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Identifying chromatin interactions with high sensitivity and resolution at the genome-wide scale 
continues to be technically challenging. This study introduces findings based on the improved 
MNase-based proximity ligation method, MChIP-C, which enables genome-wide measurement of 
chromatin interactions at single-nucleosome resolution. The evidence presented in this manuscript 
is convincing, and the technological advancements will be valuable for the study of 3D genome 
architecture.

Abstract The enhancer-promoter looping model, in which enhancers activate their target genes 
via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this 
model has been questioned due to evidence of alternative mechanisms and the lack of its system-
atic validation, primarily owing to the absence of suitable experimental techniques. In this study, we 
present a new MNase-based proximity ligation method called MChIP-C, allowing for the measure-
ment of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide 
scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we 
found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-
based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF 
remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter 
interactions. Finally, leveraging data from published CRISPRi screens, we found that most function-
ally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-
promoter looping model.

Introduction
For decades since the discovery of the first enhancers, the enhancer-promoter (E-P) looping model, 
in which enhancers activate their target genes via physical contact, has dominated the field (Popay 
and Dixon, 2022; Ptashne, 1986). However, direct empirical evidence for this hypothesis has been 
scarce, and only a handful of credible enhancers were demonstrated to be in physical proximity to 
their promoter partners. These include classical enhancers and their established targets such as globin 
genes, HoxD cluster genes, Shh and PAX6 genes (Tolhuis et al., 2002; Davies et al., 2016; Oudelaar 
et al., 2019; Hua et al., 2021; Montavon et al., 2011; Symmons et al., 2016; Freire-Pritchett et al., 
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2017). Simultaneously, some recent microscopy observations do not seem to align well with the E-P 
looping model (Benabdallah et al., 2019; Karr et al., 2022).

The development of genomic assays based on proximity-ligation of chromatin, commonly known as 
C-methods (Cullen et al., 1993; Dekker et al., 2002; Denker and de Laat, 2016), has revolutionized 
the study of genome spatial organization, providing a complementary view to microscopic approaches 
(Denker and de Laat, 2016; McCord et al., 2020; Jerkovic and Cavalli, 2021). Both the resolution 
and throughput of genome-wide C-methods were instrumental in defining salient structural features 
of mammalian chromatin, including genomic compartments, topologically associating domains (TADs) 
and cohesin-dependent CTCF point interactions (Lieberman-Aiden et al., 2009; Nora et al., 2012; 
Sexton et al., 2012; Dixon et al., 2012; Rao et al., 2014; Rowley and Corces, 2018). However, 
unlike CTCF-based interactions, very few specific E-P interactions were observed with conventional 
restriction enzyme-based C-methods. Initially, sequencing depth inherently limited the resolution of 
all vs all approaches such as Hi-C, and thus a number of targeted approaches were developed. In-solu-
tion hybridization (CaptureC, CaptureHi-C) or immunoprecipitation (ChIA-PET, HiChIP, PLAC-seq) are 
exploited in these methods to enrich for interactions of specific regions of interest, thus decreasing 
the sequencing burden and allowing higher resolution (Hughes et al., 2014; Mifsud et al., 2015; 
Fullwood et al., 2009; Mumbach et al., 2016; Fang et al., 2016). While targeted methods clearly 
revealed a statistical preference of promoters to interact with enhancer-like regions and enabled 
detection of some individual E-P interactions, in some cases functionally verified enhancers did not 
show spatial proximity to the promoters of their targets as measured with C-methods (Gupta et al., 
2017; Benabdallah et al., 2019), raising further questions concerning the universality and functional 
relevance of E-P looping.

Although targeted methods have circumvented sequencing-depth limitations, the resolution of 
C-methods based on restriction endonuclease digestion cannot overcome the inherent restriction 
fragment length limitation, which often results in a high level of background noise and the inability 
to distinguish CTCF-based interactions from other types of chromatin spatial interactions (Goel and 
Hansen, 2021). The introduction of MNase-based C-methods, such as Micro-C and its targeted oligo-
nucleotide hybridization-based counterparts, MCC, Tiled-MCC, and RCMC, reduced the resolution 
limitation, allowing finer chromatin structures to be distinguished (Hsieh et al., 2020; Krietenstein 
et al., 2020; Hua et al., 2021; Aljahani et al., 2022; Goel et al., 2022). Crucially, the usage of MNase 
also allowed milder detergent pretreatment of crosslinked cells, increasing the sensitivity of Micro-C, 
MCC and related techniques by retaining E-P interactions, which appear to be more susceptible to 
experimental conditions than CTCF-based chromatin interactions (Canver et al., 2015; Fulco et al., 
2016; Gasperini et  al., 2020). In parallel, the development of genomic and epigenomic CRISPR-
based functional screens has greatly expanded the amount of available data on functional E-P interac-
tions. Taken together, these advancements now open the door for the systematic investigation of the 
spatiotemporal mechanisms underlying distal control of mammalian transcription.

Here, we present a new MNase-based C-method, MChIP-C, which allows measuring promoter-
centered interactions at single nucleosome resolution on a genome-wide scale. We applied MChIP-C 
to construct a nucleosome-resolution map of promoter-centered interactions in human K562 cells. 
Taking advantage of the significantly improved resolution and sensitivity of our approach compared 
to restriction endonuclease-based C-methods, we investigated the molecular underpinnings of 
promoter-centered chromatin spatial interactions and identified EP300 histone acetyltransferase 
and the SWI/SNF remodeling complex as candidates for establishing and/or maintaining E-P spatial 
contacts. Finally, by comparing our chromatin interaction data with previously published results of 
CRISPRi screens (Fulco et al., 2019; Gasperini et al., 2019), we found that most functionally verified 
enhancers do interact with their cognate promoters, supporting the E-P looping model of enhancer 
activity and suggesting that in general physical interactions are central to enhancer activity in mamma-
lian cells.

https://doi.org/10.7554/eLife.91596
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Results
MChIP-C: antibody-based targeted measurement of genome 
architecture at single-nucleosome resolution
We developed MChIP-C, a novel MNase-based proximity ligation technique which combines the 
genome-wide throughput of HiChIP with the exceptional resolution and sensitivity of MCC (Figure 1a). 
The protocol starts similar to MCC, where cells are crosslinked with formaldehyde and permeabilized 
with digitonin. This milder cell permeabilization procedure has been shown to provide higher sensi-
tivity for detecting E-P interactions (Hua et al., 2021). Next, chromatin is digested with micrococcal 
nuclease, DNA ends are blunted and proximity ligated. This is followed by sonication and chromatin 
immunoprecipitation with a specific antibody, as in HiChIP or PLAC-seq (Figure 1a). Crosslinks are 
then reversed, and DNA is purified, followed by library preparation and sequencing. As in MCC, we 
avoided using biotin to enrich for ligated fragments, potentially increasing library complexity, but also 
resulting in a low proportion of informative chimeric read pairs in the sequencing libraries. To partially 
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Figure 1. MChIP-C experimental and computational workflow. (a) An overview of the MChIP-C experimental procedure. (b) General MChIP-C analysis 
pipeline. A 250 kb genomic region surrounding the TAL1 gene is shown with H3K4me3 MChIP-C profiles in K562 cells. Positions of individual viewpoints 
are highlighted by green rectangles and anchors. Identified MChIP-C interactions are shown as magenta (P-PIR) and dark violet (P-P) arcs. (c) Summary 
statistics for all 241,073 promoter-centered MChIP-C interactions identified in K562 cells.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. H3K4me3 MChIP-C experiment technical assessment.

Figure supplement 1—source data 1. Uncropped image for gel shown in Figure 1—figure supplement 1a (original and with bands labelled).

https://doi.org/10.7554/eLife.91596
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mitigate this, we decreased the level of DNA fragmentation and selected for longer DNA fragments 
(see Methods).

We performed four biological replicates of MChIP-C experiment on K562 cells using anti-H3K4me3 
antibodies to focus on spatial interactions of active promoters. The MChIP-C libraries were paired-end 
sequenced with a total of  ~3.5  B read pairs, yielding  ~3  B uniquely mapped reads (Figure  1b; 
Figure 1—figure supplement 1b; Supplementary file 1). ~91.5% (~2.77 B) of these mapped within 
1 kb of each other and ~4% (~120 M) mapped further than 5 kb away from each other. While the 
4% fraction of informative reads was low relative to restriction enzyme-based C-methods (e.g. >60% 
informative reads in PLAC-seq), it is comparable to MCC (0.5–5% informative reads, see Methods).

After read mapping, we identified active promoters by first selecting nucleosome-size conver-
gently mapping read pairs to obtain H3K4me3 occupancy profiles. We found that the profiles of 
replicates were highly similar (Pearson correlation 0.95–0.97) and match standard H3K4me3 ChIP-seq 
(Pearson correlation 0.90–0.92; Figure 1—figure supplement 1c and d). Next, we identified 11,743 
consensus peaks amongst replicates and found these mostly colocalized with active RNA polymerase 
II TSSs (Figure 1—figure supplement 1e; Supplementary file 1).

We then proceeded to map promoter interactions. We defined the H3K4me3 peaks as interaction 
viewpoints and selected the reads mapping to each of these viewpoints, resulting in 11,743 4C-like 
viewpoint interaction profiles (interactively browsable online, see Data Availability). To gain a general 
overview of the data, we summed the profiles of all viewpoints into a single genome-wide profile 
which we refer to as ‘merged MChIP-C’ (Figure 1b). Both viewpoint-specific and merged MChIP-C 
correlated well between replicates (Pearson correlation 0.83–0.92 for merged profiles and 0.62–0.75 
for viewpoint-separated profiles; Figure 1—figure supplement 1f), and therefore we combined all 
replicates, resulting in single-nucleosome resolution interaction profiles for 10,955 active promoters, 
after filtering low-coverage viewpoints.

The obtained interaction profiles demonstrate that promoters interact with each other and with 
non-promoter regions (Figure 1b). We systematically identified localized interactions by searching 
for 250 bp bins with significantly higher than expected MChIP-C signal. For each of the replicates, 
we found that 70–87% of its interactions were present in at least one other replicate (corresponding 
to the amount of sequencing per replicate; see Methods), suggesting that called interactions were 
generally reproducible. Overall, we detected 112,087 promoter-promoter bin (P-P) interactions and 
128,986 promoter-nonpromoter bin interactions (Figure 1c; Supplementary file 1). Both types of 
interactions were mostly localized within TADs (Figure 1—figure supplement 1h). We excluded P-P 
interactions from subsequent analyses and focused on 128,986 promoter-nonpromoter interactions 
linking 10,721 viewpoints with 99,315 unique nonpromoter bins (Supplementary file 1) which we 
refer to as PIRs (Promoter Interacting Regions).

MChIP-C provides a sensitive genome-wide view of promoter-centered 
interactions
We then asked how MChIP-C compares to similar approaches based on standard restriction 
enzymes. HiChIP and PLAC-seq are directly comparable to MChIP-C, as both HiChIP and PLAC-seq 
combine Hi-C with chromatin immunoprecipitation. Specifically, we compared our data to those 
of Chen et al., 2022, who used PLAC-seq with anti-H3K4me3 antibodies in K562 cells. We first 
visually compared the PLAC-seq and MChIP-C proximity ligation profiles of a number of genes 
with well-described regulatory landscape in K562 cells: MYC (Fulco et al., 2016; Lin et al., 2022), 
GATA1 (Fulco et  al., 2016; Fulco et  al., 2019), HBG2 (Moon and Ley 1991; Liu et  al., 2017), 
MYB (Xie et al. 2019), and VEGFA (Aran et al. 2016; Dahan et al. 2021). We found that MChIP-C 
profiles showed clear highly-localized interaction peaks corresponding to the CTCF-bound sites 
and enhancers known to control the expression of these genes (Figure  2a; Figure  2—figure 
supplement 1a). For instance, the MYC gene has seven well-characterized K562-specific enhancer 
elements (e1-e7) spread along the 2 Mb region downstream of the gene and MChIPC allowed 
detection of interactions between MYC promoter and five of these sites. PLAC-seq profiles are by 
contrast much noisier and lack clear peaks corresponding to either CTCF sites or known enhancers 
of the interrogated genes. In addition, we visually compared standard Micro-C data previously 
reported for K562 (Barshad et al., 2023) to our MChIP-C data at these five loci, using only the 
promoter-centered interactions from the Micro-C dataset (see Methods). Interestingly, while the 

https://doi.org/10.7554/eLife.91596
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Micro-C data also looks cleaner than PLAC-seq, it still misses some interactions which are obvious 
from the MChIP-C data.

Next, we compared MChIP-C, PLAC-seq and Micro-C in a more systematic way by examining 
their merged interaction profiles around promoter-distal DHSs (Figure 2b). First, we observed that in 
MChIP-C 20.6% of PIRs colocalize with CTCF-bound sites (Figure 1c; Supplementary file 1). We thus 
separately examined DHSs with and without CTCF, and found that both types of DHSs show increased 
interaction signal relative to background. To quantify this, we compared the MChIP-C signal at DHS 
centers to MChIP-C “background” signal within 1–5 kb of the DHS (Figure 2—figure supplement 
1b), and found a 2.66 median fold enrichment of DHS centers relative to 5 kb background (3.23 with 
CTCF, and 2.07 without CTCF). In contrast, we found that PLAC-seq shows a very weak enrichment 
of interactions at DHSs, even for those bound by CTCF (1.25 median fold enrichment with CTCF and 
1.33 without CTCF). Although better than PLAC-Seq, Micro-C shows a reduced signal-to-noise ratio 
at DHSs compared to MChIP-C (1.51 median fold enrichment with CTCF and 1.37 without CTCF). 
We also compared MChIP-C, PLAC-Seq and Micro-C interaction signal at promoter interacting CTCF 
and DHS sites, separated into consensus sites (called by all three methods) and method-specific sites 
(called by only one method; Figure 2—figure supplement 2). Remarkably, MChIP-C shows better 
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Figure 2. Comparison of MChIP-C with PLAC-seq and Micro-C. (a) Top: MChIP-C, PLAC-seq and Micro-C interaction profiles of the MYC promoter 
in K562 cells. MChIP-C interactions of the MYC promoter are shown as magenta arcs. Positions of 7 (e1–e7) CRISPRi-verified K562 MYC enhancers 
are highlighted as orange rectangles. Bottom: zoom in on two enhancer clusters. (b) Systematic comparison of merged MChIP-C, merged PLAC-seq 
and merged promoter-anchored Micro-C signals in distal regulatory sites. Top: Merged MChIP-C, merged PLAC-seq and merged promoter-anchored 
Micro-C profiles in a 150 kb genomic region surrounding the α-globin gene domain. Viewpoints are highlighted as green rectangles. Positions of CTCF-
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The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of MChIP-C with other C-methods.

Figure supplement 2. Consensus, PLAC-seq-specific and Micro-C-specific promoter-DHS and promoter-CTCF interactions.

https://doi.org/10.7554/eLife.91596
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sensitivity and resolution not only on the consensus sites but also on sites which we failed to call, 
suggesting that additional interactions could be discoverable by improving the interaction-calling 
strategy. Importantly, we note that these aggregate analyses of method sensitivity and resolution 
should not be affected by differences in sequencing depths.

Thus, in line with other recent reports on MNase-based C-methods (Hsieh et al., 2020; Krieten-
stein et al., 2020; Hua et al., 2021; Aljahani et al., 2022; Goel et al., 2022; Ramasamy et al., 2022), 
our results suggest that MChIP-C achieves superior sensitivity and resolution compared to C-methods 
based on standard restriction enzymes. Additionally, in the context of promoter-centered interactions, 
our results suggest that MChIP-C also outperforms standard whole-genome Micro-C.

CTCF orientation-biased interaction of CTCF-bound sites and 
promoters
As we observed an abundance of CTCF-bound PIRs in MChIP-C data, we asked whether these CTCF-
promoter interactions correspond to loop extrusion-driven loops between convergent CTCF sites 
easily noticeable on the Hi-C heatmaps (Rao et al., 2014; Sanborn et al., 2015; Fudenberg et al., 
2016; Rao et al., 2017). About half of the identified promoter-CTCF interactions (19,773 out of 38,271) 
showed CTCF binding at the promoter side as well. Interestingly, only 540 (~2.7%) of those directly 
correspond to CTCF-CTCF loops reported in a previous Hi-C study (Rao et  al., 2014). The other 
half of the MChIP-C interactions containing a CTCF-bound PIR (18,498/38,271) do not show CTCF 
binding at the promoter side at all. For this set of CTCF-less promoters, we analyzed the orientation 
of CTCF motifs in PIRs relative to the position of the promoter. We found that promoters preferentially 
interact with CTCF-bound sites if CTCF motifs are oriented towards the promoter (79% towards vs 
21% away) (Figure 3a). This bias holds true regardless of the position of the CTCF site relative to the 
transcription direction (80% vs 20% for upstream CTCF sites and 79% vs 21% for downstream sites). 
We also observed this bias if both the promoter and the PIR have CTCF ChIP-seq signal, but CTCF 
motifs are not in convergent/divergent orientation (Figure 3—figure supplement 1). We conclude 
that interactions of promoters with CTCF-bound sites are biased by CTCF orientation, regardless of 
CTCF binding at the promoter side. This orientation bias suggests the possible involvement of loop 
extrusion.

Promoter-interacting enhancers bind a distinct and diverse set of 
protein factors
We next asked whether the sensitivity and resolution of MChIP-C could allow us to examine the 
molecular underpinnings of promoter-centered interactions which are not CTCF-based. While the 
question of what factors underlie P-E interactions is fundamental, this type of analysis would be 
problematic with restriction enzyme-based C-methods due to their inability to precisely map loop 
anchors to protein binding sites. To determine protein factors associated with PIRs, we first over-
laid MChIP-C PIRs with 271 ChIP-seq profiles for K562 cells (Supplementary file 1). Most of the 
analyzed transcription-related factors and histone post-translational modifications are substantially 
enriched in MChIP-C PIRs (4–25 X; Figure 3b; Supplementary file 1). Notable exceptions are facul-
tative heterochromatin-associated histone mark H3K27me3 (1137 overlaps, 1953 [SD = 44] expected 
by chance) and LINE1-binding protein ZNF146 (183 overlaps, 180 [SD = 12] expected by chance). As 
expected, CTCF (22,943/1679 [SD = 41]), cohesin subunits RAD21 (10,702/413 [SD = 23]) and SMC3 
(12,956/576 [SD = 27]) are among the most highly enriched factors.

Rather than separately consider each factor associated with a PIR, we next used hierarchical clus-
tering to partition PIR-overlapping DHSs (i.e. promoter interacting DHSs; N=19,129) into groups 
according to the factor binding profile of each DHS. We identified four major clusters (Figure 3c; 
Figure 3—figure supplement 2a; Supplementary file 1). Clusters 1 (N=4447) and 2 (N=4791) were 
almost universally bound by the structural factors CTCF (98.1% and 93.6% in clusters 1 and 2 corre-
spondingly), cohesin subunits SMC3 (87.5% and 66.9%) and RAD21 (73.6% and 52.9%) as well as 
zinc finger protein ZNF143 (87.3% and 66.3%). A total of 24,331 interactions with a median distance 
of ~92 kb were anchored in DHSs from these two clusters (Figure 3—figure supplement 2b). DHSs 
from clusters 3 (N = 3168) and 4 (N=6723) contained almost no CTCF- or cohesin-bound sites but 
they were enriched in dozens of transcription-related factors. Notably, CRISPRi-confirmed enhancers 
(Fulco et  al., 2019; Gasperini et  al., 2019) were significantly overrepresented in cluster 3 DHSs 

https://doi.org/10.7554/eLife.91596
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Figure 3. Analysis of protein factors underlying MChIP-C interactions. (a) Left: CTCF-motif orientation bias in regions interacting with CTCF-less 
promoters. The majority (~79%) of CTCF motifs are oriented towards the interacting promoter. Right: Schematic of two hypothetical loop extrusion 
dependent mechanisms that can account for the observed pattern: promoter LE-barrier activity (i) or CTCF-originating interaction stripes (ii).
(b) Enrichment of transcription-related factor (TRF) binding in MChIP-C PIRs. Y-axis represents enrichment (log2 observed/expected) of binding for 271 
examined TRFs, x-axis – proportion of TRF-bound PIRs, color – enrichment of corresponding motifs in PIRs (grey color is assigned to TRFs lacking DNA-
binding motif). (c) Hierarchical clustering of PIR-overlapping DHSs (N=19,129). The binding status of 164 TRFs highly enriched in PIRs are used as binary 
features. Binding of 27 selected TRFs (see Methods) in each PIR-overlapping DHS is shown as a heatmap. ChromHMM chromatin state distributions 
in each cluster are shown. DHSs overlapping CRISPRi-verified K562 enhancers (Fulco et al., 2019; Gasperini et al., 2019) are shown as orange dots. 
(d) Predictive performance (3-fold cross-validation R2/AUC) of random forest models predicting MChIP-C signal for DHS-promoter pairs. Starting with an 
initial model based on distance and CTCF, the most predictive TRF features are added incrementally to the model (left to right).

Figure 3 continued on next page
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(171/297 overlaps; one-sided binomial test, p=1.64*10–57), and we thus labeled P-cluster 3 DHS inter-
actions as regulatory interactions. Overall, there were 7214 regulatory interactions, which tended to 
be shorter (median length ~47 kb) than structural ones (Figure 3—figure supplement 2b). Interest-
ingly, cohesin subunits were absent in the vast majority of class 3 DHSs. In agreement with a number 
of recent observations (Thiecke et al., 2020; Hsieh et al., 2022) this may indicate that cohesin is not 
involved in the maintenance of the regulatory interactions, albeit such a role was suggested earlier 
(Kagey et al., 2010; Phillips-Cremins et al., 2013). In conclusion, we find diverse types of promoter 
interacting DHSs associated with the binding of different sets of factors. However, the clustering anal-
ysis was not able to pinpoint a specific factor, beyond CTCF and cohesin, which would parsimoniously 
explain the observed promoter-DHS interactions.

Genomic distance, CTCF, cohesin and EP300 are key determinants of 
promoter-centered interactions
We next sought to pinpoint additional factors which underlie promoter-centered interactions and to 
directly test their predictive power. We used a greedy forward feature selection approach, based on 
a random forest regression model trained to predict the strength of MChIP-C interactions between 
promoters and DHS sites (N=107,570). The initial random forest model consisted of five features: 
DHS-promoter genomic distance, CTCF ChIP-seq signal at both the promoter and the DHS, and 
motif orientations on both the promoter and the DHS. This initial model was able to explain ~37% of 
variance in the MChIP-C signal. Then, we iteratively added the most predictive feature out of a set 
of 270 ChIP-seq profiles, where predictivity is calculated as R2 in threefold cross-validation. Using this 
strategy, cohesin subunit RAD21 and histone acetyltransferase EP300 were automatically selected, 
after which predictive performance plateaued at an R2 of ~43% (Figure 3d). We also found the same 
factors as the most predictive of binary outcomes (high/low MChIP-C signal) reaching an AUC of 
0.825.

As CTCF and RAD21 are mostly associated with structural loops, we asked whether EP300 mainly 
underlies regulatory interactions. Indeed, we find that EP300 was threefold enriched in cluster 3 DHSs 
and 92.2% of cluster 3 DHSs showed EP300 binding. Interestingly, we noticed that the only proteins 
that had more binding sites in cluster 3 DHSs are subunits of the SWI/SNF remodeling complex: DPF2 
(97.8%), ARID1B (95.6%), and SMARCE1 (94.3%; Figure 3c). EP300 has been found to directly interact 
with SWI/SNF-complex (Alver et al., 2017; Blümli et al., 2021) and their chromatin binding profiles 
are highly correlated (Pearson correlation 0.65–0.70). Revisiting the binding profiles of these SWI/
SNF subunits, we found their predictive power to be very close to that of EP300 (Figure 3—figure 
supplement 2c). We also specifically examined the predictive power of RNA polymerase II, mediator 
complex, YY1 and BRD4, which were previously suggested to be associated with enhancer-promoter 
interaction (Papantonis and Cook, 2011; Kagey et al., 2010; Weintraub et al., 2017; Hnisz et al., 
2017), and find that while they individually have some predictive power, they are weaker predictors 
of MChIP-C signal than EP300 and the SWI/SNF subunits (Figure 3—figure supplement 2c). Thus, 
we suggest that EP300 and/or the SWI/SNF complex might be involved in the formation of regulatory 
chromatin interactions independently of СTCF and cohesin.

MChIP-C data are largely consistent with the looping model of 
enhancer activity
The apparent lack of interaction between experimentally-validated enhancers and their cognate 
promoters in some studies employing C-methods has raised doubts regarding the classical promoter-
enhancer looping model. We thus asked whether the enhanced sensitivity and resolution of MChIP-C 
could shed some light on the fundamental question of whether enhancers should interact with their 
targets in order to activate them. To address this, we systematically compared MChIP-C profiles with 
functionally verified E-P pairs identified by CRISPRi screens in K562 (Fulco et al., 2019; Gasperini 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. CTCF-orientation bias in PIRs interacting with CTCF-occupied promoters.

Figure supplement 2. Extended characterization of protein factors underlying promoter-interacting DHSs.

Figure 3 continued
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Figure 4. The majority of functionally-verified enhancers do physically interact with their target promoters. (a) Bar plots representing the proportion 
of MChIP-C interacting pairs among nonfunctional DHS-P pairs and CRISPRi-verified E-P pairs. Heatmaps and average profiles of MChIP-C signal are 
shown for individual subsets. CRISPRi-verified enhancers shown in panel b are indicated by roman numerals. (b) Examples of MChIP-C, Micro-C and 
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enhancers are highlighted by orange rectangles. (c) Distance distribution boxplots for verified E-P pairs with and without MChIP-C interactions.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Recall (sensitivity), precision and false positive rate for predictions of functional enhancer-promoter pairs using different C-
methods.

https://doi.org/10.7554/eLife.91596
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et  al., 2019). We compared 366 functionally verified E-P pairs, in which targeting CRISPRi to the 
enhancer changed the expression of the target, with 54,811 putative non-regulatory DHS-P pairs, 
in which CRISPRi showed no effect. Notably, we found that 60.7% (222/366, 95% CI [55.7%; 65.7%]) 
of the verified pairs have underlying spatial interactions detected with MChIP-C, while only 6.5% 
(3,554/54,811, 95% CI [6.3%; 6.7%]) of non-regulatory DHS-P pairs show such interactions (Figure 4a 
and b; Supplementary file 1). Thus, we conclude that a majority of experimentally validated enhancers 
exhibit interaction with their target promoters.

Next, we attempted to reproduce this analysis with PLAC-seq, Micro-C, and Hi-C as an additional 
evaluation of their power to detect enhancer-promoter interactions (Figure 4—figure supplement 
1a and b; Supplementary file 1). We used PLAC-seq interactions reported previously by Chen et al., 
2022, and for Hi-C and Micro-C we used the entire genome-wide datasets to identify interactions 
using Mustache (Roayaei Ardakany et  al., 2020). With respect to recall/sensitivity, the recall of 
MChIP-C (60.7%, as mentioned above) was superior to those of PLAC-seq (14.0%), Micro-C (19.9%), 
and Hi-C (2.2%). In spite of this, the precision of the methods was comparable, with 5.9% for MChIP-C, 
4.0% for PLAC-seq, 7.4% for Micro-C, and 2.4% for Hi-C. In terms of the false positive rate, MChIP-C 
was the highest with 6.5%, compared to 1.9% for PLAC-seq, 1.7% for Micro-C, and 0.6% for Hi-C. To 
control for sequencing depth, we also repeated the analysis with our data down-sampled to 50% so 
that the valid MChIP-C reads approximately matched the number of valid PLAC-seq reads and the 
respective number in Micro-C (see Methods). We also further down-sampled the MChIP-C data to 
25% and 10% (approximately the amount of total sequenced reads in PLAC-seq). We first observe that 
although the down-sampling suggests our MChIP-C data is not yet saturated by sequencing depth 
(Figure 4—figure supplement 1c), 50% downsampling still maintains 76.3% of the detected interac-
tions (Figure 4—figure supplement 1d). Evaluating predictive performance after down-sampling, we 
find that 50% down-sampled MChIP-C maintains a high recall of 56.1%, with slightly better precision 
(6.3%) and false positive rate (5.5%). Even at 10% down-sampling, MChIP-C achieves a better preci-
sion (10.4%) and false positive rate (1%) than the competing methods, while its recall (18.2%) is slightly 
worse than that of Micro-C but better than those of PLAC-Seq and Hi-C. In summary, these results 
suggest that the enhanced sensitivity of MChIP-C enables detection of a larger and more precise set 
of enhancer-promoter interactions than the alternatives.

Finally, we inspected more closely cases in which validated E-P pairs did not show interaction in 
MChIP-C (Figure 4b, iv-vi). First, we noticed that, in some instances, weak interactions were visually 
apparent but were missed by the interaction calling algorithm, especially in viewpoints that had low 
coverage (Figure 4b, iv). Indeed, when we considered 185/366 validated E-P pairs corresponding to 
high-coverage viewpoints, 68.1% (126/185, 95% CI [61.4%; 74.8%]) had underlying MChIP-C spatial 
interactions. Second, in some cases we noticed adjacent (few kb) H3K27ac-positive regions clearly 
interacting with the expected promoter, possibly suggesting inexact identification of the enhancer 
position due to the limited resolution of the CRISPRi screens (Gasperini et  al., 2019; Figure 4b, 
v). Third, CRISPRi-detected E-P interactions are not guaranteed to represent direct effects. In some 
cases, an enhancer may impose secondary influence through the action of the directly targeted gene 
(Gasperini et al., 2019). For example, CRISPRi showed that an enhancer near LMO2 affects both 
LMO2 and CAT, a gene approximately 400 kb away. MChIP-C only shows interaction with LMO2 but 
not with CAT (Figure 4b, vi). We hypothesize that regulatory relationships between this enhancer and 
CAT are mediated through transcription factor encoded by the LMO2 gene and thus it is unreason-
able to expect spatial interaction between them. Additionally, we expect that interactions between 
enhancers and indirect targets would not be overrepresented at short genomic distances. Indeed, we 
observed that the genomic distance between non-interacting E-P pairs (median 71 kb) is substantially 
larger than between interacting E-P pairs (median 30 kb), supporting the possibility of indirect acti-
vation (Figure 4c). Another possible source of indirect effects are CTCF-occupied insulators. As was 
pointed out previously (Fulco et al., 2019), these sites can affect the expression of genes in CRISPRi 
screens, but do not need to spatially interact with their targets. Indeed, 59 of 366 verified E-P pairs 
show CTCF occupancy at enhancer side, and 13 of these lack E-P interaction in MChIP-C. In summary, 
we conclude that the fraction of verified E-P pairs in which we observe a spatial interaction is likely 
underestimated, which further supports the notion that most enhancers physically interact with their 
targets and that many such interactions may have not been identified previously due to technical 
limitations of the employed methods.

https://doi.org/10.7554/eLife.91596


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Genetics and Genomics

Golov et al. eLife 2023;12:RP91596. DOI: https://doi.org/10.7554/eLife.91596 � 11 of 28

Discussion
In this study, we present a new high-resolution genome-wide C-method, MChIP-C, which integrates 
proximity ligation of MNase-digested chromatin with chromatin immunoprecipitation and deep 
sequencing. Like other MNase-based C-methods, MChIP-C allows precise mapping of localized chro-
matin interactions including E-P contacts which often evade capture by restriction endonuclease-based 
C-methods (Goel and Hansen, 2021). Uniquely, MChIP-C combines the resolution and sensitivity of 
MCC with the genome-wide scale of Micro-C.

Applying H3K4me3-directed MChIP-C to K562 cells, we explored the spatial connectivity of active 
promoters. Single-nucleosome resolution and high sensitivity allowed us to map tens of thousands of 
localized spatial interactions between promoters and distal genomic sites. We focused on promoter 
interactions with non-promoter elements (PIRs). Although P-P interactions were clearly visible in our 
maps, they were excluded from most of the analyses. The promoter-centered map of chromatin spatial 
contacts represents a valuable resource for further research. The quality of the resulting genome-wide 
profiles is supported by the fact that previously identified spatial contacts, such as contacts of globin 
gene promoters with their enhancers, are clearly visible.

Several types of C-methods have been previously used to study enhancer-promoter interactions. 
Since genome-wide C-methods require very deep sequencing to reach high resolutions, targeted 
C-methods have been useful in alleviating some of the sequencing burden. However, any selection 
steps can potentially reduce the complexity of the resulting library. We directly compared MChIP-C 
interaction data to that of both restriction endonuclease-based (genome-wide Hi-C and targeted 
PLAC-Seq) methods and MNase-based (genome-wide Micro-C) methods. In order to rigorously 
assess the sensitivity and resolution of MChIP-C beyond visual evaluation, we performed comparative 
analyses of both raw data (on CTCF and DHS sites) and called interactions (on CRISPRi-validated 
E-P pairs). We find that MChIP-C generally outperforms PLAC-seq, Micro-C and Hi-C, resulting in a 
larger repertoire of promoter-based interactions which also benefit from high resolution and increased 
signal-to-noise ratio. MChIP-C avoids the incorporation of biotin to enrich ligated fragments, thus 
yielding highly complex libraries. Consequently, full realization of MChIP-C potential currently requires 
a significant sequencing depth due to the small fraction of informative reads. We anticipate that 
further experimental optimizations of MChIP-C could significantly increase the method’s yield.

In agreement with previous observations, promoters appear to interact primarily with the 
surrounding CTCF sites. Interestingly, CTCF-motifs in these sites are typically oriented towards the 
interacting promoter (Valton et al., 2022). This observation can be explained by the putative ability 
of active promoters to block movement of the loop extrusion complex which can lead to the estab-
lishment of promoter-CTCF loops with CTCF motifs preferentially oriented towards the promoters 
(Figure 3a, i; Banigan et al., 2022). Alternatively, the observed bias might be a consequence of a 
more general phenomenon known as architectural stripes, where a CTCF-bound site blocks loop 
extrusion in a directional manner, causing nonspecific interactions with an extended nearby region 
(Vian et al., 2018; which may include the gene promoter; Figure 3a, ii).

Similarly to other MNase-based C-methods, MChIP-C is sensitive enough to identify many rela-
tively weak chromatin interactions that are independent of CTCF binding. The most intriguing group 
of such spatial contacts is E-P regulatory interactions. We identified 7214 interactions linking active 
promoters with distal DHSs bound by a set of enhancer-specific factors. These DHSs are highly 
enriched with functionally verified K562 regulatory sequences and contain chromatin marks typical 
for active enhancers (Figure 3c; Figure 3—figure supplement 2a). The increased proximity between 
promoters and these enhancer-like DHSs presumably represents regulatory E-P interactions.

One of the long-standing hypotheses explaining enhancer action at a distance is the E-P looping 
model (Popay and Dixon, 2022; Ptashne, 1986) which assumes that direct physical contact between 
an enhancer and its target promoter is an essential prerequisite for the promoter activation. Although 
it is known that at least some enhancers do establish physical contacts with their targets, technical 
limitations of methods assessing spatial proximity as well as scarcity of functional data on mamma-
lian enhancers prevented accurate systematic evaluation of the E-P looping model. To explain the 
elusiveness of E-P interactions, it has been suggested that their highly dynamic nature may preclude 
capturing with existing proximity ligation techniques (Schoenfelder and Fraser, 2019). Here, we 
showed that 60.7% of functional enhancer-promoter pairs previously identified in K562 cells using 
CRISPRi screens (Fulco et  al., 2019; Gasperini et  al., 2019) do establish interactions, implying 

https://doi.org/10.7554/eLife.91596
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their spatial proximity. Moreover, due to various technical reasons, including insufficient MChIP-C 
coverage, CRISPRi enhancer mapping mistakes, and indirect regulatory effects, this fraction probably 
represents an underestimation of the true E-P interaction rate. Thus, it is likely that the majority of 
active enhancers directly interact with target promoters.

In addition to identifying interactions between promoters and their CRISPRi-validated enhancers, 
MChIP-C found many more apparently non-functional interactions of promoters with DHSs which 
did not show a significant effect on gene expression. Such interactions are also often observed in 
alternative C-methods, and in some cases could represent CRISPRi false negative pairs. These inter-
actions could also include structural loops as well as pre-established interactions of promoters with 
conditionally-activated regulatory elements (Jin et al., 2013; Comoglio et al., 2018), and warrant 
further investigation leveraging the increased sensitivity and resolution of MChIP-C.

Although it is generally assumed that in the C-methods ligation occurs only between fragments 
that are in close spatial proximity, the mobility of DNA ends within fixed nuclei has not been exten-
sively studied. It is possible that DNA ends available for ligation can scan a certain territory and thus 
MChIP-C detected interactions do not exactly represent direct physical contacts. However, we argue 
that our data demonstrates that, in most cases, enhancers establish some form of spatial interaction 
with their targets, resulting in increased ligation frequency.

Although we have shown that active mammalian enhancers in general interact with the target 
promoters, we cannot infer that this interaction is necessary for target activation. Testing whether it is 
possible to decouple spatial interactions from gene activity would require understanding the physical 
nature of these interactions. Various protein factors and a number of physical mechanisms including 
canonical protein-protein interactions, molecular crowding and liquid-liquid phase separation were 
implicated in this phenomenon (Kagey et al., 2010; Papantonis and Cook, 2013; Hnisz et al., 2017). 
One protein complex which was suggested to be involved is cohesin (Kagey et al., 2010; Phillips-
Cremins et al., 2013). However, in line with studies exploring cellular responses to the acute loss 
of the cohesin complex (Thiecke et al., 2020; Hsieh et al., 2022), we observed almost no overlap 
between regulatory E-P interactions and cohesin binding. Different groups proposed other candi-
dates for the role: the mediator complex, BRD4, YY1 and RNA polymerase II (Kagey et al., 2010; 
Phillips-Cremins et al., 2013; Hnisz et al., 2017; Weintraub et al., 2017; Papantonis and Cook, 
2013). However, recent studies did not identify drastic changes in E-P interaction frequency caused 
by the degradation or the inhibition of any of these proteins (Ramasamy et al., 2022; Crump et al., 
2021; Hsieh et al., 2022; Zhang et al., 2022).

In order to identify proteins that may be involved in E-P interaction, we assessed the ability of an 
assortment of ChIP-seq binding profiles to predict the strength of promoter-PIR interaction measured 
by MChIP-C. As expected, the binding of CTCF and cohesin best predicted the strength of the MChIP-C 
signal, as the latter is dominated by structural promoter-CTCF interactions. However, we also identi-
fied EP300 and SWI/SNF complex as strong predictors of MChIP-C interaction, and they are enriched 
in enhancer-like PIRs lacking CTCF. These hallmark enhancer proteins were previously shown to bind 
each other and to share chromatin interaction sites genome-wide (Alver et al., 2017; Blümli et al., 
2021). Unlike cohesin, mediator, BRD4, YY1 and RNA polymerase II, EP300 and SWI/SNF have rarely 
been considered as mediators of E-P interaction. However, in our analysis, they consistently outper-
formed other enhancer-associated factors in terms of predictive power. Although these results may be 
affected by differences in the quality of the ChIP-seq data, the potential role of EP300 and SWI/SNF in 
E-P interaction warrants further experimental exploration. Since both EP300 and SWI/SNF are known 
as chromatin modifiers rather than structural proteins (albeit some studies suggest such a role for 
EP300 Ma et al., 2021), it is possible that their participation in E-P interaction is indirect. To this end, a 
scenario involving histone acetylation by EP300 may be considered. Although H3K27 residue is a well-
documented EP300 nucleosomal target (Tie et al., 2009), a recent study identified several other lysine 
residues localized in H2B N-terminus that are acetylated by EP300 (Weinert et al., 2018; Narita et al., 
2022a; Narita et al., 2022b). These H2B N-terminus acetylation marks correlate with the enhancer 
activity more strongly than H3K27ac and therefore qualify for being involved in E-P interaction.

https://doi.org/10.7554/eLife.91596
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Methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) K562 ATCC ATCC:CCL-243

Antibody anti-H3K4me3 (rabbit polyclonal) Active Motif Active Motif:39016 (1:200)

Chemical compound, 
drug Digitonin Sigma-Aldrich Sigma-Aldrich:D-5628

Chemical compound, 
drug Protease Inhibitor Cocktail Bimake Bimake:B14001

Peptide, recombinant 
protein Micrococcal Nuclease Thermo Fisher Scientific Thermo Fisher Scientific:EN0181

Peptide, recombinant 
protein T4 Polynucleotide Kinase New England Biolabs New England Biolabs:M0201L

Peptide, recombinant 
protein

DNA Polymerase I, Klenow 
Fragment New England Biolabs New England Biolabs:M0210L

Peptide, recombinant 
protein T4 DNA Ligase Thermo Fisher Scientific Thermo Fisher Scientific:EL0012

Commercial assay or kit Protein A/G Magnetic Beads Thermo Fisher Scientific Thermo Fisher Scientific:88802

Commercial assay or kit
NEBNext Ultra II DNA Library 
Prep Kit New England Biolabs New England Biolabs:E7645

Commercial assay or kit TruSeq DNA Single Indexes Illumina
Illumina: 20015960 and 
Illumina:20015961

Commercial assay or kit KAPA HiFi HotStart PCR Kit Roche Roche:07958897001

Software, algorithm bwa, v.0.7.17 Li, 2013 RRID:SCR_010910 https://github.com/lh3/bwa

Software, algorithm Bowtie2, v.2.3.4
Langmead and 
Salzberg, 2012 RRID:SCR_016368

https://bowtie-bio.​
sourceforge.net/bowtie2/​
index.shtml

Software, algorithm pairtools, v.0.3.0 Abdennur et al., 2023 RRID:SCR_023038
https://github.com/open2c/​
pairtools

Software, algorithm samtools, v.1.15.1 Danecek et al., 2021 RRID:SCR_002105
https://github.com/samtools/​
samtools

Software, algorithm bedtools, v2.26.0 Quinlan and Hall, 2010 RRID:SCR_006646
https://github.com/arq5x/​
bedtools2

Software, algorithm Python, v.3.7.12 RRID:SCR_008394 https://www.python.org

Software, algorithm numpy, v.1.21.6, Harris et al., 2020 RRID:SCR_008633
https://github.com/numpy/​
numpy

Software, algorithm pandas, v.1.3.5 RRID:SCR_018214
https://github.com/pandas-​
dev/pandas

Software, algorithm matplotlib, v.3.5.3 Hunter, 2007 RRID:SCR_008624
https://github.com/matplotlib/​
matplotlib

Software, algorithm cooler, v.0.9.1
Abdennur and Mirny, 
2020 RRID:SCR_024194

https://github.com/open2c/​
cooler

Software, algorithm cooltools, v.0.5.1 Abdennur et al., 2024 RRID:SCR_026118
https://github.com/open2c/​
cooltools

Software, algorithm R, v. 4.2.1 RRID:SCR_001905 https://cran.r-project.org

software, algorithm dplyr, v.1.0.9 RRID:SCR_016708
https://github.com/tidyverse/​
dplyr

Software, algorithm tidyr, v.1.2.0 RRID:SCR_017102
https://github.com/tidyverse/​
tidyr
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm ggplot2, v.3.3.6 RRID:SCR_014601
https://github.com/tidyverse/​
ggplot2

Software, algorithm gplots, v. 3.1.3 RRID:SCR_025035
https://github.com/talgalili/​
gplots

Software, algorithm ​data.​table, v.1.14.8 RRID:SCR_026117
https://github.com/​
Rdatatable/data.table

Software, algorithm GenomicRanges, v.1.48.0 Lawrence et al., 2013 RRID:SCR_000025
https://github.com/​
Bioconductor/GenomicRanges

Software, algorithm reshape2, v.1.4.4 RRID:SCR_022679
https://github.com/cran/​
reshape2

Software, algorithm fitdistrplus, v.1.1–8
Delignette-Muller and 
Dutang, 2015 RRID:SCR_024274

https://github.com/lbbe-​
software/fitdistrplus

Software, algorithm RColorBrewer, v.1.1–3 RRID:SCR_016697
https://github.com/cran/​
RColorBrewer

Software, algorithm dendextend, v.1.17.1 Galili, 2015 RRID:SCR_026116
https://github.com/talgalili/​
dendextend

Software, algorithm dendroextras, v.0.2.3 RRID:SCR_026115
https://github.com/jefferis/​
dendroextras

Software, algorithm GGally, v.2.1.2 RRID:SCR_026114
https://github.com/ggobi/​
ggally

Software, algorithm gridExtra, v.2.3 RRID:SCR_025249
https://github.com/baptiste/​
gridExtra

Software, algorithm eulerr, v.7.0.1
Larsson and 
Gustafsson, 2018 RRID:SCR_022753

https://github.com/jolars/​
eulerr

Software, algorithm ranger, v.0.16.0
Wright and Ziegler, 
2017 RRID:SCR_022521

https://github.com/imbs-hl/​
ranger

Software, algorithm caret, v.6.0–93 Kuhn, 2008 RRID:SCR_022524
https://github.com/topepo/​
caret

Software, algorithm PRROC, v.1.3.1 RRID:SCR_026113
https://github.com/cran/​
PRROC

Software, algorithm UpSetR, v.1.4.0 Conway et al., 2017 RRID:SCR_026112
https://github.com/hms-dbmi/​
UpSetR

Software, algorithm HOMER, v.4.11.1 Heinz et al., 2010 RRID:SCR_010881
http://homer.ucsd.edu/homer/​
motif/

Software, algorithm CrossMap, v.0.6.0 Zhao et al., 2014 RRID:SCR_001173
https://github.com/liguowang/​
CrossMap

Software, algorithm nextflow, v.22.10.4
Di Tommaso et al., 
2017 RRID:SCR_024135

https://github.com/nextflow-​
io/nextflow

Software, algorithm ditiller-nf pipeline, v.0.3.4 RRID:SCR_026111
https://github.com/open2c/​
distiller-nf

Software, algorithm Mustache, v.1.3.2
Roayaei Ardakany 
et al., 2020 RRID:SCR_026110

https://github.com/ay-lab/​
mustache

Software, algorithm bedGraphToBigWig
http://hgdownload.soe.ucsc.​
edu/admin/exe/

Software, algorithm liftOver
http://hgdownload.soe.ucsc.​
edu/admin/exe/

Software, algorithm wigToBigWig
http://hgdownload.soe.ucsc.​
edu/admin/exe/
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm
Integrative Genomics Viewer, 
v.2.8.0 Robinson et al., 2011 https://igv.org/doc/desktop/

Software, algorithm Adobe Illustrator, v.23.0.1
https://www.adobe.com/​
products/illustrator.html

 Continued

MChIP-C experimental procedure
K562 cells (ATCC) were cultivated in DMEM medium supplemented with 10% fetal bovine serum and 
1×penicillin/streptomycin in a humidified 37 °C incubator with 5% CO2. ~3.5 M cells were crosslinked 
for 10 min at room temperature in 2.5 mL of fresh full growth medium supplemented with 2% form-
aldehyde (Sigma-Aldrich, F8775). To quench the reaction, glycine was added to reach a final concen-
tration of 0.2 M; the suspension was immediately transferred to ice and incubated there for 5 min. 
Crosslinked cells were centrifuged at 300 × g and 4 °C, washed with cold phosphate-buffered saline 
(PBS) and centrifuged again. Pellets were resuspended in 350 μL of cold PBS supplemented with 
0.5×protease inhibitor cocktail (PIC; Bimake, B14001) and 0.5 mM PMSF. Digitonin (Sigma-Aldrich, 
D-5628) stock solution (1% in DMSO) was added to cells to reach a final concentration of 0.01%. A 
1 mL tip was used to carefully mix the suspension. Cells were permeabilized on ice for 7 min then 
centrifuged at 300  × g and 4  °C and resuspended in 800  μL of MNase digestion buffer (10  mM 
Tris-HCl pH 7.5, 1 mM CaCl2). To achieve a sufficient level of chromatin digestion (50–75% of DNA 
in mononucleosomal fragments) we added 35–40 U of MNase (Thermo Scientific, EN0181) and incu-
bated the cells at 37 °C with shaking for 1 h. EGTA was added to reach a final concentration of 5 mM 
in order to stop digestion. Cells were centrifuged at 300 × g and room temperature, resuspended 
with a low-retention tip in PBS and transferred to a new, low-retention, tube. We pelleted the material 
once again at 1000 × g and resuspended it in 530 μL 1.05×ligation buffer (ThermoScientific, EL0012) 
supplemented with 0.105 mM dNTPs and 2.1 mM ATP. 50 μL of the material at this stage was sepa-
rated as a control of digestion efficiency. 100 U of T4 Polynucleotide Kinase (NEB, M0201L) and 50 U 
of Klenow fragment of DNA I polymerase (NEB, M0210L) were added to the remaining material in 
order to repair DNA ends; the mix was incubated at 37 °C with shaking. After 1 hr 37.5 U of T4 DNA 
ligase (ThermoScientific, EL0012) were added to the reaction and incubation was continued at 37 °C 
for an additional hour. Before leaving the ligation reaction overnight, the mixer was cooled to 20 °C 
and 37.5 U more of T4 DNA ligase were added.

The next day, we took 50 μL aliquot as a ligation control, transferred the remaining chromatin to a 
2 mL tube and centrifuged it at 5000 × g. The pellet was resuspended in 550 μL of ice cold ChIP lysis 
buffer (50 mM Tris-HCl pH 8.0, 1% SDS, 10 mM EDTA) supplemented with 0.5×PIC (Bimake, B14001) 
and 0.5 mM PMSF. All buffers used in the following sonication and immunoprecipitation steps were 
precooled to 4 °C. We solubilized chromatin with 3 15 s ultrasound pulses on ‘15’ power setting of 
VirSonic 100 (VirTis) sonicator. Then, we cleared the solubilized chromatin with 21,000 × g centrifu-
gation and transferred the supernatant fraction to a 30 kDa Amicon filter (Millipore, UFC503096). We 
changed the solvent with two successive washes with RIPA buffer (50 mM Tris–HCl pH 8.0, 150 mM 
NaCl, 1% Triton X-100 (v/v), 0.5% sodium deoxycholate, 0.1% SDS). After the final wash, we trans-
ferred the material to a new 1.5 mL tube, brought the volume of RIPA to 1 mL and supplemented it 
with 1×PIC (Bimake, B14001). Subsequent incubation with antibodies, immunoprecipitation and DNA 
isolation were performed as previously described (Golov et al., 2021). We used 5 μg of polyclonal 
anti-H3K4me3 antibodies (Active motif, 39016) per MChIP-C experiment. DNA of digestion and liga-
tion controls was isolated in parallel with the immunoprecipitated DNA. After ethanol precipitation, 
DNA was reconstituted from each sample (controls and the MChIP-C) in 10 μL of 10 mM Tris-HCl 
buffer (pH 8.0). To assess efficiency of the digestion and ligation, the control samples were run on a 
1.5% agarose gel (Figure 1—figure supplement 1a).

MChIP-C NGS libraries were prepared from immunoprecipitated DNA with the NEBNext Ultra II 
DNA Library Prep Kit for Illumina (NEB, E7645) according to the manufacturer’s recommendations, 
with the following modifications: (1) we decreased the reaction volumes two-fold; (2) instead of the 
adaptor included in the kit, we used 1 μL of barcoded Y-shaped Illumina TruSeq adapters (Illumina, 
20015960 and 20015961) per reaction and extended ligation time to 1 hr. We used 17 μL (~0.37×) 

https://doi.org/10.7554/eLife.91596
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of AMPure XP beads (Beckman Coulter, A63881) in the pre-PCR clean-up to select longer DNA frag-
ments and therefore enrich the final library with ligation-informative pairs. Adapter-ligated material 
was amplified with 12–14 cycles of PCR using KAPA HiFi HotStart PCR Kit (Roche, 07958897001) and 
universal P5/P7 Illumina primers (see Golov et al., 2020). Post-PCR clean-up was performed without 
size selection using 1.3×volume of AMPure XP beads (Beckman Coulter, A63881).

Overall, we performed 4 biological replicates of H3K4me3 MChIP-C. The libraries were paired-end 
sequenced (PE100) on Illumina NovaSeq 6000 and BGI DNBSEQ-T7 devices with ~0.5–1.5 B read 
pairs per library (Figure 1—figure supplement 1b, Supplementary file 1).

H3K4me3 ChIP-seq
~3.5M K562 cells were crosslinked and permeabilized as described above. Permeabilized cells were 
resuspended in 550 μL of ice cold ChIP lysis buffer (50 mM Tris-HCl pH 8.0, 1% SDS, 10 mM EDTA) 
supplemented with 0.5×PIC (Bimake, B14001) and 0.5 mM PMSF. Chromatin was sheared with 4 30 s 
ultrasound pulses on ‘15’ power setting of VirSonic 100 (VirTis) sonicator. Incubation with antibodies, 
immunoprecipitation, DNA isolation and NGS library preparation were performed as described 
MChIP-C protocol, except for the pre-PCR clean-up step where DNA was cleaned with 35 μL (0.76×) 
of AMPure XP beads (Beckman Coulter, A63881). 12 cycles of PCR were used to amplify the ChIP-seq 
library, and it was paired-end sequenced (PE100) on an Illumina NovaSeq 6000 sequencer with ~6 M 
read pairs. The sequencing reads were aligned to the hg19 genome build and a genome-wide 
H3K4me3 occupancy profile was generated as described previously (Golov et al., 2021).

MChIP-C data primary processing
The sequenced reads of each replicate were mapped to the hg19 genome build with BWA-MEM (with 
-SP5M flags) (Li, 2013) and parsed with the pairtools package (v.0.3.0; Abdennur et al., 2023). Mono-
nucleosomal (>100 bp and <201 bp apart; convergent) and distal (>5000 bp apart; cis) read pairs were 
isolated for downstream analysis.

Mononucleosomal reads were down-sampled to 20  M pairs, deduplicated with pairtools and 
converted to BAM files using samtools (v.1.15.1) (Danecek et al., 2021). Mononucleosomal peaks for 
each individual replicate were called with MACS2 (v.2.2.7.1; FDR <0.0001, maximum gap = 1000 bp) 
(Zhang et al., 2008) and 50 bp occupancy profiles were generated with deeptools (v.3.5.1; Ramírez 
et al., 2016). To compare mononucleosomal profiles of replicates with each other and with conven-
tional H3K4me3 ChIP-seq signal, we calculated read coverage in K562 DHSs (see Supplementary file 
1 for the source of K562 DHS data) for each experiment with deeptools (‘multiBigwigSummary BED-
file’ command), and compared pairwise Pearson correlation coefficients (Figure 1—figure supple-
ment 1d).

We considered genomic regions overlapping mononucleosomal peaks in at least 3 replicates to 
be consensus peaks. Nearby (<1000 bp apart) consensus peaks were merged with bedtools (v2.26.0; 
Quinlan and Hall, 2010) resulting in 11,743 MChIP-C viewpoints (Supplementary file 1). DNase 
sensitivity, H3K4me3 ChIP and CAGE signals (see Supplementary file 1 for the source of K562 CAGE 
data, two CAGE replicates were averaged with bigwigCompare from deeptools) in a 10 kb window 
centered on each MChIP-C viewpoint and distal DHSs were calculated and plotted with deeptools 
(‘computeMatrix reference-point’ and ‘plotHeatmap’ commands; Figure 1—figure supplement 1e).

Next, we deduplicated distal read pairs using pairtools (Abdennur et al., 2023), produced BAM 
files and filtered out read pairs that did not map to the identified MChIP-C viewpoints using samtools. 
Filtered binary files were converted to replicate-specific coverage profiles, or merged MChIP-C 
profiles, which were then piled up together into an aggregate merged profile. To analyze and visualize 
interaction profiles of individual viewpoints, we selected from the merged profile a subset of reads 
mapping to the viewpoint of interest with samtools (‘samtools view -P’ command). To plot merged and 
viewpoint specific MChIP-C interaction profiles the data was binned in 100 bp or 250 bp bins.

To evaluate reproducibility of the distal MChIP-C signal in replicates and to identify promoter-
centered interactions, we analyzed the distribution of MChIP-C reads in 250  bp genomic bins. 
We started with deduplicated distal read pairsam files produced by pairtools; using the data on 
MChIP-C viewpoints, we extracted positions of distal read pairs mapping to the viewpoints with 
pairtools (‘pairtools split’ command) and bedtools (‘bedtools pairtobed’ command). Each of these 
read pairs was assigned to a viewpoint; if two reads in a pair mapped to two different viewpoints, 

https://doi.org/10.7554/eLife.91596
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the pair was assigned to both viewpoints. Then we overlapped (‘bedtools intersect’ command) 
the positions of the mate reads (other-end reads) with 250 bp genomic bins and aggregated the 
pairs mapping to the same viewpoint and the same other-end bin generating four replicate-specific 
BEDPE files. Each line of the resulting files contained the count of read pairs for a unique viewpoint-
genomic bin (other-end bin) pair. To calculate inter-replicate correlation of viewpoint-separated 
MChIP-C signal, we selected pairs contained within a 1 Mb genomic window with only one end 
mapping inside a viewpoint and estimated inter-replicate Pearson correlation (Figure  1—figure 
supplement 1f). We also estimated inter-replicate correlation of the merged data. To achieve this, 
we used merged MChIP-C profiles to create 250 bp-binned coverage dataframes with deeptools 
(‘multiBigwigSummary bins’ command), then filtered out bins overlapping viewpoints as well as all 
bins containing zero reads in at least one replicate and finally calculated inter-replicate Pearson 
correlation coefficients (Figure 1—figure supplement 1f). To generate distance decay curves, we 
calculated aggregated MChIP-C signal from replicate-specific BEDPE files in 30 distance bins of 
equal size on a log10 scale between 3.5 (3,162 bp) and 6.5 (3,162 kbp; Figure 1—figure supple-
ment 1g).

Using cooler (v.0.9.1; Abdennur and Mirny, 2020), we converted files containing MChIP-C pairs 
into replicate-specific mcool files with a minimal resolution of 250 bp. We also pooled the 4 mcool files 
into a single genome-wide contact matrix.

MChIP-C interaction calling
Before calling interactions, we normalized MChIP-C signal in each replicate by the replicate-matched 
mononucleosomal signal. We did this to account for differences of genomic regions in their propensity 
to be immunoprecipitated with H3K4me3 antibodies. To consider both viewpoint and other-end bin 
H3K4me3 occupancy, we normalized by mean mononucleosomal coverage of these two regions (we 
used ‘samtools bedcov’ command to estimate coverage of each viewpoint and each genomic bin).

We first identified significantly interacting viewpoint-other-end pairs in each replicate separately. 
To reduce noise and avoid calling false positive interactions, we focused on 10,949 viewpoints with a 
raw total coverage (viewpoint coverage in all four replicates combined) of more than 1000 read pairs. 
In order to perform interaction calling, we wanted different viewpoint-specific profiles to be compa-
rable, thus we filtered out pairs separated by more than 2.5 Mb and normalized signal once again, 
by viewpoint coverage. The viewpoint coverage was defined as a sum of all H3K4me3 occupancy-
normalized MChIP-C signal pertaining to the specific viewpoint. The final MChIP-C signal was normal-
ized twice (by H3K4me3 occupancy and by viewpoint coverage), we refer to it as normalized signal. 
To identify viewpoint- other-end pairs with signal significantly exceeding the background, we first 
assigned each analyzed pair with the distance rank (from 1 for other-end bins directly neighboring the 
viewpoints to 10,000 for bins separated by 2.5 Mb from the viewpoints). Then, in each distance rank 
starting with the 20th (since pairs of distal reads were separated by at least 5000 bp we had almost no 
signal in the first 19 distance ranks) and ending with the 4000th, we fitted a Weibull distribution-based 
background model and called pairs with p-value <0.01 and more than three reads interactions. We 
also included pairs with distance rank more than 4000 and more than three reads in replicate-specific 
interaction lists.

We combined all viewpoint-other-end pairs identified as significant interactions in at least one 
replicate in one dataset. We tested whether each of the interactions in this combined list had a corre-
sponding viewpoint-other-end pair in each of the four individual replicates (we defined correspon-
dence as cases where viewpoints are exactly aligned and other ends are located within 1 kb from each 
other). Then for each replicate we calculated the proportion of interactions without a corresponding 
interaction present in at least one another replicate.

Next, we identified significantly interacting viewpoint-other-end pairs in an aggregate MChIP-C 
dataset. We summarized all replicate-specific distal MChIP-C signals in each viewpoint-other-end 
pair and performed the interaction-calling procedure described above with a minor modification: 
we increased to 6 the threshold for minimal number of raw reads in bins which we considered to call 
viewpoint interacting bins. Finally, we divided all identified interactions into two groups: promoter-
promoter (P-P) and promoter-nonpromoter (P-PIR) – depending on whether the other-end bin was 
localized within a viewpoint (Supplementary file 1; Figure 1c).

https://doi.org/10.7554/eLife.91596
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Analysis of MChIP-C interactions crossing TAD boundary
We used K562 TAD boundaries from Rao et al., 2014. The expected number of interactions crossing 
TAD boundaries was defined as a mean count of cross-boundary interactions in 100 independent 
random permutations changing the positions of the interaction other-ends while preserving the inter-
action distance distribution. The position of other-end bins in each permutation was established by 
random reshuffling of distances separating viewpoints from their original interaction partners (bins 
within other viewpoints or PIRs).

MCC data reanalysis
To estimate the typical proportion of valid ligation pairs in MCC sequencing output, we reanalyzed 
publicly available datasets from Hua et al., 2021 and Downes et al., 2021. We downloaded fastq files 
for at least three biological replicates from each interrogated cell type and mapped them to hg19 or 
mm10 genomes with bwa (bwa mem -SP5M). Then we parsed reads with pairtools and calculated the 
fraction of cis-read pairs separated by more than 5000 bp.

PLAC-seq data reanalysis
To compare MChIP-C data with a similar restriction-endonuclease based C-method, we reanalyzed 
publicly available H3K4me3 PLAC-seq experiments (Chen et al., 2022). Raw sequencing reads were 
downloaded from the 4D Nucleome Data portal (here) and processed similarly to MChIP-C reads. We 
relied on MChIP-C-defined viewpoints to obtain merged PLAC-seq profiles and viewpoint-specific 
PLAC-seq profiles. We used restriction fragment-length bins to build viewpoint-specific PLAC-seq 
profiles and fixed 250 bp bins to build merged profiles.

For downstream analysis, we utilized PLAC-seq interactions identified by the authors of the orig-
inal publication (GEO, GSE161873). We merged interactions identified in two individual experimental 
replicates in one set and lifted them to hg19 genome assembly with the UCSC liftOver tool.

Micro-C data reanalysis
We also compared MChIP-C with a recently published K562 Micro-C data (Barshad et al., 2023). Raw 
Micro-C sequencing reads were downloaded from GEO (GSE206131) and analyzed with the pipeline 
we used for MChIP-C and PLAC-seq data processing. We once again relied on MChIP-C-defined 
viewpoints to extract merged promoter-anchored Micro-C profiles and viewpoint-specific Micro-C 
profiles. The data was binned in 100 bp or 250 bp bins to plot viewpoint-specific interaction profiles. 
In all other types of analysis we used fixed 250 bp bins.

We also created all-to-all Micro-C proximity ligation matrices using conventional distiller-nf pipeline 
(v. 0.3.4; https://github.com/open2c/distiller-nf). To generate iteratively balanced promoter-anchored 
Micro-C profiles, we dumped 250 bp binned cooler matrix to a text stream (‘cooler dump’ command) 
and then selected the balanced signal from the bins residing within MChIP-C viewpoints. We then 
aggregated this signal into a merged genome-wide bedgraph file and converted it to a bigwig profile 
using bedgraphToBigwig UCSC utility.

To identify point interactions in the Micro-C dataset, we used Mustache algorithm (v 1.0.1; Roayaei 
Ardakany et al., 2020). We called interactions in balanced contact matrices at resolutions of 250 bp, 
500 bp, 1 kb, 2 kb, 5 kb, and 10 kb using -pt 0.1 and -st 0.88 options. We combined interactions called 
at all resolutions in one set; if an interaction was detected at multiple resolutions, we retained a variant 
with coarser boundaries and discarded finer ones.

Hi-C data reanalysis
Raw Hi-C sequencing reads were downloaded from GEO (GSE63525) and all-to-all Hi-C proximity 
ligation matrices were generated with the distiller-nf pipeline. To obtain raw and iteratively balanced 
promoter-anchored Hi-C profiles, we dumped 1 kb binned cooler matrix to a text stream (‘cooler 
dump’ command) and then selected both raw and balanced signals from the bins residing within 
MChIP-C viewpoints. We then aggregated these signals into two separate merged genome-wide 
bedgraph files (one containing raw signal and another containing balanced signal) and converted 
them to bigwig profiles with bedGraphToBigwig UCSC utility.

To identify point interactions in the Hi-C dataset, we used Mustache algorithm. We called inter-
actions in balanced contact matrices at resolutions of 1 kb, 2 kb, 5 kb, 10 kb, and 20 kb using -pt 0.1 

https://doi.org/10.7554/eLife.91596
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and -st 0.88 options. We combined interactions called at all resolutions into one set; if an interaction 
was detected at multiple resolutions, we retained a variant with coarser boundaries and discarded 
finer ones.

Comparison of merged MChIP-C, PLAC-seq, promoter-anchored 
Micro-C and promoter-anchored Hi-C signals around distal DNase 
hypersensitive sites
DNase sensitivity, CTCF ChIP, H3K4me3 ChIP, merged MChIP-C, merged PLAC-seq and merged 
promoter-anchored Micro-C and Hi-C signals spanning 5 kb regions flanking distal CTCF sites and 
CTCF-less DHSs were plotted as heatmaps and average profiles with deeptools (Figure 2b). Distal 
CTCF sites with the peak score (the 5th column of CTCF peak file) less than 250 and DHS sites with 
the signalValue (the 7th column of DHS peak file) less than 200 were excluded from the analysis. In all 
subsequent analysis concerning DHSs, we used the same signalValue cutoff.

To plot violin graphs for proximity ligation signal in and around distal DHSs, we used 250 bp binned 
signal matrices generated by deeptools as intermediaries during heatmap generation. For each prox-
imity ligation method, we compiled a set of signal bins and two sets of background bins, 1 kb and 
5 kb away from the peak centers. For the signal set, we carved out from the matrix a pair of central 
columns corresponding to bins surrounding each individual analyzed distal DHS. For each background 
set, we selected 2 columns corresponding to bins separated by either 1 or 5 kb from the center of 
DHSs (1 column from each side of the DHSs). We defined the average enrichment of the signal in 
CTCF sites and CTCF-less DHS for each method as the ratio between median signal in the center and 
median signal in the 5 kb background bin. To assess the resolution of the methods, we also calculated 
the ratio between the median signal in the 1 kb background bin and the median signal in the 5 kb 
background bin.

Comparison of promoter-DHS and promoter-CTCF interactions 
identified in MChIP-C, PLAC-seq and Micro-C data
For an even more detailed comparison of MChIP-C data to the data generated with the previously 
described protocols (Micro-C and PLAC-seq), we focused on the promoter-centered interactions 
identified with each method in K562 cells. First, we selected unique promoter-CTCF (P-CTCF) and 
promoter-DHS (P-DHS) interactions by overlapping promoter-interacting regions detected with each 
of these three techniques individually, with the sets of distal CTCF sites and distal CTCF-less DHS 
sites. For each interacting pair in each method, we calculated the distance between the center of the 
DHS or CTCF site and the center of the overlapping promoter interacting region and analyzed the 
distribution of such distances for each method (Figure 2—figure supplement 2a, violin plots). Then, 
we compiled a non-redundant list of P-DHS interactions identified by at least one of the methods, and 
split this combined list into seven groups in accordance with the ability of each individual P-DHS pair 
to be identified by a certain set of methods (Figure 2—figure supplement 2a, Venn diagrams). We 
also performed the same analyses for P-CTCF interactions.

Next, we focused on 3 specific groups of interactions: common (identified in all 3 datasets), 
PLAC-seq-specific, and Micro-C-specific (Figure 2—figure supplement 2b-d). To visualize MChIP-C, 
PLAC-seq and Micro-C signals around promoter-interacting DHS and CTCF-sites in these 3 groups, 
we plotted 250 bp binned signal of ligation to the corresponding anchor promoters as heatmaps and 
average profiles. For these same sets of P-DHS and P-CTCF pairs, we also plotted the distribution of 
proximity ligation signals in the centers of the sites and in two different sets of background bins (1 kb 
and 5 kb apart from the centers of the sites). We used normalized MChIP-C signal, raw PLAC-seq and 
Micro-C signals in this analysis. For average profiles and violin plots, we also included ICE-normalized 
Micro-C signal. Next, we defined the average enrichment of the signal in each group of sites for each 
method as the ratio between mean signal in the center and mean signal in the 5 kb background bin. 
To assess the resolution of the methods, we also calculated the ratio between the mean signal in the 
1 kb background bin and the mean signal in the 5 kb background bin.

Analysis of CTCF motif orientation in viewpoints and PIRs
The presence of CTCF motifs in viewpoints and PIR bins, as well as their orientation, were deter-
mined with HOMER (v4.11.1; Heinz et al., 2010) (‘​annotatePeaks.​pl’). To compare MChIP-C-identified 

https://doi.org/10.7554/eLife.91596
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CTCF-based interactions with Hi-C loops, we used the list of 6,057 K562 Hi-C loops identified by Rao 
et al., 2014.

To evaluate the number and orientation of CTCF-motifs in randomized sets of PIRs, we performed 
100 independent random permutations, changing the positions of the PIRs while preserving P-PIR 
distance distribution. Then we assessed the presence and orientation of CTCF motifs in each gener-
ated set of PIRs and averaged the obtained results to get the number and distribution of motifs per 
randomization.

Transcription related factor enrichment analysis in PIRs
To assess transcription-related factor (TRF) enrichment in PIRs, we exploited a compendium of publicly 
available K562 ChIP-seq profiles (see Supplementary file 1 for a complete list of ChIP-seq datasets 
used in the present study). The majority of the analyzed datasets were downloaded from the ENCODE 
portal (268 out of 271). CDK8 (Pelish et  al., 2015; CistromeDB: 56379) and MED1 (CistromeDB: 
74667) occupancy data were downloaded from the Cistrome database, BRD4 (Liu et al., 2017) – from 
GEO (GSM2635249). Hg38 datasets were lifted to hg19 with CrossMap (v.0.6.0; Zhao et al., 2014). 
All ChIP-seq TRF peaks with the signalValue (the 7th column of each peak file) less than 25 were 
excluded from all the TRF-related analysis.

First, we overlapped MChIP-C PIRs with TRF binding sites. To estimate relative enrichment, we 
calculated the expected number of overlaps. We did this for each individual TRF by averaging the 
overlap counts in 100 independent random permutations, changing the positions of the PIRs while 
preserving P-PIR distance distribution. The position of PIRs in each permutation was established by 
random reshuffling of distances separating viewpoints from their original PIRs. Enrichment of TRF 
binding was then calculated as log2 of the ratio between the experimentally observed and the 
expected number of overlaps (Supplementary file 1; Figure 3b). Enrichment of TRF motifs in PIRs 
was evaluated with the HOMER package (‘​findMotifsGenome.​pl’ command).

PIR-overlapping DHS clustering and cluster annotation
To separate 19,129 PIR-overlapping DHSs (promoter interacting DHSs) into biologically-relevant 
groups according to their TRF binding, we used hierarchical clustering with binary features reflecting 
the binding status of the analyzed TRFs. Here we used only 164 TRFs bound to more than 1,000 
promoter interacting DHSs and PIR enrichment higher than 2 (Figure 3—figure supplement 2a). We 
used the Ward’s Minimum Variance distance metric for clustering and chose a cutoff of four clusters.

For each cluster, we calculated the number of DHSs bound by each of the analyzed TRFs. Next, 
for each cluster we identified 20 TRFs which were bound to the greatest number of DHSs. Then we 
merged these four sets of TRFs into one list which was comprised of 27 unique TRFs. We plotted the 
binding of these selected TRFs in PIR-overlapping DHSs as a heatmap (Figure 3c). To characterize 
the identified clusters, we overlapped cluster-assigned DHSs with K562 ChromHMM states (Ernst 
et  al., 2011). We also overlapped DHSs with CRISPRi-verified enhancers from Fulco et  al., 2019 
and Gasperini et al., 2019 in order to assess enhancer enrichment of each cluster with a one-sided 
binomial test.

To calculate the number and distance distributions of MChIP-C interactions associated with the 
identified DHS clusters (Figure 2—figure supplement 2b), we overlapped the complete set of P-PIR 
interactions with positions of the promoter-interacting DHSs.

Random forest regression for modeling of MChIP-C signal
We used a random forest regression model (R library ‘ranger’; Wright and Ziegler, 2017) to predict 
normalized MChIP-C signal and to identify predictive features. We focused on a subset of viewpoint-DHS 
pairs separated by <250 kb. We identified 107,570 such viewpoint-DHS pairs with a non-zero count 
of MChIP-C reads and filtered out two outliers (chr16:214,895–215,045 and chr5:693,455–693,605) 
which were 175 and 82 IQRs above the third quartile. For training the initial model, we used the 
following features: viewpoint-DHS distance, CTCF motif orientation on both the viewpoint and DHS 
and CTCF ChIP-seq signal on both the viewpoint and DHS. Training parameters were default with 
mtry = 3, ​num.​trees=​100.

Next, we used a greedy forward feature selection approach to add 10 features out of a set of 270 
TRF ChIP-seq signals on the DHSs (Figure 3d; Figure 3—figure supplement 2c). At each feature 
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selection step, we evaluated all features and added the most predictive feature to the model. To 
assess the predictive power of a feature, we retrained the model with the feature and used threefold 
cross-validation to evaluate either R2 or AUC (where MChIP-C was partitioned as higher/lower than 
the median). To assess reproducibility of the greedy feature selection, we repeated the entire proce-
dure three times.

Estimating correlation between chromatin binding of EP300 and SWI/
SNF-complex
To compare chromatin binding profiles of histone acetyltransferase EP300 and of the ARID1B, DPF2, 
SMARCE1 subunits of SWI/SNF-complex in K562 cells, we first calculated ChIP-seq read coverage in 
K562 DHSs for each of the proteins with deeptools (‘multiBigwigSummary BED-file’ command). Then 
we calculated Pearson’s correlation between EP300 coverage and coverages of each of the studied 
SWI/SNF subunits.

Downsampling of MChIP-C data and analysis of the downsampled 
datasets
For a more thorough comparison of MChIP-C with other C-methods in terms of their ability to 
detect increased ligation frequency between distal regulatory elements and their target promoters, 
we downsampled generated MChIP-C dataset. We wanted to decrease the total number of unique 
distal pairs mapping to the viewpoints in the downsampled MChIP-C dataset so that it would be 
equal to the number of such reads in the complete PLAC-seq and Micro-C datasets. First, we eval-
uated the numbers of such pairs for all three approaches. We found that PLAC-seq and Micro-C 
datasets contained approximately two times less useful pairs than complete MChIP-C dataset 
(~19.75 million and ~23.15 million vs ~42.7 million). Thus, we sampled 50% of raw reads from each 
of the 4 biological replicates of MChIP-C (‘pairtools sample’ command). The downsampled dataset 
contained ~24.86 million useful pairs. We performed interaction calling in the downsampled MChIP-C 
dataset with the exact same pipeline we used previously for the MChIP-C datasets from individual 
replicates. Then, we downsampled MChIP-C data even further to 25% (~13.95 million useful pairs) and 
10% (~6.04 million useful pairs) of the original read depth and again performed the interaction calling 
procedure used previously. Note that the number of raw reads in the 10% downsampled dataset 
(~354 million) was close to the number of raw reads in the PLAC-seq experiment (~314 million) and 
approximately ten times lower than in the Micro-C dataset we used for the comparison (~3,229 million).

To assess the robustness of the MChIP-C interactions to downsampling, we first classified identified 
loops into P-DHS and P-CTCF classes as described previously (see the definition of P-DHS and P-CTCF 
interactions above). Then, we pooled all P-DHS interactions identified in the full dataset and in all 
downsampled datasets into a combined non-redundant set. We also performed similar pooling with 
P-CTCF loops. To visualize the reproducibility of the interaction calls, we plotted the resulting data as 
UpSet plots using UpSetR (v.1.4.0; Conway et al., 2017) R package (Figure 4—figure supplement 
1d).

Comparing MChIP-C interactions with functionally verified E-P pairs
We used K562 CRISPRi datasets from Fulco et al., 2019 and Gasperini et al., 2019 to compile a list 
of 366 verified E-P pairs and 54,811 non-regulatory DHS-P pairs (Supplementary file 1). In order to 
directly compare these pairs to MChIP-C identified chromatin interactions, we included in this list only 
pairs with promoters overlapping MChIP-C viewpoints and pairs with distal sites within 5 kb-1Mb of 
the promoter.

Then we overlapped the obtained E-P and DHS-P pairs with interactions identified with various 
C-methods: MChIP-C (full and downsampled versions), PLAC-seq, Micro-C and Hi-C. Before over-
lapping we extended PIRs of the identified MChIP-C interactions by 500 bp in both directions, and 
loop anchors of the identified Micro-C and Hi-C interactions by 2500 bp in both directions. Using the 
obtained results, we separated E/DHS-P pairs in four groups for each analyzed method: DHS-P pairs 
lacking interactions, DHS-P pairs with underlying interactions, E-P pairs lacking interactions and E-P 
pairs with underlying interactions. We excluded all CTCF-bound E/DHS sites and visualized normal-
ized MChIP-C signal as well as raw PLAC-seq, Micro-C and Hi-C signal around each individual E/DHS 
site (reflecting proximity between the site and the paired promoter) as a heatmap (Figure 4a and 

https://doi.org/10.7554/eLife.91596


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Genetics and Genomics

Golov et al. eLife 2023;12:RP91596. DOI: https://doi.org/10.7554/eLife.91596 � 22 of 28

Figure 4—figure supplement 1a). Finally, we plotted average MChIP-C (normalized), PLAC-seq (raw), 
Micro-C (raw and balanced) and Hi-C signal (raw and balanced) for each of the four E/DHS-P groups 
as averaged profiles. (Figure 4a and Figure 4—figure supplement 1a). Micro-C heatmap pile-ups 
around E/DHS-P pairs (Figure 4—figure supplement 1a) were aggregated based on the genome-
wide matrices with cooltools (v.0.5.1; Abdennur et al., 2024).

We calculated sensitivity (recall), precision and false positive rate for the predictors based on the 
presence of interactions between promoters and their potential regulatory elements (E/DHS) iden-
tified with each of the analyzed C-methods (Figure 4—figure supplement 1b). As a reference, we 
used predictors based on the assignment of each DHS to the closest active gene (TPM >0.5, from 
ENCODE ENCFF934YBO dataset) as its enhancer or the assignment of each DHS to the two closest 
active genes as their enhancer. Also as a reference we built a precision-recall and receiver operating 
characteristic curves for a predictor based on the thresholds inversely proportional to the genomic 
distance between the DHS/enhancer and TSS of the potential target gene.

Data processing and visualization
The following software and packages were used for analysis and visualization: bwa (v.0.7.17), 
Bowtie2 (v.2.3.4), pairtools (v.0.3.0), samtools (v.1.15.1), bedtools (v2.26.0), deeptools (v.3.5.1), 
MACS2 (v.2.2.7.1), Python (v.3.7.12; numpy v.1.21.6, pandas v.1.3.5, matplotlib v.3.5.3, cooler 
v.0.9.1, cooltools v.0.5.1), R (v. 4.2.1; dplyr v.1.0.9, tidyr v.1.2.0, ggplot2 v.3.3.6, gplots v. 3.1.3, ​
data.​table v.1.14.8, GenomicRanges v.1.48.0, reshape2 v.1.4.4, fitdistrplus v.1.1–8, RColorBrewer 
v.1.1–3, dendextend v.1.17.11.16.0, dendroextras v.0.2.3, GGally v.2.1.2, gridExtra v.2.3, eulerr 
v.7.0.1, ranger v.0.16.00.14.1, caret v.6.0–93, PRROC v.1.3.1, UpSetR v.1.4.0), HOMER (v.4.11.1), 
CrossMap (v.0.6.0), nextflow (v.22.10.4.5836), ditiller-nf pipeline (v.0.3.4), Mustache (v.1.3.2), UCSC 
utilities (bedGraphToBigWig, liftOver, wigToBigWig), Integrative Genomics Viewer (v.2.8.0), Adobe 
Illustrator (v.23.0.1).
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Data availability
MChIP-C and ChIP-seq sequencing data as well as derivative genomic profiles and contact matrices 
have been deposited in GEO under accession code GSE225087. Code to reproduce analysis is 
available on GitHub https://github.com/KaplanLab/MChIP-C/ (copy archived at KaplanLab, 2023). 
Interactive MChIP-C interaction profiles of individual promoters are browseable at https://storage.​
googleapis.com/arkadiy/static/index.html .

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Golov AK, Gavrilov 
AA, Kaplan N, Razin 
SV

2023 Genome-wide 
nucleosome-resolution 
map of promoter-centered 
interactions in human cells 
corroborates the enhancer-
promoter looping model

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE225087

NCBI Gene Expression 
Omnibus, GSE225087

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Chen BP, Ren B 2021 Systematic Discovery and 
Therapeutic Targeting 
of Pro-growth Enhancers 
in Human Cancer Cells 
[PLAC-seq]

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE161873

NCBI Gene Expression 
Omnibus, GSE161873

Barshad G, Danko CG 2022 RNA polymerase II and 
PARP1 shape enhancer-
promoter contacts 
[Micro-C]

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE206131

NCBI Gene Expression 
Omnibus, GSE206131

Rao S, Huntley M, 
Lieberman Aiden E

2014 A three-dimensional map 
of the human genome at 
kilobase resolution reveals 
prinicples of chromatin 
looping

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE63525

NCBI Gene Expression 
Omnibus, GSE63525
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