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Abstract Rare early-onset lower urinary tract disorders include defects of functional maturation 
of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some 
have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not 
empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can 
cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. 
This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and 
control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relax-
ation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and 
explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human 
HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal 
week, transgene transduction and expression were sought, and ex vivo myography was undertaken 
to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected 
in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic 
ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders 
were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Thera-
peutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant 
bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also 
significantly improved. These results constitute first steps towards curing UFS, a clinically devastating 
genetic disease featuring a bladder autonomic neuropathy.
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eLife assessment
Urofacial syndrome is a rare early-onset lower urinary tract disorder characterized by variants in 
HPSE2, the gene encoding heparanase-2. This study provides a useful proof-of-principle demonstra-
tion that AAV9-based gene therapy for urofacial syndrome is feasible and safe at least over the time 
frame evaluated, with restoration of HPSE2 expression leading to the re-establishment of evoked 
contraction and relaxation of bladder and outflow tract tissue, respectively, in organ bath studies. 
The evidence is, however, still incomplete. The work would benefit from the evaluation of additional 
replicates for several endpoints, quantitative assessment of HPSE2 expression, inclusion of in vivo 
analyses such as void spot assays or cystometry, single-cell analysis of the urinary tract in mutants 
versus controls, and addressing concerns regarding the discrepancy in HPSE2 expression between 
bladder tissue and liver in humans and mice.

Introduction
Rare early-onset lower urinary tract (REOLUT) disorders comprise not only gross anatomical malfor-
mations but also primary defects of functional maturation (Woolf et al., 2019). Although individually 
infrequent, these diseases are together a common cause of kidney failure in children and young adults 
(Harambat et al., 2012; Woolf, 2022; Pepper and Trompeter, 2022). REOLUT disorders can also 
have negative impacts on the self-esteem, education, and socialization of affected individuals (Pepper 
and Trompeter, 2022; Hankinson et  al., 2014). They have diverse phenotypes, including ureter 
malformations, such as megaureter; bladder malformations, such as exstrophy; and bladder outflow 
obstruction caused either by anatomical obstruction, as in urethral valves, or functional impairment of 
voiding without anatomical obstruction. The latter scenario occurs in urofacial, or Ochoa, syndrome 
(UFS) (Ochoa, 2004; Newman et al., 2013).

During healthy urinary voiding, the bladder outflow tract, comprising smooth muscle around the 
section of the urethra nearest the bladder, dilates while detrusor smooth muscle in the bladder body 
contracts. Conversely, in UFS, voiding is incomplete because of dyssynergia in which the outflow tract 
fails to fully dilate (Ochoa, 2004), and subsequent accumulation of urine in the LUT predisposes to 
urosepsis (Ochoa, 2004; Osorio et al., 2021). UFS is an autosomal-recessive disease, and around half 
of families studied genetically carry biallelic variants in HPSE2 (Daly et al., 2010; Pang et al., 2010; 
Grenier et al., 2023). Most are frameshift or stop variants, most likely null alleles, although missense 
changes, triplication, and deletions have also been reported (Beaman et al., 2022). HPSE2 codes for 
heparanase-2 (McKenzie et al., 2000), also known as Hpa2, which inhibits endoglycosidase activity 
of the classic heparanase (Levy-Adam et al., 2010). Although subject to secretion (Levy-Adam et al., 
2010; Beaman et  al., 2022), heparanase-2 has also been detected in the perinuclear membrane 
(Margulis et al., 2021), suggesting yet-to-be defined functions there. The biology of heparanase-2 
has been most studied in relation to oncology. For example, in head and neck cancers, heparanase-2 
has anti-tumour effects, enhancing epithelial characteristics and attenuating metastasis (Gross-Cohen 
et al., 2021).

The autonomic nervous system controls voiding of the healthy bladder (Keast et al., 2015). In 
fetal humans and mice, heparanase-2 is immunodetected in bladder nerves (Stuart et  al., 2013; 
Stuart et al., 2015). The protein is also present in pelvic ganglia near the bladder (Stuart et al., 
2015; Roberts et al., 2019). These ganglia contain neural cell bodies that send autonomic effector 
axons into the bladder body and its outflow tract, with this neural network maturing after birth in 
rodents (Keast et al., 2015; Roberts et al., 2019). Mice carrying biallelic gene-trap mutations of 
Hpse2 have bladders that fail to fully void despite the absence of anatomical obstruction within the 
urethral lumen (Stuart et al., 2015; Guo et al., 2015). Although Hpse2 mutant mice do have pelvic 
ganglia, autonomic nerves implicated in voiding are abnormally patterned (Roberts et al., 2019). 
Ex vivo physiology experiments with Hpse2 mutant juvenile mice demonstrate impaired neurogenic 
bladder outflow tract relaxation (Manak et  al., 2020), an observation broadly consistent with the 
functional bladder outflow obstruction reported in people with UFS (Ochoa, 2004). Therefore, while 
not excluding additional aberrations, such as a central nervous system defect (Ochoa, 2004), much 
evidence points to UFS featuring a genetic autonomic neuropathy affecting the bladder (Roberts and 
Woolf, 2020).

https://doi.org/10.7554/eLife.91828
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Recently, gene therapy has been used to treat animal models and human patients with previously 
incurable genetic diseases. Adeno-associated virus 9 (AAV9) has been used as a vector in successful 
gene therapy for spinal muscular atrophy, an early-onset genetic neural disease (Mendell et al., 2017). 
Here, we hypothesized that human HPSE2 gene therapy would restore autonomic nerve function in 
the bladder. Given that UFS is a neural disease, we elected to use AAV2/9 (simplified to AAV9) vector, 
which transduces diverse neural tissues in mice (Foust et al., 2009), although uptake into the pelvic 
ganglia has not been reported. We administered AAV9 vector carrying human HPSE2 to neonatal 
mice via the temporal vein, in the first day after birth when bladder neural circuitry is maturing. Several 
weeks later, evidence of transgene transduction and expression was sought and therapeutic effects on 
neuropathic dysfunction were investigated in smooth muscle relaxation of the bladder outflow tract 
and smooth muscle contractility of the bladder body.

Results
Administration of AAV9/HPSE2 to WT mice
We undertook exploratory experiments in WT mice, primarily to determine whether the viral vector 
was capable of transducing pelvic ganglia after neonatal intravenous injection. We also wished to 
determine whether administration of AAV9/HPSE2 was compatible with normal postnatal growth and 
general health. Given that human gene therapy with AAV9 vectors has been associated with a specific 
side effect, liver damage (Mendell et al., 2017), and the recent implication of AAV2 in community-
acquired hepatitis (Ho et al., 2023), we also examined mouse livers at the end of the experiment. To 
determine the efficacy of transduction, neonatal WT mice were administered the AAV9/HPSE2 vector, 
and they were followed until they were young adults (Figure 1a). Previous studies administering AAV9 
carrying reporter genes to neonatal mice have used single doses of up to 1012 genome copies (Foust 
et  al., 2009; Buckinx et  al., 2016). In the current experiments, because the AAV9/HPSE2 vector 
was yet to be tested in vivo, we took a cautious approach, assessing single doses of 2 × 1010 or 1 
× 1011 genome copies. WT neonatal mice administered either dose gained body weight in a similar 
manner to WT mice injected with vehicle only (Figure 1b). Moreover, throughout the 5-week obser-
vation period, AAV9/HPSE2 administered mice displayed normal general appearances and behaviour 
(e.g. condition of skin and fur, ambulation, grooming, and feeding). As outlined in the ‘Introduction’, 
evidence points to UFS being an autonomic neuropathy of the bladder. Therefore, we determined 
whether the AAV9/HPSE2 vector had targeted pelvic ganglia that flank the base of the mouse bladder 
(Keast et al., 2015; Roberts et al., 2019).

To seek the transduced vector genome, tissue sections were stained using BaseScope in situ hybrid-
ization (ISH) for the WPRE3 genomic sequence (Figure 1c, upper panels). The regulatory element was 
detected in neural cell bodies of ganglia of 5-week-old mice that had been administered either dose 
of AAV9/HPSE2, while no signal was detected in the ganglia of vehicle-only injected mice. Of 42 
ganglion cells imaged from three mice injected with the 2 × 1010 dose, and 71 ganglion cells imaged 
from three mice injected with the 1011 dose, 45% were positive in each group. Here, the definition 
of positive was at least one red dot in a cell. The transduced cargo was expressed as indicated by 
the reaction with the human HPSE2 mRNA probe (Figure 1c). No signal was detected in mice that 
received vehicle-alone. In contrast, HPSE2 transcripts were detected in the pelvic ganglia of mice that 
had been administered AAV9/HPSE2. Of 44 ganglion cells imaged from three mice injected with the 
2 × 1010 dose, 11% were positive; and of 57 ganglion cells imaged from three mice injected with the 
1011 dose, 40% were positive. Moreover, although not quantified, the intensity of expression within 
positive cells appeared greater in the higher dose group (Figure 1c).

Liver sections (Figure 2) were assessed for WPRE3 BaseScope signals by counting the number 
of red dots per unit area. The average density measured in sections from three mice injected with 
2 × 1010 vector was 587/mm2 compared with 835/mm2 for three mice injected with 2 × 1011 vector, 
while sections from vehicle-injected mice showed no signal. Assessing HPSE2 BaseScope signals, the 
density averaged 45/mm2 for three mice injected with 2 × 1010 vector, 680/mm2 for three mice injected 
with 2 × 1011 vector, and zero for vehicle-injected mice. PSR-stained liver sections, imaged with bright-
field and polarized light, are illustrated in Figure 2b. The birefringence under polarized light, indi-
cating collagen fibres, was measured as the percentage of the field of view it occupied (Figure 2c). 
There was no significant difference among the three animal groups in the amount of collagen present, 

https://doi.org/10.7554/eLife.91828
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Figure 1. Administration of AAV9/HPSE2 to neonatal WT mice. (a) Graphic of study design. The AAV9/HPSE2 vector genome consisting of flanking 
AAV2 ITR sequences, the ubiquitous CAG promoter, human HPSE2 coding sequence, and the WPRE3 sequence. A single dose (2 × 1010 or 1 × 
1011 genome copies) of AAV9/HPSE2 was administered to neonates via the temporal vein. Another group of mice received vehicle-only injections. 
Body weights were monitored, and bladders and livers were harvested for histology analyses at 5 weeks. (b) Whole body weights (g). No significant 
differences were found in growth trajectories comparing 2 × 1010 AAV9/HPSE2-injected mice with vehicle-only controls (two-way ANOVA); 1 × 1011 
AAV9/HPSE2-injected compared with vehicle-only injected controls; and lower dose compared with higher dose AAV9/HPSE2-injected mice. (c) 
BaseScope in situ hybridization (ISH) of the pelvic ganglia. Histology sections are counterstained so that nuclei appear blue. Images are representative 
of ganglia from three mice in each experimental group. WPRE3 genomic sequence and human HPSE2 transcripts were not detected in the pelvic 
ganglia of WT mice injected with vehicle-only (left panel). In contrast, positive signals (red dots) for each probe were detected in the pelvic ganglia of 
WT mice administered either 2 × 1010 (arrow head) or 1 × 1011 AAV9/HPSE2. For quantification of positive signals, see ‘Results’. Bars are 20 μm.

© 2024, BioRender Inc. Figure 1a was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license.

https://doi.org/10.7554/eLife.91828
https://www.biorender.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Lopes et al. eLife 2024;13:RP91828. DOI: https://doi.org/10.7554/eLife.91828 � 5 of 23

Figure 2. Histology of livers of 5-week-old WT mice that had been administered AAV9/HPSE2 as neonates. In each experimental group, livers from 
three mice were examined, and representative images are shown. (a) BaseScope in situ hybridization (ISH) analyses of livers, with positive signals 
appearing as red dots. Nuclei were counterstained with haematoxylin. Note the absence of signal for WPRE3, part of the AAV9/HPSE2 genomic cargo, 
in mice administered PBS only. In contrast, WPRE3 signal was evident in livers of mice that had received a single dose of 2 × 1010 or 1 × 1011 genome 
copies. Regarding human HPSE2 transcripts, none were detected in the PBS-only livers. Only sparse signals were noted in livers of mice administered 
the lower AAV dose (arrow head) but the signal for HPSE2 was prominent in livers of mice administered the higher dose. See the text for quantification 
of signals. (b) PSR staining to seek collagen imaged under direct light (left column) and polarized light (right column). (c) There was no significant 
difference in extent of birefringence between the three groups. Black bars are 30 μm, white are 200 μm.

https://doi.org/10.7554/eLife.91828
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suggesting that neonatal administration of AAV9/HPSE2 was not associated with liver fibrosis when 
assessed in mouse early adulthood.

Administration of AAV9/HPSE2 to Hpse2 Mut mice
Having demonstrated the feasibility and general safety of the procedure in WT mice, a second set 
of experiments were undertaken to determine whether administration of AAV9/HPSE2 to Mut mice 
would ameliorate aspects of their bladder pathophysiology (Figure 3a). Reasoning that the higher 
dose AAV9/HPSE2 (1 × 1011 genome copies) had been well-tolerated in our scoping experiments 
in WT mice, we used it here. As expected (Stuart et al., 2015), untreated Mut mice gained signifi-
cantly less body weight than sex-matched WT mice over the observation period (Figure 3b). Admin-
istration of AAV9/HPSE2 to Mut mice did not significantly modify their impaired growth trajectory 
(Figure 3b). On autopsy, bladders of untreated Mut mice appeared distended with urine (Figure 3c 
and d), consistent with bladder outflow obstruction, and confirming a previous report (Stuart et al., 
2015). In contrast, only one of nine bladders of Mut mice that had been administered AAV9/HPSE2 
appeared distended (Figure 3c and d). The remainder had autopsy bladder appearances similar to 
those reported for WT mice (Stuart et  al., 2015). Bladder bodies were then isolated, drained of 
urine, and weighed. The bladder body/whole mouse weight (Figure 3e) of Mut mice that had not 
received AAV9/HPSE2 was significantly higher than untreated WT mice. While values in AAV9/HPSE2-
administered Mut mice (median 0.0016, range 0.0010–0.0139) tended to be higher than those of 
untreated WT mice, they were not significantly different from these controls.

Histology sections of the pelvic ganglia were reacted with BaseScope probes (Figure 4). Using the 
WPRE3 genomic probe, no signals were detected in either WT or Mut mice that had not received 
the viral vector (Figure 4a and c). In contrast, signals for WPRE3 were detected in WT and Mut mice 
administered AAV9/HPSE2 as neonates (Figure 4b and d). Using the human HPSE2 probe, no tran-
scripts were detected in the ganglia of WT and Mut mice (Figure 4e and g). In contrast, signals for 
HPSE2 were detected in WT and Mut mice administered AAV9/HPSE2 as neonates (Figure 4f and h). 
In sections from AAV9/HPSE2-administered WT mice (n = 3), 63% of 185 ganglion cells were positive 
for WPRE3, and 56% of 210 cells expressed HPSE2. In AAV9/HPSE2-administered Mut mice (n = 3 
assessed), 74% of 167 ganglion cells were positive for WPRE3, and 68% of 191 cells expressed HPSE2. 
Heparanase-2 was sought with an antibody reactive to both human and mouse protein (Figure 4i–l), 
with consistent findings in three mice examined in each experimental group. The protein was detected 
in the pelvic ganglia of untreated WT mice, but only a faint background signal was noted in the 
ganglia of untreated mutant. Heparanase-2 was detected in the ganglia of both WT and Mut mice that 
had been administered the vector.

Finally, we determined whether the viral vector transduced cells in the body of the bladder 
(Figure 5). The vector genome sequence WPRE3 and HPSE2 transcripts were not detected in the 
urothelium or lamina propria, the loose tissue directly underneath the urothelium. Within the detrusor 
muscle layer itself, the large smooth muscle cells were not transduced. However, there were rare small 
foci of BaseScope signal that may represent nerves coursing through the detrusor.

The vector genome sequence WPRE3 and HPSE2 transcripts were also detected in the livers of WT 
and Mut mice that had been administered the vector (Figure 6a). The average number of vector (red 
dots per area of liver section) from three livers of WT mice injected with AAV9/HPSE2 were 201/mm2 
for WPRE3 and 30/mm2 for HPSE2. The average values from three Mut mice injected with the AAV9/
HPSE2 were 293/mm2 for WPRE3 and 172/mm2 for HPSE2. There was no sign of pathological fibrosis 
in the livers of these mice, as assessed by PSR staining and birefringence quantified under polarized 
light (Figure 6b and c). Kidneys were also analysed using histology but neither the WPRE3 sequence 
nor HPSE2 transcripts were detected in glomeruli or tubules (Figure 7).

HPSE2 gene transfer ameliorates bladder pathophysiology in Hpse2 
mutant males
We proceeded to undertake ex vivo physiology experiments using myography, with isolated bladder 
outflow tracts and isolated bladder bodies studied separately. No significant differences in contraction 
amplitudes induced by 50 mM KCl were documented comparing WT outflow tracts with Mut tissues 
of mice that had either been administered or had not been administered AAV9/HPSE2 (Figure 8a). 
Male outflow tracts were pre-contracted with PE, and then subjected to electrical field stimulation 

https://doi.org/10.7554/eLife.91828
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Figure 3. Administration of AAV9/HPSE2 to neonatal mice. (a) Graphic of therapy study design, with schematic of AAV9/HPSE2 vector genome. 
Heterozygous Hpse2 parents were mated to generate litters and neonates were genotyped, with WT and Mut offspring used in the study. Some baby 
mice were not administered the viral vector while others were intravenously administered 1 × 1011 AAV9/HPSE2. Mice were weighed regularly, and in 
the third week of postnatal life they were culled and autopsies undertaken to determine whether or not bladders appeared distended with urine. Livers 
and kidneys were harvested for histology analyses. Bladders were harvested and used either for histology analyses or for ex vivo myography. (b) Body 
weights (g; mean ± SD). Results were analysed with two-way ANOVA. As expected, body growth was impaired in Mut mice that had not received the 

Figure 3 continued on next page
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(EFS). Nerve-mediated relaxation of pre-contracted outflow tracts had been reported to be impaired 
in juvenile male Mut mice (Manak et al., 2020). Accordingly, as expected, in the current study, neuro-
genic relaxation of outflow tracts from untreated Mut mice was significantly less than WT relaxation 
(Figure  8b and c). For example, the average Mut relaxation at 15  Hz was around a third of the 
WT value. In outflow tracts from AAV9/HPSE2-administered Mut mice, however, EFS-induced relax-
ation was no longer significantly different from WT controls, and it was threefold greater than that in 
untreated Mut mice (Figure 8b and c).

Next, male bladder body rings were studied using myography (Figure 8d–g). Application of EFS 
caused detrusor contractions of isolated bladder body rings. In samples from mice that had not 
received AAV9/HPSE2 as neonates, contractions were significantly lower in Mut than in WT prepa-
rations (Figure 8d and e). For example, at 25 Hz the average Mut value was half of the WT value. 
Strikingly, however, the contractile response to EFS increased around 2.5-fold in Mut bladder rings 
from AAV9/HPSE2-administered mice compared with untreated Mut mouse bladder rings (Figure 8d 
and e). Indeed, EFS-induced DSM contractions in treated Mut mice were not statistically different 
from those of WT mice (Figure 8e). No significant difference in contraction amplitude to 50 mM KCl 
was documented comparing WT samples with tissues isolated from either vector-administered or 
untreated Mut mice (Figure 8f). As previously reported (Manak et al., 2020), bladder body contrac-
tions in response to cumulative increasing concentrations of carbachol were significantly higher in 
untreated Mut tissues compared with WT bladder rings (Figure  8g). Bladder body samples from 
AAV9/HPSE2-administered Mut mice showed an attenuated hyper-response to carbachol, and values 
in this treated Mut group were no longer significantly different from the WT response (Figure 8g).

HPSE2 gene transfer ameliorates bladder pathophysiology in Hpse2 
mutant females
UFS affects both males and females (Ochoa, 2004; Grenier et al., 2023), yet results of ex vivo physi-
ology have to date only been reported in tissues from Hpse2 mutant male mice (Manak et al., 2020). 
Therefore, we proceeded to study outflow tracts and bladder bodies from female Mut mice by ex vivo 
myography (Figure 9a–g). No significant difference in contraction amplitude to 50 mM KCl was docu-
mented comparing WT outflow tracts with Mut tissues from mice that had either been administered 
or not been administered AAV9/HPSE2 (Figure 9a). Female outflow tracts were pre-contracted with 
vasopressin because they do not respond to PE, the α1 receptor agonist (Grenier et al., 2023). In the 
current study, therefore, vasopressin was used to pre-contract female outflow tracts before applying 
EFS. Such samples from untreated Hpse2 female mutant mice showed significantly less relaxation than 
WT outflow tracts (Figure 9b and c), with a striking 20-fold reduction at 15 Hz. Outflow tract prepa-
rations from female Mut mice that had been administered AAV9/HPSE2, however, displayed EFS-
induced relaxation that was not significantly different from WT samples (Figure 9b and c). Indeed, the 
relaxation response of treated Mut samples was significantly increased compared with untreated Mut 
mice, with an average 12-fold increase in relaxation at 15 Hz (Figure 9c).

Next, female bladder body rings were studied with myography (Figure 9d–g). Applying EFS caused 
contractions of isolated bladder body rings (Figure 9d and e). In preparations from animals that had 
not received AAV9/HPSE2 as neonates, contractions were significantly lower in Mut than in WT prepa-
rations, being reduced sevenfold at 25 Hz. Strikingly, however, the contractile detrusor response to 
EFS in Mut bladder rings from mice that had received AAV9/HPSE2 was significantly greater than 
the samples from untreated Mut mice, with a fivefold increase at 25 Hz. However, the bladder body 
contractions in AAV9/HPSE2-administered Mut mice were still significantly smaller than those in WT 

viral vector compared with sex-matched WT mice that did not receive the vector. There was no significant difference in the body growth of Mut mice 
that either had or had not received AAV9/HPSE2. (c) Examples at autopsy of a distended bladder in a Mut mouse that had not received the viral vector, 
and a not-distended bladder in a Mut that had been administered AAV9/HPSE2 as a neonate. Bladder size indicated by dotted line. (d) Untreated Mut 
mice had distended bladders on autopsy more often than Mut mice that had received AAV9/HPSE2 (Fisher’s exact test). (e) Untreated Mut mice had 
significantly higher empty bladder/whole body weight ratios than untreated WT mice (Kruskal–Wallis test). While viral vector-administered Mut mice 
tended to have higher empty bladder/whole body weight ratios than WT mice, this was not statistically significant.

© 2024, BioRender Inc. Figure 3a was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license.
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Figure 4. Pelvic ganglia histology in the third week of life. BaseScope probes were applied for the WPRE3 genomic sequence (a–d) and for human 
HPSE2 transcripts (e–h). Other sections were reacted with an antibody to heparanase-2 reactive both human and mouse proteins (i–l). The four 
experimental groups were WT mice that were not administered the viral vector (a, e, i); WT mice that had been administered 1 × 1011 AAV9/HPSE2 
as neonates (b, f, j); Mut mice that were not administered the viral vector (c, g, k); and Mut mice that had been administered 1 × 1011 AAV9/HPSE2 as 
neonates (d, h, l). In each group, ganglia from three mice were examined, and representative images are shown. Sections were counterstained with 
haematoxylin (blue nuclei). Note the absence of BaseScope signals in both WT and Mut mice that had not received the viral vector. In contrast, ganglia 

Figure 4 continued on next page
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mice (Figure 9e). No significant difference in contraction amplitude to 50 mM KCl was documented 
comparing the three bladder body groups (Figure 9f). Unlike the enhanced contractile response to 
carbachol in male Mut bladder rings, detailed above, female bladder rings showed similar responses 
to carbachol in each of the three experimental groups (Figure 9g).

Discussion
Currently, no treatments exist that target the primary biological disease mechanisms underlying 
REOLUT disorders. Interventions for UFS are limited and include catheterization to empty the bladder, 
drugs to modify smooth muscle contractility, and antibiotics for urosepsis (Ochoa, 2004; Grenier 
et al., 2023; Osorio et al., 2021). Moreover, surgery to refashion the LUT in UFS is either ineffective 
or even worsens symptoms (Ochoa, 2004). Given that some REOLUT disorders have defined mono-
genic causes, it has been reasoned that gene therapy might be a future option, but the strategy must 
first be tested on genetic mouse models that mimic aspects of the human diseases (Lopes et al., 
2021). The results presented in the current study constitute first steps towards curing UFS, a clinically 
devastating genetic disease featuring a bladder autonomic neuropathy.

We report several novel observations. First, female Hpse2 mutant mice have neurogenic defects 
in outflow tract relaxation and detrusor contraction that are similar to those reported for male 
Hpse2 mutant mice (Manak et al., 2020). This sex equivalence in the mouse model is an important 
point because UFS affects both males and females (Grenier et al., 2023). On the other hand, we 
observed nuanced differences between the mouse sexes. For example, regarding bladder bodies, 
females displayed a more profound defect in contractions elicited by EFS, while they lacked the 
hyper-sensitivity to carbachol shown by males. Second, we have demonstrated that an AAV can be 
used to transduce pelvic ganglia that are key autonomic neuronal structures in the pathobiology of 
UFS. Importantly, the neuromuscular circuitry of the bladder matures over the first three postnatal 
weeks in murine species (Keast et al., 2015). A single dose of 1 × 1011 genome copies of AAV9/
HPSE2 was sufficient to transduce around half of neural cell bodies in these ganglia when assessed 
in the third postnatal week. It is possible that the administration of a higher dose of the vector would 
have resulted in a higher percent of positive cell bodies. Strikingly, heparanase-2 became detectable 
in the pelvic ganglia of treated Mut mice. Our third key observation is that the 1 × 1011 dose signifi-
cantly ameliorated defect in the mutant LUT despite not every neural cell body being transduced. 
On autopsy, wild-type (WT) mice had empty bladders, whereas bladders were uniformly distended 
in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. AAV9/HPSE2 significantly amelio-
rated the impaired neurogenic relaxation of outflow tracts and the impaired neurogenic contractility 
of mutant detrusor smooth muscle found in Hpse2 Mut mice. In future, it will be important to study 
whether the gene transfer strategy might also ameliorate a dyssynergia between bladder and outflow 
as assessed by in vivo cystometry (Ito et al., 2018). These complex in vivo experiments are, however, 
beyond the remit of the current work.

Although our data support a neurogenic origin for defects in UFS bladder functionality, we cannot 
yet rule out an additional myogenic component. In a previous study (Stuart et al., 2015), however, we 
quantified smooth muscle actin (Acta2) and myosin heavy chain (Myh11) transcripts at 1 and 14 days 
after birth and recorded no significant differences between WT and Hpse2 homozygous mutant mice. 
This suggests that detrusor smooth muscle itself is unchanged in the juvenile period. Moreover, in the 
current study, we did not detect transduction of AAV9/HPSE2 into detrusor smooth muscle. A more 
thorough molecular and structural analysis of the natural history of the detrusor will be an important 
future work. Similarly, fully elucidating the molecular basis of the UFS neurogenic defect is a key 
objective. A recent paper has demonstrated the feasibility of single-cell RNA sequencing in murine 
pelvic ganglia cells (Sivori et al., 2024) and so, in future, analysis of WT, Hpse2 mutant, and Hpse2 

from WT or Mut mice that were administered AAV9/HPSE2 displayed signals for both WPRE3 and HPSE2. Note that the signals appeared prominent in 
the large cell bodies which are postganglionic neurons; signals were rarely noted in the small support cells between the neural cell bodies. See text for 
quantification of signals. Immunostaining for heparanase-2 showed a positive (brown) signal in all groups apart from ganglia from Mut mice that had not 
been administered the viral vector; those cells had only a faint background signal. Bars are 20 μm.

Figure 4 continued

https://doi.org/10.7554/eLife.91828
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mutant-treated pelvic ganglia neurons could reveal the fundamental processes that are aberrant in 
UFS neurons and are rescued by gene addition treatment.

A feature of the current mouse model, also observed in a different Hpse2 gene trap mouse (Guo 
et al., 2015), is the poor whole body growth compared with WT controls. This becomes more marked 
during the first month of life, and, in the current study, it was not ameliorated by neonatal AAV9/HPSE2 
administration. The cause of the growth impairment has not been established, but, as demonstrated 

Figure 5. Bladder body histology in the third week of life. BaseScope in situ hybridization (ISH) analyses of bladder tissue from AAV9/HPSE2 
administered Hpse2 mutant mice. Images are representative of three mice examined in this manner. Positive signals appear as red dots and nuclei were 
counterstained with haematoxylin for the bladder urothelium (uro) and lamina propria (lp) (a–c), detrusor smooth muscle layer (d–f), and pelvic ganglia 
body (g–i). BaseScope probes were applied for the WPRE3 genomic sequence (a, d, g), human HPSE2 transcripts (b, e, h), and a positive control 
transcript, PPIB (c, f, i). Note the absence of BaseScope signals for WPRE3 and HPSE2 in the urothelium and lamina propria. There were rare isolated 
foci of staining in the detrusor layer (indicated by the arrowheads in d and e) and abundant staining in the pelvic ganglion (arrowheads in g and h). In 
contrast, note the widespread expression patterns of the positive control transcript in all tissue types. Scale bars are 20 μm.

https://doi.org/10.7554/eLife.91828
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Figure 6. Liver histology in the third week of life. The four experimental groups were WT mice that were not administered the viral vector; WT mice that 
had been administered the viral vector; Mut mice that were not administered the viral vector; and Mut mice that had been administered AAV9/HPSE2 as 
neonates. In each group, livers from three mice were examined, and representative images are shown. (a) BaseScope in situ hybridization (ISH) analyses 
of livers, with positive signals appearing as red dots. Nuclei were counterstained with haematoxylin. The vector genome sequence WPRE3 and HPSE2 
transcripts were detected in the livers of WT and Mut mice that had been administered AAV9/HPSE2. See text for quantification. (b) PSR staining to 
seek collagen imaged under direct light (left column) and polarized light (right column). (c) There was no significant difference in extent of birefringence 
between the four groups. Black bars are 30 μm, white are 200 μm.

https://doi.org/10.7554/eLife.91828
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in the current study, is not accompanied by structural kidney damage. Moreover, our unpublished 
observations found that Hpse2 mutant pups appear to feed normally, as assessed by finding their 
stomachs full of mother’s milk. Histological examination of their lungs is normal, excluding aspiration 
pneumonia. Whatever the cause of the general growth failure, it is notably dissociated from the LUT 
phenotype, given that AAV9/HPSE2 administration corrects bladder pathophysiology but not overall 
growth of the mutant mouse. Of note, a recently published study induced deletion of Hpse2 in young 
adult mice (Kayal et al., 2023), and this was followed by fatty degeneration of pancreatic acinar cells. 
Whether the line of Hpse2 mutant mice used in the current study are born with a similar pancreatic 
exocrine pathology requires further investigation.

A small subset of individuals with UFS carry biallelic variants of leucine-rich repeats and 
immunoglobulin-like domains 2 (LRIG2) (Stuart et al., 2013; Grenier et al., 2023). LRIG2, like hepa-
ranase-2, is immunodetected in pelvic ganglia (Stuart et al., 2013; Roberts et al., 2019). Moreover, 
homozygous Lrig2 mutant mice have abnormal patterns of bladder nerves and display ex vivo contrac-
tility defects in LUT tissues compatible with neurogenic pathobiology (Roberts et al., 2019; Grenier 
et al., 2023). In future, the neonatal gene therapy strategy outlined in the current study could be 
applied to ameliorate bladder pathophysiology in Lrig2 mutant mice. As well as in UFS, functional 
bladder outflow obstruction occurs in some individuals with prune belly syndrome (Volmar et al., 
2001) and in megacystis microcolon intestinal hypoperistalsis syndrome (Gosemann and Puri, 2011). 
Moreover, apart from UFS, functional bladder outflow obstruction can be inherited as a Mendelian 
trait and some such individuals carry variants in genes other than HPSE2 or LRIG2. These other genes 
are implicated in the biology of bladder innervation, neuromuscular transmission, or LUT smooth 
muscle differentiation (Weber et al., 2011; Caubit et al., 2016; Woolf et al., 2019; Houweling et al., 
2019; Mann et al., 2019; Beaman et al., 2019; Hahn et al., 2022). Genetic mouse models exist for 
several of these human diseases and, again, could be used as models for gene therapy.

Figure 7. Kidney histology in the third week of life. The four experimental groups were WT mice that were not administered the viral vector (a–d); WT 
mice that had been administered 1 × 1011 AAV9/HPSE2 as neonates (e–h); Mut mice that were not administered the viral vector (i–l); and Mut mice 
that had been administered 1 × 1011 AAV9/HPSE2 as neonates (m–p). In each group, kidneys from three mice were examined, and representative 
images are shown. Some sections were stained with haematoxylin and eosin (a, e, I, m) with similar appearances of glomeruli and tubules in all four 
groups. BaseScope probes were applied for the WPRE3 genomic sequence (b, f, j, n) and for human HPSE2 transcripts (c, g, k, o). Note the absence 
of BaseScope signals for WPRE3 and HPSE2 in all four groups. In contrast, signals (red dots) were noted after application of a BaseScope probe for the 
house-keeping transcript PPIB (d, h, l, p) as shown by the arrowheads. Bars are 20 μm.

https://doi.org/10.7554/eLife.91828


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Lopes et al. eLife 2024;13:RP91828. DOI: https://doi.org/10.7554/eLife.91828 � 14 of 23

Figure 8. Ex vivo myography in males. (a–c) are bladder outflow tracts and (d–g) are bladder body rings. (a) Amplitudes of contraction evoked by 
50 mM KCl in male WT (n = 4), Mut (n = 5) and Mut AAV9/HPSE2 (n = 5) outflow tracts. (b) Representative traces of relaxation evoked in WT, Mut, and 
Mut AAV9/HPSE2 outflow tracts in response to electrical field stimulation (EFS) at 8 Hz, with arrowheads indicating the start and end of stimulation. (c) 
Relaxations (mean ± SEM) evoked by EFS, plotted as a function of frequency in WT (n = 4), Mut (n = 5), and Mut AAV9/HPSE2 (n = 5) outflow tracts. (d) 
Representative traces of contractions evoked in WT, Mut, and Mut AAV9/HPSE2 bladder body rings in response to EFS at the frequencies indicated. 
(e) Amplitude of contractions (mean ± SEM) evoked by EFS in bladders from WT (n = 5), Mut (n = 5), and Mut AAV9/HPSE2 (n = 6) mice plotted as 
a function of frequency. (f) Amplitudes of contraction evoked by 50 mM KCl in WT (n = 5), Mut (n = 5), and Mut AAV9/HPSE2 (n = 6) bladders. (g) 
Contraction (mean ± SEM) of bladder rings from WT (n = 5), Mut (n = 4), and Mut AAV9/HPSE2 (n = 6) mice in response to cumulative application of 

Figure 8 continued on next page
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There are numerous challenges in translating work in mouse models to become effective therapies 
in humans. First, neonatal mice are immature compared to a newborn person, and the anatomy of 
their still developing kidneys and LUTs can be compared to those organs in the human foetus in the 
late second trimester (Lopes and Woolf, 2023). Thus, gene replacement therapy for people with UFS 
and related genetic REOLUT disorders may need to be given before birth. In fact, UFS can present 
in the fetal period when ultrasonography reveals a dilated LUT (Grenier et al., 2023; Grenier et al., 
2023). The ethics and feasibility of delivering genes and biological therapies to human foetuses are 
current topics of robust debate (Sagar et al., 2020; Mimoun et al., 2023) and, with advances in early 
detection and therapies themselves, may become established in coming years. Second, there are 
concerns about the possible side effects of administering AAV vectors (Srivastava, 2023). Factoring 
weight for weight, the dose of AAV9 vector administered to the Hpse2 mutant mice in the current 
study is of a similar order of magnitude as those used to treat babies with spinal muscular atrophy 
(Mendell et al., 2017). In that report there was evidence of liver damage, as assessed by raised blood 
transaminases in a subset of treated patients. In the current mouse study, we found that the viral vector 
transduced livers, while kidneys were resistant to transduction. As assessed by histological analyses to 
seek fibrosis, livers from AAV9/HPSE2-treated mice appeared normal. We cannot, however, exclude 
transient liver damage, which could be assessed by alterations in blood transaminases. The fact that 
transduced livers expressed HPSE2 transcripts, and the observation that heparanse-2 is a secreted 
protein (Levy-Adam et al., 2010; Beaman et al., 2022), raises the possibility that the livers of treated 
mice may act as a factory to produce heparanase-2 that then circulated and had beneficial effects on 
the LUT, akin to gene therapy to replace coagulation factors missing in haemophilia (Chowdary et al., 
2022).

In summary, we used a viral vector-mediated gene supplementation approach to ameliorate tissue-
level neurophysiological defects in UFS mouse bladders. This advance provides a proof of principle to 
act as a paradigm for treating other genetic mouse models of REOLUT disorders. In the longer term, 
application to humans may need to consider fetal therapy for reasons detailed above.

Methods
Experimental strategy
In a first set of experiments to explore the feasibility of transducing pelvic ganglia, neonatal homo-
zygous WT mice were intravenously administered the AAV9/HPSE2 vector (described below). These 
mice were observed until they were young adults when their internal organs were collected to seek 
evidence of transgene transduction and expression. Next, we determined whether neonatal adminis-
tration of AAV9/HPSE2 to homozygous Hpse2 mutant mice, hereafter called Mut, would ameliorate 
ex vivo bladder physiological defects that had been described in juvenile Hpse2 mutants (Manak 
et al., 2020). The third postnatal week was used as the end point because Hpse2 Mut mice subse-
quently fail to thrive (Stuart et al., 2015) and ex vivo physiological bladder aberrations have been 
characterized in Mut mice of a similar age (Manak et al., 2020).

The viral vector
The custom-made (Vector Biolabs) AAV9 vector carried the full-length coding sequence for human 
HPSE2 and the broadly active synthetic CMV early enhancer/chicken Actb (CAG) promoter. This 
promoter has been used successfully in human gene therapy for spinal muscular atrophy (Mendell 
et al., 2017). The construct also contained the woodchuck hepatitis virus post-transcriptional regu-
latory element (WPRE3), known to create a tertiary structure that increases mRNA stability and thus 
potentially enhancing biological effects of genes delivered by viral vectors (Loeb et al., 1999; Lee 
et al., 2005), and flanking AAV2 inverted terminal repeat (ITR) sequences.

10 nM to 50 µM carbachol, plotted as a function of carbachol concentration. Curves are the best fits of the Hill equation with EC50 = 1.21 µM and Emax 
= 2.96 mN/mg in WT mice compared with EC50 = 1.20 µM and Emax = 5.30 mN/mg for Mut mice and EC50 = 1.17 µM and Emax = 4.3 mN/mg in Mut 
AAV9/HPSE2 mice. comparing WT and Mut by two-way ANOVA with repeated measures.

Figure 8 continued
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Figure 9. Ex vivo myography in females. (a–c) are outflow tracts and (d–g) are bladder body rings. (a) Amplitudes of contraction (mean ± SEM) evoked 
by 50 mM KCl in female WT (n = 4), Mut (n = 4), and Mut AAV9/HPSE2 (n = 5) outflow tracts. (b) Representative traces of relaxation evoked in female 
WT, Mut, and Mut AAV9/HPSE2 vasopressin pre-contracted outflow tracts in response to electrical field stimulation (EFS) at 8 Hz. Arrowheads indicate 
the start and the end of stimulation. (c) Relaxations (mean ± SEM) evoked by EFS, plotted as a function of frequency in female WT (n = 4), Mut (n = 4), 
and Mut AAV9/HPSE2 (n = 3) outflows. (d) Representative traces of contraction evoked in female WT, Mut, and Mut AAV9/HPSE2 bladder body rings in 
response to EFS at the frequencies indicated. (e) Amplitude of contraction (mean ± SEM) evoked by EFS in bladder body rings from WT (n = 4), Mut (n 
= 5), and Mut AAV9/HPSE2 (n = 5) mice plotted as a function of frequency. (f) Amplitudes of contraction evoked by 50 mM KCl in female WT (n = 4), Mut 
(n = 5), and Mut AAV9/HPSE2 (n = 5) bladders. (g) Contraction of bladder rings (mean ± SEM) from WT (n = 4), Mut (n = 5), and Mut AAV9/HPSE2 (n = 
5) mice in response to cumulative application of 10 nM to 50 µM carbachol, plotted as a function of carbachol concentration. Curves are the best fits of 

Figure 9 continued on next page
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Experimental mice
Mouse studies were performed under UK Home Office project licences PAFFC144F and PP1688221. 
Experiments were undertaken mindful of ARRIVE animal research guidelines (Percie du Sert et al., 
2020). C57BL/6 strain mice were maintained in a 12  hr light/dark cycle in the Biological Services 
Facility of the University of Manchester. The mutant allele has the retroviral gene trap VICTR4829 
vector inserted into intron 6 of Hpse2 (Stuart et al., 2015) (mouse accession NM_001081257 and 
Omnibank clone OST441123). The mutation is predicted to splice exon 6 to a Neo cassette and 
generate a premature stop codon. Accordingly, homozygous mutant mouse bladder tissue contains a 
truncated Hpse2 transcript and lacks full-length Hpse2 transcripts extending beyond the trap (Stuart 
et al., 2015). Mating heterozygous parents leads to the birth of WT, heterozygous, and Mut offspring 
in the expected Mendelian ratio (Stuart et al., 2015). In the first month after birth, Mut mice gain 
less weight than their WT littermates (Stuart et al., 2015) and, because they later fail to thrive, Mut 
mice are culled around a month of age before they become overtly unwell. Application of tattoo ink 
paste (Ketchum, Canada) on paws of neonates (i.e. in the first day after birth) was used to identify 
individual mice, and same-day genotyping was undertaken. This was carried out using a common 
forward primer (5′​CCAG​​CCCT​​AATG​​CAAT​​TACC​3′) and two reverse primers, one (5′​TGAG​​CACT​​CACT​​
TAAA​​AGGA​C3′) for the WT allele and the other (5′​ATAA​​ACCC​​TCTT​​GCAG​​TTGC​A3′) for the gene trap 
allele. Neonates underwent general anaesthesia with 4% isoflurane, and AAV9/HPSE2 suspended in 
up to 20 μl of sterile phosphate-buffered saline (PBS) was injected into the temporal vein. This proce-
dure took around 2 min, after which the baby mice were returned to their mother. Control neonates 
received either vehicle-only (PBS) injection or were not injected. At the end of the study, mice under-
went Schedule 1 killing by inhalation exposure to a rising concentration of carbon dioxide followed 
by exsanguination.

Bladder outflow tract and bladder body myography
Ex vivo myography and its interpretation were undertaken using methodology detailed in previous 
studies (Manak et al., 2020; Grenier et al., 2023). Functional smooth muscle defects of both the 
outflow tract and bladder body were previously characterized in juvenile Hpse2 Mut mice (Manak 
et al., 2020), so mice of the same age were used here. Outflow tracts, which contained SM but not 
the external sphincter, were separated from the bladder body by dissection. Intact outflow tracts or 
full-thickness rings from the mid-portion of bladder bodies, containing detrusor smooth muscle, were 
mounted on pins in myography chambers (Danish Myo Technology, Hinnerup, Denmark) containing 
physiological salt solution (PSS) at 37°C. The PSS contained 122 mM NaCl, 5 mM KCl, 10 mM N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), 0.5 mM KH2PO4, 1 mM MgCl2, 5 mM d-glu-
cose, and 1.8 mM CaCl2 adjusted to pH 7.3 with NaOH.

The contractility of outflow tract and bladder body preparations was tested by applying 
50 mM KCl to directly depolarize SM and stimulate Ca2+ influx through voltage-gated Ca2+ chan-
nels. Sympathetic stimulation of α-1 adrenergic receptors mediates urethral contraction in male 
mice and primates but has little effect in females (Alexandre et  al., 2017). The α-1 adrenergic 
receptor agonist, phenylephrine (PE, 1  μM), was therefore used to contract male outflow tracts 
before applying EFS (1 ms pulses of 80 V at 0.5–15 Hz for 10 s) to induce nerve-mediated relax-
ation (Burnett et al., 1997). Female outflow tracts were instead pre-contracted with vasopressin 
(10 nM) as previously detailed (Grenier et al., 2023) because they are known to express contractile 
arginine-vasopressin (AVP) receptors (Zeng et al., 2015). Bladder body rings were subjected to EFS 
(1 ms pulses of 80 V at 0.5–25 Hz for 10 s) to induce frequency-dependent detrusor contractions. 
As these contractions are primarily mediated by acetylcholine, through its release from parasym-
pathetic nerves and binding to muscarinic receptors (Matsui et al., 2002), we also measured the 
degree of bladder body contractions evoked directly by the muscarinic agonist, carbachol (10 nM 
to 50 μM).

the Hill equation with EC50 = 1.22 µM and Emax = 6.40 mN/mg in WT mice compared with EC50 = 1.02 µM and Emax = 5.86 mN/mg for Mut mice and 
EC50 = 1.30 µM and Emax = 7.08 mN/mg in Mut AAV9/HPSE2 mice.

Figure 9 continued
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Histology
Samples of bladder body, liver, kidney, and pelvic ganglia flanking the base of the mouse bladder 
(Keast et  al., 2015; Roberts et  al., 2019) were removed immediately after death and prepared 
for histology. Tissues were fixed in 4% paraformaldehyde, paraffin-embedded, and sectioned at 
5 μm for bladders and kidneys, or 6 μm for livers. After dewaxing and rehydrating tissue sections, 
BaseScope probes (ACDBio, Newark, CA) were applied. ISH was undertaken, using generic meth-
odology as described (Lopes et al., 2019). To seek expression of transduced HPSE2, BA-Hs-HPSE2-
3zz-st designed against a sequence in bases 973–1102 in exons 5–7 was used. Other sections were 
probed for the widely expressed PPIB transcript encoding peptidylprolyl isomerase B (BaseScope 
Positive Control ProbeMouse (Mm)-PPIB-3ZZ 701071). As a negative control, a probe for bacte-
rial dapB (BaseScope Negative Control ProbeDapB-3ZZ 701011) was used (not shown). We also 
used a BaseScope ISH probe to seek genomic WPRE3 delivered by the viral vector (Cat# 882281). 
BaseScope detection reagent Kit v2-RED was used following the manufacturer’s instructions, with 
positive signals appearing as red dots within cells. Gill’s haematoxylin was used as a counterstain. 
Images were acquired on a 3D-Histech Pannoramic-250 microscope slide-scanner using a ×20/0.80 
Plan Apochromat (Zeiss). Snapshots of the slide scans were taken using the Case Viewer software 
(3D-Histech). Higher-powered images were acquired on an Olympus BX63 upright microscope using 
a DP80 camera (Olympus) through CellSens Dimension v1.16 software (Olympus). For immunohis-
tochemistry, after dewaxing and rehydration, endogenous peroxidase was quenched with hydrogen 
peroxide. Slides were microwaved and then cooled at room temperature for 20  min in antigen-
retrieval solution (10 mM sodium citrate, pH 6.0). A primary antibody raised in rabbit against hepa-
ranase-2 (Abcepta AP12994c; 1:400) was applied. The immunogen was a KLH-conjugated synthetic 
peptide between 451–480 amino acids in the C-terminal region of human heparanase-2, predicted 
to cross-react with mouse heparanase-2. The primary antibody was prepared in PBS Triton-X-100 
(0.1%) and 3% serum and incubated overnight at 4°C. It was reacted with a second antibody and 
the positive brown signal generated with DAB peroxidase-based methodology (Vector Laboratories, 
SK4100). Sections were counterstained with haematoxylin alone, or haematoxylin and eosin. Omis-
sion of the primary antibody was used as a negative control. Some liver sections were also reacted 
with 1% picrosirius red (PSR) solution (diluted in 1.3% picric acid) for 1 hr. Birefringent collagen was 
visualized under cross-polarized light and the percentage of area covered by birefringence measured 
as described (Hindi et al., 2021).

Statistics
Data organized in columns are expressed as mean ± SEM  and plotted and analysed using the 
GraphPad Prism 8 software. Shapiro–Wilk test was used to assess normality of data distributions. If 
the values in two sets of data passed this test and they had the same variance, a Student’s t-test was 
used to compare them. If the variance was different, a t-test with Welch’s correction was used. If data 
did not pass the normality test, a non-parametric Mann–Whitney test was used. Groups of data with 
repeated measurements (e.g. at different stimulation frequencies or concentration) were compared 
using two-way ANOVA with repeated measures. An F-test was used to assess the likelihood that 
independent datasets forming concentration–response relationships were adequately fit by a single 
curve.
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