training family amino 
acid MSAs (aa hmmer profile).

Building HH-suite databases from predicted profiles
HH- suite databases were built from predicted  profiles. hhm files and the corresponding sampled 40 
sequence MSA fasta files using the following bash script:

ffindex_build -s  db_ hhm. ffdata db_hhm.ffindex esm2_3B_profiles 
ffindex_build -s  db_ a3m. ffdata db_a3m.ffindex esm2_3B_sampled_msascstranslate 
-f -x 0.3 c 4 -I a3m -i db_a3m -o db_cs219

https://doi.org/10.7554/eLife.91415
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Building Foldseek databases from predicted 3Di sequences
Amino acid and predicted 3Di fasta files were converted into Foldseek- compatible databases using a 
new script,  fasta2foldseek. py, available from the esmologs python package (see below).

Hmmscan, phmmer, and hmmsearch HMMER3 searches
In an attempt to mimic the Top pick HMM strategy reported by Bileschi et  al., 2022, we ran all 
HMMER3 searches in up to two iterations. The first iteration was run with default settings. For test 
sequences where no hits were detected among the training sequences or profiles, depending on the 
program, a second iteration was run with the addition of parameters intended to maximize sensitivity 
at the expense of search speed:

--max -Z 1 --domZ 1 -E 1000000 --domE 1000000

It should be noted that while our phmmer results are directly comparable to the phmmer results 
reported by Bileschi et al., our hmmscan results are not directly comparable to the reported ‘Top 
Pick HMM’ results because we re- aligned the training sequences for each family instead of using the 
Pfam seed alignments. Still our results were very similar. We observed a 17.6% error rate (3744 test 
sequences with mispredicted family assignments) by hmmscan, compared to the reported 18.1% error 
rate (3844 mispredictions).

3Di_hmmscan HMMER3Di searches
3Di_hmmscan searches were performed using the same two- iteration method described above for 
searches using standard HMMER3 programs.

Hhblits HH-suite searches
Hhbilts was run with the options:

-tags -n 1 v 0

Foldseek searches
After converting both query and target amino acid and predicted 3Di fasta files into Foldseek- 
compatible databases (see above), Foldseek searches were run with the following commands:

foldseek search test_db train_db foldseek_results tmpFolder 
foldseek convertalis test_db train_db foldseek_results  hits. tsv --format- 
output query,target,bits

For 3Di- only searches, the option --alignment- type 0 was added to the search call.

SCOPe40 benchmark
The SCOPe40 benchmark was conducted as previously described (Heinzinger et  al., 2023; van 
Kempen et al., 2024). For timings, GPU operations were run on an Nvidia A100 GPU with 40 Gb of 
VRAM. CPU operations were run on 16 cores on an Intel Xeon Gold 6258 R.

AlphaFold2 structures were computed using local ColabFold (Jumper et al., 2021; Mirdita et al., 
2022), with the command:

colabfold_batch –num- recycle 3 –num- models 5  peptides. fasta colabfold

ProstT5 embedding was run with default settings of the script: https://github.com/mheinzinger/ 
ProstT5/blob/f93a7a1b696a74acee9ce85226ba9047d74f96fe/scripts/predict_3Di_encoderOnly.py 
(Heinzinger et al., 2023; Heinzinger, 2023).

Foldseek was always run with the command:

Foldseek search queryDB targetDB aln3 tmpFolder -s 9.5 -e 10 --max- seqs 
2000 --threads 16

https://doi.org/10.7554/eLife.91415
https://github.com/mheinzinger/ProstT5/blob/f93a7a1b696a74acee9ce85226ba9047d74f96fe/scripts/predict_3Di_encoderOnly.py
https://github.com/mheinzinger/ProstT5/blob/f93a7a1b696a74acee9ce85226ba9047d74f96fe/scripts/predict_3Di_encoderOnly.py
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pLM-BLAST for SCOPe40
For pLM- BLAST (Kaminski et  al., 2023), the version from October 30, 2023 was used (Dunin- 
Horkawicz et al., 2023) . We had to make a few trivial changes to the code to make it not crash when 
running the following operations.

The pLM- BLAST database was built with the entire SCOPe40 protein set (11,211 sequences), using 
the commands:

python pLM- BLAST/ embeddings. py start  pLM-  blastDB. fasta pLM- blastDB 
-embedder pt --gpu -bs 0 --asdir -t 1500 
python pLM- BLAST/scripts/ dbtofile. py pLM- blastDB

For the sake of speed, for embedding and searching queries, the SCOPe40 was divided into 10 
equal partitions. Each partition was converted to embeddings with the command:

python pLM- BLAST/ embeddings. py start peptides_partition_[num].fasta 
peptides_partition_[num].pt --gpu -bs 0 t 1500

Timings for database prep were the sum of timings for all the embedding calls.
Each query partition was searched against the database with the command:

python pLM- BLAST/scripts/ plmblast. py pLM- blastDB peptides_partition_[num] 
[num]_ hits. csv --use_chunks -workers 16

Timings for the search were the sum of the timings of all of the  plmblast. py calls.
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