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Abstract Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. 
We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chem-
ical transmission between neurons and target cells in an organism and created tools for studying 
it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines 
targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp- out, and 
CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the 
best using chromatin- peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of 
principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles 
in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of 
each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock 
neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppres-
sive role of CNMa- CNMaR on morning anticipation, opposite to the promoting role of PDF- PDFR on 
morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its 
tools created here and establish an antagonistic relationship between CNMa- CNMaR and PDF- PDFR 
signaling in regulating morning anticipation.

eLife assessment
This article expands the genetic toolset that was previously developed by the Rao Lab to introduce 
the conditional downregulation of neurotransmission components in Drosophila. As a proof of prin-
ciple, the authors tested their new collection and provide evidence of the contribution of CNMa-
mide (a neuropeptide) to the temporal control of locomotor activity patterns. These are overall 
important findings supported by compelling evidence.
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Introduction
Much research efforts have been made to uncover the wiring and signaling pathways of neural circuits 
underlying specific behaviors. Circuit dissection strategies include genetic screening, genetic labeling, 
circuit tracing, live imaging, genetic sensors, and central nervous system (CNS) reconstruction via 
electron microscopy (EM). Recently, we have developed chemoconnectomics (CCTomics), focusing on 
building a comprehensive set of knockout and knockin tool lines of chemoconnectome (CCT) genes, 
to dissect neural circuitry based on chemical transmission (Deng et al., 2019).

Each strategy has advantages and disadvantages. For example, genetic screening is less biased 
but inefficient; circuit tracing with viruses provides information of connection, but is often prone to 
leaky expression and inaccurate labeling; and EM reconstruction is anatomically accurate but does 
not allow for manipulation of corresponding neurons. CCTomics overcomes limitations of previous 
strategies by allowing for behavioral screening of CCT genes and accurate labeling or manipulation of 
corresponding neurons. However, it is still limited in that knockout of some CCT genes can be lethal 
during development and that CCT genes may function differently in different neurons, which require 
a cell- type- specific manipulation. Thus, we decided to invent a conditional CCTomics (cCCTomics) in 
which gene deletion was conditional.

There are three major strategies for somatic gene mutagenesis at the DNA/RNA level: RNA 
interference, DNA site- specific recombination enzymes, and CRISPR/Cas system. RNA interference 
targets RNAs conveniently and efficiently (Martin and Caplen, 2007; Oberdoerffer et al., 2005). 
Libraries of transgenic RNAi flies covering almost the entire fly genome have been established (Ni 
et al., 2011; Perkins et al., 2015). DNA site- specific recombination enzymes such as Flp, B3, and Cre 
mediate specific and efficient gene editing (Gaj et al., 2014; Grindley et al., 2006). These strategies 
require flies with reverse repetitive sequences knocked into the corresponding genes, which is time- 
consuming with relatively complex recombination for genetic assays. CRISPR/Cas systems, particularly 
CRISPR/Cas9, which targets DNA with a sgRNA/Cas protein complex, have been broadly applied in 
gene manipulation over the last decade. The widespread use of CRIPSR/Cas9 in Drosophila somatic 
gene manipulation began in 2014 (Xue et al., 2014). Later, tRNA- flanking sgRNAs was designed and 
applied, which enabled multiple sgRNAs to mature in a single transcript (Xie et al., 2015), acceler-
ating the application of this strategy in conditional gene manipulation in flies with impressive effi-
ciency (Delventhal et al., 2019; Port and Bullock, 2016; Port et al., 2020; Schlichting et al., 2019; 
Schlichting et al., 2022). Additionally, libraries of UAS- sgRNA targeting kinases (Port et al., 2020) 
and GPCRs Schlichting et al., 2022 have been established, but no sgRNA libraries covering all the 
CCT genes exist yet. The efficiency of CRISPR/Cas9 has not been validated systematically in the 
Drosophila nervous system.

The circadian rhythm can be used for proof- of- principle testing of cCCTomics. Organisms evolve 
periodic behaviors and physiological traits in response to cyclical environmental changes. The rhythmic 
locomotor behavior of Drosophila, for instance, shows enhanced activity before the light is turned on 
and off in a light–dark (LD) cycle, referred to as morning and evening anticipations, respectively (Collins 
et al., 2005; Helfrich Förster, 2001). Under 12 hr dark–12 hr dark (DD) conditions, the activities peak 
regularly about every 24 hr (Konopka and Benzer, 1971). Approximately 150 clock neurons, circadian 
output neurons, and extra- clock electrical oscillators (xCEOs) coordinate Drosophila circadian behav-
iors (Dubowy and Sehgal, 2017; Tang et al., 2022). The regulation of morning and evening antici-
pations, the most prominent features in the LD condition, is primarily mediated by four pairs of sLNvs 
expressing pigment dispersing factor (PDF), six pairs of LNds and the fifth s- LNv (Grima et al., 2004; 
Rieger et al., 2006; Stoleru et al., 2004). At the molecular level, Pdf and Pdf receptor (PDFR) are well 
known, with their mutants showing an advanced evening activity peak and no morning anticipation 
(Hyun et al., 2005; Lear et al., 2005; Renn et al., 1999). Other neuropeptides and their receptors, 
including AstC/AstC- R2 and neuropeptide F (NPF) and its receptor (NPFR), have also been reported 
to modulate evening activities (Díaz et  al., 2019; He et  al., 2013; Hermann et  al., 2012), while 
CCHa1/CCHa1- R and Dh31 regulate morning activities (Fujiwara et al., 2018; Goda et al., 2019). To 
date, no advanced morning activity phenotype has been reported in flies.

To develop a more efficient approach for somatic gene manipulation, we have now generated 
two systems for conditional manipulation of CCT genes: (1) GFPi/Flp- out- based conditional knockout 
(cKO) system of CCT genes (cCCTomics) and (2) CRISPR/Cas9- based (C- cCCTomics). Both systems 
have achieved high efficiency of gene mutagenesis in the Drosophila nervous system. C- cCCTomics, 
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utilizing chromatin- peptide fused Cas9 and scaffold optimized sgRNA, makes efficient conditional 
gene knockout as simple as RNAi. Further application of C- cCCTomics in clock neurons revealed 
novel roles of CCT genes in circadian behavior: CNMa- CNMaR modulates morning anticipation as an 
antagonistic signal of PDF- PDFR.

Results
Near-complete disruption of target genes by GFPi and Flp-out-based 
cCCTomics
For the purpose of cCCTomics, we initially leveraged the benefits of our previously generated CCTo-
mics attP lines (Deng et al., 2019), which enabled us to fuse enhanced GFP (EGFP) coding sequence 
at the 3′ end of each gene’s coding region and flank most or entire gene span with FRT sequence 
through site- specific recombination (Figure 1A and Supplementary file 1). We designed this system 
so that it could be used to target genes tagged with GFP by RNAi (Neumüller et al., 2012) and at 
the same time to enable flippase (Flp)- mediated DNA fragment excision between two FRT sequences 
when FRT sequences are in the same orientation (Vetter et al., 1983; Figure 1A).

To validate the efficiency of cCCTomics, we performed pan- neuronal expression of either shRNAGFP 
or flipase in cCCT flies. Immunofluorescent imaging showed that constitutive expression of shRNAGFP 
(Figure 1B–D, Figure 1—figure supplement 1A–I) or flipase (Figure 1E–G, Figure 1—figure supple-
ment 1J–U) almost completely eliminated GFP signals of target genes, indicating high efficiency. 
Knocking out at the adult stage using either hsFLP driven Flp- out (Golic and Lindquist, 1989; 
Figure 1H–J) or neural (elav- Switch) driven shRNAGFP (Nicholson et al., 2008; Osterwalder et al., 
2001; Figure 1—figure supplement 2A–I) also resulted in the elimination of most, though not all, 
GFP signals. Notably, control group of CCTEGFP.FRT; elav- Switch/UAS- shRNAGFP flies fed with solvent 
(ethanol) showed obvious decreased GFP (Figure 1—figure supplement 2B, E, and H) compared 
with UAS- shRNAGFP/CCTEGFP.FRT flies fed with RU486 (Figure 1—figure supplement 2A, D, and G), 
indicating leaky expression of elav- Switch or shRNAGFP.

We then applied cCCTomics in pan- neuronal knockout of nAChRβ2, which is required for Drosophila 
sleep (Dai et al., 2021). Ablation of nAChRβ2 in the nervous system dramatically decreased sleep of 
flies, mirroring the nAChRβ2 knockout phenotype (Figure  1K and L). Therefore, cCCTomics is an 
effective toolkit for manipulation of CCT genes and suitable for functional investigations of genes. 
Expression of in- frame fused EGFP- labeled CCT genes highly co- localized with signals revealed by 
immunocytochemistry (Figure  1—figure supplement 3A–I), allowing direct examination of gene 
expression without amplification, which is different from the GAL4/UAS binary system.

We then checked the viability of cCCT lines and found that cCCT lines including CapaEGFP.FRT, 
ChATEGFP.FRT, and EhEGFP.FRT were viable, whereas their CCT mutants were lethal. Gad1EGFP.FRT, GluRI-
IDEGFP.FRT, and CapaREGFP.FRT were still lethal as their CCT mutants were (Supplementary file 2). This 
indicates that some of the cCCT knockin flies may functionally affect corresponding genes, which are 
not suitable for conditional gene manipulation. Combination of cCCT transgenic flies with UAS- Flp, 
UAS- shRNAGFP, or specific drivers is complicated and unfriendly for screen work despite the almost 
100% efficiency of gene suppression when driven by a pan- neuronal driver. Because of the limita-
tions of this method, we further created a CRISPR/Cas9- based cKO system of chemoconnectomics 
(C- cCCTomics).

CRISPR/Cas9-based cKO system for CCTomics
To simplify effective manipulation of CCT genes, we designed a vector based on pACU2 (Han et al., 
2011) with tRNA flanking sgRNAs (Port and Bullock, 2016; Xie et al., 2015) targeting CCT genes 
(Figure 2A). We also adopted an optimized sgRNA scaffold ‘E+F’ (E, stem extension; F, A- U flip) (Chen 
et al., 2013), which facilitates Cas9- sgRNA complex formation and gene knockout efficiency (Dang 
et al., 2015; Poe et al., 2019; Zhao et al., 2016), to all sgRNAs to improve gene knockout efficiency. 
To balance efficiency and off- target effect, we selected three sgRNAs for each CCT gene with the 
highest predicted efficiency and no predicted off- target effect based on previously reported models 
(Chu et al., 2016; Doench et al., 2014; Graf et al., 2019; Gratz et al., 2014; Heigwer et al., 2014; 
Stemmer et al., 2015; Xu et al., 2015; see Supplementary file 3 and ‘Materials and methods’).
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Figure 1. Conditional chemoconnectomics (cCCTomics) mediates efficient conditional disruption of chemoconnectome (CCT) genes. (A) Schematic of 
cCCT gene span and principle of cCCTomics. A T2A- EGFP sequence was introduced at the 3′ end of CCT genes and their most or all coding regions 
(depending on attP- KO lines) were flanked by 34 bp FRT sequence. Both Flp- out (top) and GFP RNAi (down) could mediate CCT gene manipulation. 
(B–J) Expression of Trh (B–D), CCHa2 (E–G), and Dh31 (H–J) is efficiently disrupted by pan- neuronal expression of GFP- RNAi (B–D), pan- neuronal 

Figure 1 continued on next page
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We generated UAS- sgRNA3x transgenic lines for all 209 defined CCT genes (Abruzzi et al., 2017; 
Dai et al., 2019; Deng et al., 2019) and UAS- Cas9.HC (Cas9.HC) (Mali et al., 2013). We first veri-
fied that C- cCCTomics mediated precise target DNA breaking by ubiquitous expression of Cas9.P2 
(Port et al., 2014) and sgRNA by targeting Pdf or Dh31. Sanger sequencing showed that indels were 
present exactly at the Cas9 cleavage sites (Figure 2—figure supplement 1A–H).

To determine the efficiency of C- cCCTomics, we employed pan- neuronal expression of Cas9.HC 
with sgRNADh31 or sgRNApdf. Targeting by Cas9.HC/sgRNADh31 eliminated most but not all of the GFP 
signal in Dh31EGFP.FRT (Figure 2B–D), whereas all anti- PDF signals were eliminated by Cas9.HC/sgRNApdf 
(Figure 2E–G). Furthermore, we used the C- cCCT strategy to conditionally knockout genes for Pdfr, 
nAChRβ2, and nAChRα2, which were previously reported as essential for circadian rhythm or sleep 
(Dai et al., 2021; Renn et al., 1999). Pan- neuronal knockout of Pdfr resulted in a tendency toward 
advanced evening activity and weaker morning anticipation compared to control flies (Figure 2H and 
I), which is similar to Pdfr- attpKO flies. These phenotypes were not as pronounced as those reported 
previously when han5304 mutants exhibited a more obvious advanced evening peak and no morning 
anticipation (Hyun et al., 2005). Furthermore, there was no significant sleep decrease in these cKO 
flies (Figure 2J and K) when we applied C- cCCTomics to manipulate nAChRβ2 or nAChRa2. Taken 
together, C- cCCTomics (with Cas9.HC) achieved a relatively high gene knockout efficiency, but it was 
not effective enough for all genes.

Evaluation of Cas9 with different chromatin-modulating peptides
Since the establishment of the CRISPR/Cas9 system a decade ago, many groups have attempted 
to improve its efficiency in gene manipulation. Most attempts have been focused on the two main 
components of this system, the Cas9 protein (Ding et al., 2019; Ling et al., 2020; Liu et al., 2019; 
Zhao et al., 2016; Zheng et al., 2020) and the single- guide RNA (Chen et al., 2013; Chu et al., 
2016; Dang et al., 2015; Doench et al., 2014; Filippova et al., 2019; Graf et al., 2019; Labuhn 
et al., 2018; Mu et al., 2019; Nahar et al., 2018; Scott et al., 2019; Xu et al., 2015). At the begin-
ning of C- cCCTomics design, we adopted an optimized sgRNA scaffold and selected sgRNAs with 
predicted high efficiency. We tried to further improve the efficacy by modifying Cas9 protein. We 
fused a chromatin- modulating peptide (Ding et  al., 2019), HMGN1 (high mobility group nucleo-
some binding domain 1), at the N- terminus of Cas9 and HMGB1 (high mobility group protein B1) at 
its C- terminus with GGSGP linker, termed Cas9.M9 (Figure 3A, ‘Materials and methods’). We also 
obtained a modified Cas9.M6 with HMGN1 at the N- terminus and an undefined peptide (UDP) at the 
C- terminus (Figure 3A). We replaced the STARD linker between Cas9 and NLS in Cas9.HC with the 
GGSGP linker (Zhao et al., 2016), termed Cas9.M0 (Figure 3A). None of these modifications have 
been validated previously in flies.

To determine whether the modified Cas9 variants were more efficient, we first pan- neuronally 
expressed each Cas9 variant and sgRNAple, and assessed their efficiency by immunofluorescence 
imaging. By counting anti- TH- positive neurons in the brain (anterior view) after targeting by Cas9/
sgRNAple, we found that unmodified Cas9.HC/sgRNAple only achieved 69.58 ± 3.04% (n = 5) knockout 

expression of Flp- out (E–G), and heatshock- Flp (H–J), respectively. Representative fluorescence images of R57C10- Gal4/+;TrhEGFP.FRT/+ (B), UAS- 
shRNAGFP/TrhEGFP.FRT (C), R57C10- Gal4/+; UAS- shRNAGFP/TrhEGFP.FRT (D), R57C10- Gal4/+;CCHa2EGFP.FRT/+; (E), UAS- Flp/CCHa2EGFP.FRT (F), R57C10- Gal4/+; 
UAS- Flp/CCHa2EGFP.FRT (G), Dh31EGFP.FRT with heatshock (H), hs- Flp/Dh31EGFP.FRT without heatshock (I), and hs- Flp/Dh31EGFP.FRT with heatshock are shown. 
Manipulation efficiency and experiment group fly number is noted on the right. Scale bar, 50 um. (K, L) sleep profiles (K) and statistical analysis (L) of 
Flp- out- induced nAChRβ2 neuronal knockout flies (dark red), nAChRβ2 knockout flies (light red), and genotype controls (dark, gray and blue). Sleep 
profiles are plotted in 30 min bins. In this and other figures, blank background indicates the light phase (ZT 0–12); shaded background indicates the dark 
phase (ZT 12–24). Daily sleep duration was significantly reduced in nAChRβ2 neuronal knockout files, which is comparable to nAChRβ2 knockout. In all 
statistical panels, unless otherwise noted, (1) numbers below each bar represent the number of flies tested. (2) Mean ± SEM is shown. (3) The Kruskal–
Wallis test followed by Dunn’s post test was used. ***p<0.001; **p<0.01; *p<0.05; n.s., p>0.05. Male flies were used unless otherwise noted.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Data points for Figure 1K and L.

Figure supplement 1. Efficient conditional disruption of chemoconnectome (CCT) genes by conditional chemoconnectomics (cCCTomics).

Figure supplement 2. Gene disruption of target genes by induced shRNA.

Figure supplement 3. Accurate labeling of target genes by cCCT lines.

Figure 1 continued
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Figure 2. C- cCCTomics mediates efficient conditional knockout of chemoconnectome (CCT) genes. (A) Schematic 
of C- cCCTomics principle. Cas9 and three sgRNAs are driven by GAL4/UAS system. Three tandem sgRNAs are 
segregated by fly tRNAGly and matured by RNase Z and RNase P. (B–G) Pan- neuronal knockout of Dh31 (D) and 
Pdf (G) by C- cCCTomics strategy. Representative fluorescence images presented expression of Dh31 (B–D) or 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.91927


 Tools and resources      Neuroscience

Mao et al. eLife 2023;12:RP91927. DOI: https://doi.org/10.7554/eLife.91927  7 of 26

efficiency (Figure  3G, K, and L), while Cas9.M6/sgRNAple and Cas9.M9/sgRNAple significantly 
improved efficiency to 87.53 ± 3.06% (n = 7) and 97.19 ± 2.15% (n = 8), respectively (Figure 3I–L). 
Fourteen additional CCT genes were subjected to pan- neuronal knockout, and the mRNA levels of 
the target genes were evaluated using real- time quantitative PCR with at least one primer overlapping 
the sgRNA targeting site (Figure 3—figure supplement 1). Cas9.M6 and Cas9.M9 demonstrated 
significantly higher gene disruption efficiency compared to the unmodified Cas9.HC, achieving 
average efficiencies of 87.51% ± 2.24% and 89.59% ± 2.39% for Cas9.M6 and Cas9.M9, respectively, 
in contrast to 70.72% ± 3.82% for Cas9.HC. (Figure 3M, Figure 3—figure supplement 1). To rule out 
the possibility of the observed variations in gene disruption efficiency being attributed to differential 
Cas9 expression levels, we quantified the Cas9 expression levels and noted that both Cas9.M6 and 
Cas9.M9 exhibited lower mRNA levels than Cas9.HC under the experiment condition (Figure 3N). 
Subsequently, genomic DNA of Drosophila head was extracted, and libraries encompassing target 
sites were constructed for high- throughput sequencing to verify disparities in genetic editing effi-
ciency among these three Cas9 variants (Figure 3O). In almost all 19 sites tested, the mutation ratio 
consistently showed a trend toward Cas9.M6 and Cas9.M9 having a higher gene disruption efficiency 
than Cas9.HC (Figure 3P, Figure 3—figure supplement 2). The single- site mutation rates varied from 
5.81% to 43.47% for Cas9.HC, 22.40% to 53.54% for Cas9.M6, and 19.90% to 63.57% for Cas9.M9 
(Figure 3P, Figure 3—figure supplement 2). It should be noted that genomic DNA extracted from 
fly heads contained glial cells, which did not express Cas9/sgRNA, leading to a larger denominator 
and consequently reducing the observed mutation rates. Unmodified Cas9 displayed mutation rates 
comparable to those previously reported by Schlichting et  al., 2022. The findings indicated that 
both Cas9.M6 and Cas9.M9 displayed elevated efficiency compared to Cas9.HC, with Cas9.M9 exhib-
iting the highest mutagenesis proficiency. These results suggest that the implementation of modified 
C- cCCTomics using Cas9.M6 and Cas9.M9 achieved an elevated level of efficiency. While unmodi-
fied C- cCCTomics was not efficient enough to knockout nAChRβ2 and nAChRα2 to phenocopy their 
mutants, we employed Cas9.M9 in cKO of these genes to verify its efficiency. Pan- neuronal knocking 
out of nAChRβ2 or nAChRa2 by Cas9.M9/sgRNA showed significant sleep decrease, which was similar 
to their mutants (Figure 3Q, R; Dai et al., 2021).

Taken together, our results support that we have created a high- efficiency toolkit for CCT gene 
manipulation in the nervous system, as well as more efficient Cas9 variants, Cas9.M6 and Cas9.M9, 
which can also be applied to genes other than those in the CCT.

Forty-three CCT genes detected in clock neurons by genetic 
intersection
We analyzed the expression profile of CCT genes in circadian neurons with CCTomics driver lines in all 
clock neurons expressing Clk856 (Gummadova et al., 2009). With the Flp- out or split- LexA intersec-
tion strategy (Figure 4A and B), we found 43 out of 148 analyzed CCT genes expressed in circadian 

anti- PDF (E–G). Pan- neuronal expression of Cas9 and sgRNA eliminated most (D) (n=6)or all (G) (n=7) fluorescent 
signal compared to control fly brains (B–C, E–F). Scale bar, 50 μm. (H) Activity profiles of pan- neuronal knockout 
of Pdfr and Pdfr- attpKO. Activity profiles were centered of the 12 hr darkness in all figures with evening activity on 
the left and morning activity on the right, which is different from general circadian literatures. Plotted in 30 min 
bins. (I) Statistical analysis of morning anticipation index (MAI), power, and period for pan- neuronal Pdf knockout 
and Pdfr- attpKO flies. Knocking out of Pdfr in neurons reduced both MAI, power, and period significantly. (J, 
K) Statistical analysis of nAChRα2 (J) and nAChRβ2 (K) pan- neuronal knockout flies’ sleep phenotype. Sleep of 
these flies was not disrupted.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data points for Figure 2H–K.

Figure supplement 1. Validation of primary C- cCCTomics.

Figure supplement 1—source data 1. Original files of the full raw unedited blots for Figure 2—figure 
supplement 1B and F.

Figure supplement 1—source data 2. Uncropped blots with the relevant bands labeled for Figure 2—figure 
supplement 1B and F.

Figure 2 continued

https://doi.org/10.7554/eLife.91927
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Figure 3. Efficiency evaluation of variations of chromatin- modulating peptides modified Cas9. (A) Schematics of chromatin- modulating peptides 
modified Cas9. (B–J) Efficiency evaluation of Cas9 variants. Fluorescence imaging of R57C10- Gal4>UAS- sgRNAple (B), R57C10- Gal4>UAS- Cas9 (C–
F), and R57C10- Gal4>UAS- Cas9, UAS- sgRNAple (G–J) flies is shown. Brains were stained with anti- TH (green). Scale bar is 50 μm. (K) Anterior TH- positive 
neuron numbers of (K–U).The Kruskal–Wallis test followed by Dunn’s post test was used, each Cas9 variant tested was compared to the two genotype 
controls (R57C10- GAL4/+; UAS- sgRNAple/+ and R57C10- GAL4/+; UAS- Cas9 variant/+ ) . ***p<0.001. (L) Statistical analysis of ple knockout efficiency 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.91927
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neurons (Figure 4C, Figure 4—figure supplements 1–2, and Supplementary files 4 and 5 ). In all 
eight subsets of clock neurons, 23 CCT genes were expressed in DN1s, 20 in DN2s, 22 in DN3s, 28 
in LNds, 14 in l- LNvs, 12 in s- LNvs, 5 in fifth s- LNv, and 3 in LPNs, with a total of 127 gene subsets.

To assess the accuracy of expression profiles using CCT drivers, we compared our dissection 
results with previous reports. Initially, we confirmed the expression of CCHa1 in two DN1s (Fujiwara 
et al., 2018), sNFP in four s- LNvs and two LNds (Johard et al., 2009), and Trissin in two LNds (Ma 
et al., 2021), aligning with previous findings. Additionally, we identified the expression of nAChRα1, 
nAChRα2, nAChRβ2, GABA- B- R2, CCHa1- R, and Dh31- R in all or subsets of LNvs, consistent with 
suggestions from studies using ligands or agonists in LNvs (Duhart et al., 2020; Fujiwara et al., 2018; 
Lelito and Shafer, 2012; Shafer et al., 2008; Figure 4C and Supplementary file 4).

Regarding previously reported Nplp1 in two DN1as (Shafer et al., 2006), we found approximately 
five DN1s positive for Nplp- KI- LexA, indicating a broader expression than previously reported. A 
similar pattern emerged in our analysis of Dh31- KI- LexA, where four DN1s, four s- LNvs, and two LNds 
were identified, contrasting with the two DN1s found in immunocytochemical analysis (Goda et al., 
2016). Co- localization analysis of Dh31- KI- LexA and anti- PDF revealed labeling of all PDF- positive 
s- LNvs but not l- LNvs (Figure 4—figure supplement 3A), suggesting that the differences may arise 
from the broader labeling of 3' end knockin LexA drivers or the amplitude effect of the binary expres-
sion system. The low protein levels might go undetected in immunocytochemical analysis. This aligns 
with transcriptome analysis findings showing Nplp1 positive in DN1as, a cluster of CNMa- positive 
DN1ps, and a cluster of DN3s (Ma et al., 2021), which is more consistent with our dissection.

Despite the well- known expression of PDF in LNvs and PDFR in s- LNvs (Shafer et al., 2008), we did 
not observe stable positive signals for both in Flp- out intersection experiments, although both Pdf- 
KI- LexA and Pdfr- KI- LexA label LNvs as expected (Figure 4—figure supplement 3B and C). We also 
noted fewer positive neurons in certain clock neuron subsets compared to previous reports, such as 
NPF in three LNds and some LNvs (Erion et al., 2016; He et al., 2013; Hermann et al., 2012; Johard 
et al., 2009; Lee et al., 2006) and ChAT in four LNds and the 5th s- LNv (Duhart et al., 2020; Johard 
et al., 2009: Supplementary file 4). We attribute this limitation to the inefficiency of LexAop- FRT- 
myr::GFP driven by LexA, acknowledging that our intersection results may miss some positive signals.

Conditional knockout of CCT genes in clock neurons
To investigate the function of CCT genes in circadian neurons with our cKO system, we knocked out 
all 67 (genes identified above and reported previously) CCT genes in Clk856- labeled clock neurons 
by C- cCCTomics.

In the pilot screen, we monitored fly activity by video recording (Dai et al., 2019) and analyzed 
rhythmic behavior under LD and DD conditions. We analyzed morning anticipation index (MAI) and 
evening anticipation index (EAI) under the LD condition (Harrisingh et al., 2007; Im and Taghert, 
2010; Seluzicki et  al., 2014; Figure  5A), power, period, and arrhythmic rate (AR) under the DD 
condition. Fly activities tended to rise rapidly after ZT22.5 at dawn and ZT10 at dusk. Thus, we added 

related to (K). Modified Cas9.M6 and Cas9.M9 showed an improved efficiency compared to Cas9.HC. Student’s t- test was used. (M) Statistical analysis 
of representational KO efficiency of Cas9 variants as related to Figure 3—figure supplement 1. Gene symbols on the right indicate tested genes. 
(N) Statistical analysis of Cas9 expression level. (O, P) Workflow of efficiency validation by next- generation sequencing (O) and statistical analysis of 
single- site mutation ratios induced by Cas9 variants (P). Paired t- test was used in (M), (N), and (P). (Q, R) Statistical analysis of sleep amount for nAChRα2 
(Q) or nAChRβ2 (R) pan- neuronal knockout flies. Knockout of nAChRα2 and nAChRβ2 by modified Cas9.M9 significantly decreased flies’ sleep amount.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Data points for Figure 3K–O and Q–R.

Source data 2. Original next- generation seq file for Figure 3P.

Source data 3. Original CRISPResso2 analysis report related to Figure 3P and Figure 3—figure supplement 2.

Figure supplement 1. Efficiency validation by real- time quantitative PCR.

Figure supplement 1—source data 1. Data points for Figure 3—figure supplement 1.

Figure supplement 2. Efficiency validation by high- throughput sequencing.

Figure supplement 3. Impact on viability of Cas9 variants expression by GMR57C10- GAL4.

Figure supplement 3—source data 1. Data points for Figure 3—figure supplement 3.

Figure 3 continued

https://doi.org/10.7554/eLife.91927
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A
Flp-out

B
split-LexA

CC

Figure 4. Genetic dissection of Clk856- labeled clock neurons. (A, B) Schematic of intersection strategies used in Clk856- labeled clock neurons 
dissection, Flp- out strategy (A) and split- LexA strategy (B). The exact strategy used for each gene is annotated in Supplementary file 5. (C) Expression 
profiles of CCT genes in clock neurons. Gradient color denotes proportion of neurons that were positive for the chemoconnectome (CCT) gene within 
each subset. The exact cell number for each subset is annotated in Supplementary file 4.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Exact percentage for Figure 4C.

Figure supplement 1. Co- expression of Clk856 with chemoconnectome (CCT) genes (01–23) intersectional expression patterns of CCT drivers with 
Clk856.

Figure supplement 2. Co- expression of Clk856 with chemoconnectome (CCT) genes (01–20) intersectional expression patterns of CCT drivers with 
Clk856.

Figure supplement 3. Co- localization analyses of Dh31, Pdfr, and Pdf -KI- LexA with LNvs.

https://doi.org/10.7554/eLife.91927
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Figure 5. CNMa regulation of morning anticipation in clock neuron. (A) Schematic of morning anticipation index (MAI), evening anticipation index (EAI), 
morning anticipation pattern index (MAPI), and evening anticipation pattern index (EAPI) definition. (B) Activity plots of male flies with CNMa knockout 
in clock neurons (red) and controls (blue, black, and gray), plotted in 30 min bins. An advancement of morning activity peak was presented in CNMa 
clock neuron- specific mutants (brown arrowhead). (C–E) Statistical analyses of MAPI, power, and period of flies in (B). MAPI was significantly increased 
in clock neurons- specific CNMa- deficient flies (C) while power (D) and period (E) were not changed. (F) Schematic of CNMaKO generation. The entire 
encoding region of CNMa was replaced by an attP- SAstop- 3P3- RFP- loxP cassette using CRISPR- Cas9 strategy. (G) Statistical analysis of MAPI of male 
CNMaKO flies (red) and controls (blue and black). MAPI significantly increased in male CNMaKO flies. (H) Activity plots of female CNMaKO flies (red) and 

Figure 5 continued on next page
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two more parameters to describe the anticipatory activity patterns of LD condition. Morning antici-
pation pattern index (MAPI) was defined as the difference between Pia[arctan(ZT20.5~ZT22.5 activity 
increasing slope)] and Pip[arctan(ZT22.5~ZT24 activity increasing slope)], M(Pia- Pip). Evening anticipa-
tion pattern index (EAPI) was defined similar to MAPI (Figure 5A, see ‘Materials and methods’). Pia 
and Pip were positive, while MAPI and EAPI were negative, for wild type (wt) flies as their activities 
gradually increases at dawn or dusk at increasing rates.

Knocking out Pdf or Pdfr in clock neurons phenocopied their mutants with lower MAI, advanced 
evening activity, low power, high arrhythmic rate, and shorter period (Hyun et al., 2005; Lear et al., 
2005; Renn et al., 1999: Supplementary file 6 and Figure 5—figure supplement 1A–D). The MAI- 
decreasing phenotype of Dh31 knockout was also reproduced in this pilot screen (Goda et al., 2019; 
Supplementary file 6). All the above results verified the effectiveness of C- cCCTomics. Unexpectedly, 
additional experimental replications with full controls using Cas9.M9 revealed that leaky expression 
of Cas9.M9 and sgRNA might have caused disruption of Dh31, Dh44, Pdf, and Pdfr (Figure 5—figure 
supplement 1A–D), which was not suitable for neuronal- specific mutagenesis of some genes. There-
fore, in the following work we primarily focused on Cas9.M6 instead.

Analysis of the newly defined parameters MAPI and EAPI showed that control flies (Clk856- 
GLA4>UAS- Cas9.M9) had negative EAPI but slightly positive MAPI. The positive MAPI of control flies 
in this screen might be caused by Cas9.M9 toxicity. Only the Pdf and Pdfr clock neuron knockout flies 
showed positive EAPIs, indicating an advanced evening activity (Supplementary file 6 and Figure 5—
figure supplement 1A and C). nAChRα1, MsR1, mAChR- B, and CNMa cKO flies had the highest 
MAPI values (Supplementary file 6). We further confirmed their phenotypes using Cas9.M6, which 
revealed that CNMa plays a role in regulating morning anticipatory activity (Figure 5—figure supple-
ment 2A).

Regulation of morning anticipation by CNMa-positive DN1p neurons
Conditionally knocking out CNMa in clock neurons advanced morning activity (Figure 5B, Figure 5—
figure supplement 2B) and increased MAPI (Figure 5C, Figure 5—figure supplement 2A and C), 
leaving the power and period intact in male flies (Figure 5D and E). The same advanced morning 
activity phenotype was also observed in female flies (Figure 5—figure supplement 2D–G). To further 
validate this phenotype, we generated a CNMa knockout (CNMaKO) line by replacing its whole coding 
region with an attP- splicing adaptor element (Figure 5F). Both male and female CNMaKO flies exhib-
ited the same phenotypes as seen in the CNMa cKO (Figure 5G–I).

Previous studies have found CNMa expression in DN1 neurons (Abruzzi et al., 2017; Jin et al., 
2021; Ma et al., 2021). Our intersection showed four DN1p and one DN3 CNMa- positive neurons in 
Clk856- labeled neurons (Figure 4—figure supplement 2, #16, Figure 4C). Analysis with an endog-
enous CNMa- KI- GAL4 knockin driver showed that six pairs of CNMa neurons located in the DN1p 
region and three pairs located in the subesophageal ganglion (SOG) had the brightest GFP signals 
(Figure 6A). The anatomical features of CNMa neurons were further confirmed using stingerRed and 
more neurons were found in regions, the anterior ventrolateral protocerebrum (AVLP), and the antennal 
mechanosensory and motor center (AMMC) (Figure 6—figure supplement 1A). Dendrites of CNMa 
neurons were concentrated in DN1p and SOG, with their axons distributed around DN1p region, 
lateral horn (LH), and prow region (PRW) (Figure 6B and C). Using the trans- tango strategy (Talay 
et al., 2017), we also found that downstream of CNMa neurons were about 15 pairs of neurons in the 

controls (blue and black). (I) Statistical analysis of MAPI of female CNMaKO flies (red) and controls (blue and black). MAPI was significantly increased in 
female CNMaKO flies.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Data points for Figure 5B–E and G–I.

Figure supplement 1. Disruption of chemoconnectome (CCT) genes due to leaky expression of Cas9.M9.

Figure supplement 1—source data 1. Data points for Figure 5—figure supplement 1A–D.

Figure supplement 2. Morning activity advanced by loss of CNMa.

Figure supplement 2—source data 1. Data points for Figure 5—figure supplement 2A–G.

Figure 5 continued
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Figure 6. Expression, projection, and trans- projection feature of CNMa neurons and its functional subset. (A–C) Expression and projection patterns of 
CNMa- KI- Gal4 in the brain. Membrane, dendrites, and axon projections are labeled by mCD8::GFP (A), Denmark (B), and syt::eGFP (C), respectively. 
(D) Downstream neurons labeled through trans- tango driven by CNMa- KI- GAL4. Arrowheads indicate candidate downstream neurons: 6 neurons in PI, 1 
pair in DN3, 5 pairs in LNd, and about 15 pairs in subesophageal ganglion (SOG). (E–H) Intersection of DN1p CNMa neurons with DN1p- labeled drivers. 

Figure 6 continued on next page
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SOG, 5 pairs of LNd neurons, 1 pair of DN3 neurons, and 6 intercerebralis (PI) neurons (Figure 6D, 
arrowhead).

Because we had found that knocking out CNMa in Clk856- GAL4- labeled neurons produced 
advanced morning activity, and that CNMa intersected with Clk856- Gal4- labeled neurons in four pairs 
of DN1ps and one pair of DN3 neurons (Figure 4—figure supplement 2, #16), we focused on these 
neurons and performed more intersections. Taking advantage of a series of clock neuron subset- 
labeled drivers (Sekiguchi et al., 2020), we intersected CNMa- p65AD with four DN1 labeling drivers: 
GMR51H05- GAL4, GMR91F02- GAL4, Pdfr- KI- GAL4, and GMR79A11- GAL4 (Figure 6E–H). We found 
two arborization patterns: type I with two neurons whose branches projecting to the anterior region, 
as observed in CNMa∩GMR51H05, CNMa∩Pdfr, and CNMa∩GMR79A11 (Figure 6E, G, and H), and 
type II with four neurons branching on the posterior side with few projections to the anterior region, as 
observed in CNMa∩GMR91F02 (Figure 6F). These two types of DN1ps’ subsets have been previously 
reported and profoundly discussed (Lamaze et al., 2018; Reinhard et al., 2022).

CNMa knockout in type I or type II neurons (GMR51H05- GAL4, GMR91F02- GAL4, and 
GMR79A11- GAL4) all reproduced the MAPI- increased phenotype of clk856- specific CNMa knockout 
(Figure 6I). However, type II neurons- specific CNMa knockout (CNMa ∩ GMR91F02) showed weaker 
advanced morning activity without advanced morning peak (Figure 6N), while type I neurons- specific 
CNMa knockout did (Figure 6J), indicating a possibility that these two type I CNMa neurons are the 
main functional subset regulating the morning anticipation activity of fruit fly.

Pdf or Pdfr mutants exhibit weak or no morning anticipation, which is related to the phenotype of 
CNMa knockout flies. We also identified two Pdfr and CNMa double- positive DN1ps, which have a 
type I projection pattern (Figure 6G). Reintroduction of Pdfr in Pdfr knockout background revealed 
that GMR51H05 and GMR79A11 Gal4 drivers, which covered the main functional CNMa- positive 
subset, could partially rescue the morning anticipation and power phenotype of Pdfr knockout flies to 
a considerably larger extent than the GMR91F02 driver (Figure 6Q–S, Figure 6—figure supplement 
2A, and Supplementary file 7). Moreover, knocking out Pdfr by GMR51H05 and CNMa GAL4, which 
cover type I CNMa neurons, decreased morning anticipation of flies (Figure 6T, Figure 6—figure 
supplement 2B). However, the decrease in morning anticipation observed in the Pdfr knockout by 
CNMa- GAL4 was not as pronounced as with GMR51H05- GAL4. Because the presumptive main subset 
of functional CNMa is also PDFR- positive, there is a possibility that CNMa secretion is regulated by 
PDF/PDFR signal.

Role of neuronal CNMaR in morning anticipation
There is only one CNMa receptor reported in the fly genome (Jung et al., 2014). We generated a 
CNMaRKO- p65AD line by CRISPR/Cas9 (Figure 7A), and this knockout showed advanced morning activity 
(Figure 7B and D) and increased MAPI (Figure 7C and E) in both sexes. CNMaRKI- Gal4/UAS- mCD8::GFP 
and CNMaRKI- Gal4/UAS- stinger::Red showed expression of CNMaR across the whole brain (Figure 7F, 
Figure  6—figure supplement 1B), especially in DN1p, DN3, the PI, and the SOG. The dendrite 
arborization and synaptic projections of CNMaR neurons also covered broad regions (Figure 7G and 

GMR51H05- GAL4 (E), GMR91F02- GAL4 (F), Pdfr- KI- GAL4 (G), and GMR79A11- GAL4 (H) were intersected with CNMa- p65AD, UAS- LexADBD, LexAop- 
myr::GFP. Two type I (E, G, H) neurons projected to anterior region and four type II (F) neurons had fewer projections to anterior region. Scale bar, 
50 μm. (I) Morning anticipation pattern index (MAPI) was significantly increased in all three DN1p drivers- mediated CNMa knockout. Each experimental 
group(red) was compared to their three genotype controls. (J, K) Activity plots of CNMa knockout in R51H05- GAL4 (J) and R91F02- GAL4 (N) neurons. 
R51H05- GAL4- mediated CNMa knockout flies showed an advanced morning activity peak (J), while R91F02- Gal4- mediated CNMa knockout flies did 
not (N). (Q–S) Statistical analyses of morning anticipation index (MAI), power, and period. Each experimental group (pink, light red and dark red）was 
compared to their genotype controls (grey and blue).There was no significant difference between Pdfr- attpKO;UAS- Pdfr/+; R91F02- GAL4/+(light red) 
and its genotype control Pdfr- attpKO;UAS- Pdfr/+ (grey). Pdfr reintroduction in R79A11 and R51H05 neurons could partially rescue the MAI- decreased 
phenotype of Pdfr knockout flies. (T) Statistical analyses of MAI of Pdfr knocking out in CNMa- GAL4 and R51H05- GAL4- labeled neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Data points for Figure 6I–T.

Figure supplement 1. Expression of CNMa and CNMaR.

Figure supplement 2. Activity plots related to Figure 6.

Figure supplement 2—source data 1. Data points for Figure 6—figure supplement 2A and B.

Figure 6 continued
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Figure 7. CNMaR regulation of morning anticipation. (A) Schematic of CNMaRKO- p65AD generation. Most of the first exon in CNMaR was replaced by a 
T2A- p65AD- loxP- 3P3- RFP- loxP cassette using CRISPR- Cas9 strategy and the T2A- p65AD was inserted in the reading frame of the remaining CNMaR 
codon. 3P3- RFP was removed latterly by Cre mediated recombination. (B–E) Activity plot (B, D) and statistical analysis (C, E) of male (B–C) or female 
(D–E) CNMaRKO- p65AD flies (red) and genotypical controls (blue and black). Morning anticipation pattern index (MAPI) was significantly increased in both 

Figure 7 continued on next page
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H), at the PI, the SOG, the posterior ventrolateral protocerebrum (PVLP), and the central complex 
(CC). Further cKO of CNMaR in neurons by C- cCCTomics phenocopied CNMaRKO- p65AD phenotype 
(Figure 7I–L). These results indicate that CNMaR is similar to CNMa in regulating morning anticipation.

Discussion
Conditional CCTomics strategies and toolkit
We have generated conditional gene manipulation systems based on Flp- out/GFPi or CRISPR/Cas9. 
cCCT- based gene deletion after heat- shock or mifepristone (RU486) eliminated most GFP signals, 
and pan- neuronal constitutive expression of shRNAGFP or flippase disrupted seven out of eight tested 
genes completely while targeting of SIFaEGFP.FRT achieved 96% ± 3% efficiency. Although the recombi-
nation of genetic elements is relatively cumbersome when using cCCTomics, it is worthwhile applying 
this method to specific genes given its high level of efficiency. While two UAS- sgRNA libraries have 
been established, one primarily targeting kinases (Port et al., 2020) and the other targeting GPCRs 
(Schlichting et al., 2022), both libraries only cover a portion of CCT genes, and are thus insufficient 
for manipulating all CCT genes. The development of C- cCCTomics, however, makes CCT gene manip-
ulation as simple as RNA interference. Furthermore, the use of modified Cas9.M6 or Cas9.M9 highly 
enhances the efficiency of gene disruption in the nervous system, allowing for efficient manipulation 
of all CCT genes in a cell- specific manner.

The toxicity of CRISPR/Cas9 depends on the Cas9 protein (Port et al., 2014). When expressed 
pan- neuronally in nSyb- GAL4 (R57C10- GAL4, attP40), Cas9.M9 slightly reduced viability, while the 
expression of other Cas9 variants had no significant effect on viability (Figure 3—figure supplement 
3). Although Cas9.M9 showed leaky expression efficiency, this was not a problem with Cas9.M6, which 
successfully disrupted Dh31, Dh44, Pdf, and Pdfr (Figure 5—figure supplement 1). A more restricted 
expression of Cas9.M9 with lower toxicity is necessary for better somatic gene manipulation in the 
future.

CCT of clock neurons
Intersecting Clk856- Gal4 or Clk856- p6AD with CCTomics, we identified 43 CCT genes in Clk856- 
labeled clock neurons. Clock neurons appear highly heterogeneous both in our intersection dissection 
and in a previous transcriptomic analysis (Abruzzi et al., 2017; Ma et al., 2021). Comparing these two 
CCT gene expression profiles in clock neurons, 41 out of 127 gene subsets are identical. The accuracy 
of our genetic intersection is limited by two possibilities: (1) KI- LexA may not fully represent the expres-
sion pattern of the corresponding gene, and (2) the efficiency of STOP cassette removal in the Flp- out 
strategy is limited or the efficiency of LexA>LexAop::myrGFP. Moreover, the leakage of LexAop- GFP 
may result in unreliable labeling in split- LexA strategy. Both genetic drivers and transcriptomic analysis 
contribute to our knowledge of the expression profile of neurons. The physiological significance of 
each gene in particular neurons should be further investigated by genetic manipulation.

Regulation of rhythmic behavior by CCT genes
Multiple attractive genes have been identified in our functional screen of CCT genes in clock neurons: 
for example, knocking out of VGlut weakens morning anticipation (Supplementary file 8). In further 
screening of brain regions, we have narrowed down the morning anticipation regulation role of VGlut 
in R18H11- GAL4- labeled neurons (Supplementary file 9). VGlut in these neurons has also been 
reported to regulate sleep in Drosophila (Guo et al., 2016). Its downstream neurons may be the PI 
neurons or LNvs (Barber et al., 2021; Guo et al., 2016).

male and female CNMaRKO- p65AD flies. In this and other figures, ‘♀’ denotes female flies. (F–H) Expression and projection patterns of CNMaR- KI- Gal4 in 
the brain. Scale bars, 50 μm. (I–L) Activity plots (I, K) and statistical analyses (J, L) of CNMaR pan- neuronal knockout flies. Neuronal knockout of CNMaR 
increased MAPI (J, L).

The online version of this article includes the following source data for figure 7:

Source data 1. Data points for Figure 7B–E and I–L.

Figure 7 continued
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Moreover, the deficiency of the neuropeptide CNMa results in advanced morning activity. We have 
validated that two Pdfr and CNMa double- positive DN1p neurons may play a major role in regulating 
this process through intersectional manipulation of CNMa. Knockout and reintroduction of Pdfr in these 
neurons have verified that Pdfr partially functions in DN1p CNMa neurons, and PDF increases cAMP 
level in Pdfr- positive neurons (Shafer et al., 2008), suggesting a possibility of the regulation of CNMa 
signaling by PDF signaling. Furthermore, given that the morning anticipation vanishing phenotype of 
Pdf or Pdfr mutant indicates a promoting role of PDF- PDFR signal, while the enhanced morning antic-
ipation phenotype of CNMa mutant suggests an inhibiting role of CNMa signal, we consider the two 
signals to be antagonistic. However, knocking out CNMaR in Clk856- labeled clock neurons showed 
no significant phenotype (Supplementary file 6), whereas the mutant and pan- neuronal knockout flies 
had similar phenotypes to CNMa knockout flies, suggesting its role in the circadian output neurons. 
Previous studies have indicated that CNMa integrate thermosensory inputs to promote wakefulness, 
and CNMaR is thought to function in Dh44- positive PI neurons (Jin et al., 2021), a subset of circadian 
output neurons. To gain a deeper understanding of the downstream effects of DN1p CNMa- positive 
neurons, further analysis focusing on specific brain regions is necessary.

We have also reproduced phenotypes of Pdf, Pdfr, and Dh31 mutant flies with C- cCCTomics as 
previous studies. Surprisingly, only 5 genes are functional among all 67 CCT genes in this prior screen. 
This may be caused by limitations of the simple behavioral paradigm, single- gene manipulation, and 
single GAL4 driver. For example, switching of light condition from L:D = 12 hr:12 hr to L:D = 6 hr:18 hr, 
AstC/AstC- R2 would suppress flies’ evening activity intensity to adapt to the environmental change 
(Díaz et al., 2019), and only double knockout of AChRs and mGluRs in PI neurons can possibly result 
in alteration in behavioral rhythms (Barber et al., 2021). Further diversified functional analysis of CCT 
genes in clock neurons is required for clock circuit dissection.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Antibody Anti- Bruchpilot antibody (mouse monoclonal)
Developmental Studies 
Hybridoma Bank RRID:AB_2314866 1:40

Antibody Anti- TH (rabbit polyclonal) Novus Biologicals
NOVUS NB300- 109; 
RRID:AB_10077691 1:1000

Antibody Anti- mouse IgG- Alexa633 (goat polyclonal) Invitrogen
Cat#A- 21050; 
RRID:AB_2535718 1:1000

Antibody Anti- PDF (mouse monoclonal)
Developmental Studies 
Hybridoma Bank

PDF C7; 
RRID:AB_760350, 
AB_2315084 1:200

Antibody Anti- LK (rabbit polyclonal) Rao Lab Anti- LK 1:1000

Antibody Anti- DSK (rabbit polyclonal) Wu et al., 2020 Anti- DSK 1:1000

Antibody Anti- rabbit IgG- Alexa488 (goat polyclonal) Invitrogen
Cat# A- 11008; 
RRID:AB_143165 1:1000

Antibody Anti- rabbit IgG- Alexa633 (goat polyclonal) Invitrogen
Cat# A- 21070; 
RRID:AB_2535731 1:1000

Genetic reagent 
(Drosophila 
melanogaster) CCT attP KO lines Deng et al., 2019 N/A

Genetic reagent (D. 
melanogaster) CCT KI GAL4/LexA lines Deng et al., 2019 N/A

Genetic reagent (D. 
melanogaster) Clk856- GAL4 Bloomington #93198

Genetic reagent (D. 
melanogaster) w*, P{nos- phiC31\int.NLS}X;;P{CaryP}attP2

Jenelia Research 
Campus N/A

https://doi.org/10.7554/eLife.91927
https://identifiers.org/RRID/RRID:AB_2314866
https://identifiers.org/RRID/RRID:AB_10077691
https://identifiers.org/RRID/RRID:AB_2535718
https://identifiers.org/RRID/RRID:AB_760350
https://identifiers.org/RRID/RRID:AB_143165
https://identifiers.org/RRID/RRID:AB_2535731
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Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Genetic reagent (D. 
melanogaster) w1118;P{GMR57C10- GAL4}attP40

Luo Lab, Peking 
University N/A

Genetic reagent (D. 
melanogaster) y1 M{vas- int.Dm}ZH- 2A w*; PBac{y+-attP- 9A}VK00005 Bloomington #24862

Genetic reagent (D. 
melanogaster) y1 w* P{nos- phiC31\int.NLS}X; P{CaryP}attP40 Bloomington #79604

Genetic reagent (D. 
melanogaster) y1 w*; P{UAS- mCD8::GFP.L}LL5, P{UAS- mCD8::GFP.L}2 Bloomington #5137

Genetic reagent (D. 
melanogaster) w1118;P{GMR57C10- GAL4}attP2 Bloomington #39171

Genetic reagent (D. 
melanogaster) 20xUAS- IVS- FLP1;in attp2

Jenelia Research 
Campus 1116428 PJFRC152

Genetic reagent (D. 
melanogaster) 20xUAS- IVS- FLP1;;PEST in attp2

Jenelia Research 
Campus 1116430 PJFRC150

Genetic reagent (D. 
melanogaster)

y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8]=VALIUM20- EGFP.shRNA.1}
attP40 Bloomington #41555

Genetic reagent (D. 
melanogaster) P{ 13XLexAop2( FRT. stop) myr:: GFP}attP2 Rubin Lab #1116847

Genetic reagent (D. 
melanogaster) y1 w*; P{elav- Switch.O}GSG301 Bloomington #43642

Genetic reagent (D. 
melanogaster) w*; P{trans- Tango}attP40 Bloomington #77123

Genetic reagent (D. 
melanogaster) w[1118]; P{w[+mC]=UAS- RedStinger}4/CyO Bloomington #8546

Genetic reagent (D. 
melanogaster) w[1118]; P{w[+mC]=UAS- Denmark}2 Bloomington #33062

Genetic reagent (D. 
melanogaster) w[*]; P{w[+mC]=UAS- syt.eGFP}3 Bloomington #6926

Genetic reagent (D. 
melanogaster) UAS- Cas9.HC(VK00005) This paper Rao Lab

Genetic reagent (D. 
melanogaster) UAS- Cas9.M0(attP40 or attP2) This paper Rao Lab

Genetic reagent (D. 
melanogaster) UAS- Cas9.M6(attP40 or attP2) This paper Rao Lab

Genetic reagent (D. 
melanogaster) UAS- Cas9.M9(attP40 or attP2) This paper Rao Lab

Recombinant DNA 
reagent pACU2

Jan Lab, University of 
California, San Francisco N/A

Recombinant DNA 
reagent pEC14 Deng et al., 2019 N/A

Recombinant DNA 
reagent pBSK- attB- loxP- myc- T2A- Gal4- GMR- miniwhite Deng et al., 2019 N/A

Recombinant DNA 
reagent pAAV- Efla- DIO- mScarlet Addgene #130999

Software, algorithm MATLAB MathWorks, Natick, MA

https://www. 
mathworks.com/ 
products/matlab. 
html

 Continued

 Continued on next page

https://doi.org/10.7554/eLife.91927
https://www.mathworks.com/products/matlab.html
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Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm Prism 8 GraphPad
https://www. 
graphpad.com/

Software, algorithm Imaris Bitplane
http://www.bitplane. 
com/imaris/imaris

 Continued

Fly lines and rearing conditions
Flies were reared on standard corn meal at 25℃, 60% humidity, 12 hr light:12 hr dark (LD) cycle. For 
flies used in behavior assays, they were backcrossed into our isogenized Canton S background for 5–7 
generations. For heat- induced assays, flies were reared at 20℃. All CCT attP KO lines and CCT KI driver 
lines were previous generated at our lab (Deng et al., 2019). Clk856- GAL4 and GMR57C10- GAL4 
driver lines were gifts from Donggen Luo Lab (Peking University). 13XLexAop2 ( FRT. stop) myr::GFP 
was a gift from Rubin Lab.

C-cCCTomics sgRNAs design
All sgRNAs target at or before functional coding regions (e.g., GPCR transmembrane domain, synthe-
tase substrate binding domain) of each CCT genes. For each gene, about 20 sgRNAs with specific 
score ≥12 were firstly designed at the CRISPRgold website (Chu et al., 2016; Graf et al., 2019), then 
their specificity and efficacy were further valued in Optimal CRISPR target finder (Gratz et al., 2014), 
E- CRISPR (Heigwer et al., 2014), and CCTop (Stemmer et al., 2015) system. The first three highest 
efficacy sgRNAs with no predicted off- target effect were selected. All selected sgRNAs are listed in 
Supplementary file 3.

Molecular biology
All cCCTomics knockin (KI) lines and C- cCCTomics transgenic flies were generated through phiC31- 
mediated attB/attP recombination, and the miniwhite gene was used as selection marker.

For cCCTomics KI lines, backbone pBSK- attB- FRT- HpaI- T2A- EGFP- FRT was modified from pBSK- 
attB- loxP- myc- T2A- Gal4- GMR- miniwhite (Deng et al., 2019). Myc- T2A- GAL4 cassette was removed 
by PCR amplification while first FRT cassette was introduced. Second FRT cassette was inserted by 
T4 ligation between SpeI and BamHI. T2A- EGFP was cloned from pEC14 and was inserted into the 
backbone between two FRT cassettes. All gene spans, except for stop codon, deleted in CCT attP 
KO lines were cloned into pBSK- attB- FRT- HpaI- T2A- EGFP- FRT at HpaI site (Supplementary file 10).

For C- cCCTomics UAS- sgRNA lines, backbone pMsgNull was modified from pACU2 (Han et al., 
2011). Synthetic partial fly tRNAGly sequence was inserted between EcoRI and KpnI. An irrelevant 1749 
bp cassette amplified from pAAV- Efla- DIO- mScarlet (Addgene #130999) was inserted between EagI 
and KpnI. All sgRNA spacers were synthesized at primers, and ‘E+F’ sgRNA scaffold and rice tRNAGly 
was amplified from a synthetic backbone PM04. Finally, gRNA- tRNAGly cassettes were cloned into 
pMsgNull between EagI and KpnI by Gibson Assembly (Supplementary file 10).

All UAS- Cas9 variants generated in this research were cloned into vector pACU2 (between EcoRI 
and Acc65I) and all Cas9 sequences were amplified from hCas9 (Addgene #41815). Human codon- 
optimized Cas9 was cloned into pACU2 to generate UAS- Cas9.HC. UAS- Cas9.M0 was modified from 
UAS- Cas9.HC by introducing an HA tag after NSL and replacing the SARD linker with the GGSGP 
linker (Zhao et al., 2016). UAS- Cas9.M6 and UAS- Cas9.M9 were designed as HMGN1- Cas9- UPD and 
HMGN1- Cas9- HB1, respectively. All these chromatin- modulating peptides were linked with Cas9 by 
GGSGP linker (Supplementary file 10).

CNMaRKO- p65AD was generated by replacing the coding region of the first exon with T2A- p65AD by 
CRISPR/Cas9, and the T2A- p65AD was linked in frame after first 10 amino acids. Spacers of gRNAs 
used to break the targeted CNMaR region were 5′-  GCAG  ATTT  CAGT  TCAT  CTTT -3′, 5′-  GGCT  TGGC  
AATG  AC TATATA- 3′.

Gene expression quantitation and high-throughput sequencing
Female flies were gathered 6–8 d post- eclosion for gene expression quantification and high- throughput 
sequencing. Fly heads were isolated by chilling them on liquid nitrogen and subsequent shaking. 
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mRNA extraction was performed using Trizol according to a previously established protocol (Green 
and Sambrook, 2020). Genomic DNA was removed, and cDNA was synthesized using a commer-
cial kit (TIANGEN#DP419). For real- time quantitative PCR, at least one PCR primer was designed to 
overlap with the sgRNA target site.

Genomic DNA from fly heads was extracted using a standard alkali lysis protocol (Huang et al., 
2009). Genomic regions approximately 130–230 bp in length, centered around the sgRNA target 
site, were amplified by PCR employing Q5 polymerase (NEB#M0494). Subsequently, libraries were 
prepared using the BTseq kit (Beijing Tsingke Biotech Co., Ltd). These libraries were pooled and 
subjected to sequencing on the MiSeq platform (Illumina). Analysis of the libraries was conducted 
using Crispresso2 (Clement et al., 2019).

Generation of KI and transgenic lines
Generation of cCCTomics KI, CNMaKI- p65AD, and CNMaRKO- p65AD lines are the same as the generation of 
CCTomics KI driver lines as previously described (Deng et al., 2019). To generate C- cCCTomics UAS- 
sgRNA or UAS- Cas9 variants lines, attB vectors were injected and integrated into the attP40, attP2, or 
VK00005 through phiC31- mediated gene integration.

All flies generated in this research were selected by mini- white and confirmed by PCR.

Behavioral assays
Unmated male or female flies of 4–5 d were used in circadian rhythm assays. Before measurement, 
flies were entrained under 12 hr light:12 hr dark cycle at 25℃ for at least 3 d and then transferred to 
dark–dark condition for 7 d.

Virgin flies of 4–5 d were used in sleep assays. Flies were entrained to a 12 hr light:12 hr dark cycle 
at 25℃ for 2 d to eliminate the effect of CO2 anesthesia before sleep record. Sleep was defined as 
5 min or longer immobility (Hendricks et al., 2000; Shaw et al., 2000) and analyzed by in- house 
scripts as previously described (Dai et al., 2021; Dai et al., 2019; Deng et al., 2019).

Locomotion was obtained as previously described (Dai et  al., 2021). Locomotion activity was 
measured and analyzed by Actogram J plugin (Dai et al., 2019). MAI and EAI were defined as the 
ratio of last 3 hr activity before light- on or light- off accounts to last 6 hr activity before light- on or 
light- off, further subtracted by 0.5 (Index = sum(3 hr)/sum(6 hr)–0.5) (Harrisingh et al., 2007; Im and 
Taghert, 2010; Seluzicki et al., 2014) and analyzed by an in- house Python script (see Source code). 
Each experiment was repeated two or three times.

Heat shock and drug treatment
For hsFLP- mediated cKO, flies of 4–6 d were heat shocked at 37℃ during ZT10 to ZT12 for 4 d. They 
were reared at 20℃ for another 4 d and then dissected.

For mifepristone (RU486)- induced cKO, flies of 4–6 d were treated with 500 μM RU486 mixed in 
corn food and then dissected 4 d later.

Immunohistochemistry and confocal imaging
For all imaging without staining, adult flies were anesthetized on ice and dissected in cold phos-
phate buffered saline (PBS). Brains or ventral nerve codes (VNCs) were fixed in 2% paraformaldehyde 
(weight/volume) for 30 min, washed with washing buffer (PBS with 1% Triton X- 100, v/v, 3% NaCl, g/
ml) for 7 min three times, and mounted in Focusclear (Cell Explorer Labs, FC- 101).

For imaging with staining, brains and VNCs were fixed for 30 min and washed for 15 min three 
times. Then they were blocked in PBSTS, incubated with primary antibodies, washed with washing 
buffer, incubated with second antibodies, and mounted as described previously (Dai et al., 2021; Dai 
et al., 2019).

All brains or VNCs were imaged on Zeiss LSM710 or Zeiss LSM880 confocal microscope and 
processed with Imaris.

The following primary antibodies were used: mouse anti- PDF (1:200, DSHB), rabbit anti- TH (1:1000, 
Novus Biologicals), and rabbit anti- LK (1:1000, Rao Lab, this paper). Rabbit anti- DSK (1:1000) was a 
gift from Dr. C. Zhou Lab (Institute of Zoology, Chinese Academy of Science) (Wu et al., 2020). The 
following secondary antibodies were used: Alexa Fluor goat anti- mouse 488 (1:1000, Invitrogen) and 
Alexa Flour goat anti- rabbit 488/633 (1:1000, Invitrogen).
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For Figure 2, the number of TH- positive neurons was counted with Imaris Spots plugin.

Quantification and statistics
MAI, MAPI, EAI, EAPI, power, and period were calculated by Python or R scripts. ZT0 was set as the 
time point when light was on and ZT12 was set as the time point for light off. Activity bins started at 
ZT0 and each was calculated as a sum of the total activity within 30 min. Flies were regarded as dead 
and removed if their activity value within the last two bins was 0. A representative 24 hr activity pattern 
was the average between the corresponding activity bins from two consecutive days. To minimize 
effects from singular values, each flies’ activity was normalized using the following formula:

 
Nor_bi =

bi − min
(
b0, . . . , b48

)

max
(
b0, . . . , b48

)
− min

(
b0, . . . , b48

)
  

where bi is the activity value for a certain bin. min(b0,...,b48) is the minimal bin value within 24 hr, and 
max(b0,...,b48) is the maximal bin value within 24 hr. Nor_bi is the final normalized bin value for a certain 
bin from a given fly. Normalized activity was used for the following analysis.

Morning activity arise (M_arise) was defined as the radian between the activity curve (ZT21- ZT22) 
and the time coordinate. Morning activity plateau (M_plateau) was defined as the radian between the 
activity curve (ZT22.5- ZT24) and the time coordinate. Evening activity arise (E_arise) was defined as 
the radian between the activity curve (ZT8- ZT11.5) and the time coordinate. Evening activity plateau 
(E_plateau) was defined as the radian between the activity curve (ZT10.5- ZT12) and the time coor-
dinate. MAPI was calculated by subtracting M_arise from M_plateau, and EAPI was calculated by 
subtracting E_arise from E_plateau.

The original activity data from seven consecutive days in dark–dark condition was used for power 
and period calculation as described (Geissmann et al., 2019). Each fly’s periodogram was calculated 
based on chi- square algorithm (Sokolove and Bushell, 1978), and flies with a null power value were 
regarded as arrhythmic.

All statistical analyses were carried out with Prism 8 (GraphPad software). The Kruskal–Wallis 
ANOVA followed by Dunn’s post test was used to compare multiple columns.
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