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Abstract Endometrial decidualization, a prerequisite for successful pregnancies, relies on tran-
scriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein 
(BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these 
pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To 
define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we 
generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 
and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, 
SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and 
SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, 
SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally 
characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown 
in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, 
PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to 
study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating 
both BMP signaling pathways and the transcriptional response to progesterone (P4) during early 
pregnancy.

eLife assessment
This study presents two valuable new mouse models that individually tag proteins from the SMAD 
family to identify distinct roles during early pregnancy. Convincing evidence is provided that SMAD1 
and SMAD5 target many of the same genomic regions as each other and the progesterone receptor. 
Given the broad effect of these signaling pathways in multiple systems, these new tools will most 
likely interest readers across biological disciplines.

Introduction
Infertility is an emerging health issue that affects approximately 15% of couples (Boivin et al., 2007). 
One in five women aged 15–49 years old with no prior births suffers from infertility in the United 
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States (Martinez et al., 2018). One important factor affecting fertility is failed embryo implantation or 
subsequent post-implantation loss due to endometrial defects. This is evident from the high number 
of failed pregnancies, with as many as 15% of pregnancies resulting in early pregnancy losses (Wang 
et al., 2003). Understanding the molecular mechanism of how the maternal endometrium becomes 
suitable for embryo implantation and eventual decidualization will be the key to eradicating global 
concerns related to infertility and early pregnancy losses.

The transforming growth factor β (TGFβ) family plays diverse roles in development, physiology, and 
pathophysiology (Chang et al., 2002; Monsivais et al., 2017b), and in particular, signaling pathways 
downstream of the bone morphogenetic protein (BMP) subfamily are essential for decidual formation 
(Lee et al., 2007; Monsivais et al., 2017a). There are more than 30 TGFβ family ligands, and these 
ligands signal through complexes of transmembrane type 1 activin-like kinase (ALK) receptors (ALK1, 
ALK2, ALK3, ALK6) and transmembrane type 2 receptors (BMPR2, ACVR2A, ACVR2B) and then phos-
phorylate downstream SMAD1 and SMAD5 proteins. Phosphorylated SMAD1/5 form heteromeric 
complexes with SMAD4 and translocate to the nucleus to induce specific transcriptional programs. 
Our laboratory and others have used genetically engineered mouse models with deletions of ligands, 
receptors, and downstream effectors of BMP signaling pathways to establish that BMP signaling path-
ways are major regulators of early pregnancy (Lee et al., 2007; Monsivais et al., 2017a; Nagashima 
et al., 2013; Monsivais et al., 2021; Matzuk et al., 1995; Clementi et al., 2013; Monsivais et al., 
2016).

A successful pregnancy begins with reciprocal crosstalk between the maternal endometrium and 
the new blastocyst during the peri-implantation window. Effective implantation requires precise 
synchronization between the development of the blastocyst and the transformation of the maternal 
endometrium into a functional decidua. Endometrial stromal fibroblasts undergo the decidualization 
process in which they differentiate into unique secretory decidual cells that offer a supportive and 
immune-privileged microenvironment required for embryo implantation and placental development. 
Decidualizing stromal cells can react to individual embryos in a way that either supports the implan-
tation and subsequent embryonic development or exerts early rejection (Teklenburg et al., 2010; 
Brosens et  al., 2014). Aberrant decidualization processes are observed in patients with recurrent 
pregnancy loss (RPL), displaying a disordered pro-inflammatory response, decreased induction of 
decidual marker genes, and abnormal responses to embryonic human chorionic gonadotropin (Teklen-
burg et al., 2010; Weimar et al., 2012; Salker et al., 2011). In addition to affecting early pregnancy 
outcomes, defective decidualization is also involved in the maternal etiology of preeclampsia, causing 
an abnormal placental phenotype (Garrido-Gomez et al., 2017; Garrido-Gomez et al., 2020). The 
process of decidualization is tightly regulated by hormone signaling pathways (estrogen, E2, and 
progesterone, P4), as well as by BMP signaling pathways. Our recent studies found that endometrial 
Smad1 deletion had no significant effect on fertility, Smad5 conditional deletion resulted in subfer-
tility, while double Smad1/5 conditional deletion led to infertility due to implantation and decidualiza-
tion defects (Monsivais et al., 2021). The uteri of mice with double conditional Smad1/5 deletion also 
displayed decreased response to P4 during the window of implantation, suggesting synergy between 
the two pathways. However, the mechanistic genomic actions of SMAD1 and/or SMAD5 in the uterus 
have not been explored, partly because there are no specific antibodies that distinguish phospho-
SMAD1 versus phospho-SMAD5.

In this study, we define how SMAD1/5 instructs the decidualization process using genomic 
approaches in newly generated transgenic mouse lines. We inspect the potential crosstalk between P4 
and BMP signaling pathways mediated by SMAD1/5. Together, our study demonstrates that SMAD1 
and SMAD5 exhibit shared and unique genomic binding features and further reveals that SMAD1/5 
contributes to the P4 response through transcriptional reprogramming during decidualization.

Results
Generation of mouse models with global HA-tagged SMAD1 and PA-
tagged SMAD5 proteins
Activation of BMP signaling pathways has been established as one of the hallmarks of the decid-
ualization process (Gellersen and Brosens, 2014; Magro-Lopez and Muñoz-Fernández, 2021). 
Canonically, SMAD1/5 are regarded as downstream effectors of BMP2 signaling pathways to regulate 

https://doi.org/10.7554/eLife.91434
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decidual-specific gene expressions (Lee et al., 2007; Li et al., 2007). However, our recent findings 
demonstrated that SMAD1/5 can also affect the sensitivity of the endometrium toward E2 and P4 stim-
ulation (Monsivais et al., 2021). Since we observed phenotypical differences between uterine-specific 
single SMAD1 and single SMAD5 deletion mice, it is beneficial to delineate the role of SMAD1 and 
SMAD5 in mediating P4 responses during early pregnancy. We used CRISPR technology to generate 
genetically engineered knock-in mice with an HA-tagged Smad1 allele (herein called Smad1HA/HA) and 
PA-tagged Smad5 allele (herein called Smad5PA/PA) as shown in Figure 1A and B. The HA tag and the 
PA tag were inserted into the N-terminus of the SMAD1 and SMAD5 proteins, respectively. Sanger 
sequencing was used to confirm genomic insertion (Figure 1A and B, Figure 1—figure supplement 
1). To validate the global detection of tagged proteins, we performed immunoprecipitation followed 
by western blot analysis on different tissues from Smad1HA/HA and Smad5PA/PA mice. We confirmed the 
HA and PA antibodies can readily detect HA-tagged SMAD1 and PA-tagged SMAD5 proteins at the 
predicted size (Figure 1C and D). We also demonstrated the molecular size and expression pattern 
of HA antibody-detected SMAD1 protein was comparable to the SMAD1 antibody-detected SMAD1 
protein across different tissue types. Similarly, PA antibody showed comparable signal intensity to 
the SMAD5 antibody in detecting SMAD5 protein across different tissue types (Figure 1C and D). 
Thus, we successfully generated viable mouse models with global HA-tagged SMAD1 and PA-tagged 
SMAD5 proteins.

SMAD1 and SMAD5 exhibit shared and unique genomic binding sites 
during decidualization
The BMP signaling pathway regulates multiple key events during early pregnancy (Monsivais et al., 
2017b), mediated through receptor-regulated SMAD proteins, including SMAD1 and SMAD5. As 
transducers of the BMP signaling pathway, phosphorylated SMAD1 and SMAD5 form homomeric 
complexes and then couple with SMAD4 to assemble hetero-oligomeric complexes in the nucleus to 
execute transcription programs. Our previous studies revealed that conditional ablation of SMAD1 
and SMAD5 in the uterus decreased P4 response during the peri-implantation period, suggesting 
that the transcriptional activities of PR depend on BMP/SMAD1/5 signaling (Monsivais et al., 2021). 
Furthermore, previous genome-wide PR binding studies show that SMAD1 and SMAD4 binding 
motifs are enriched in PR binding sites in the uterus (Rubel et al., 2012).

To determine the shared and unique transcriptional regulomes of SMAD1 and SMAD5 contrib-
uting to the diverse effects of BMP and P4 signaling pathways during decidualization, we first 
utilized Cleavage Under Targets & Release Using Nuclease (CUT&RUN) (Skene and Henikoff, 
2017) coupled with next-generation sequencing to profile genomic loci bound by SMAD1, 
SMAD5, and PR from mouse uterine tissues. We performed CUT&RUN on the uterine tissues 
collected at 4.5 days post coitus (dpc), the time when the fertilized embryo reaches the uterus 
physically and initiates the decidualization program (Ramathal et  al., 2010; Figure  2A). After 
aligning CUT&RUN reads to the mm10 mouse genome, we called peaks using Sparse Enrichment 
Analysis for CUT&RUN (SEACR) (Meers et  al., 2019). To identify high-confidence peaks, back-
ground noise was normalized to IgG and the stringent criteria for peak calling in SEACR were 
used. After merging common peaks from two biological replicates, we identified 118,778 peaks 
for SMAD1 and 166,025 total peaks for SMAD5. We visualized the enrichment of SMAD1 and 
SMAD5 peaks to the overall aligned chromatin regions with clustering for preferential enrich-
ment, as shown in Figure 2B. Peaks in cluster 1 exhibit a shared enrichment for both SMAD1 and 
SMAD5, whereas clusters 2 and 3 demonstrate preferential enrichment for SMAD5 and SMAD1, 
respectively. We found that 7.55% of SMAD1 peaks and 9.53% of SMAD5 peaks were located 
within the ±3 kb of the promoter regions (Figure 2C and D). This corresponded to 10,368 genes 
that were directly bound by SMAD1 at the promoter regions (±3 kb), whereas 18,270 genes were 
directly bound by SMAD5 at the promoter regions (±3 kb). Among these, 4933 genes were found 
in common between SMAD1 (47.5%) and SMAD5 (27.0%), while 2744 and 7427 genes were found 
to be uniquely bound by SMAD1 and SMAD5, respectively, providing evidence for the shared and 
unique functions of SMAD1 and SMAD5 at the transcriptional level (Figure 2—figure supplement 
1). Hence, interpreting how the binding events correlate to biological activity requires comparisons 
with gene expression profiling in a tissue-specific manner.

https://doi.org/10.7554/eLife.91434
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Figure 1. Mouse models with global HA-tagged SMAD1 and PA-tagged SMAD5 proteins. (A, B) Schematic approaches for generating Smad1HA/HA and 
Smad5PA/PA knock-in mouse lines. Sanger sequencing of the genotyping results is included as validation of knock-in sequence. Black and blue boxes 
indicate untranslated and coding regions, respectively. (C, D) Immunoblot (IB) analysis of the immunoprecipitation (IP) of HA-tagged SMAD1 and PA-

Figure 1 continued on next page

https://doi.org/10.7554/eLife.91434
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Identification of direct target genes of SMAD1 and SMAD5 during 
early pregnancy
To pinpoint the direct target genes of SMAD1 and SMAD5, we integrated transcriptomic data from 
previously published (Monsivais et  al., 2021) SMAD1/5 double conditional knockout mice using 
progesterone receptor cre (SMAD1/5 cKO) (GSE152675) with SMAD1 and SMAD5 genomic data 
from this article. We cross-compared the differentially expressed genes in the transcriptomic data to 
the SMAD1 and SMAD5 bound genes, respectively. Among the 805 significantly upregulated genes, 
we identified 449 genes that were both significantly upregulated upon SMAD1/5 depletion and were 
directly bound by SMAD1 and SMAD5, whereas 187 of the upregulated genes were bound by SMAD5 
only and 30 were bound only by SMAD1 (Figure 3A). Among the 683 significantly downregulated 
genes, we identified 523 genes that were both significantly downregulated upon SMAD1/5 deple-
tion and were directly bound by SMAD1 and SMAD5, whereas 83 of the downregulated genes were 
bound by SMAD5 only and 13 were bound by SMAD1 only (Figure 3B, Supplementary file 3b).

Next, we utilized Binding and Expression Target Analysis (BETA) algorithm (Wang et al., 2013) to 
perform motif enrichment analysis of the direct target genes to identify putative co-factors working 
together with SMAD1 and SMAD5 in controlling gene expression (Figure 3C and D, Supplemen-
tary files 1 and 2). ‘Up-targets’ represent genes that were upregulated in the SMAD1/5 cKO mouse 
uteri and showed either a SMAD1 or a SMAD5 binding site in the genomic profiling data. Simi-
larly, ‘down-targets’ represent genes that were downregulated in the SMAD1/5 cKO mouse uteri 
and displayed either a SMAD1 or a SMAD5 binding site. Thus, motifs enriched in the ‘up-targets’ 
indicate potential repressive SMAD1/5 co-factors while motifs enriched in the ‘down-targets’ indicate 
potential SMAD1/5 co-activators. Among the ‘up-targets’ of SMAD1, MYB Proto-Oncogene (Myb)/
MYB Proto-Oncogene Like 1(Mybl1) motif was the most highly enriched with a p-value of 1.85E-02. 
Myb and Mybl1 transcription factors belong to MYB gene family, which has been well-defined in 
controlling cell survival, proliferation, and differentiation in cancer (Cicirò and Sala, 2021). In addition, 
they have also been reported to be E2 induced in human uterine leiomyoma samples (Swartz et al., 
2005). Homeobox containing 1 (Hmbox1) and Krüppel-like factor (Klf) family members (Klf4/Klf1/
Klf12) were also identified as potential repressive co-factors of SMAD1 with p-values of 2.85E-02 and 
3.75E-02, respectively (Figure 3C). Of note, KLF4 has been reported to inhibit the binding activity of 
estrogen receptor α (ERα) to estrogen response elements in promoter regions (Akaogi et al., 2009). 
Among the ‘up-targets’ of SMAD5, EBF Transcription Factor 1 (Ebf1) motif was the most enriched 
with a p-value of 1.57E-02. Interestingly, Ebf1 can directly repress the transcription of Forkhead box 
protein O1 (Foxo1) (Timblin and Schlissel, 2013). It is also recognized as downstream effector of 
steroid hormone receptors in the mouse uterus (Pan et al., 2006). Additionally, motifs from transcrip-
tion factors Zfp128 and Otx1 were also significantly enriched in the upregulated genes bound by 
SMAD5 (Figure 3D). Taken together, our enrichment analysis provided robust evidence for identifying 
novel co-factors of SMAD1/5, and such co-regulating mechanisms are in line with the unopposed E2 
response observed in the SMAD1/5 cKO mice (Monsivais et al., 2021). Furthermore, odd-skipped-
related genes (Osr1 and Osr2) were identified as potential co-activators for SMAD1. Osr2 has been 
reported to be highly expressed in the human endometrium (Fagerberg et al., 2014), and it was also 
abundantly detected at the protein level in the human decidual tissues (Ma et al., 2022). Decreased 
OSR2 level was observed in the patients with recurrent spontaneous abortion and knockdown of 
OSR2 impairs the decidualization process in the human endometrial stromal cells (EnSCs) (Ma et al., 
2022). Moreover, OSR1 has been reported to suppress BMP4 expression, which in turn reduced the 
Wnt/β-catenin signaling pathways during lung development in Xenopus (Rankin et al., 2012). Apart 

tagged SMAD5 proteins from different tissues of the tagged mouse lines. Wild-type (WT) mice were used as negative controls. Antibodies used for IB 
and IP are as labeled. Targeted bands of SMAD1 and SMAD5 are indicated by red arrows.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw uncropped western blot images for Figure 1C and D, without labels.

Source data 2. Uncropped western blot images for Figure 1C, with labels.

Source data 3. Uncropped western blot images for Figure 1D, with labels.

Figure supplement 1. Genotype of the knock-in mouse lines.

Figure 1 continued

https://doi.org/10.7554/eLife.91434
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Figure 2. Genomic profiling of SMAD1 and SMAD5 binding sites during decidualization in vivo. (A) Diagram outlining experimental approaches for 
tissue collection, processing, and CUT&RUN. (B) Heatmaps and summary plots showing the enrichment of SMAD1 and SMAD5 binding peaks from one 
exemplary replicate. Clustering was conducted using k-means algorithm. The colors in the summary plots correspond to clusters labeled in the heatmap 
below. (C, D) Feature distribution of the annotated peaks for the SMAD1 (C) binding sites and SMAD5 (D) binding sites.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Shared and unique genes bound by SMAD1 or SMAD5 in the promoter region.

https://doi.org/10.7554/eLife.91434
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Figure 3. SMAD1 and SMAD5 show unique direct target genes during early pregnancy. (A, B) Venn diagrams showing the shared and unique direct up-
target genes (A) and down-target genes (B) of SMAD1, SMAD5. Numbers indicate genes numbers. (C, D) Motif enrichment analysis from the up-targets 
and down-targets for SMAD1 (C) and SMAD5 (D). (E, F) Dot plot showing Gene Ontology enrichment analysis of shared direct target genes of SMAD1/5 
from the up-targets (E) and the down-targets (F), respectively. Dot size represents the gene ratio in the enriched categories compared to background 
genes, and dot colors reflect p-value.

https://doi.org/10.7554/eLife.91434
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from Osr family, motifs in the Homeobox genes (HOX) were found to be enriched in the ‘down-targets’ 
from both SMAD1 and SMAD5 datasets. Specifically, Hoxa11/Hoxd12/Hoxc10 were predicted to be 
co-activators for SMAD1 while Hoxd10 was indicated to be closely interacting with SMAD5. Indeed, 
HOX genes are critical for endometrial development in normal and disease conditions and are essen-
tial during the establishment of pregnancy (Du and Taylor, 2015; Cakmak and Taylor, 2010; Taylor 
et al., 1999; He et al., 2018).

With direct target genes of SMAD1 and SMAD5 identified, we then analyzed the Gene Ontology 
enrichment for the SMAD1/5 shared up-targets and down-targets, respectively. We found that 
‘up-target’ genes exhibit enrichment for regulation of cell–cell adhesion, cell junction organization, 
and desmosome organization (Figure  3E, Supplementary file 3c). Moreover, among the ‘down-
target’ genes, we found the enrichment for blood vessel/vasculature development and extracellular 
matrix organization categories (Figure 3F, Supplementary file 3d). Indeed, during early pregnancy, 
the stimulation from corpus-luteum-derived P4 enabled the endometrium to be transformed to a 
receptive state, which allows subsequent embryo attachment and develop through the epithelium 
into the stromal sections (Gellersen and Brosens, 2014). During this process, apportioned direct cell–
cell contacts are ensured by tight and adherent junctions and such interactions are key in facilitating 
implantation and embryo invasion. In accordance with our findings, desmosomes and adherens junc-
tions were extensively described to decline in the early pregnancy period, which facilitates the inva-
sion of trophoblast through the epithelial layer (Illingworth et al., 2000; Paria et al., 1999; Potter 
et al., 1996; Grund and Grümmer, 2018). In addition, the stromal compartment of the endometrium 
also undergoes profound vascular remodeling. Precise regulations of angiogenesis are required to 
establish an extensive vascular network, which is essential to ensure blood supply and successful 
embryonic development (Schatz et al., 2016; Evans et al., 2016). Collectively, our findings present 
evidence that emphasizes the shared roles of SMAD1 and SMAD5 in facilitating endometrial transi-
tions during early pregnancy.

Direct target genes of SMAD1 and SMAD5 maintain the homeostasis 
of uterine function
To discover novel direct target genes of SMAD1/5, we visualized key genes of interest from the 
up-targets and down-targets. As shown in Figure 4A, data from RNA-seq represents the decrease 
of several ‘down-targets’ in the SMAD1/5 cKO mouse uteri, including retinoic acid-related orphan 
receptor B (Rorb), follistatin (Fst), lymphoid enhancer binding factor 1 (Lef1), and insulin-like growth 
factor 1 (Igf1). Integrative Genomics Viewer (IGV) track view shows the exemplary SMAD1/5 binding 
activities near the promoter regions of Rorb and Fst (Figure 4B), demonstrating that these genes are 
bona fide direct target genes of SMAD1/5. Rorb belongs to the nuclear receptor families in the reti-
noic acid (RA) signaling pathways (Stehlin-Gaon et al., 2003) and is considered a marker for mesen-
chymal progenitor cells in the stroma compartment of the endometrium (Spitzer et al., 2012). In 
murine models, deficient RA signaling through the perturbation of RA receptor in the uterus leads to 
implantation and decidualization failure (Yin et al., 2021). Fst binds several TGFβ family ligands and 
thereby inhibits TGFβ family signaling extracellularly (Chang, 2016). Under physiological conditions, 
Fst is upregulated in the decidua during early pregnancy. Conditional deletion of Fst in the mouse 
uterus results in severe subfertility with a phenotype of non-receptive epithelium and poorly differen-
tiated stroma (Fullerton et al., 2017). Notably, RA signaling deficiency also decreases Fst levels in the 
uterus and systematic administration of FST can fully rescue the deficient-decidualization phenotype 
but not the non-receptive phenotype observed in the RA receptor mutant mice (Yin et al., 2021). 
Our results suggest a direct relationship between BMP and RA signaling pathway, accomplished by 
SMAD1/5 at the transcriptional level, likely establishing a positive signaling feedback loop. Apart from 
being a crucial transcriptional activator, SMAD1/5 also plays a role in repressing key gene expression 
pathways. Shown in Figure 4C, upon the deletion of SMAD1/5 in the mouse uteri, several E2-respon-
sive genes were significantly upregulated, including fibroblast growth factor receptor 2 (Fgfr2), matrix 
metallopeptidase 7 (Mmp7), and Wnt family member 7B (Wnt7b). In addition, Inhbb, a downstream 
target of Fst (Fullerton et al., 2017), is also a target gene of SMAD1/5 that resulted in transcriptional 
repression. SMAD1/5 binding on the Fgfr2 and Mmp7 genes are exemplified in an IGV track view in 
Figure 4D. Fgfr2 and its ligands regulate epithelial cell proliferation and differentiation. Components 
of the fibroblast growth factor (Fgf) signaling pathway are cyclically expressed in the uterus and act as 

https://doi.org/10.7554/eLife.91434
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Figure 4. Direct target genes of SMAD1/5 mediate uterine homeostasis. (A) Bar graph of normalized fragments per kilobase of transcript per million 
mapped reads (FPKM) of downregulated transcripts in the control and SMAD1/5 conditional knockout (cKO) groups as indicated by the label. 
Histograms represent average ± SEM of experiments uteri from control mice (N = 3) and SMAD1/5 cKO mice (N = 4). Analyzed by an unpaired t-test. 
(B) Integrative Genomics Viewer (IGV) track view of SMAD1, SMAD5 binding activities. Gene loci are as indicated in the figure, genomic coordinates are 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.91434
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paracrine and/or autocrine mediators of epithelial–stromal interactions (Li et al., 2011; Filant et al., 
2014). During early pregnancy in mice, P4 inhibits expression of Fgf2 in the stromal cells, which is 
critical to counteract the E2-driven epithelial proliferation (Li et al., 2011). Similar observations are 
reported in gilts, where the expression of Fgfr2 decreased alongside with increased parity of the sows 
(Lim et al., 2017). It is also noteworthy that loss of function of Fgfr2 in the mouse uterus leads to 
luminal epithelial stratification and peri-implantation pregnancy loss (Filant et al., 2014). Moreover, 
Mmp7 and Wnt7b are upregulated upon E2 stimulation and participate in the re-epithelialization of 
the endometrium and implantation process, respectively (Russo et al., 2009; Tenvergert et al., 1992; 
Hayashi et al., 2009). In accordance with the phenotype of hyperproliferative endometrial epithelium 
during early pregnancy, observed in SMAD1/5 cKO mice, we demonstrated that the suppression 
of key E2-responsive genes, such as Fgfr2 and Mmp7, by SMAD1/5 maintains the precise balance 
between E2 and P4.

To explore the major cell types regulated by SMAD1/5, first, we used CIBERSORTx (Newman et al., 
2019) to analyze and depict changes in the cell populations upon SMAD1/5 depletion in the mouse 
uterus during early pregnancy. By imputing the bulk uterine gene expression profiles to previously 
published mouse uterine single-cell datasets (Yang et al., 2023) using CIBERSORTx (Newman et al., 
2019), we were able to compare changes across both samples and cell types upon the SMAD1/5 
perturbation in the mouse uterus. We highlight the proportional increase in the epithelial cells, as well 
as the decrease in the decidual stromal cells and smooth muscle cells in mice lacking uterine SMAD1/5 
during the peri-implantation phase (Figure 4—figure supplement 1). Such cell populational changes 
are in line with the phenotypical observations of decidualization failure and excessive proliferation 
in the epithelial compartment. In addition, to explore the expression patterns of SMAD1/5 direct 
targets in human, we profiled the expression levels of the key ‘up-targets’ and ‘down-targets’ in 
the different cell types of the human endometrium. Using previously published single-cell RNA-seq 
data of human endometrium (Garcia-Alonso et al., 2021), we visualized the expression patterns of 
suppressive targets and activating targets of SMAD1/5 (Figure 4E). Apart from the major epithelial 
and stromal compartments, SMAD1/5 target genes are also widely expressed in the immune cell 
populations. Such observations reinforced the importance of the BMP signaling pathways in estab-
lishing an immune-privileged environment at the maternal–fetal interface (PrabhuDas et al., 2015).

SMAD1 and SMAD5 co-regulate PR target genes
SMAD1/5 cKO mice were infertile due to endometrial defects and displayed decreased P4 response 
during the peri-implantation period (Monsivais et al., 2021). Hence, we hypothesized that SMAD1 
and SMAD5 act as co-regulators of P4-responsive genes during the window of implantation and are 
required for endometrial receptivity and decidualization. By determining the genomic co-occupancy 
of SMAD1, SMAD5, and PR, we aimed to clarify the transcriptional interplay between the BMP and 
P4 signaling pathways. To this end, we performed additional PR CUT&RUN experiments on the uteri 
of mice collected at 4.5 dpc and identified 134,737 peaks showing PR binding activities (Figure 5A). 
Based on the k-means clustering results of the peaks, we demonstrated clusters with shared occu-
pancy between SMAD1/5 and PR (cluster 1), preferential deposition in the SMAD1 (cluster 2), SMAD5 
(cluster 4), and PR (clusters 3 and 5), respectively. Interestingly, between clusters 3 and 5, although 
the primary enrichment is for PR, overall the signal intensities for SMAD5 are higher in cluster 5. 
Together with previous analysis on genes uniquely or commonly bound by SMAD1/5 (Figure  2—
figure supplement 1), we speculate such observation can be attributed to a subset of the genes that 
are potentially co-regulated by SMAD5 and PR. From the gene perspective, we identified 7393 genes 
that were directly bound by PR at the promoter regions (±3 kb), among which 2596 genes were also 

annotated in mm10. (C) Bar graph of FPKM of upregulated transcripts in the control and SMAD1/5 cKO groups as indicated by the label. (D) IGV track 
view of SMAD1, SMAD5 binding activities. Gene loci are as indicated in the figure, genomic coordinates are annotated in mm10. (E) Dot plot showing 
the gene expression pattern of the key SMAD1/5 direct target genes in different cell types from published human endometrium single-cell RNA-seq 
dataset.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cell type compositions in the control and SMAD1/5 PR-Cre mice.

Figure 4 continued

https://doi.org/10.7554/eLife.91434
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Figure 5. SMAD1 and SMAD5 co-regulate progesterone receptor (PR) target genes. (A) Heatmaps and summary plots showing the enrichment 
comparison between SMAD1, SMAD5, and PR binding peaks from one exemplary replicate. Clustering was conducted using k-means algorithm. The 
colors in the summary plots correspond to clusters labeled in the heatmap below. (B) Dot plot showing KEGG pathway enrichment analysis for shared 
genes bound by SMAD1, SMAD5, and PR. (C) Integrative Genomics Viewer (IGV) track view of SMAD1, SMAD5, and PR binding activities. Gene loci are 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.91434
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concurrently bound by both SMAD1 and SMAD5 at the promoter regions (±3 kb) (Figure 5—figure 
supplement 1A).

Next, we performed KEGG pathway enrichment for the genes co-bound by SMAD1, SMAD5, and 
PR. As expected, pathways critical for decidualization such as relaxin signaling pathways and WNT 
signaling cascade were identified in the enrichment results (Figure 5B, Supplementary file 3e). We 
visualized exemplary genes co-regulated by SMAD1, SMAD5, and PR and presented in the normal-
ized IGV track view (Figure 5C). We demonstrated SMAD1, SMAD5, and PR showed co-occupancy 
at the loci of the SRY-box transcription factor 17 (Sox17), inhibitor of DNA binding 2 (Id2), forkhead 
box protein O1 (Foxo1), insulin-like growth factor 1 (Igf1), transforming growth factor beta receptor 
2 (Tgfbr2), and RUNX family transcription factor 1 (Runx1) (Figure 5C). Sox17 has been reported as 
one of the direct target genes of PR (Rubel et al., 2012) and is essential for uterine functions during 
implantation and early pregnancy (Guimarães-Young et al., 2016; Hirate et al., 2016). More recent 
studies also showed the importance of Sox17 in regulating uterine epithelial–stromal crosstalk and 
its indispensable role in female fertility (Wang et  al., 2018). We provided evidence that Sox17 is 
also directly regulated by SMAD1/5 complexes. Our results indicated that Id2, considered as canon-
ical direct transcriptional targets of BMP-SMAD signaling (Hollnagel et  al., 1999; Miyazono and 
Miyazawa, 2002), is also regulated by PR. We also confirmed that known P4-responsive genes such 
as Tgfbr2 (Holloran et al., 2020) and Runx1 (Dinh et al., 2023), as well as decidual markers such as 
Foxo1 (Vasquez et al., 2018) and Igf1 (Shi et al., 2022), were co-regulated by SMAD1, SMAD5, and 
PR (Figure 5C).

To identify additional transcription factors that are associated with the regulatory interplay 
between SMAD1/5 and PR during decidualization, we performed unbiased motif analysis on the 
shared CUT&RUN peaks between SMAD1/5 and PR. We reported the top 10 transcription factors 
harboring the enriched motifs, including NANOG, Homeobox A protein family (HOXA11 and 
HOXA9), NK6 homeobox 1(NKX6.1), TGFB-induced factor homeobox 2 (TGIF2), FOS, RUNX family 
transcription factor 2 (RUNX2), androgen receptor (AR), SOX17, and lymphoid enhancer-binding 
factor 1 (LEF1) (Figure 5D, Supplementary file 3f). Many of these putative interactors have been 
reported to interact with the SMAD proteins in other biological processes. For example, NANOG 
interacts with SMAD1 during mesoderm differentiation (Suzuki et al., 2006). HOXA9 forms heterod-
imers with SMAD4, leading to BMP-driven initiation of transcription from the mouse Opn promoter 
in vitro (Shi et  al., 2001; Shi et  al., 1999). Transcription factor AP-1 family (FOS) and RUNX2, as 
well as β-catenin/Lef1 complex, increase the effectiveness and specificity of DNA binding activities 
of SMAD1/5 in response to BMP ligand stimuli (Feng and Derynck, 2005; Massagué et al., 2005; 
Derynck and Budi, 2019). To further evaluate the key roles of SMAD1/5 as major uterine transcription 
regulators, we cross-compared the genomic binding sites of SMAD1/5 with known key transcription 
factors, namely aforementioned SOX17 (Figure 5—figure supplement 1B, Supplementary file 3g), 
as well as NR2F2 (Figure 5—figure supplement 1C, Supplementary file 3h), an essential regulator 
of hormonal response (Lee et al., 2010), using our CUT&RUN data sets and published mouse uterine 
SOX17 and NR2F2 ChIP-seq data sets (GSE118328, GSE232583). Among the annotated genes, 5402 
genes are shared between SMAD1/5 and SOX17, and 1922 genes are shared between SMAD1/5 
and NR2F2. Such observations indicate a potential co-regulatory mechanism between SMAD1/5 and 
other key uterine transcription factors in maintaining appropriate uterine functions. Overall, our anal-
yses demonstrate that the transcriptional activity of SMAD1, SMAD5, and PR coordinates the expres-
sion of key genes required for endometrial receptivity and decidualization.

as indicated in the figure, genomic coordinates are annotated in mm10. (D) Table of motif analysis results for shared peaks between SMAD1, SMAD5, 
and PR, with p-value and motif annotation specified for each motif.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Overlapping of SMAD1/5 with known transcription factors governing uterine homeostasis.

Figure 5 continued

https://doi.org/10.7554/eLife.91434
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Decidualization of human endometrial stromal cells requires SMAD1/
SMAD5
We next sought to functionally characterize the role of SMAD1/5 during decidualization in human 
EnSCs. To do so, we examined the effect of SMAD1/5 perturbations on the decidualization of primary 
human EnSCs. EnSCs were transfected with short interfering RNAs (siRNAs) targeting each gene 
(SMAD1 and SMAD5) and subjected to in vitro decidualization by treatment with E2-cAMP-and MPA 
(EPC) for 4.5 d (Figure 6A, Figure 6—figure supplement 1). We hypothesized that the combined 
SMAD1/5 knockdown would impair the decidualization process significantly compared to cells treated 
with non-targeting siRNAs. Our results demonstrated that SMAD1/5 knockdown affected decidualiza-
tion and led to significantly decreased expression of the canonical decidual markers, PRL and IGFBP1 
in EnSCs (Figure 6B). The PR co-regulator, FOXO1 (Vasquez et al., 2015), also exhibited a significant 
decreasing trend in the siSMAD1/5 group. We also examined the expression level of the RA pathway 
regulator gene, RORB, and of the SMAD4-PR target gene, KLF15 (Monsivais et al., 2016), following 
SMAD1/5 perturbation. We observed a significant decrease in both RORB and KLF15 expression upon 
SMAD1/5 knockdown during in vitro decidualization treatment (Figure 6C). Taken together, our find-
ings indicate that SMAD1/5 can modulate PR activity during decidualization and that this transcrip-
tional cooperation is required for the in vitro decidualization of primary human EnSCs.

Discussion
SMAD proteins are canonical transcription factors that are activated in response to TGFβ family 
signaling and mediate the biological effects of these pathophysiologically critical ligands (Massagué 
et al., 2005). While SMAD2 and SMAD3 are downstream of TGFβs, activins, and multiple other family 
ligands, SMAD1 and SMAD5 preferentially transduce BMP signaling pathways and are regarded as 
pivotal activators for many physiological processes, including bone development, cardiac conduction 
system development, and embryonic pattern specification (Wu et al., 2016; van Weerd and Chris-
toffels, 2016; Whitman, 1998). Importantly, SMAD1 and SMAD5 are implicated in diverse female 
reproductive physiology and pathophysiology processes (Monsivais et al., 2017b; Monsivais et al., 
2021; Middlebrook et al., 2009; Pangas et al., 2008; Rodriguez et al., 2016).

Due to high structural similarity, SMAD1/5 have been suggested to be redundant from the studies 
in ovarian biology and chondrogenesis (Pangas et al., 2008; Retting et al., 2009). However, other 
studies clearly demonstrated that SMAD1/5 have different roles in governing hematopoiesis and 
uterine functions (Monsivais et al., 2021; McReynolds et al., 2007). The DNA binding activities of 
SMAD1 and SMAD5 have not been readily distinguished from each other due to anti-phospho anti-
body limitations. To robustly define the roles of SMAD1/5 in regulating transcriptional programs in 
vivo, we produced two genetically engineered mouse models with global knock-in of an HA tag and 
a PA tag in the Smad1 and Smad5 loci, respectively. We showed that SMAD1 and SMAD5 not only 
have shared transcriptional activities but also have unique roles in uterine physiology. In agreement 
with previous studies showing that SMAD1/5 function is partially redundant (Pangas et al., 2008; 
Retting et al., 2009), we confirmed that SMAD1/5 share a total of 972 direct target genes in the 
uterus. Furthermore, we demonstrated that 43 genes were uniquely regulated by SMAD1 whereas 
270 genes are specifically regulated by SMAD5 only. Our motif analysis also revealed distinct potential 
co-factors between SMAD1 and SMAD5, providing evidence at the molecular level to mechanistically 
delineating the distinct roles of SMAD1 and SMAD5 in directing cellular processes in the uterus.

Apart from directly regulating target gene expression, our data demonstrate that SMAD1/5 
present as dense genomic occupancies. To date, only a limited amount of transcription factors 
have been investigated using the CUT&RUN-seq technique from the tissue samples due to anti-
body compatibility issue. We recognize that the binding sites and gene number identified here 
are quite high; however, the high density of binding events was also observed in the ENCODE 
(Consortium E. P, 2012) chromatin immunoprecipitation followed by sequencing (ChIP-seq) data 
for SMAD1 and SMAD5 in the human K562 cells, detecting an average of 63,563 peaks for SMAD1 
and 109,682 peaks for SMAD5. (Data accessed through GSE95876 and GSE127365 from Gene 
Expression Omnibus.) Multiple aspects can contribute to the observation of dense SMAD1/5 
genome occupancies. First, transcription factors (TFs) tend to dwell or ‘search and bind’ throughout 
the genome (Chen et al., 2014). Such events may not yield actual biological effects but rather are 

https://doi.org/10.7554/eLife.91434
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Figure 6. SMAD1 and SMAD5 are required for progesterone receptor (PR) responses during decidualization of human endometrial stromal cells 
(EnSCs). (A) Schematic approach and timeline outlining in vitro decidualization for EnSCs. (B, C) RT-qPCR results showing mRNA levels of PRL, IGFBP1, 
FOXO1, RORB, and KLF15 after SMAD1/5 perturbation using siRNAs. Data are normalized to siCTL-Veh for visualization. Bar graphs represent 
average ± SEM of experiments on cells from three different individuals with technical triplicates. Analyzed by a one-way ANOVA with post hoc Tukey 
test.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Knockdown effect validation of SMAD1/5 perturbation.

https://doi.org/10.7554/eLife.91434
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due to differences in motif binding affinities (Swinstead et al., 2016). Second, apart from robust 
binding activities, TFs may not initiate transcription programs owing to the lack of co-factors or 
favorable conditions to exert their functions (Chen et al., 2020). Additionally, TF binding sites and 
target genes are unlikely to have a one-to-one relationship. TFs could be positioned from the prox-
imal promoter regions to hundreds of kilobases afar to modulate gene expression. In the mean-
time, the same binding site could regulate multiple genes by interacting with different promoters 
in different subpopulations of cells. Lastly, TFs usually direct target gene expression in a cell-type-
specific manner (Arvey et al., 2012). Our genomic profiling samples were collected from whole 
uterus at the time of 4.5 dpc, containing a great range of cell populations, including but not limited 
to the epithelium (luminal and glandular), stroma (progenitors and differentiated cells), myome-
trium, endothelium, and immune cell populations. The data is therefore expected to depict the 
dynamic and complex activities of SMAD1/5 in the entire uterus. Together, the stringent filtering 
and normalization criteria, comparable peak number to the published dataset, and IGV track view 
visualization collectively validate our CUT&RUN experiments and uncover the enriched regions 
as robust SMAD1/5 binding events. Our studies also examined the role of SMAD1/5 in medi-
ating progesterone responses at the genomic and transcription levels. Similarly, our analysis was 
based on datasets generated from the whole mouse uterus, which contains multiple compartments 
of the uterine structures, including but not limited to epithelium and stroma. Published studies 
have shown that nuclear SMAD1/5 localize to the stroma and epithelium during the decidualiza-
tion process at 4.5 dpc, during the window of implantation (Monsivais et al., 2021). Conditional 
deletion of SMAD1/5 exclusively in the uterine epithelium using lactoferrin-icre (Ltf-icre) results in 
severe subfertility due to impaired implantation and decidual development (Tang et al., 2022). 
Conditional deletion of SMAD1/5/4 exclusively in the cells from mesenchymal lineage (including 
uterine stroma) using anti-Mullerian hormone type 2 receptor cre (Amhr2-cre) results in infertility 
with defective decidualization (Pangas et al., 2008; Rodriguez et al., 2016). Given the essential 
roles of SMAD1/5 in both stroma and epithelium identified by previous studies, we believe that 
the transcriptional co-regulatory roles of SMAD1/5 and PR reported here using the whole uterus 
validate a relationship between SMAD1/5 and PR in both the stromal and epithelial compartments. 
However, it does not rule out potential co-regulatory roles of SMAD1/5 and PR in the myometrium, 
immune cells, and/or endothelium, given that whole uterus was used. The specific transcriptional 
evaluations of SMAD1/5 in the stroma versus the epithelium would require future validations using 
single-cell sequencing and/or spatial transcriptomic analysis.

Although our studies herein confirm that SMAD1 and SMAD5 proteins have distinct transcriptional 
regulatory activities, our previous studies demonstrated that while SMAD5 can functionally replace 
SMAD1, SMAD1 cannot replace SMAD5 in the uterus (Monsivais et al., 2021). How this epistatic 
relationship is established in a tissue-specific manner still needs to be determined by further biochem-
ical investigations. In addition, further studies are needed to uncover whether SMAD1 and SMAD5 
response differently upon ligand stimulation in the uterus, and if so, how the preference is achieved. 
Our study provides versatile in vivo genetic tools for these questions and can advance the toolbox for 
the field studying BMP signaling pathways. Because our mouse models are global knock-in mice, they 
will not only serve as a powerful tool for studying BMP signaling pathways in the reproductive system 
but will also promote the study of BMP signaling in other organs and tissues.

BMP signaling pathways are involved in a plethora of cellular processes and appropriate functioning 
of the BMP pathway depends on the precise crosstalk with other signaling pathways. Coordinated 
communication with other pathways can yield synergistic effects and lead to a complex regulatory 
network of biological processes. To be specific, SMAD1/5 mediates the crosstalk with the WNT/β-cat-
enin pathway. WNT signaling inhibits glycogen synthase kinase 3β (GSK3β) activity and prevents 
SMAD1 from degradation, which governs the embryonic pattern formation (Fuentealba et al., 2007). 
Also, SMAD1/5 can physically interact with T-cell factor (TCF) or lymphoid enhancer factor (LEF) tran-
scription factors to form transcriptional complexes to activate the transcription of many WNT-and 
BMP-responsive genes (Labbé et al., 2000). In addition, SMAD1 and SMAD5 can directly associate 
with Notch intracellular domain and enhance known Notch target gene expression by binding to their 
regulatory DNA sequences (Zavadil et al., 2004). Intriguingly, in prostate cells, SMAD1 physically 
interacts with the androgen receptor (AR) and halts the androgen-stimulated prostate cell growth 
(Qiu et al., 2007). Moreover, we provide first-hand evidence showing that BMP signaling pathways 

https://doi.org/10.7554/eLife.91434
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converge with RA signaling pathways through the regulation of RORB by SMAD1/5. Further studies 
will grant a more detailed mechanism of the positive feedback loop between BMP and RA signaling.

Our previous studies suggest that the mouse endometrium presents decreased P4 responsive-
ness following the conditional deletion of SMAD1/5 in the uterus (Monsivais et  al., 2021). In 
accordance with the phenotypical observation, we offer compelling support in our current study 
that SMAD1/5 work collectively with PR to regulate their target genes and that SMAD1/5 mediate 
the crosstalk between BMP and P4 signaling pathways during decidualization, a key process to 
ensure a successful pregnancy, and ultimately direct the biological transformations of the uterus 
during early pregnancy. We provide genomic evidence that SMAD1/5 are co-bound at around 35% 
of PR target genes in the mouse uterus during decidualization. Correspondingly, in a previously 
published study where they performed PR ChIP-seq in the mouse uterus after P4 stimulation, the 
SMAD1 motif was the fifth most significantly enriched sequence motifs identified (Rubel et al., 
2012). In parallel, we also identified nuclear receptor motifs (i.e., PR sequence motifs) enriched 
in the SMAD1/5 binding sites (Figure 5—figure supplement 1D and E). From pathway enrich-
ment analysis, we demonstrate that genes with SMAD1/5 and PR bound at the promoter regions 
are enriched for key pathways in directing the decidualization process, such as WNT and relaxin 
signaling pathways. Future studies can benefit from analyzing binding events beyond the promoter 
regions. Profiling the PR genome occupancy in the SMAD1/5-deficient mice would provide an inter-
esting perspective to reevaluate the major regulatory roles of SMAD1/5 in mediating uterine tran-
scriptomes. In this study, we determined the overlapped transcriptional control between SMAD1/5 
and PR at the gene level, and functionally validated the regulatory effect at the transcript level in 
a human stromal cell decidualization model. While we observe a subset of peak representations 
that do not overlap at the base pair level in the promoter regions, future functional screenings 
at the promoter level, such as luciferase reporter assays to assess transcriptional co-activation by 
SMAD1/5 and PR, will advance this study.

SMADs are known to recruit co-repressors (i.e., Ski; Luo et al., 1999) or co-activators (i.e., p300; 
Pouponnot et al., 1998) to inhibit or activate target gene transcription, less is known about their cell-
specific co-factors that confer the precise spatial-temporal control over binding activities to target 
genes. Our study highlights the potential co-factors by integrating both genomic and transcriptomic 
data to delineate signaling crosstalks that are responsible for maintaining tissue homeostasis, espe-
cially in the female reproductive tract.

Since mice only undergo decidualization upon embryo implantation whilst human stromal cells 
undergo cyclic decidualization in each menstrual cycle in response to rising levels of progesterone 
(Ramathal et  al., 2010), asynchronous gene responses may occur in comparison between mouse 
models and human cells. However, cellular transformation during decidualization is conserved between 
mice and humans (Gellersen and Brosens, 2014), which makes findings in the mouse models a valu-
able and transferable resource to be evaluated in human tissues. Accordingly, our functional validation 
studies were performed using human EnSCs induced to decidualize in vitro for 4 d, which models the 
early phases of decidualization. Additional transcriptomic studies of the SMAD1/5 perturbations in 
human EnSCs will be of great resource in understanding the entire SMAD1/5 regulomes in humans.

In summary, our findings and those of others indicate that SMAD1 and SMAD5 not only are signal 
transducers for BMP signaling pathways, but also engage extensively in the crosstalk with PR signaling 
pathways. While P4 responses are critical for early pregnancy establishment, abnormal P4 responses 
are implicated in diseases such as endometriosis and endometrial cancers (Brosens and Gellersen, 
2006; Yilmaz and Bulun, 2019; Janzen et al., 2013; MacLean and Hayashi, 2022). Hence, our results 
show that BMP and P4 signaling pathways synergize within the endometrium; these key pathways can 
shed light on the endometrial contribution to conditions that impact reproductive health in women, 
including early pregnancy loss, endometriosis, and endometrial cancer. Furthermore, we anticipate 
that the SMAD1/5 knock-in-tagged transgenic mouse models developed herein will be useful for 
studying BMP/SMAD1/5 signaling pathways in other reproductive and non-reproductive tract tissues 
in the body.

https://doi.org/10.7554/eLife.91434
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Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus)

C57BL/6J × 129S5/
SvEvBrd This paper C57BL/6J × 129S5/SvEvBrd

Can be obtained by contacting the corresponding 
authors

Transfected 
construct (Homo 
sapiens)

siCTL, siSMAD1, 
siSMAD5 Dharmacon

Cat# D-001810-10, L-
012723-00-0005, L-015791-
00-0005

Biological sample 
(M. musculus) Primary uterine tissues This paper

Freshly isolated from 4.5 dpc mice. Can be obtained 
by contacting the corresponding authors

Antibody
Anti-HA (rabbit 
polyclonal) EpiCypher

Cat# 13-2010, 
RRID:AB_3094663 CUT&RUN (1:50)

Antibody
Anti-PA (rat 
monoclonal)

FUJIFILM Wako Pure 
Chemical Corporation

Cat# NZ-1, 
RRID:AB_3094664

CUT&RUN (1:50)
IP (10 ug/assay)
WB (1:1000)

Antibody
Anti-HA (rabbit 
monoclonal)

Cell Signaling 
Technology

Cat# 3724, 
RRID:AB_1549585

IP (1:50)
WB (1:1000)

Antibody
Anti-SMAD1 (rabbit 
monoclonal) Innovative Research

Cat# 385400, 
RRID:AB_431530 WB (1:1000)

Antibody
Anti-SMAD5 (rabbit 
polyclonal) ProteinTech

Cat# 12167-1-AP, 
RRID:AB_2286502 WB (1:1000)

Sequence-based 
reagent S1-F1 MilliporeSigma PCR primers ​CAAA​​CCGC​​AGAC​​CAAG​​AAGC​

Sequence-based 
reagent S1-R1 MilliporeSigma PCR primers ​CTTC​​TCCA​​GCTC​​TTCC​​ATGG​C

Sequence-based 
reagent S5-F1 MilliporeSigma PCR primers ​TGCT​​TAAG​​ACCT​​GCAT​​GTGA​​CT

Sequence-based 
reagent S5-R1 MilliporeSigma PCR primers ​CATC​​CACT​​GCCT​​TTTC​​TGCC​

Sequence-based 
reagent GAPDH-F MilliporeSigma RT-qPCR primers ​ACAA​​CTTT​​GGTA​​TCGT​​GGAA​​GG

Sequence-based 
reagent GAPDH-R MilliporeSigma RT-qPCR primers GCCA​TCAC​GCCA​CAGT​TTC

Sequence-based 
reagent ACTB-F MilliporeSigma RT-qPCR primers ​CTGG​​AACG​​GTGA​​AGGT​​GACA​

Sequence-based 
reagent ACTB-R MilliporeSigma RT-qPCR primers ​AAGG​​GACT​​TCCT​​GTAA​​CAAT​​GCA

Sequence-based 
reagent RPL13A-F MilliporeSigma RT-qPCR primers ​CCTG​​GAGG​​AGAA​​GAGG​​AAAG​​AGA

Sequence-based 
reagent RPL13A-R MilliporeSigma RT-qPCR primers ​TTGA​​GGAC​​CTCT​​GTGT​​ATTT​​GTCA​A

Sequence-based 
reagent RORB-F MilliporeSigma RT-qPCR primers ​TGTG​​CCAT​​CCAG​​ATCA​​CTCA​​CG

Sequence-based 
reagent RORB-R MilliporeSigma RT-qPCR primers ​GGTT​​GAAG​​GCAC​​GGCA​​CATT​​CT

Sequence-based 
reagent SMAD5-F MilliporeSigma RT-qPCR primers ​CTCG​​CGAA​​AAGG​​AAGC​​TGTT​G

Sequence-based 
reagent SMAD5-R MilliporeSigma RT-qPCR primers ​GGGT​​CAAG​​TCAG​​AGGC​​AGAT​T

https://doi.org/10.7554/eLife.91434
https://identifiers.org/RRID/RRID:AB_3094663
https://identifiers.org/RRID/RRID:AB_3094664
https://identifiers.org/RRID/RRID:AB_1549585
https://identifiers.org/RRID/RRID:AB_431530
https://identifiers.org/RRID/RRID:AB_2286502
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Sequence-based 
reagent SMAD1-F MilliporeSigma RT-qPCR primers ​ATGG​​TGAC​​ACAG​​TTAC​​TCGG​T

Sequence-based 
reagent SMAD1-R MilliporeSigma RT-qPCR primers ​AGAG​​ACTT​​CTTG​​GGTG​​GAAA​​CA

Sequence-based 
reagent KLF15-F MilliporeSigma RT-qPCR primers ​GTGA​​GAAG​​CCCT​​TCGC​​CTGC​A

Sequence-based 
reagent KLF15-R MilliporeSigma RT-qPCR primers ​ACAG​​GACA​​CTGG​​TACG​​GCTT​​CA

Commercial assay 
or kit

PrimePCR SYBR Green 
Assay: FOXO1, Human Bio-Rad qHsaCED0004488

Commercial assay 
or kit

PrimePCR SYBR Green 
Assay: IGFBP1, Human Bio-Rad qHsaCID0014281

Commercial assay 
or kit

PrimePCR SYBR Green 
Assay: PRL, Human Bio-Rad qHsaCID0015557

 Continued

Generation of knock-in mouse lines
Smad5PA/PA knock-in (KI) mice were generated using a similar approach as previously described 
(Shimada et al., 2021). Briefly, single-guide RNA (sg-RNA) was designed to target the regions close 
to the start codon (Figure 1A and B) and the sgRNA sequence was inserted into the pX459 V2.0 
plasmid (#62988, Addgene). The reference plasmids containing PA tag sequence were constructed 
in pBluescript II SK (+) vector (Agilent, Palo Alto, CA). Then, 1 μg of guide RNA inserted vector and 
1.0 μg of reference plasmid were co-transfected into EGRG01 embryonic stem (ES) cells. Out of 48 ES 
clones, 12 had the expected knock-in allele. ES cell clones that possessed the proper KI allele were 
injected into ICR embryos and chimeric blastocysts were transferred into pseudopregnant females. 
Chimeric male mice were mated with B6D2F1 female mice to obtain the PA-tagged SMAD5 KI hetero-
zygous mice. Homozygous Smad5PA/PA mice were maintained in the C57BL/6J × 129S5/SvEvBrd mixed 
genetic background. To generate Smad1HA/HA mice, Cas9 protein (Thermo Fisher, A36497), sg-RNA, 
and a repair oligo of homology-directed repair (HDR) containing HA-tag and linker sequences were 
electroporated into zygotes harvested from in vitro fertilization using B6D2F1 male and female mice. 
An ECM830 electroporation system (BTX, Holliston, MA) was used for electroporation. Subsequently, 
embryos were cultured overnight to the two-cell stage and then transferred to the oviducts of pseu-
dopregnant CD-1 mice (Center for Comparative Medicine, Baylor College of Medicine). Pups were 
further screened for successful heterozygous or homozygous knock-in alleles by PCR using primers 
spanning across the HA tag. Sequences of sgRNA, the single-stranded repair oligo for HDR, and 
primer used for genotype are listed in Supplementary file 3a.

Animal ethics compliance and tissue collection
All mice were housed under standard conditions of a 12 hr light/dark cycle in a vivarium with controlled 
ambient temperature (70°F ± 2°F and 20–70%  relative humidity). All mouse handling and experi-
mental procedures were performed under AN-716 protocol approved by the Institutional Animal Care 
and Use Committee of Baylor College of Medicine. All experiments were performed with female mice 
aged between 7 and 12 wk with a C57BL/6J × 129S5/SvEvBrd mixed genetic background. All mice 
were euthanized using isoflurane induction followed by cervical dislocation, and tissues were snap-
frozen in liquid nitrogen.

CUT&RUN approach
Nuclei from uterine tissues were purified following a previously published protocol (Fang et al., 
2014). The experiments were performed using pooled biological replicates from two mice that were 
processed as technical replicates throughout the CUT&RUN procedure and analysis. In short, uteri 
were harvested from pregnant mice at 4.5 dpc and washed with cold swelling buffer (10 mM Tris–
HCl pH 7.5, 2 mM MgCl2, 3 mM CaCl2, 1X Protease Inhibitor Cocktail [PIC, Roche, 11836170001]) 
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immediately after collection. Then tissue was cut into small pieces (~2–3 mm) using scissors, while 
submerged in cold swelling buffer. Nuclear extract was prepared by dounce homogenization in cold 
swelling buffer (using a size 7 dounce) and filtered using the cell strainer (100 μm, BD Biosciences). 
Lysate was centrifuged at 400 × g for 10 min, then resuspended in lysis buffer (swelling buffer with 
10% glycerol and 1% CA-630, 1× PIC) using end-cut or wide-bore tips and incubated on ice for 
5 min. Nuclei were washed twice with lysis buffer and resuspended in lysis buffer. Next, CUT&RUN 
procedure largely follows a previous protocol (Skene and Henikoff, 2017). Briefly, around 500,000 
nuclei were used per reaction. 10 μl of concanavalin-coated beads (Bangs Labs, BP531) were washed 
twice in Bead Activation Buffer (20 mM HEPES, pH 7.9, 10 mM KCl, 1 mM CaCl2, 1 mM MnCl2) for 
each reaction. Then, beads were added to nuclei resuspension and incubated for 10 min at room 
temperature. After incubation, bead-nuclei complexes were resuspended in 100 μl Antibody Buffer 
(20 mM HEPES, pH 7.5, 150 mM NaCl, 0.5 mM spermidine, 1× PIC, 0.01% digitonin, and 2 mM 
EDTA) per reaction. Then, 1 μg of IgG antibody (Sigma, I5006), HA antibody (EpiCypher, 13-2010), 
PA antibody (Fuji Film, NZ-1), and PR antibody (Cell Signaling, D8Q2J) were added to each group 
respectively. After overnight incubation at 4°C, bead-nuclei complexes were washed twice with 
200 μl cold Dig-Wash buffer (20 mM HEPES pH = 7.5, 150 mM NaCl, 0.5 mM spermidine, 1× PIC, 
0.01% digitonin) and resuspended in 50 μl cold Dig-Wash buffer with 1 μl pAG-MNase (EpiCypher, 
15-1016) per reaction. After incubation at room temperature for 10 min, bead-nuclei complexes 
were washed twice with 200 μl cold Dig-Wash buffer and resuspended in 50 μl cold Dig-Wash buffer, 
then 1 μl 100 mM CaCl2 was added to each reaction. The mixture was incubated at 4°C for 2 hr and 
the reaction was stopped by adding 50 μl Stop Buffer (340 mM NaCl, 20 mM EDTA, 4 mM EGTA, 
0.05% Digitonin, 100 ug/ml RNase A, 50 mg/ml glycogen, 0.5 ng Escherichia coli DNA Spike-in 
[EpiCypher, 18-1401]) and incubate at 37°C for 10 min. The supernatant was collected and subjected 
to DNA purification with phenol-chloroform and ethanol precipitation. Sequencing libraries were 
prepared using NEBNext Ultra II DNA Library Prep Kit (New England BioLabs, E7645) following the 
manufacturer’s protocol. Paired-end 150 bp sequencing was performed on a NEXTSeq550 (Illumina) 
platform.

Bioinformatic analysis for CUT&RUN data and reanalysis of published 
single-cell RNA-seq data
For CUT&Run data, raw data were de-multiplexed by bcl2fastq v2.20 with fastqc for quality control. 
Clean reads were mapped to reference genome mm10 by Bowtie2, with parameters of --end-
to-end --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 700. For 
spike-in mapping, reads were mapped to E. coli genome U00096.3. Duplicated reads were removed, 
and only uniquely mapped reads were kept. Spike-in normalization was achieved through multiply 
primary genome coverage by scale factor (100,000/fragments mapped to E. coli genome). CUT&RUN 
peaks were called by SECAR (Meers et al., 2019) with the parameters of -norm -stringent -output. 
Track visualization was done by bedGraphToBigWig (Kent et al., 2010), bigwig files were imported 
to IGV for visualization. For peak annotation, common peaks were identified with 'mergePeaks' func-
tion in HOMER v4.11 (Heinz et al., 2010) and then genomic annotation was added by ChIPseeker 
(Yu et al., 2015). Motif analysis was conducted through HOMER v4.11 with parameter set as ​find-
MotifsGenome.​pl mm10 -size 200 -mask (Heinz et  al., 2010). Peak heatmaps were plotted using 
deepTools 2.4.2 with clustering options set to k-means (Ramírez et al., 2016). For imputing the cell 
fractions using published mouse uterine bulk and single-cell RNA-seq data, single-cell RNA-seq with 
cell type reference from 5.5 dpc mouse uterus was derived from GSE226417, bulk RNA-seq of the 
3.5 dpc mouse uterus was derived from GSE152675. Signature matrix and cell fraction profiles were 
conducted through CIBERSORTx (Newman et al., 2019). Briefly, reference gene expression signature 
matrix was generated by ‘Create Signature Matrix’ module with default settings. Next, cell fractions 
were calculated using ‘Impute Cell fractions’ module in the absolute mode, which scales each anno-
tated cellular fractions to an absolute value that reflects its absolute proportion in the bulk sample. For 
human single-cell RNA-seq data, raw data was obtained from EMBL-EBI under accession no. E-MTAB-
10287. Cells with low coverage (less than 500 genes detected) were filtered, then gene counts were 
normalized for each cell by converting counts to quantiles and obtaining the corresponding values 
from a normal distribution. Then normalized cell vectors are concatenated along the gene panel. Plot 
visualization was conducted through CELLXGENE platform (Abdulla et al., 2023).
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Western blot analysis of immunoprecipitation (IP-WB)
Tissues were pulverized in liquid nitrogen and then lysed using NETN buffer (20 mM Tris–HCl, pH 8.0, 
150 mM NaCl, 0.5 mM EDTA, 10% glycerol, and 0.5% NP-40). Protein concentration was determined 
by BCA Protein Assay Kit (Thermo Fisher, 23225). 1.5 mg of total protein lysate was used for IP. IP 
was performed by adding HA antibody (Cell Signaling, C29F4) or PA antibody (Fuji Film, NZ-1) to the 
lysate and incubate for 1 hr at 4°C. Subsequently, protein G magnetic beads (Thermo Fisher, 88847) 
were added for an additional 1 hr at 4°C. Then, the beads were washed five times with NETN buffer 
and denatured in sample buffer (Thermo Fisher, NP0007) for further analysis by western blot. For 
western blot procedures, briefly, denatured protein lysates were run on the 4 to 12%, Bis-Tris protein 
gels (Thermo Fisher, NP0321BOX) followed by electrophoretic transfer to nitrocellulose membrane. 
The membrane then went through blocking by 5% milk in Tris-buffered saline with Tween20 (TBST), 
followed by incubation overnight at 4°C in the primary antibodies anti-HA (Cell Signaling, C29F4), 
anti-PA (Fuji Film, NZ-1), anti-SMAD1 (Life Technologies, 385400), and anti-SMAD5 (ProteinTech, 
12167-1-AP) at 1:1,000 dilution. The next day, membranes were washed three times with TBST, then 
incubated with horseradish peroxidase-conjugated secondary antibody for 1 hr at room temperature, 
then washed three times with TBST, developed and imaged on iBright Imaging System (FL1500).

Primary endometrial stromal cells isolation/RNAi/decidualization
Studies using human specimens were conducted as indicated in a protocol approved by the Insti-
tutional Review Board at Baylor College of Medicine, H-51900. Human EnSCs were collected from 
healthy volunteers’ menstrual effluent as previously reported (Warren et al., 2018; Nayyar et al., 
2020; Martínez-Aguilar et al., 2020) (N = 3). In brief, samples were collected by participants in a 
DIVA cup during the 4–8 hr on the first night of menses and stored in DMEM/F12 with 10% FBS, 
antibiotic/antimycotic and 100 µg/ml Primocin in a cold-insulated pack until processing in the labo-
ratory on the day of collection. The effluent was digested with 5 mg/ml collagenase and 0.2 mg/ml 
DNase I for 20 min at 37°C, then the cell pellet was collected by centrifuging at 2500 rpm for 5 min 
at room temperature. Next, red blood cell lysis was performed by resuspending the cell pellet in 
20 ml of 0.2% NaCl for 20 s and neutralized with 20 ml of 1.6% NaCl. Then the solution was then 
centrifuged at 2500 rpm for 5 min. Then, 5 ml complete medium (DMEM/F12 supplement with 10% 
FBS, 1× Antibiotic-Antimycotic  + 100  μg/ml Primocin) was used to resuspend the pellet and the 
solution was passed through 100 µm and 20 µm cell strainer sequentially. The flowthrough containing 
the stromal cells was centrifuged for 5 min at 2500 rpm and the pellet was resuspended in 10 ml 
complete medium and plated in a 10 cm dish. siRNA knockdown was performed using Lipofectamine 
RNAiMAX following the manufacturer’s protocol. In brief, 0.2 million stromal cells were plated in a 
12-well plate 1 d before transfection. On the day of transfection, 2 µl siRNA (20 µM, Dharmacon, 
D-001810-10, L-012723-00-0005, L-015791-00-0005) and 3 µl Lipofectamine RNAiMAX were diluted 
in 50 µl Opti-MEM respectively and then mixed to incubate at room temperature for 15 min. Then, the 
complex was added dropwise onto the cells. Also, 24 hr after transfection, medium was changed to 
DMEM/F12 supplement with 2% charcoal-stripped FBS. Decidualization was induced by the addition 
of 35 nM estradiol (Sigma, E1024), 1 µM medroxyprogesterone (Sigma, 1378001), and 0.05 mM cyclic 
adenosine monophosphate (Axxora, JBS-NU-1502L) for 4 d with media changes every 48 hr.

RNA extraction and RT-qPCR
For mRNA extraction from stromal cells, cells were lysed with TRIzol and processed using the DirectZol 
kit (Zymo, R2051) following the manufacturer’s procedures. Approximately 100  ng of mRNA was 
reverse transcribed into cDNA using iScript cDNA Supermix (Bio-Rad, 1708890) and amplified using 
specific primers listed in Supplementary file 3a. Primers were amplified using 2× SYBR Green Reagent 
(Life Technologies, 4364346) using a Bio-Rad CFX384 Touch Real-Time PCR Detection System. Data 
analysis was performed by calculating ΔΔCT value toward the geometric mean of GAPDH, ACTB, and 
RPL13A and then normalized to siCTL. p-Value was determined by one-way ANOVA with post hoc 
Tukey test using GraphPad Prism. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.
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