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Early recovery of proteasome activity 
in cells pulse-treated with proteasome 
inhibitors is independent of DDI2
Ibtisam Ibtisam, Alexei F Kisselev*

Department of Drug Discovery and Development, Harrison College of Pharmacy, 
Auburn University, Auburn, United States

Abstract Rapid recovery of proteasome activity may contribute to intrinsic and acquired resis-
tance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expres-
sion of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is 
upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, 
we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before 
transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian 
cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of 
proteasome activity after proteasome inhibition.

eLife assessment
The study presents important findings regarding a transcription-independent component of the 
early recovery of proteasome activity from a short pulse of proteasome inhibitor treatment, which 
has not been appreciated before and which is independent of the DDI2-NRF2 axis. While the 
evidence is in principle solid, with recapitulation in several cell line models, the proposed alternative 
underlying mechanism, namely regulation at the level of proteasome assembly, lacks experimental 
support, and at this point remain speculative.

Introduction
The ubiquitin-proteasome system is the primary protein quality control pathway in every eukaryotic 
cell. By degrading numerous regulatory proteins, this pathway also plays a pivotal role in regulating 
many cellular functions such as cell cycle and gene expression. Malignant cells are more dependent on 
proteasome function than non-transformed cells because they divide rapidly and produce abnormal 
proteins at a higher rate than normal cells (Deshaies, 2014; Kisselev et al., 2012). Proteasome inhib-
itors (PIs) bortezomib (Btz), carfilzomib (Cfz), and ixazomib are approved for the treatment of multiple 
myeloma (MM). Btz is also approved for the treatment of mantle cell lymphoma (MCL). MM cells are 
exquisitely sensitive to PIs because the production of immunoglobulins by these malignant plasma 
cells places an enormous load on the proteasome and other components of the protein quality control 
machinery (Cascio et al., 2008; Bianchi et al., 2009; Cenci et al., 2011; Shabaneh et al., 2013).

Clinically, Btz and Cfz are administered once or twice weekly as a subcutaneous (Btz) or intravenous 
bolus. They cause rapid inhibition of proteasome activity in the patients' blood but are metabolized 
rapidly (Wang et al., 2021). Within an hour after the administration, PIs concentrations in the blood 
drop below the levels needed to kill tumor cells in vitro (Hamilton et al., 2005; Moreau et al., 2011). 
Although Btz has a very slow off-rate and Cfz is an irreversible inhibitor, proteasome activity recovers 
within 24  hr (Shabaneh et  al., 2013; Hamilton et  al., 2005; O’Connor et  al., 2009; Weyburne 
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et al., 2017). This activity recovery may explain discrepancies between robust activity against cell 
lines derived from various cancers, continuously treated with Btz (http://www.carcerrxgene.org/) 
(Shabaneh et al., 2013), and a lack of clinical efficacy except in MM and MCL. In addition, recovery of 
activity has recently been implicated in PI resistance in MM (Op et al., 2022).

In cells treated with PIs, a transcription factor Nrf1 (also known as TCF11, encoded by the NFE2L1 
gene) upregulates the transcription of genes encoding all proteasome subunits (Steffen et al., 2010; 
Radhakrishnan et al., 2010). When the proteasome is fully functional, Nrf1 is constitutively degraded 
in a ubiquitin-dependent manner (Steffen et al., 2010). When the proteasome is partially inhibited, 
the ubiquitylated Nrf1 is recognized by DDI2 (DNA-Damage-Inducible I Homolog 2), a ubiquitin-
dependent aspartic protease that activates Nrf1 by a site-specific cleavage (Koizumi et al., 2016; 
Lehrbach and Ruvkun, 2016). Although knockdown of DDI2 blocks the PI-induced transcription of 
proteasome genes (Koizumi et al., 2016; Lehrbach and Ruvkun, 2016), initial studies implicating 
DDI2 in the activation of Nrf1 did not determine whether DDI2/Nrf1-dependent transcription leads to 
the recovery of activity after clinically relevant pulse treatment with PIs. In this work, we asked whether 
DDI2 is involved in activity recovery after such treatment. Unexpectedly, we found that proteasome 
activity recovered in the absence of DDI2, and activity recovery preceded the upregulation of prote-
asome genes. This data demonstrates the existence of a novel, DDI2-independent pathway for the 
recovery of proteasome activity in PI-treated cells.

Results
To analyze DDI2 involvement in the recovery of proteasome activity after treatment with PIs, we 
used commercially available clones of HAP1 cells, in which DDI2 was knocked out by CRISPR, and 
a clone with an unaltered DDI2, which we will refer to as a wild type (wt, Figure 1a). We analyzed 
three different clones that were generated by using two different gRNAs (Key Resources Table). We 
treated cells for 1 hr with a range of concentrations of Cfz and Btz and then cultured them in drug-free 
media (Figure 1b). We measured inhibition of the proteasome’s β5 site, which is the prime target of 
Cfz and Btz (Kisselev et al., 2012), immediately after the 1 hr treatment, and 12 or 24 hr thereafter 
(Figure 1c), which is when recovery plateaued (not shown). In a parallel experiment, we used a Cell-
Titer-Glo assay, which measures intracellular ATP levels, to determine cell viability 12 and 24 hr after 
treatments (Figure 1c). Initial inhibition of proteasome was observed at sub-lethal concentrations, and 
proteasome activity recovered in cells treated with such concentrations. Surprisingly, no differences 
in the recovery between wt and DDI2-KO clones were observed (Figure 1c). Deletion of DDI2 did 
not affect recovery, despite inhibition of Btz-induced proteolytic activation of Nrf1 (Figure 1d and 
Figure 1—figure supplement 1). These findings confirm that DDI2 activates Nrf1, but indicate that it 
is not involved in the recovery of proteasome activity in Btz and Cfz-treated HAP1 and DDI2 KO cells.

Next, we knocked down DDI2 by two different highly efficient siRNAs in two PI-sensitive triple-
negative breast cancer cell lines, SUM149 and MDA-MB-231 (Figure 1e). Proteasome activity in these 
cells and their sensitivity to PIs were similar to HAP1 cells (Figure 1—figure supplement 2). The 
knockdown did not significantly affect the recovery of proteasome activity in cells treated with 100 nM 
Btz (Figure 1f). Finally, we found that inactivation of DDI2 by the D252N mutation of the catalytic 
aspartic acid residue (Koizumi et al., 2016) did not block the recovery of activity after pulse treatment 
of HCT-116 cells with Btz and Cfz (Figure 1g). Thus, the recovery of proteasome activity after pulse 
treatment with sub-toxic concentrations of PIs is DDI2-independent.

If inhibitor-induced transcription of proteasome genes is responsible for the recovery of protea-
some activity, the upregulation of proteasome gene expression should precede the activity recovery. 
However, we found that the recovery of activity started immediately after 1 hr pulse treatment and 
approached a plateau after 8 hr (Figure 2a), but the first significant increase in the expression of 
proteasomal mRNAs occurred only 8 hr after the removal of the inhibitor (Figure 2b). These results 
suggest that the early recovery of the proteasome activity is not a transcriptional response.

Ruling out transcriptional response does not rule out the production of new proteasomes because 
protein synthesis can be regulated at the translational level. To determine whether the activity 
recovery involves the biosynthesis of new proteasomes, we studied the effects of cycloheximide 
(CHX), an inhibitor of protein biosynthesis, on the recovery. Except for the first hour, the recovery was 
completely blocked by CHX, independent of DDI2 expression status (Figure 3a). Thus, the recovery 
of proteasome activity involves protein synthesis.

https://doi.org/10.7554/eLife.91678
http://www.carcerrxgene.org/
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Figure 1. Recovery of proteasome activity is DDI2 independent. (a) Expression of DDI2 in the CRISPR-generated clones of HAP1 cells used in this work 
was analyzed by western blot. (b) The experimental setup used in this study. Cells were pulse treated with bortezomib (Btz) or carfilzomib (Cfz) for 1 hr, 
then cultured in drug-free media for times indicated and analyzed as described. (c) The viability of wt- and DDI2 KO clones of HAP1 cells was measured 
using CellTiter-Glo, and the inhibition of β5 sites was measured with the Proteasome-Glo assay at times indicated; n=2–5. (d) Knockout of DDI2 inhibits 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.91678
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Activation of proteasomal mRNA translation could explain transcription-independent production 
of new proteasomes if a significant fraction of proteasomal mRNAs is untranslated in the absence of PI 
treatment. We used polysome profiling to determine the distribution of proteasomal mRNA between 
translated and untranslated fractions. We found that 90% of proteasomal mRNAs are ribosome or 
polysome bound in untreated cells (Figure 3b), and treatment with inhibitors did not increase this 
fraction (Figure 3—figure supplement 1). This result agrees with a published result that the amount 
of proteasome mRNA in the polysomal fraction does not increase when proteasome is inhibited in 
MM1.S cells (Wiita et al., 2013). Thus, the biosynthesis of active new proteasomes immediately after 
treatment with sub-lethal concentrations of PIs appears to occur without upregulation of translation 
of mRNAs encoding proteasome subunits.

Discussion
The most important conclusion of this work is that, in addition to Nrf1/DDI2 pathway, mammalian cells 
possess at least one additional pathway to restore proteasome activity after treatment with PIs, and 
this DDI2-independent pathway is responsible for the rapid synthesis of new proteasomes immediately 
after treatment with PI. While this study was underway, two other laboratories found that knockout of 
DDI2 reduced recovery of proteasome activity in multiple myeloma and NIH-3T3 cells pulse-treated 
with PIs by ~30% (Chen et  al., 2022; Northrop et  al., 2020). Similarly, Nrf1 knockdown did not 
completely block the recovery of proteasome activity in mouse embryonal fibroblasts (Radhakrishnan 
et al., 2010). The clinical impact of our study and these studies in the literature is somewhat limited 
because we all conducted a single pulse treatment and did not explore whether Nrf1/DDI2 plays a 
more prominent role in the recovery of proteasome activity after repeated treatment with PIs. These 
limitations, however, do not question the existence of the DDI2-independent recovery pathway.

Our findings necessitate reconsidering the role of the DDI2/Nrf1 pathway in basal and inhibitor-
induced proteasome expression. Previous studies have also reported that DDI2/Nrf1 contributes to 
the maintenance of basal levels of proteasomes (Chen et al., 2022; Siva et al., 2020; Waku et al., 
2020) and that Nrf1 is essential for the basal proteasome expression in the brain (Lee et al., 2011), 
liver (Lee et al., 2013), and retina Wang et al., 2023; yet, in our experiments, the effects of DDI2 KO 
on the basal proteasome activity was not significant (Figure 1—figure supplement 1 ). These differ-
ences may reflect that heavy secretory MM cells, embryonic cells, and certain specific tissues require 
higher levels of proteasome activity and use the DDI2/Nrf1 pathway to supplement other pathways 
responsible for proteasome expression (Motosugi and Murata, 2019). Other studies demonstrated 

the Nrf1 processing. Western blots of Btz-treated HAP1 cells. The sample in the first lane is wt cells treated with VCP/p97 inhibitor CB-5083 immediately 
after removal of Btz. VCP inhibitors blocks Nrf1 processing (Radhakrishnan et al., 2014; Sha and Goldberg, 2014; Anderson et al., 2015). (e) MDA-
MB-231 and SUM149 cells were analyzed by western blot 72 hr after transfection with DDI2 siRNAs (f) Theβ5 activity in siRNA-transfected SUM149 and 
MDA-MB-231 was measured using Suc-LLVY-AMC immediately and 18 hr after treatment with 100 nM Btz; n=3. (g) β5 activity was measured in HCT-116 
cells with the Proteasome-Glo assay immediately and 18 hr after treatment with PIs; n=2.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. PDF file containing Figure 1a and original full-size western blot membranes (anti-DDI2, anti-GAPDH) with molecular weight markers.

Source data 2. Excel file containing data for Figure 1c.

Source data 3. PDF file containing Figure 1d and original full-size western blot membranes (anti-Nrf1, anti-DDI2, anti-β-actin) with molecular weight 
markers.

Source data 4. PDF file containing Figure 1e and full-size western blot membranes (anti-DDI2, anti-β-actin).

Source data 5. Excel file containing data and statistical analysis for Figure 1f.

Source data 6. Excel file containing data for Figure 1g.

Figure supplement 1. The proteasome activity of the samples used in Figure 1d was measured with Suc-LLVY-AMC; n=9.

Figure supplement 1—source data 1. Excel file containing data and statistical analysis.

Figure supplement 2. Comparison of proteasome activity and proteasome inhibitor (PI) sensitivity between HAP1, MDA-MB-231, and SUM149 cells.

Figure supplement 2—source data 1. Excel file containing data for both panels.

Figure 1 continued

https://doi.org/10.7554/eLife.91678


 Short report﻿﻿﻿﻿﻿﻿ Cancer Biology | Cell Biology

Ibtisam and Kisselev. eLife 2023;12:RP91678. DOI: https://doi.org/10.7554/eLife.91678 � 5 of 14

the importance of Nrf1-dependent proteasome expression during cardiac regeneration (Cui et al., 
2021) and thermogenic adaptation of the brown fat (Bartelt et al., 2018).

Several studies found that the knockout of DDI2 sensitizes cells to proteasome inhibitors (Weyburne 
et al., 2017; Op et al., 2022; Chen et al., 2022; Northrop et al., 2020; Dirac-Svejstrup et al., 2020). 
This was further interpreted as supportive of a role for DDI2-dependent recovery in the de-sensiti-
zation of cells to PI-induced apoptosis. Although we confirmed this observation in HAP1 cells (not 
shown), the present findings raise a possibility that DDI2 desensitizes cells to PI by a different mecha-
nism. Activation of non-proteasomal Nrf1-dependent oxidative stress response genes (Ribeiro et al., 
2022; Kim et al., 2016) may help overcome the deleterious consequences of PI-induced overpro-
duction of reactive oxygen species (ROS) (Lipchick et al., 2016). Alternatively, the ability of DDI2 to 
bind and participate in the degradation of large ubiquitin conjugates (Dirac-Svejstrup et al., 2020; 
Collins et al., 2022) may help alleviate the stress associated with proteasome inhibition. DDI2 and 
proteasome are involved in DNA repair (Kottemann et al., 2018; Krogan et al., 2004; Chen et al., 
2010; Groisman et al., 2006; Aliyaskarova et al., 2023), and impairment of the proteasome in the 
absence of DDI2 can lead to excessive spontaneous DNA damage, even without DNA-damaging 
agents. Finally, the proteolytic activation of another yet-to-be-identified DDI2 substrate cannot be 
ruled out. In summary, our study provides strong evidence for a novel pathway responsible for the 
recovery of proteasome activity in inhibitor-treated cells. It should stimulate research on additional 
biological roles of DDI2, which can explain the embryonic lethality of DDI2 deletion (Siva et al., 2020) 
and DDI2’s role in tumorigenesis (Lei et al., 2023).

Figure 2. Proteasome activity recovers before upregulation of proteasome gene expression. Wt-HAP1 cells were pulse-treated with bortezomib (Btz) 
(100 nM), cultured in a drug-free medium, and analyzed at indicated times. (a) β5 activity was measured using Proteasome-Glo and normalized first to 
CellTiter-Glo viability data and then to proteasome activity in the mock-treated samples; n=2–5. (b) In a parallel experiment, the mRNA was isolated, 
and the expression of proteasome genes was quantified using quantitative RT-PCR; n=3. Results of the t-test at 8 hr are in parenthesis.

The online version of this article includes the following source data for figure 2:

Source data 1. Prism file containing data and statistical analysis for both panels.

https://doi.org/10.7554/eLife.91678
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Figure 3. The recovery of proteasome activity requires protein synthesis. (a) Wt-HAP1 and DDI2 KO cells were treated for 1 hr at indicated 
concentrations of bortezomib (Btz) and carfilzomib (Cfz) and then cultured in a drug-free media in the absence (solid lines) or presence (dashed lines) 
of cycloheximide (CHX). The β5 activity was measured using Proteasome-Glo and normalized first to cell viability, which was determined in a parallel 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.91678
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Ideas and speculations
We want to propose a model explaining the upregulated biogenesis of proteasomes without an 
increase in the efficiency of proteasomal mRNA translation. To gain activity, the catalytic subunits 
must assemble into mature particles in a complex process involving multiple dedicated chaperones 
(Rousseau and Bertolotti, 2018; Budenholzer et  al., 2017). The efficiency of nascent subunits 

Figure 4. Escape from rapid degradation of nascent subunits can explain rapid recovery of proteasome activity. (a) Turnover of proteasome subunit in 
human RPE-1 cells was measured by quantitative mass-spectrometry following 1 hr labeling with heavy isotopes. Data taken from Table S4 in McShane 
et al., 2016; n=2-3. (b) Proposed model of how nascent proteasome subunits are partitioned between assembly and degradation.

The online version of this article includes the following source data for figure 4:

Source data 1. Prism file containing data from Table S4 in McShane et al., 2016 that was used to create figure.

experiment using CellTiter-Glo, and then to untreated controls; n=3–4. (b) All proteasome mRNAs are actively translated. mRNA isolated from untreated 
wt-HAP1 cells were analyzed by polysome profiling. The combined mRNAs in the 80 S and polysomal fractions as a % of the total is shown; n=2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Prism file containing data and statistical analysis for Figure 3a.

Source data 2. Excel file containing data for Figure 3b.

Figure supplement 1. Translation of catalytic subunits is not altered after treatment with inhibitors.

Figure supplement 1—source data 1. Excel file containing data.

Figure 3 continued

https://doi.org/10.7554/eLife.91678
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incorporation into the mature proteasomes is not known. One study found that proteasomes degrade 
a significant fraction of nascent proteasome subunits within 2–4 hr after synthesis (McShane et al., 
2016), after which the remaining fraction is highly stable (Figure 4a). We hypothesize that nascent 
proteasome subunits are partitioned between immediate degradation and assembly, and the inhi-
bition of the proteasome blocks degradation and increases the efficiency of proteasome assembly 
(Figure  4b). Increased expression of proteasome assembly chaperone POMP and an increase in 
proteasome assembly intermediates after treatment with PIs has been previously reported see Figure 
6 in Meiners et al., 2003. If nascent polypeptides take 1–2 hr to assemble into proteasomes, this 
model explains translation-independent recovery of proteasome activity in the first hour after the 
removal of PIs (Figure 3a). The fraction of nascent polypeptides degraded may be much larger than 
in Figure 4 because that experiment used 1 hr pulse labeling and was, therefore, unable to detect 
nascent proteins that are degraded within minutes after synthesis. Thus, partitioning proteasome 
nascent polypeptides between degradation and assembly allows cells to instantaneously upregulate 
proteasome biogenesis immediately after proteasome inhibition. This model will be tested in future 
experiments.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Homo 
sapiens) HAP1-wt Horizon Discovery RRID:CVCL_Y019, Cat # C631

Parenteral cell line (clone 631) for  
DDI2 KO cells below. https://horizondiscovery.com/ 
en/engineered-cell-lines/products/hap1-parental-cell-lines

Cell line (Homo 
sapiens) HAP1-DDI2 KO, clone 010 Horizon Discovery Cat # HZGHC000396c010

Generated by CRISPR using  
gRNA:​AATA​​GCTA​​TGGA​​AGAG​​GCTC​;  
41 bp deletion; https://horizondiscovery.com/ 
en/search?searchterm=HZGHC000396c010,

Cell line (Homo 
sapiens) HAP1-DDI2 KO, clone 023 Horizon Discovery

Calatogue # 
HZGHC000182c023

Generated by CRISPR using  
gRNA:​GCTC​​GAAG​​TCGG​​CGTC​​GACC​;  
1 bp insertion; https://horizondiscovery.com/ 
en/search?searchterm=HZGHC000182c023

Cell line (Homo 
sapiens) HAP1-DDI2 KO, clone 006 Horizon Discovery Cat # HZGHC000182c006

Genertaed by CRISPR using  
gRNA ​GCTC​​GAAG​​TCGG​​CGTC​​GACC​;  
4 bp deletion; https://horizondiscovery.com/ 
en/search?searchterm=HZGHC000182c006

Cell line (Homo 
sapiens) MDA-MB-231 ATCC Cat# HTB-26

https://www.atcc.org/products/htb- 
26#detailed-product-information

Cell line (Homo 
sapiens) SUM149 BioIVT RRID:CVCL_3422

Cell line (Homo 
sapiens) HCT-11, wt

https://doi.org/10.7554/​
eLife.18357 RRID:CVCL_0291

A matching wt clone to a mutant below,  
provided by Murata laboratory

cell line (Homo 
sapiens) HCT-116, DDI2--D252N

https://doi.org/10.7554/​
eLife.18357

Contains CRISPR-generated D252N mutation  
in the active site of DDI2, provided by Murata laboratory

Transfected construct 
(Homo sapiens) DDI2 siRNA10

Horizon Discovery - 
Dharmacon J-032713-10-0050 Sequences: GGACAUGCUUAAACGGCAC

Transfected construct 
(Homo sapiens) DDI2 siRNA12

Horizon Discovery - 
Dharmacon J-032713-12-0050 Sequence: CAAG​AAAG​GAUUCGUCUGU

Transfected construct 
(Homo sapiens) Non-targeting pool siRNA

Horizon Discovery - 
Dharmacon D-001810-10-20

Sequences: UGGUUUACAUGUCGACUAA,  
UGGUUUACAUGUUGUGUGA,  
UGGUUUACAUGUUUUCUGA,  
UGGUUUACAUGUUUUCCUA

Antibody
Anti-TCF11/NRF1 D5B10 
(rabbit mAb) Cell Signaling Cat# 8052 S WB (1:500)

Antibody
Anti-GAPDH D4C6R 
(mouse mAb) Cell Signaling Cat# 97166 WB (1:1000)

Antibody
Anti-β-actin 8H10D10 
(mouse mAb) Cell Signaling Cat #3700 WB (1:1000)

https://doi.org/10.7554/eLife.91678
https://identifiers.org/RRID/RRID:CVCL_Y019
https://horizondiscovery.com/en/engineered-cell-lines/products/hap1-parental-cell-lines
https://horizondiscovery.com/en/engineered-cell-lines/products/hap1-parental-cell-lines
https://horizondiscovery.com/en/search?searchterm=HZGHC000396c010
https://horizondiscovery.com/en/search?searchterm=HZGHC000396c010
https://horizondiscovery.com/en/search?searchterm=HZGHC000182c023
https://horizondiscovery.com/en/search?searchterm=HZGHC000182c023
https://horizondiscovery.com/en/search?searchterm=HZGHC000182c006
https://horizondiscovery.com/en/search?searchterm=HZGHC000182c006
https://www.atcc.org/products/htb-26#detailed-product-information
https://www.atcc.org/products/htb-26#detailed-product-information
https://identifiers.org/RRID/RRID:CVCL_3422
https://doi.org/10.7554/eLife.18357
https://doi.org/10.7554/eLife.18357
https://identifiers.org/RRID/RRID:CVCL_0291
https://doi.org/10.7554/eLife.18357
https://doi.org/10.7554/eLife.18357
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-DDI2 (rabbit pAb) Bethyl Laboratories Cat# A304-629A WB (1:5000)

Antibody
Anti-rabbit IgG, HRP-linked 
(goat) Cell Signaling Cat#7074 WB (1:1000)

Antibody
Anti-mouse IgG, HRP-
linked (goat) Cell Signaling Cat#7076 P2 WB (1:1000)

Antibody
Goat anti-Rabbit IgG, 
Alexa Fluor Plus 647 Thermofisher - Invitrogen Cat#A32733 WB (1:3500)

Antibody
Goat anti-Rabbit IgG, 
Alexa Fluor 680 Thermofisher - Invitrogen Cat#A-21076 WB (1:3500)

Antibody
IRDye 800CW Goat anti-
Mouse IgG LI-COR Cat#926–32210 WB (1:3500)

Commercial assay 
or kit DharmaFECT 1

Horizon Discovery - 
Dharmacon T-2001–03

Transfection reagent for MDA-
MB-231 and SUM-149 cells

Commercial assay 
or kit Proteasome-Glo Assay Promega G8622 Assay for Chymotrypsin-like

Commercial assay 
or kit CellTiter-Glo Assay Promega G7572 Assay for Cell Viability

Commercial assay 
or kit

Pierce Coomassie Plus 
(Bradford) Assay

ThermoFisher - Life 
Technologies 23238 Assay for Protein Quantification

Commercial assay 
or kit TRIzol Reagent

ThermoFisher - Life 
Technologies 15596018 RNA Isolation

Commercial assay 
or kit

High-Capacity cDNA 
Reverse Transcription kit

Thermofisher - Applied 
Biosystems 4368814

Commercial assay 
or kit

2 x SYBR Green Bimake 
qPCR Master Mix Selleckchem - Bimake B21203

Commercial assay 
or kit

RNasin Plus Ribonuclease 
Inhibitor Promega N2615

Chemical compound, 
drug Bortezomib LC Laboratories AS# 179324-69-7, Cat# B-1408 Proteasome Inhibitor,

Chemical compound, 
drug Carfilzomib LC Laboratories

CAS# 868540-17-4, Cat# C-
3022 Proteasome Inhibitors,

Chemical compound, 
drug CB-5083 Cayman Chemicals

CAS# 1542705-92-9, Cat# 
19311 p97 inhibitor,

Chemical compound, 
drug

CHAPS 
(3-((3-cholamidopropyl)  
dimethylammonio)–1-
propanesulfonate) Thermo Scientific CAS# 331717-45-4, Cat # 28300 Detergent

Chemical compound, 
drug Cycloheximide Sigma-Aldrich CAS# 66-81-9, Cat #C1988 Protein Synthesis Inhibitor,

Chemical compound, 
drug Digitonin GoldBio

CAS# 11024-24-1, Cat# D-
180–250 Detergent

Chemical compound, 
drug PhosSTOP Roche Cat# 4906837001 Mixture of Phosphatase Inhibitors

Chemical compound, 
drug Suc-LLVY-AMC Bachem

CAS# 94367-21-2, Cat # 
4011369 Proteasome substrate

Chemical compound, 
drug Resazurin sodium salt Sigma-Aldrich CAS# 62758-13-8, Cat#R7017 Alamar Blue Viability Assay

Software, algorithm PRISM GraphPad version 10

 Continued

Source of materials
HAP1 cells (wt-clone 631, DDI2 KO clones 006, 023, and 010, Key resources table) were obtained from 

Horizon Discovery. MDA-MB-231 cells were purchased from ATCC️ (Cat. #HTB-26), and SUM149 cells 

https://doi.org/10.7554/eLife.91678
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(CVCL_3422) were obtained from Asterand (Weyburne et al., 2017). A CRISPR-generated clone of 
HCT-116 cells, in which catalytic Asp-252 residue of the DDI2 gene was mutated into an asparagine 
(D252N) (Koizumi et al., 2016), and a control clone carrying wt-DDI2 allele were kindly provided by 
Dr. Shigeo Murata, and tested negative for Mycoplasma contamination. All cell lines were authenti-
cated by STR profiling. Sources of inhibitors and other chemicals are listed in the Key resources table.

Cell culture
All cells were cultured at 37 °C in a humidified atmosphere with 5% CO2. HAP1 cells were cultured in 
Iscove’s medium supplemented with 10% Fetal Bovine Serum (FBS). MDA-MB-231 and SUM149 cells 
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)/Hams F-12 50/50 Mix supplemented 
with 5% FBS. SUM149 cell media were also supplemented with 4.8 μg/mL insulin, 10 mM HEPES, pH 
7.3, and 1 μg/mL hydrocortisone. HCT-116 cells were cultured in McCoy medium supplemented with 
10% FBS. In addition, all media were supplemented with 100 µg/mL Penicillin-streptomycin, 0.2 μg/
mL ciprofloxacin (to prevent Mycoplasma contamination), and 0.25 μg/mL amphotericin B. Cells were 
plated overnight before treatment, then treated with inhibitors for 1 hr in a fresh medium. The inhibitor-
containing medium was aspirated, except for the experiments in Figure 1—figure supplement 2a, 
where it was shaken off, and the cells were cultured in a drug-free medium for times indicated when 
they were harvested and analyzed as described in the figure captions. siRNAs were transfected 72 hr 
before treatments. The MDA-MB-231 or SUM149 cells were seeded in six-well plates at 2 × 105 cells/
well the day before the transfections. The cells were transfected with 25 nM DDI2 siRNAs by using 
0.3% DharmaFECT 1 in Gibco Opti-MEM 1 X Reduced Serum Medium and Corning DMEM:F-12(1:1) 
without antibiotics and amphotericin B. Cell viability was assayed with CellTiter-Glo (Promega) or 
Alamar Blue (resazurin).

Proteasome activity assays
The activity of the proteasome’s β5 sites was determined either by Succinyl(Suc)-LLVY-AMC 
(7-amido-4-methylcoumarin) fluorogenic substrate or by the Proteasome-Glo assay (Promega), a lucif-
erase coupled assay, which uses Suc-LLVY-aminoluciferin as a substrate (Britton et al., 2009; Moravec 
et al., 2009). In the Proteasome-Glo assays, the cells in 96-well plates were washed with PBS and 
lysed by one cycle of freezing and thawing in 25 µL of cold PBS containing 0.05% digitonin. 25 µL 
of Suc-LLVY-aminoluciferin containing Proteasome-Glo reagent was added, and plates were preincu-
bated on a shaker for ~10 min at room temperature before luminescence measuring using a mixture 
of PBS and Proteasome-Glo reagent as a blank. Each sample contained three technical replicates.

To determine proteasome’s β5 activity in the cell extracts, cells were lysed in ice-cold 50  mM 
Tris-HCl, pH 7.5, 10% glycerol, 0.5% CHAPS, 5 mM MgCl2, 1 mM EDTA, 100 µM ATP, 1 mM DTT, and 
1 x PhosSTOP. The cells were incubated for 15 min on ice, centrifuged at 20,000 × g for 15–20 min at 
4 °C, and the supernatants were used for the experiments. Protein concentrations were determined 
using Pierce Coomassie Plus (Bradford) Assay reagent (Cat. #23238) with bovine serum albumin as 
a standard. An aliquot of cell lysate containing 1 µg of protein was spiked into a 100 µL per well 
of the 26 S assay buffer (50 mM Tris-HCl pH 7.5, 40 mM KCl, 2 mM EDTA, 1 mM DTT, and 100 µM 
ATP) containing 100 µM of Suc-LLVY-AMC. The mixture was thoroughly mixed and preincubated at 
37 °C for 10 min. An increase in fluorescence was monitored continuously at 37 °C at the excitation 
wavelength of 380 nm and emission of 460 nm. The slopes of the reaction progress curves for three 
technical replicates were averaged, and the inhibition was calculated as a percentage by dividing the 
slopes of the inhibitor-treated samples by the slope of mock-treated controls. Assays were calibrated 
with AMC standard (Kisselev and Goldberg, 2005).

Western blotting
Lysates were prepared, and total protein was quantified as described above for the fluorescent prote-
asome assays. Samples were mixed with lithium dodecyl sulfate loading buffer and heated before 
fractionation on either NuPAGE Bis-Tris 8% Midi Gel (Invitrogen, Cat. #WG1003BOX) or SurePAGE 
Bis-Tris 8% mini gel (GenScript, Cat. #M00662), using MES-SDS running buffer (GenScript Cat. 
#M00677). The proteins were transferred on 0.2 µm pore-diameter Immobilon–pSQ PVDF membrane 
(Cat. #ISEQ00010) using Invitrogen Power Blotter 1-Step Transfer Buffer (Thermo Cat. #PB7300). The 

https://doi.org/10.7554/eLife.91678
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membrane was blocked with 5% Milk in TBST and probed with antibodies listed in the Key resources 
table.

RNA isolation and qPCR
The mRNA was isolated from cells using TRIzol Reagent (Thermo Fisher Scientific Cat. #15596018) 
according to the manufacturer’s protocol. Then, cDNA synthesis was performed using a High-Capacity 
cDNA Reverse Transcription kit (Applied Biosystems cat. #4368814). Before the qPCR run, the RNA 
and cDNA were quantified by UV absorbance using NanoDrop2000 (Thermo Scientific). The Real-time 
qPCR was performed using 2 x SYBR Green Bimake qPCR Master Mix on a Bio-Rad C1000 thermal 
cycler CFX96 Real-Time System. The primers are listed in Supplementary file 1.

Polysome profiling was conducted according to a published procedure (He and Green, 2013; 
Morita et al., 2013). Cells were washed in a cold PBS containing 100 μg/mL CHX and were resus-
pended in the hypotonic buffer containing 5 mM Tris-HCl pH 7.5, 2.5 mM MgCl2, 1.5 mM KCl, 1 x 
Complete protease inhibitor (EDTA-free), 100 µg/mL CHX, 1 mM DTT, and 0.2 units/mL RNAsin Plus. 
Triton X-100 and sodium deoxycholate were added to the cell suspension to a final concentration 
of 0.5%, followed by centrifugation at 20,000 g for 15–20 min 4 °C. Extracts were loaded on 5–55% 
gradients of sucrose in 20  mM HEPES-KOH, pH 7.6, 0.1  M KCl, 5  mM MgCl2, 100  µg/mL cyclo-
heximide, 1 x complete EDTA free protease inhibitor cocktail, and 100 units/mL RNAsin. Following 
the centrifugation at 35,000  rpm for 2.5 hr at 4  °C, the gradients were manually fractionated into 
200 μL fractions. Fractions containing the non-translated mRNA, 80 S ribosomes, and polysomes were 
pooled. The RNA was isolated and quantified by quantitative RT-PCR.

Statistical analysis
Data points on all figures are averages +/-S.E.M. of n biological replicates, and n is provided in figure 
captions. Statistical analysis was carried out in GraphPad PRISM and used mixed-effect multiple 
comparisons on Figure 1f and a t-test on Figure 2b. p-values <0.05 were considered significant.
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