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Abstract Adaptive motor behavior depends on the coordinated activity of multiple neural 
systems distributed across the brain. While the role of sensorimotor cortex in motor learning has 
been well established, how higher-order brain systems interact with sensorimotor cortex to guide 
learning is less well understood. Using functional MRI, we examined human brain activity during 
a reward-based motor task where subjects learned to shape their hand trajectories through rein-
forcement feedback. We projected patterns of cortical and striatal functional connectivity onto a 
low-dimensional manifold space and examined how regions expanded and contracted along the 
manifold during learning. During early learning, we found that several sensorimotor areas in the 
dorsal attention network exhibited increased covariance with areas of the salience/ventral atten-
tion network and reduced covariance with areas of the default mode network (DMN). During late 
learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with 
DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning 
phases, with its connectivity suggesting a role in coordinating activity across different networks 
over time. Our results establish the neural changes that support reward-based motor learning and 
identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when 
adapting behavior.

eLife assessment
This valuable study uses convincing state-of-the-art neuroimaging analyses to characterize whole-
brain networks during reward-based motor learning. This work motivates future research to disso-
ciate why the observed changes in neural connectivity occur and how they support reward-based 
motor learning. The study is highly relevant for researchers at the intersection of decision-making 
and sensorimotor learning.

Introduction
Organizing our behaviors so that they match the demands of a given situation depends on estab-
lishing contingencies between specific features of an action and whether they lead to the desired 
outcome. In many real-world tasks, this is a challenging endeavor as the brain must learn how to 
modify its actions based on a single measure of performance feedback that reflects overall task success 
(Berniker and Kording, 2008; Dhawale et  al., 2017; Houk et  al., 1996; Wolpert et  al., 2001). 
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Moreover, this feedback must be communicated to multiple discrete neural systems distributed across 
the cortex and striatum, many of which are topographically segregated from one another (Averbeck 
and O’Doherty, 2022). Numerous studies have shown that neural systems anchored within the medial 
prefrontal cortex (MPFC) and striatum are important in evaluating whether the results of behavior 
are in line with expectations (Averbeck and O’Doherty, 2022; Klein-Flügge et al., 2022; Lee et al., 
2012; O’Doherty et al., 2017). Specifically, when discrepancies arise between the expected versus 
actual results of an action—termed a ‘prediction error’—this information serves as the teaching signal 
that can be used to update behavior directly (Bayer and Glimcher, 2005; O’Doherty et al., 2003; 
Samejima et  al., 2005; Schultz et  al., 1997). How exactly this information is communicated in a 
coherent manner across the multiple, distributed neural systems that guide behavior remains poorly 
understood. Our study addresses this gap in our knowledge using state-of-the-art manifold learning 
techniques to describe how the landscape of brain activity changes during reward-guided motor 
learning.

Contemporary systems and cognitive neuroscience have identified many large-scale neural 
systems that have each been linked to different components of effective behavior. For example, 
areas in sensory cortex provide representations of the external environment, whereas areas in motor 
cortex are involved in generating the final motor commands required for action. At higher levels in 
the cortical hierarchy, regions within the frontoparietal system, along with those that make up the 
brain’s attention-orienting systems (dorsal and ventral attention systems), are important in the selec-
tion of sensory inputs and the guidance of rule-driven behavior (Corbetta et al., 2008; Corbetta and 
Shulman, 2002). Yet, how the activity of these various brain systems is coordinated during the learning 
process is unclear. An emerging literature suggests that this coordination may depend, in part, on 
functional activity in several key regions of higher-order association cortex, known collectively as the 
default mode network (DMN) (Buckner et al., 2008; Fox and Raichle, 2007; Margulies et al., 2016; 
Raichle, 2015; Smallwood et al., 2021).

Initially identified through its tendency to deactivate during cognitively demanding tasks, the DMN 
has traditionally been implicated in largely introspective, abstract cognitive functions such as auto-
biographical memory and internal mentation (Andrews‐Hanna et  al., 2014; Binder et  al., 2009; 
Christoff et al., 2016; Schacter et al., 2012; Spreng et al., 2009). In recent years, however, this 
characterization of DMN activity has been difficult to reconcile, with an emerging body of functional 
MRI (fMRI) and neurophysiological evidence showing that areas of this network are activated during 
demanding decision-making and working-memory tasks (Foster et al., 2023; Hayden et al., 2009; 
Heilbronner and Platt, 2013; Murphy et  al., 2019; Murphy et  al., 2018; Pearson et  al., 2009; 
Vatansever et al., 2017). One hypothesis concerning this system’s function pertains to its unique 
topographic positioning on the cortical mantle (Smallwood et al., 2021): Each core region of the DMN 
is located in regions of association cortex that are equidistant between different primary systems; for 
example, posteromedial cortex, a key node of the DMN, is located precisely at the midpoint between 
the calcarine (visual) and central (motor) sulci (Margulies et al., 2016). This unique topographic loca-
tion is hypothesized to allow DMN regions broad oversight over distributed brain functions, enabling 
them to play a role in the coordination of activity across cortex (Smallwood et al., 2021).

Consistent with this contemporary perspective, recent work implicates several regions of the 
DMN in organizing different modes of behavior over time. For instance, DMN areas such as medial 
frontal cortex and posteromedial cortex appear to play an important role in shifting between infor-
mation gathering versus information exploitation during reward-guided decision-making tasks 
(Barack et al., 2017; Foster et al., 2023; Pearson et al., 2011; Pearson et al., 2009; Schuck et al., 
2015; Trudel et al., 2021)—the so-called explore/exploit trade-off (Frank et al., 2009; Sutton and 
Barto, 2018). Consistent with this, recent studies have argued that broad features of the DMN’s 
activity can be explained under the auspices that it supports behavior under conditions in which 
performance depends on knowledge accrued across several trials rather than by immediate sensory 
inputs (Hayden et al., 2008; Murphy et al., 2019; Murphy et al., 2018; Vatansever et al., 2017). 
Extending these ideas, we recently showed that the DMN plays a role in motor adaptation, showing 
that connectivity between DMN regions and sensorimotor cortex is altered when normal visual-
motor contingencies governing behavior are interrupted over the course of several trials (Gale et al., 
2022). Given that the DMN is hypothesized to exert influence on functional brain activity via its topo-
graphic positioning on cortex (Smallwood et al., 2021), understanding how the DMN supports task 
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behavior likely requires analytical techniques that allow for a characterization of whole-brain changes 
in functional architecture.

In the current study, we explored changes in the landscape of cortical and striatal activity during a 
reward-based motor task in which human participants learned to produce, through purely reinforce-
ment feedback, a specific movement trajectory that was initially unknown to them. To characterize 
learning-related changes at the neural level, we leveraged advanced manifold learning approaches 
that provide a low-dimensional description of cortical activity (Huntenburg et al., 2018; Margulies 
et al., 2016; Vos de Wael et al., 2020). This approach builds on recent electrophysiological studies 
in macaques, demonstrating that high-dimensional neural population activity can be described along 
a low-dimensional subspace or manifold (Cunningham and Yu, 2014; Gallego et al., 2017; Shenoy 
et al., 2013; Vyas et al., 2020), reflecting covariance patterns across the entire population. This same 
organizational structure also appears to govern the macroscale activity of cortex, with this manifold 
approach having recently provided key insights into the overarching structural and functional architec-
ture of the human brain (Huntenburg et al., 2018; Paquola et al., 2019; Shine et al., 2019a; Shine 
et al., 2019b; Vázquez-Rodríguez et al., 2019). Here, we applied this manifold approach to explore 
how brain activity across widely distributed cortical and striatal systems is coordinated during reward-
based motor learning. We were particularly interested in characterizing how connectivity between 
regions within the DMN and the rest of the brain changes as participants shift from learning the 
relationship between motor commands and reward feedback, during early learning, to subsequently 
using this information, during late learning. We were also interested in exploring whether learning-
dependent changes in manifold structure relate to variation in subject motor performance.

Results
Prior studies examining the neural processes underlying reward-based learning have typically used 
tasks requiring simple motor responses, such as button presses or lever movements (Averbeck and 
O’Doherty, 2022; Daw et al., 2006; Klein-Flügge et al., 2022; Lee et al., 2012; O’Doherty et al., 
2017; Rushworth et al., 2011). The simplicity of these motor responses is intended to isolate partici-
pants’ choice behavior by eliminating any variability related to movement execution (i.e., motor imple-
mentation of the choice) as a potential confounding factor in the learning process (McDougle et al., 
2019; McDougle et al., 2016). However, recent theories on learning, supported by both human and 
animal studies (Dhawale et al., 2019; Dhawale et al., 2017; Wu et al., 2014), have highlighted the 
crucial role of movement variability—and motor exploration in particular—as a key ingredient for 
effective learning (Dam et al., 2013; Wilson et al., 2021; Wu et al., 2014). In order to incorporate 
this aspect to learning, and inspired by recent work in the field (Dam et al., 2013; Wu et al., 2014), we 
developed an MRI-compatible reward-based motor task in which human participants (N = 36) learned 
to shape their hand trajectories purely through reinforcement feedback.

In this task, subjects used their right finger on an MRI-compatible touchpad to trace, without visual 
feedback of their finger, a rightward-curved path displayed on a screen (Figure 1A and B). Partici-
pants began the MRI study by performing a Baseline block of 70 trials, wherein they did not receive 
any feedback about their performance. Following this, subjects began a separate Learning block of 
200 trials in which they were told that they would now receive score feedback (from 0 to 100 points), 
presented at the end of each trial, based on how accurately they traced the visual path displayed on 
the screen. However, unbeknownst to subjects, the score they actually received was based on how 
well they traced a hidden mirror-image path (the ‘reward’ path, which was reflected across the vertical 
axis; Figure 1C). Importantly, because subjects received no visual feedback about their actual finger 
trajectory and could not see their own hand, they could only use the score feedback—and thus only 
reward-based learning mechanisms—to modify their movements from one trial to the next (Dam 
et al., 2013; Wu et al., 2014). That is, subjects could not use error-based learning mechanisms to 
achieve learning in our study as this form of learning requires sensory errors that convey both the 
change in direction and magnitude needed to correct the movement.

Figure 1C shows an example of a single subject’s finger trajectories across trials. Initially, the subject 
begins by tracing the visual path displayed on the screen (as instructed), albeit with some expected 
motor noise due to the absence of any visual feedback about their finger paths (see cyan trajectories). 
However, over time, the subject learns to gradually trace a path more similar to the rewarded, mirror-
image path (dark pink trajectories). As can be seen in Figure 1D, subjects on average were able to 

https://doi.org/10.7554/eLife.91928
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Figure 1. Task structure and overview of fMRI analysis. (A) Subject setup in the MRI scanner. (B) Trial structure of the reward-based motor learning 
task. On each trial, subjects were required to trace a curved (Visible) path from a start location to a target line (in red), without visual feedback of their 
finger location. Following a baseline block of trials, subjects were instructed that they would receive score feedback, presented at the end of the trial, 
based on their accuracy in tracing the visible path. However, unbeknownst to subjects, the score they received was actually based on how accurately 
they traced the mirror-image path (reward path), which was invisible to participants. (C) Example subject data from learning trials in the task. Colored 
traces show individual trials over time (each trace is separated by ten trials to give a sense of the trajectory changes over time; 20 trials shown in 
total). (D) Average participant performance throughout the learning task. Black line denotes the mean across participants whereas the gray banding 
denotes ±1 standard error of the mean (SEM). Three equal-length task epochs for subsequent neural analyses are indicated by the gray shaded 
boxes. (E) Neural analysis approach. For each participant and each task epoch (baseline, early, and late learning), we estimated functional connectivity 
matrices using region-wise time series extracted from the Schaefer 1000 cortical parcellation and the Harvard-Oxford striatal parcellation. We estimated 
functional connectivity manifolds for each task epoch using principal component analysis (PCA) with centered and thresholded connectivity matrices 

Figure 1 continued on next page
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use the reward-based feedback to increase their score, and thus produce a trajectory more similar to 
the hidden path, over the 200 learning trials (see Figure 1—figure supplement 1 for other measures 
of changes in subject motor behavior throughout learning, and Figure 1—figure supplement 2 for 
examples of all subjects’ finger trajectories across trials).

In order to study the changes in functional cortical and striatal organization during the learning 
task, we used three distinct, equal-length epochs over the time course of the study. Specifically, in 
addition to the task baseline epoch (70 trials), we defined early and late learning epochs as the subse-
quent initial and final 70 trials, respectively, following the presentation onset of reward feedback. For 
each participant, we extracted mean blood oxygenation level-dependent (BOLD) time-series data for 
each cortical region defined by the Shaefer 1000 cortical parcellation (Schaefer et al., 2018) and for 
striatal regions defined by the Harvard-Oxford parcellation (Avants et al., 2008; Frazier et al., 2005), 
and then estimated covariance (functional connectivity) matrices for each epoch (baseline, early, and 
late; Figure 1E; for a similar approach, see Gale et al., 2022).

Because prior work (Gordon et al., 2017; Gratton et al., 2018), including our own (Areshenkoff 
et al., 2022; Areshenkoff et al., 2021; Gale et al., 2022), suggests that individual differences in 
functional connectivity can obscure any task-related effects, we centered the connectivity matrices 
using the Riemmanian manifold approach (Areshenkoff et al., 2022; Areshenkoff et al., 2021; Gale 
et al., 2022; Zhao et al., 2018; see Figure 2—figure supplement 1 for an overview of the approach). 
To illustrate the effects of this centering procedure, and why it is important for elucidating task-
related effects in the data, we projected participants’ covariance matrices both prior to, and after the 
centering procedure, using uniform manifold approximation (UMAP; McInnes et al., 2018). As shown 
in Figure 2A, prior to the centering procedure the covariance matrices mainly cluster according to 
subject identity, consistent with prior findings showing that this subject-level structure explains the 
majority of the variance in functional connectivity data (Gratton et al., 2018). Clearly, this subject-
level clustering could impact the ability to detect task-related effects in the data. However, after 
applying the centering procedure (Figure 2B), this subject-level clustering is abolished, potentially 
allowing for the differentiation of the three task-related epochs.

To examine the changes in cortical and striatal connectivity during the reward-based motor learning 
task, we used the centered matrices from Figure 2B to estimate separate cortical-striatal connectivity 
manifolds for each participant’s baseline, early, and late covariance matrices (see also Gale et al., 
2022). Following from prior work (Hong et al., 2020; Paquola et  al., 2019; Vos de Wael et  al., 
2020), we transformed each matrix into an affinity matrix and then applied principal components 
analysis (PCA) to obtain a set of principal components (PCs) that provides a low-dimensional repre-
sentation of cortical-striatal functional organization (i.e., a cortical-striatal manifold). Next, we aligned 
the manifolds from each participant to a template baseline manifold, which we constructed using 
the mean of all baseline connectivity matrices across participants (Figure 1E). We did this for two 
reasons: (1) the baseline manifold provided a common target for manifold alignment (Vos de Wael 
et al., 2020) so that all subjects could be directly compared in a common task-based neural space, 
and (2) it allowed us to selectively detect deviations from this baseline manifold architecture; that is, 
observe the changes to this manifold structure that occur as a function of learning during the task 
(when subjects begin receiving reward feedback about their performance).

Cortical-striatal manifold structure during baseline trials
The top three PCs of the template baseline manifold (Figure 3A) describe the cortical-striatal func-
tional organization during baseline trials. As can be seen in Figure 3A, PC1 distinguishes visual regions 
(positive loadings in red) from somatomotor regions (negative loadings in blue). Meanwhile, PC2 

(see ‘Materials and methods’, as well as Figure 2). All manifolds were aligned to a common template manifold created from a group-average baseline 
connectivity matrix (right) using Proscrustes alignment. This allowed us to assess learning-related changes in manifold structure from this baseline 
architecture.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral measures of learning across the task.

Figure supplement 2. Variability in learning across subjects.

Figure 1 continued

https://doi.org/10.7554/eLife.91928
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distinguishes visual and somatomotor regions (in red) from the remaining cortical areas (in blue), most 
prominently high-order association regions within the DMN. Finally, PC3 mainly constitutes a gradient 
of frontoparietal areas of the dorsal attention network (DAN) and frontoparietal control network (FCN) 
versus DMN regions. Collectively, these top three PCs explain ~70% of the total variance (Figure 3B).

When we mapped the brain regions onto their assigned intrinsic functional network architecture 
(Thomas Yeo et  al., 2011), we confirmed that PCs 1 and 2 jointly differentiate visual, DMN, and 
somatomotor regions, replicating the tripartite structure of the brain’s intrinsic functional architecture 

Figure 2. Riemmanian centering removes subject-level clustering. Uniform Manifold Approximation (UMAP) visualization of the similarity of connectivity 
matrices, both before centering (A) and after (B) centering. In these plots, each point represents a single functional connectivity matrix, color-coded 
either to subject identity (left panels) or task epoch (right panels), with its location in the multidimensional space based on the similarity between 
matrices. Note that the uncentered connectivity matrices in (A) show a high degree of subject-level clustering, thus obscuring any differences in task 
structure. By contrast, the Riemmanian manifold centering approach (in B) abolishes this subject-level clustering. To help illustrate this point, the dashed 
circles in both (A) and (B) indicate the functional connectivity matrices belonging to the same single subject (subject 1; S1).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overview of the Riemannian manifold centering approach.

https://doi.org/10.7554/eLife.91928
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(Huntenburg et al., 2018; Margulies et al., 2016; Figure 3D). Others have argued that this tripar-
tite structure is a fundamental feature of functional brain organization, whereby the transition from 
unimodal cortex (visual and somatomotor networks) to transmodal cortex (the DMN) reflects a global 
processing hierarchy from lower- to higher-order brain systems (Huntenburg et al., 2018; Margulies 
et al., 2016; Smallwood et al., 2021).

We next sought to characterize the relative positions of cortical and striatal brain regions along the 
baseline connectivity-derived manifold space, thus providing a basis to examine future changes in the 
positioning of these regions during early and late learning. To this aim, and following from previous 
methods (Gale et  al., 2022; Park et  al., 2021a), we computed the manifold eccentricity of each 

Figure 3. Baseline manifold structure and eccentricity. (A) Region loadings for the top three principal components (PCs). (B) Percent variance explained 
for the first 10 PCs. (C) The baseline (template) manifold in low-dimensional space, with regions colored according to functional network assignment 
(Schaefer et al., 2018; Thomas Yeo et al., 2011). (D) Scatter plots showing the embedding of each region along the top three PCs. Probability density 
histograms at the top and right show the distribution of each functional network along each PC. Vis: visual; SomMot: somatomotor; DorsAttn: dorsal 
attention; SalVentAttn: salience/ventral attention; Cont: control. (E) Illustration of how eccentricity is calculated. Region eccentricity along the manifold 
is computed as the Euclidean distance (dashed line) from manifold centroid (white circle). The eccentricity of three example brain regions is highlighted 
(bordered colored circles). (F) Regional eccentricity during baseline. Each brain region’s eccentricity is color-coded in the low-dimensional manifold 
space (left) and on the cortical and striatal surfaces (right). White circle with black bordering denotes the center of the manifold (manifold centroid).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Functional connectivity properties that underlie manifold eccentricity.

Figure supplement 2. Derivation of cortical gradients did not depend on the inclusion of the striatum in the analysis.

https://doi.org/10.7554/eLife.91928
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region by taking its Euclidean distance from manifold centroid (coordinates (0,0,0); see Figure 3E). 
This eccentricity measure provides a multivariate index of each brain region’s embedding in the three-
dimensional manifold space, whereby distal regions located at the extremes of the manifold have 
greater eccentricity than proximal regions located near the manifold center (Figure 3E). Under this 
framework, regions with higher eccentricity are interpreted as having higher functional segregation 
from other networks in the rest of the brain, whereas regions with lower eccentricity are interpreted 
as having higher integration (lower segregation) with other networks in the rest of the brain (Park 
et  al., 2021a; Park et  al., 2021b; Valk et  al., 2023). Consistent with this interpretation, we find 
that our eccentricity measure strongly correlates with various graph theoretical measures of integra-
tion and segregation. For instance, we find that baseline eccentricity is positively related to cortical 
node strength (r = 0.88, two-tailed p<0.001) and within-manifold degree z-score (r = 0.45, two-tailed 
p<0.001), consistent with the notion that more eccentric regions are more strongly functionally 
coupled with other members of the same functional network (i.e., higher segregation; see Figure 3—
figure supplement 1). Likewise, we find that baseline eccentricity is negatively related to a region’s 
participation coefficient (r = −0.74, two-tailed p<0.001), which is a measure of a region’s degree of 
cross-network integration. Thus, taken together, changes in a brain region’s eccentricity can provide 
us with a multivariate measure of changes in that region’s functional segregation versus integration 
during early and late learning.

Changes in cortical-striatal manifold structure during learning
To examine which regions exhibited significant changes in manifold eccentricity from (1) baseline 
to early learning and then from (2) early to late learning, we performed two sets of paired t-tests 
and corrected for multiple comparisons using a false discovery rate correction (FDR; q < 0.05). To 
directly test how regional eccentricity changes at the onset of learning (when subjects begin receiving 
reward feedback), we performed a contrast of early > baseline (Figure 4A). This contrast primarily 
revealed a pattern of increasing eccentricity, that is, manifold expansion, across several brain regions, 
indicating that these regions became segregated from the rest of the brain (red areas in Figure 4A). 
This included areas located throughout the cortical sensorimotor system and DAN, including bilateral 
superior-parietal, somatomotor, supplementary motor, and premotor cortex, as well as regions in 
lateral visual cortex. In addition, this contrast identified many key areas of the DMN, including bilateral 
medial frontal gyrus (MFG), MPFC, inferior frontal gyrus (IFG), and middle temporal cortex (MTC; for 
a network-level summary of these general effects, see the spider plot in Figure 4A). In contrast to this 
general pattern of expansion-related effects, we also found that a small subset of areas in the poste-
rior medial cortex (PMC) and posterior angular gyrus (AG) instead exhibited a decrease in eccentricity, 
that is, manifold contraction (regions in blue in Figure  4A), indicating that these areas increased 
their integration with other areas of the brain. Notably, we did not observe any significant changes 
in striatal regions from baseline to early learning (however, for interested readers, Figure 4—figure 
supplement 1 shows the unthresholded data from both cortex and striatum to indicate any trends).

Next, to examine how regional eccentricity changes over the course of learning, we performed a 
direct contrast of late > early learning (Figure 4B). This contrast mainly revealed a reversal in the general 
pattern of the effects observed in the DMN during early learning. Specifically, during late learning, 
several regions in bilateral MFG, MPFC, IFG, and MTC now exhibited contraction along the manifold, 
indicating an increased integration of these areas with other regions of the brain (this reversal can be 
easily observed by comparing the red areas in Figure 4A to the blue areas in Figure 4B). By contrast, 
areas in PMC and posterior AG now exhibited expansion, indicating an increased segregation of these 
areas from the brain. In addition, during late learning, we observed manifold expansion in several 
areas of the salience/ventral attention network (SalVentAttn), including the dorsal anterior cingulate 
cortex (dACC) and the anterior insula (AI), as well as higher-order lateral occipital cortical areas, and 
areas in retrosplenial cortex and medial ventro-temporal cortex (a network-level summary of these 
effects can be found in the Figure 4A/B spider plot). Again, as in the early > baseline contrast, we did 
not observe any significant changes in striatal regions from early to late learning. The only region that 
came close to reaching statistical significance in the striatum was the right pallidum (p=0.01), but this 
region did not pass whole-brain FDR correction (corrected alpha = 0.086; note that Figure 4—figure 
supplement 1 shows the unthresholded maps for this contrast to demonstrate the strong reversal in 
the pattern of effects during late learning, as well as indicate any trends).

https://doi.org/10.7554/eLife.91928
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Finally, for completeness, we also examined the contrast of late > baseline, which solely revealed 
a pattern of cortical expansion across several regions—in particular in areas of the SalVentAttn and 
visual network (see Figure  4—figure supplement 2). This indicates a continuing expansion (and 
segregation) of these regions as learning progresses.

Taken together, the above pattern of results suggests that, during early learning, transmodal 
areas of the DMN, as well as several areas of the sensorimotor system (including areas of the DAN), 
begin to segregate from other brain networks, whereas a subset of areas—the PMC and posterior 

Figure 4. Changes in manifold structure during reward-based motor learning. (A, B) Pairwise contrasts of eccentricity between task epochs (N=36). 
Positive (red) and negative (blue) values show significant increases and decreases in eccentricity (i.e., expansion and contraction along the manifold), 
respectively, following false discovery rate (FDR) correction for region-wise paired t-tests (at q < 0.05). The spider plot, at center, summarizes these 
patterns of changes in connectivity at the network-level (according to the Yeo networks, Thomas Yeo et al., 2011). Note that the black circle in the 
spider plot denotes t = 0 (i.e., no change in eccentricity between the epochs being compared). Radial axis values indicate t-values for the associated 
contrast (see color legend). (C, D) Temporal trajectories of statistically significant regions from (A) and (B), shown in the low-dimensional manifold space. 
Traces show the displacement of each region for the relevant contrast and filled colored circles indicate each region’s final position along the manifold 
for a given contrast (see insets for legends). Each region is colored according to its functional network assignment (middle). Nonsignificant regions are 
denoted by the gray point cloud. White circle with black bordering denotes the center of the manifold (manifold centroid).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Unthresholded maps of changes in manifold structure during early and late learning.

Figure supplement 2. Changes in manifold structure from baseline to late learning.

Figure supplement 3. Changes in manifold structure during reward-based motor learning for the Yeo 17 network parcellation.

https://doi.org/10.7554/eLife.91928
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AG in particular—begin to integrate with regions outside of their respective networks. By contrast, 
during late learning, there is a clear reversal in these patterns, with regions within the DMN and DAN 
beginning to integrate with areas belonging to other brain networks. In the next section, we directly 
examine these interpretations of manifold expansion and contraction during early and late learning.

Changes in connectivity that underlie patterns of manifold 
reconfiguration
Given that eccentricity provides a multivariate index of a region’s overall profile of connectivity (i.e., its 
relative positioning on the manifold), we next performed seed connectivity analyses to further char-
acterize the patterns of effects that underlie the expansions and contractions of manifold structure 
during learning. To this aim, we selected several representative regions, distributed throughout the 
cortex, that epitomize the main changes in eccentricity that we observed during early learning (shown 
in Figure 4A). These regions included the left (contralateral) MPFC, PMd, and PMC, allowing us to 
characterize the patterns of connectivity changes across prefrontal, premotor, and parietal cortex, 
respectively (for seed-connectivity analyses of their right hemisphere homologs, see Figure 5—figure 
supplement 1). For each region, we contrasted seed connectivity maps between both the early 
learning vs. baseline epochs (early > baseline) and the late vs. early learning epochs (late > early) by 
computing region-wise paired t-tests, thus producing contrast maps associated with the connectivity 
change of each representative seed region (Figure 5). Note that in Figure 5 we display the unthresh-
olded voxel-wise contrast maps (two leftmost panels), the region’s corresponding change in eccen-
tricity across epochs (second from rightmost panel), and the corresponding spider plots depicting 
network-level changes (rightmost panel), thus allowing for a complete visualization of the collective 
changes in connectivity that contribute to the changes in regional eccentricity. (Note that, for the 
spider plots, we used the 17-network mapping in order to capitalize on the improved spatial precision 
compared to the 7-network mapping; Schaefer et al., 2018; Thomas Yeo et al., 2011.)

During early learning, we found that the left MPFC seed region, associated with the DMN network, 
exhibited increased connectivity with other DMN subregions and reduced connectivity with superior 
parietal and premotor areas in the DAN (Figure 5A). By contrast, during late learning, we observed 
a reversal in this pattern of connectivity changes, with the MPFC now exhibiting increased connec-
tivity with the same regions of the DAN but reduced connectivity with other DMN areas. Together, 
these results suggest that the manifold expansion of the MPFC during early learning arises from its 
increased connectivity with other DMN areas (i.e., segregation of the DMN), whereas the manifold 
contraction of this region during late learning arises from its increased connectivity with areas outside 
of the DMN, such as sensorimotor areas of the DAN.

Notably, for the left PMd seed region (Figure  5B), associated with the DAN, we observed an 
inverse pattern of results from that observed for the MPFC region above. Specifically, during early 
learning, we observed increased connectivity of the left PMd with other areas of the DAN, as well 
as areas belonging to the SalVentAttn network, such as the anterior insula/IFG, dACC, and inferior 
parietal cortex. Notably, this was coupled with its decreased connectivity to DMN areas and the 
hippocampus (Figure 5B). By contrast, during late learning, we observed a reversal in this pattern of 
effects, whereby connectivity with DMN areas and the hippocampus now increased, whereas connec-
tivity with the DAN and SalVentAttn areas decreased. In this case, the pattern of manifold expansion 
and contraction of PMd during early and late learning, respectively, likely arises from its increased 
connectivity with attention networks in brain (the DAN and SalVentAttn) during early learning and 
an increase in between-network connectivity (i.e., integration) with DMN areas during late learning.

Finally, for the left PMC seed region, located at the border of the DMN-A and Control-C networks—
and that was one of the few regions that exhibited contraction during early learning—we found that 
this region exhibited decreased connectivity during early learning with other DMN-A and Control-C 
subregions in bilateral PMC, as well as decreased connectivity with bilateral hippocampus and MPFC 
(Figure 5C). Instead, this PMC region exhibited increased connectivity with DAN areas in superior 
parietal cortex and premotor cortex, and most prominently, with areas in the anterior insula/IFG, 
dACC, and inferior parietal cortex (belonging to the SalVentAttn networks). By contrast, during late 
learning, we again observed a reversal in this pattern of connectivity changes, with the PMC seed 
region now exhibiting increased connectivity with other bilateral PMC areas, MPFC and the hippo-
campus, as well as reduced connectivity with the same DAN and SalVentAttn areas. Together, these 

https://doi.org/10.7554/eLife.91928
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Figure 5. Main patterns of connectivity changes that underlie manifold expansions and contractions. (A–C) Connectivity changes for each seed region. 
Selected seed regions are shown in yellow and are also indicated by arrows. Positive (red) and negative (blue) values show increases and decreases 
in connectivity, respectively, from baseline to early learning (leftmost panel) and early to late learning (second from leftmost panel). Second from the 
rightmost panel shows the eccentricity of each region for each participant (N=36), with the black dashed line showing the group mean for each task 
epoch. Rightmost panel contains spider plots, which summarize these patterns of changes in connectivity at the network level (according to the Yeo 
17-networks parcellation; Thomas Yeo et al., 2011). Note that the black circle in the spider plot denotes t = 0 (i.e., zero change in eccentricity between 
the epochs being compared). Radial axis values indicate t-values for associated contrast (see color legend).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Patterns of connectivity changes that underlie manifold expansions and contractions for right-hemisphere regions.

https://doi.org/10.7554/eLife.91928
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results suggest that manifold contractions of the PMC during early learning arise from its increased 
integration with regions outside of the DMN-A and Control-C networks, such as the DAN and SalVen-
tAttn, whereas the manifold expansions of this region during late learning arise from its increased 
within-network connectivity with other DMN and Control areas (i.e., segregation).

Taken together, the results of our seed connectivity analyses above are broadly consistent with 
our interpretation of the patterns of manifold expansion as reflecting increases in within-network 
connectivity (segregation) and the patterns of manifold contraction as reflecting increases in between-
network connectivity (integration). More generally, however, these findings point to changes in the 
landscape of communication between regions of the DAN, SalVentAttn, and DMN in particular, as 
being associated with reward-based motor learning. Specifically, we find that, during early learning, 
there is increased functional coupling between several sensorimotor areas of the DAN with areas of 
the SalVentAttn network, whereas during late learning, these DAN sensorimotor areas switch their 
connectivity to DMN areas.

Changes in eccentricity relate to learning performance
In the previous sections, we characterized the patterns of mean changes in manifold structure during 
learning across all participants. However, it is well established that subjects exhibit significant variation 
in motor learning ability (de Brouwer et al., 2018; de Brouwer et al., 2022; Standage et al., 2023; 

Figure 6. Individual differences in subject learning performance. (A) Examples of a good learner (bordered in green) and poor learner (bordered in red). 
(B) Individual subject learning curves for the task. Solid black line denotes the mean across all subjects (N=36), whereas light gray lines denote individual 
participants. The green and red traces denote the learning curves for the example good and poor learners denoted in (A). (C) Derivation of subject 
learning scores. We performed functional principal component analysis (fPCA) on subjects’ learning curves in order to identify the dominant patterns of 
variability during learning. The top component, which encodes overall learning, explained the majority of the observed variance (~75%). The green and 
red bands denote the effect of positive and negative component scores, respectively, relative to mean performance. Thus, subjects who learned more 
quickly than average have a higher loading (in green) on this ‘learning score’ component than subjects who learned more slowly (in red) than average. 
The plot at the right denotes the loading for each participant (open circles) onto this learning score component.

https://doi.org/10.7554/eLife.91928
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Wu et al., 2014). Indeed, while the learning curve in Figure 1D shows that subjects, on average, 
improved their scores during the task, this group-level result obscures the fact that individuals differed 
greatly in their rates of learning (see individual subject learning curves in Figure 1—figure supple-
ment 2). To emphasize this fact, Figure 6A highlights the learning curves for two example subjects: 
an individual who learned the hidden shape quite rapidly (a ‘fast learner’ in green) and a second 
individual who only gradually learned to trace the hidden shape (a ‘slow learner’ in red). To quantify 
this variation in subject performance in a manner that accounted the auto-correlation in learning 
performance over time (i.e., subjects who learned more quickly tend to exhibit better performance 
by the end of learning), we opted for a pure data-driven approach and performed functional principal 
component analysis (fPCA; Shang, 2014) on subjects’ learning curves. This approach allowed us to 
isolate the dominant patterns of variability in subject’s learning curves over time (see ‘Materials and 
methods’ for further details; see also Areshenkoff et al., 2022). Using this fPCA approach, we found 
that a single component—encoding overall learning—captured the majority (~75%) of the variability 
in subjects’ learning curves (Figure 6C). We thus used each subjects’ loading on this dominant compo-
nent as a single scalar measure of subjects’ overall learning performance: Individuals who tended to 
learn the task more quickly had higher values on this ‘learning score’ component, whereas individuals 
who tended to learn the task more slowly had lower values on this component (see single data points 
in Figure 6C at the right).

Next, to examine the neural correlates of intersubject differences in learning scores, we calcu-
lated, for each region, the association between participants’ scores and the change in eccentricity 
between the baseline and early learning epochs (early > baseline; Figure 7A). This analysis did not 
reveal any brain regions that survived FDR corrections for multiple comparisons (q < 0.05). However, 
the FDR approach is completely agnostic to any topographical patterns of effects across brain areas, 
which may correspond with known functional networks. Indeed, the full cortex and striatal correla-
tion map in Figure 7A indicates that many region-level correlations exhibit a high degree of spatial 
contiguity, with many statistically significant regions (at p<0.05, bordered in black) being situated 
within much larger clusters of regions that exhibit a similar pattern of effects (i.e., areas in blue, 
denoting a negative correlation between learning score versus the change in eccentricity from base-
line to early learning, tend to lie adjacent to other regions exhibiting a similar negative correlation). 
This is because topographically adjacent regions are likely to have similar connectivity profiles, and 
thus project onto similar locations along the manifold, resulting in similar brain–behavior relationships. 
This spatial topography suggests that the association between the eccentricity of certain brain regions 
and learning performance are likely to be better characterized at the level of distributed functional 
networks.

To examine this, we mapped each region onto its respective functional network using the Yeo et 
al. 17-network parcellation (Thomas Yeo et al., 2011) and, for each participant, computed the mean 
manifold eccentricity for each network (i.e., network eccentricity). We then correlated the change in 
each brain network’s eccentricity across epochs with subject learning scores. We tested the statis-
tical significance of these network-level correlations by building null models that account for the 
spatial autocorrelation in the brain maps (Markello et al., 2022; Váša et al., 2018; see ‘Materials 
and methods’) and corrected for multiple comparisons (across all networks) using an FDR correc-
tion (q < 0.05). Using this permutation testing approach, we found that it was only the change in 
eccentricity of the DAN-A network that correlated with learning score (see Figure 7C), such that the 
more the DAN-A network decreased in eccentricity from baseline to early learning (i.e., contracted 
along the manifold), the better subjects performed at the task (see Figure  7C, scatterplot at the 
right). Consistent with the notion that changes in the eccentricity of the DAN-A network are linked 
to learning performance, we also found the inverse pattern of effects during late learning, whereby 
the more that this same network increased in eccentricity from early to late learning (i.e., expanded 
along the manifold), the better subjects performed at the task (Figure 7D). We should note that this 
pattern of performance effects for the DAN-A—that is, greater contraction during early learning and 
greater expansion during late learning being associated with better learning—appears at odds with 
the group-level effects described in Figure 4A and B, where we generally find the opposite pattern 
for the entire DAN network (composed of the DAN-A and DAN-B subnetworks). However, this poten-
tial discrepancy can be explained when examining the changes in eccentricity using the 17-network 
parcellation (see Figure 4—figure supplement 3). At this higher resolution level, we find that these 
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Figure 7. Relationship between learning performance and regional changes in eccentricity. (A, B) Whole-brain correlation map between subject 
learning score and the change in regional eccentricity from baseline to early learning (A) and early to late learning (B). Black bordering denotes 
regions that are significant at p<0.05. (C, D) Results of the spin-test permutation procedure, assessing whether the topography of correlations in 
(A) and (B) are specific to individual functional brain networks. Single points indicate the real correlation value for each of the 17 Yeo et al. networks 
(Thomas Yeo et al., 2011), whereas the boxplots represent the parameters of a null distribution of correlations derived from 1000 iterations of a spatial 
autocorrelation-preserving null model (Markello et al., 2022; Váša et al., 2018). In the boxplots, the ends of the boxes represent the first (25%) and 
third (75%) quartiles, the center line represents the median, and the whiskers represent the min-max range of the null distribution. All correlations were 
corrected for multiple comparisons (q < 0.05). The dashed horizontal blue line indicates a correlation value of zero and the gray shading encompasses 
correlation values that do not significantly differ from zero (p>0.05). (Note that in the spin-test procedure, due to the sign of the correlations, it is 
possible for some networks to be significantly different from the null distribution, and yet not significantly different from zero. Thus, to be considered 
significant in our analyses, a brain network was required to satisfy both constraints; i.e., show a correlation that is significantly different from zero and 
from the spatial null distribution.) Right, scatterplots show the relationships between subject learning score and the change in eccentricity from baseline 
to early learning (top) and early to late learning (bottom) for the DAN-A network (depicted in yellow on the cortical surface at top), the only brain 
network to satisfy the two constraints of our statistical testing procedure. Black line denotes the best-fit regression line, with shading indicating ±1 
SEM. Dots indicate single participants (N=36). (E) Connectivity changes for the DAN-A network (highlighted in yellow) across epochs. Positive (red) and 
negative (blue) values show increases and decreases in connectivity, respectively, from baseline to early learning (left panel) and early to late learning 
(right panel). Spider plot, at the right, summarizes the patterns of changes in connectivity at the network-level. Note that the black circle in the spider 
plot denotes t = 0 (i.e., no change in eccentricity between the epochs being compared). Radial axis values indicate t-values for associated contrast (see 
color legend). VisCent: visual central; VisPer: visual peripheral; SomMotA: somatomotor A; SomMotB: somatomotor B; TempPar: temporal parietal; 
DorsAttnA: dorsal attention A; DorsAttnB: dorsal attention B; SalVentAttnA: salience/ventral attention A; SalVentAttnB: salience/ventral attention B; 
ContA: control A; ContB: control B; ContC: control C.
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group-level effects for the entire DAN network are being largely driven by eccentricity changes in the 
DAN-B network (areas in anterior superior parietal cortex and premotor cortex), and not by mean 
changes in the DAN-A network. By contrast, our present results suggest that it is the contraction and 
expansion of areas of the DAN-A network (and not DAN-B network) that are selectively associated 
with subject learning performance.

To understand the global changes in connectivity that underlie these network eccentricity effects, 
we performed a network-level seed connectivity analyses (analogous to our single ROI seed connec-
tivity analyses in the previous section) wherein constructed contrast maps, using the DAN-A as the 
seed network, for both the early vs. baseline epochs (early > baseline) and the late vs. early epochs 
(late > early). As before, we display the unthresholded voxel-wise contrast maps, along with corre-
sponding spider plots depicting the network-level changes (Figure 7E), to allow for a complete visual-
ization of the collective changes in network-level connectivity that underlie the changes in eccentricity 
of the DAN-A. As can be observed in Figure 7E, we find that, during early learning, DAN-A regions 
exhibited the largest increases in connectivity with one of the SalVentAttn subnetworks (SalVentAt-
tn-B), whereas, during late learning, the DAN-A regions exhibited the largest increases in connectivity 
with one of the DMN subnetworks (DMN-B). These findings not only re-constitute the group-level 
effects reported above at the ROI level (in Figure 5), but they also suggest that this general transition 
in functional coupling—between the DAN and SalVentAttn areas during early learning, to DAN and 
DMN areas during late learning—is associated with differences in subject performance.

Discussion
Complex behavior necessitates the coordinated activity of multiple specialized neural systems distrib-
uted across cortex and striatum. During motor learning, these systems must adapt their functional 
interactions to ensure appropriate behavior in response to changes in sensory feedback. While much 
research in motor learning has focused on understanding the role of sensorimotor cortex in isola-
tion, our understanding of the contribution of higher-order brain systems, which play a role in the 
organization of behavior over time, remains incomplete. In the current study, we utilized state-of-
the-art analytical methods that reconcile topographic and functional brain organization, enabling us 
to describe the changes in the landscape of cortical and striatal activity during learning.

During early learning, when subjects were establishing the relationship between motor commands 
and reward feedback, we found that regions within both the DAN (e.g., premotor cortex) and DMN 
(e.g., MPFC) exhibited expansion along the manifold. Our connectivity analyses revealed that this 
expansion was largely driven by an increase in within-network communication in both the DAN and 
DMN networks. There were, however, two notable exceptions to this general pattern. First, we found 
that connectivity between regions of the DAN increased with regions in the SalVentAttn network (e.g., 
anterior insula/IFG and anterior cingulate cortex). Second, areas within the PMC, part of the posterior 
core of the DMN, showed a pattern of manifold contraction that was primarily driven by a decrease 
in covariance with other DMN regions and an increase in covariance with regions of the superior 
DAN and also with several regions within the SalVentAttn network. Together, these results suggest 
that functional interactions of the sensorimotor system with the SalVentAttn network are important 
during initial learning. In other work, areas within the SalVentAttn network have been implicated in 
several aspects of cognitive control and motivation (Botvinick et  al., 2004; Holroyd and Yeung, 
2012; Pearson et al., 2009; Shenhav et al., 2014), and in studies on reward-based decision-making, 
these regions are thought to support exploratory behavior. For instance, several neuroimaging studies 
have shown that SalVentAttn areas are activated in response to novel or salient stimuli in the environ-
ment, presumably reflecting the engagement of attentional resources for sampling new information 
(Corbetta et al., 2008). In addition, recent work (Badre et al., 2012; Blanchard and Gershman, 2018; 
Boorman et al., 2009; Daw et al., 2006; Hogeveen et al., 2022; Kolling et al., 2016) implicates 
several SalVentAttn areas in information gathering functions, so as to optimize reward outcomes. This 
neural perspective is consistent with both others’ (Dam et al., 2013) and our own behavioral findings 
(de Brouwer et al., 2022) that, during the early phases of reward-guided learning, performance is 
more variable, presumably as individuals explore the relationship between motor commands and 
associated sensory feedback.

During late learning, we observed that many of the changes in manifold architecture observed 
during early learning reversed. For instance, areas within both the DAN and DMN now exhibited 
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contraction along the manifold, whereas the PMC now exhibited expansion. Connectivity analyses 
showed that the contraction within the DAN and DMN was driven by increases in connectivity between 
these two networks—specifically, increases between premotor and superior parietal areas of the DAN 
with areas of the DMN. This suggests that once the mapping between motor commands and reward 
feedback have been learned, regions within the DAN and DMN become more integrated with one 
another. In the context of the current task, the shift in DAN connectivity from the SalVentAttn network 
during early learning to the DMN during late learning may reflect the hypothesized role of the DMN 
in supporting behavior using information from memory (Buckner et al., 2008; Schacter et al., 2012; 
Smallwood et al., 2021). This interpretation is consistent with prior work showing that connectivity 
between the DMN and premotor cortex tends to increase once rules have been learned (Shamloo 
and Helie, 2016), as well as studies from other task domains showing that the DMN contributes to 
behavior when actions must be guided by information from memory and a knowledge of task struc-
ture (Murphy et al., 2019; Murphy et al., 2018; Vatansever et al., 2017). Our analysis, therefore, 
provides additional evidence, albeit from the domain of human motor learning, that functional inter-
actions between the DMN and brain regions involved in sensorimotor processes support a mode of 
action in which behavior must be guided by memory processes (Smallwood et al., 2021)—in this 
case, the history of reward information accrued across previous movement trajectories. Finally, it is 
important to note that the reversal pattern of effects noted above suggests that our findings during 
learning cannot be simply attributed to the introduction of reward feedback and/or the perturbation 
during early learning, as both of these task-related features are also present during late learning. In 
addition, these results cannot be simply explained due to the passage of time or increasing subject 
fatigue as this would predict a consistent directional change in eccentricity across the baseline, early, 
and Late learning epochs.

We also observed a relationship between changes in the manifold eccentricity of a subnetwork 
of the DAN (DAN-A) with subject learning performance. We found that the more this subnetwork 
contracted, and then subsequently expanded, along the manifold during early and late learning, 
respectively, the better subjects performed at the task. Our connectivity analysis revealed that this 
change in DAN-A activity was mainly driven by increases in connectivity with SalVentAttn subnetworks 
during early learning and by increases in connectivity with DMN subnetworks during late learning. 
Notably, areas of the DAN are not thought to generate top-down signals for response selection 
but instead transform the input signals they receive (e.g., related to reward, memory) into motor 
commands (Luo et al., 2010). Our analysis thus suggests that this system’s contribution to motor 
behavior may be facilitated through changes in its functional coupling to both the SalVentAttn and 
DMN over time. To speculate, this shift in functional coupling may reflect a shift from more exploratory 
to more exploitative modes of behavior across early to late periods of motor learning, respectively. 
It is also possible that some of these task-related shifts in connectivity relate to shifts in task-general 
processes, such as changes in the allocation of attentional resources (Bédard and Song, 2013; Rosen-
berg et al., 2016) or overall cognitive engagement (Aben et al., 2020), which themselves play critical 
roles in shaping learning (Codol et al., 2018; Holland et al., 2018; Song, 2019; Taylor and Thor-
oughman, 2008; Taylor and Thoroughman, 2007; for a review of these topics, see Tsay et al., 2023). 
Such processes are particularly important during the earlier phases of learning when sensorimotor 
contingencies need to be established. While these remain questions for future work, our data never-
theless suggest that this shift in connectivity may be enabled through the PMC.

Although traditionally considered a member of the DMN (Thomas Yeo et al., 2011), studies have 
established that the PMC contains echoes of neural signals originating from across the cortex (Leech 
et al., 2012). In our study, this region initially became more segregated from the rest of the DMN 
and increased connectivity with the SalVentAttn network during early learning. However, during late 
learning, the PMC reduced its connectivity with the SalVentAttn network and became more integrated 
with other members of the DMN. This pattern of changes differed from other areas of the DMN, indi-
cating that the PMC may serve a different function during motor learning than other areas of this 
system. Prior studies have linked the activity of PMC areas to reward processing (Kable and Glim-
cher, 2007; Knutson and Bossaerts, 2007; McCoy and Platt, 2005) and the selection of response 
strategies that attempt to optimize reward outcomes (Barack et al., 2017; Pearson et al., 2009; 
Wan et al., 2015). Consistent with this, recent research shows that areas within the PMC are able to 
integrate information over particularly long periods of time (Hasson et al., 2015; Heilbronner and 
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Platt, 2013; Lerner et al., 2011). This characteristic positions the PMC as an ideal candidate region 
to orchestrate the neural transition from (1) exploring the relationship between motor commands 
and sensory feedback during early learning to (2) subsequently exploiting this learned relationship 
during late learning. Taken together, these distinctive functional properties of PMC activity, coupled 
with its diverse patterns of whole-brain connectivity (Hagmann et al., 2008; Hutchison et al., 2015; 
Margulies et al., 2009), suggest an important role for this region in directing long-term behavioral 
adaptation in accordance with higher-order task objectives (Braga et al., 2013; Pearson et al., 2011).

While we identified several changes in the cortical manifold that are associated with reward-based 
motor learning, it is noteworthy that we did not observe any significant changes in manifold eccen-
tricity within the striatum. While clearly the evidence indicates that this region plays a key role in 
reward-guided behavior (Averbeck and O’Doherty, 2022; O’Doherty et al., 2017), there are several 
possible reasons why our manifold approach did not identify this collection of brain areas. First, the 
relatively small size of the striatum may mean that our analysis approach was too coarse to identify 
changes in the connectivity of this region. Though we used a 3T scanner and employed a widely used 
parcellation scheme that divided the striatum into its constituent anatomical regions (e.g., hippo-
campus, caudate), both of these approaches may have obscured important differences in connectivity 
that exist within each of these regions. For example, areas such the hippocampus and caudate are 
not homogeneous areas but themselves exhibit gradients of connectivity (e.g., head versus tail) that 
can only be revealed at the voxel level (Tian et al., 2020; Vos de Wael et al., 2021). Second, while 
our dimension reduction approach, by design, aims to identify gradients of functional connectivity 
that account for the largest amounts of variance, the limited number of striatal regions (compared to 
cortex) necessitates that their contribution to the total whole-brain variance is relatively small. Consis-
tent with this perspective, we found that the low-dimensional manifold architecture in cortex did not 
strongly depend on whether or not striatal regions were included in the analysis (see Figure 3—figure 
supplement 2). As such, selective changes in the patterns of functional connectivity at the level of 
the striatum may be obscured using our cortex × striatum dimension reduction approach. Future 
work can help address some of these limitations by using both finer parcellations of striatal cortex 
(perhaps even down to the voxel level) (Tian et al., 2020) and by focusing specifically on the changes 
in the interactions between the striatum and cortex during learning. The latter can be accomplished 
by selectively performing dimension reduction on the slice of the functional connectivity matrix that 
corresponds to functional coupling between striatum and cortex.

Conclusions
Our study set out to characterize changes in the landscape of brain activity that underlies reward-
based motor learning. We used dimensionality reduction techniques to build a manifold that describes 
changes in the functional organization of the cortex and striatum during different phases of learning. 
During early learning, we found that regions within the DAN and DMN became relatively segregated 
from each other, with the DAN becoming more integrated with the SalVentAttn network. This pattern 
reversed during later learning, with regions within the DAN now becoming more integrated with 
the DMN. Notably, regions of the PMC, within the posterior core of the DMN, showed the reverse 
pattern, exhibiting coupling with the SalVentAttn early during learning and with other regions of the 
DMN later during learning. Together, these findings provide a unique cortical perspective into the 
neural changes that underlie reward-based motor learning and point to marked transitions in the 
activity of transmodal cortical regions in organizing behavior over time.

Materials and methods
Participants
Forty-six right-handed individuals (27 females, aged 18–28 years) participated in the MRI study. Of 
these 46 participants, 10 individuals were removed from the final analysis either due to excessive head 
motion in the MRI scanner, incomplete scans, poor task compliance (i.e., >25% of trials not being 
completed within the maximal trial duration), or missing data (i.e., >20% of trials being missed due 
to insufficient pressure of the fingertip on the MRI-compatible tablet). We assessed right-handedness 
using the Edinburgh handedness questionnaire (Oldfield, 1971) and obtained informed consent 
before beginning the experimental protocol. The Queen’s University Research Ethics Board approved 
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the study (ethics approval number: CNS-019-16), and it was conducted in coherence to the princi-
ples outlined in the Canadian Tri-Council Policy Statement on Ethical Conduct for Research Involving 
Humans and the principles of the Declaration of Helsinki (1964).

Procedure
Prior to MRI testing, participants first took part in an MRI training session inside a mock (0T) scanner, 
made to look and sound like a real MRI scanner. This training session served multiple purposes. First, it 
introduced participants to the key features of the motor task that was subsequently performed in the 
MRI scanner. Second, it allowed us to screen for subjects who could obtain baseline performance levels 
on the task. Third, it allowed us to screen for subjects who could remain still for a long period of time 
without feeling claustrophobic. With respect to the latter, we monitored subjects’ head movement in 
the mock scanner while they performed practice task trials and during simulated anatomical scans. 
This monitoring was done by attaching, via medical tape, a Polhemus sensor to each subject’s fore-
head (Polhemus, Colchester, Vermont), which allowed a real-time read-out of subject head displace-
ment in each of the three axes of translation and rotation (six dimensions total). Whenever subjects’ 
head translation and/or rotation reached 0.5 mm or 0.5° rotation (within a prespecified velocity crite-
rion), subjects received an unpleasant auditory tone, delivered through a speaker system located near 
the head. All subjects learned to constrain their head movement via this auditory feedback. Following 
this first training session, subjects who met our criteria were invited to subsequently participate in the 
reward-based motor learning task (see below for details), approximately 1 week later.

Apparatus
During testing in the mock (0T) scanner, subjects performed hand movements that were directed 
toward a target by applying fingertip pressure on a digitizing touchscreen tablet (Wacom Intuos Pro 
M tablet). During the actual MRI testing sessions, subjects used an MRI-compatible digitizing tablet 
(Hybridmojo LLC, CA). In both the mock and real MRI scanner, the visual stimuli were rear-projected 
with an LCD projector (NEC LT265 DLP projector, 1024 × 768 resolution, 60 Hz refresh rate) onto 
a screen mounted behind the participant. The stimuli on the screen were viewed through a mirror 
fixated on the MRI coil directly above the participants’ eyes, thus preventing the participant from 
being able to see their hand.

Reward-based motor learning task
In the motor task, participants were trained, through reward-based feedback, to produce finger 
movement trajectories for an unseen shape. Specifically, subjects were instructed to repeatedly trace, 
without visual feedback of their actual finger paths, a subtly curved path displayed on the screen (the 
visible path, Figure 1B and C). Participants were told that, following each trial, they would receive 
a score based on how ‘accurately’ they traced the visible path. However, unbeknownst to them, 
they actually received points based on how well they traced the mirror-image path (the reward path, 
Figure 1B and C). Critically, because participants received no visual feedback about their actual finger 
trajectories or the ‘rewarded’ shape, they could not use error-based learning mechanisms to guide 
learning (Pekny et al., 2015; Wolpert et al., 2011). This task was a modification on the motor tasks 
developed by Dam et al., 2013; Wu et al., 2014.

Each trial started with the participant moving a cursor (3 mm radius cyan circle), which represented 
their finger position, into the start position (4 mm radius white circle) at the bottom of the screen (by 
sliding the index finger on the tablet). The cursor was only visible when it was within 30 mm of the 
start position. After the cursor was held within the start position for 0.5 s, the cursor disappeared 
and a rightward-curved path (visible path) and a movement distance marker appeared on the screen 
(Figure 1B). The movement distance marker was a horizontal red line (30 × 1 mm) that appeared 
60 mm above the start position. The visible path connected the start position and movement distance 
marker, and had the shape of a half sine wave with an amplitude of 0.15 times the marker distance. 
Participants were instructed to trace the curved path. When the cursor reached the target distance, 
the target changed color from red to green to indicate that the trial was completed. Importantly, other 
than this color change in the distance marker, the visible curved path remained constant and partici-
pants never received any feedback about the position of their cursor.

https://doi.org/10.7554/eLife.91928
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In the baseline block, participants did not receive any feedback about their performance. In the 
learning block, participants were rewarded 0–100 points after reaching the movement distance 
marker, and were instructed to do their best to maximize this score across trials (following the move-
ment, the points were displayed as text centrally on the screen). Each trial was terminated after 4.5 s, 
independent of whether the cursor had reached the target. After a delay of 1.5 s (during which the 
screen was blanked), allowing time to save the data and the subject to return to the starting location, 
the next trial started with the presentation of the start position.

To calculate the reward score on each trial in the learning block, the x position of the cursor was 
interpolated at each cm displacement from the start position in the y direction (i.e., at exactly 10, 20, 
30, 40, 50, and 60 mm). For each of the six y positions, the absolute distance between the interpo-
lated x position of the cursor and the x position of the rewarded path was calculated. The sum of these 
errors was scaled by dividing it by the sum of errors obtained for a half cycle sine-shaped path with 
an amplitude of 0.5 times the target distance, and then multiplied by 100 to obtain a score ranging 
between 0 and 100. The scaling worked out such that a perfectly traced visible path would result in an 
imperfect score of 40 points. This scaling was chosen on the basis of extensive pilot testing in order to 
(1) encourage motor exploration across trials (in search of higher scores), (2) achieve variation across 
subjects in overall performance (i.e., individual differences in learning curves), and (3) ensure that 
subjects still received informative score feedback when tracing in the vicinity of the visible trajectory.

During the training session in the mock MRI scanner (i.e., ~1 week prior to the MRI testing session), 
participants performed only a practice block in which they traced a straight line, first with (40 trials) 
and then without (40 trials), visual feedback of the position of the cursor during the movement (80 
trials total). This training session exposed participants to several key features of the task (e.g., use of 
the touchscreen tablet, trial timing, removal of cursor feedback) and allowed us to establish adequate 
performance levels. Importantly, however, subjects did not encounter any reward-based feedback 
(reward scores) during this initial training session.

At the beginning of the MRI testing session, but prior to the first scan being collected, participants 
re-acquainted themselves with the motor task by first performing a practice block in which they traced 
a straight line with (40 trials) and then without (40 trials) visual feedback of the position of the cursor. 
Next, we collected an anatomical scan, followed by a DTI scan, followed by a resting-state fMRI scan. 
During the latter resting-state scan, participants were instructed to rest with their eyes open while 
fixating on a central cross location presented on the screen. (Note that the DTI and resting-state fMRI 
data are not the focus on the present study.) Next, participants performed the motor task, which 
consisted of two separate experimental runs without visual feedback of the cursor: (1) a baseline block 
of 70 trials in which they attempted to trace the curved path and no score feedback was provided, 
and (2) a separate learning block of 200 trials in which participants were instructed to maximize their 
score shown at the end of each trial. Note that, at the end of testing, we did not assess participants’ 
awareness of the manipulation (i.e., that they were, in fact, being rewarded based on a mirror image 
path of the visible path). This experiment was only performed once.

Behavioral data analysis
Data preprocessing
Each movement trajectory was first re-sampled to 10 equally spaced points along the y (vertical) axis, 
between the starting position and the target distance marker. We defined subjects’ reaction time 
(RT) as the time between trial onset and the cursor reaching 10% of the distance from the starting 
location, and defined subjects’ movement time (MT) as the remaining time until reaching the target 
distance marker. To quantify the variability of the drawn path as a function of trial number, we used the 
following method. First, we calculated the average path at each trial by applying a moving average 
smoother (window size seven trials) to the sequence of paths drawn by each participant. Then, for 
each trial, path variability was measured by the mean absolute x position difference between the 
actual path drawn and the average path in that trial (across the 10 sample points equally spaced along 
the y direction). Specifically, path variability was quantified in the following manner:

Path trial t: ‍Xk
t ‍ (k = 1, 2, …, 10, i.e., 10 sample points)
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‍

−
Xk

t = 1
7

t+3∑
i=t−3

Xk
i
‍
 (sliding window mean, half window width 3)

Variability of path in trial t: 
‍

1
10

10∑
k=1

�����X
k
t −

−
Xk

t

�����
‍

https://doi.org/10.7554/eLife.91928


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Nick et al. eLife 2023;12:RP91928. DOI: https://doi.org/10.7554/eLife.91928 � 20 of 31

Trials in which the cursor did not reach the target within the time limit were excluded from the 
offline analysis of hand movements (~1% of trials). As insufficient pressure on the touchpad resulted 
in a default state in which the cursor was reported as lying in the top-left corner of the screen, we 
excluded trials in which the cursor jumped to this position before reaching the target region (~2% of 
trials). We then applied a conservative threshold on the MT and RT, removing the top 0.05% of trials 
across all subjects. As the motor task did not involve response discrimination, we did not set a lower 
threshold on these variables.

Functional PCA of subject behavioral data
All subject behavioral data were averaged over eight trial bins. We represented individual learning 
curves as functional data using a cubic spline basis with smoothing penalty estimated by generalized 
cross-validation (Härdle, 1990). We then performed functional PCA (Ramsay and Silverman, 2013), 
which allowed us to extract components capturing the dominant patterns of variability in subject 
performance. Using this analysis, we found that the top component, which describes overall learning, 
explained a majority of the variability (~75%) in performance. Spline smoothing and fPCA were 
performed using the R package fda (Ramsay et al., 2022).

MRI acquisition
Participants were scanned using a 3-Tesla Siemens TIM MAGNETOM Trio MRI scanner located at 
the Centre for Neuroscience Studies, Queen’s University (Kingston, ON, Canada). Subject anatom-
icals were acquired using a 32-channel head coil and a T1-weighted ADNI MPRAGE sequence (TR 
= 1760 ms, TE = 2.98 ms, field of view = 192 mm × 240 mm × 256 mm, matrix size = 192 × 240 × 
256, flip angle = 9°, 1 mm isotropic voxels). This was followed by a series of diffusion-weighted scans 
and a resting-state scan (which are not the focus of the present investigation). Next, we acquired 
fMRI volumes using a T2*-weighted single-shot gradient-echo echo-planar imaging (EPI) acquisition 
sequence (time to repetition [TR] = 2000 ms, slice thickness = 4 mm, in-plane resolution = 3 mm × 
3 mm, time to echo [TE] = 30 ms, field of view = 240 mm × 240 mm, matrix size = 80 × 80, flip angle 
= 90°, and acceleration factor [integrated parallel acquisition technologies, iPAT] = 2 with generalized 
auto-calibrating partially parallel acquisitions [GRAPPA] reconstruction). Each volume comprised 34 
contiguous (no gap) oblique slices acquired at an ~30° caudal tilt with respect to the plane of the 
anterior and posterior commissure (AC-PC), providing whole-brain coverage of the cerebrum and 
cerebellum. Note that for the current study we did not examine the changes in cerebellar activity 
during learning. For the baseline and learning scans, we acquired 222 and 612 imaging volumes, 
respectively. Each of these task-related scans included an additional six imaging volumes at both the 
beginning and end of the scan. On average, the total MRI scanning session lasted ~2 hrs (including 
setup time and image acquisition).

fMRI preprocessing
Preprocessing of anatomical and functional MRI data was performed using fMRIPrep 20.1.1 (Esteban 
et al., 2019, Esteban et al., 2024; RRID:SCR_016216) which is based on Nipype 1.5.0 (Gorgolewski 
et al., 2011; Gorgolewski et al., 2018; RRID:SCR_002502). Many internal operations of fMRIPrep 
use Nilearn 0.6.2 (Abraham et al., 2014; RRID:SCR_001362), mostly within the functional processing 
workflow. For more details of the pipeline, see the section corresponding to workflows in fMRIPrep’s 
documentation. Below we provide a condensed description of the preprocessing steps.

T1w images were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison 
et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008; RRID:SCR_004757). The T1w-reference 
was then skull-stripped with a Nipype implementation of the ​antsBrainExtraction.​sh workflow (from 
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 
white matter (WM), and gray matter (GM) was performed on the brain-extracted T1w using fast (FSL 
5.0.9, RRID:SCR_002823)(Zhang et al., 2001). A T1w-reference map was computed after registra-
tion of the T1w images (after INU-correction) using mri_robust_template (FreeSurfer 6.0.1; Reuter 
et al., 2010). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847; 
Dale et al., 1999), and the brain mask estimated previously was refined with a custom variation of 
the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle (RRID:SCR_002438; Klein et al., 2017). Volume-based spatial normalization to 
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standard space (MNI152NLin6Asym) was performed through nonlinear registration with antsRegistra-
tion (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w template.

For each BOLD run, the following preprocessing was performed. First, a reference volume and its 
skull-stripped version were generated using a custom methodology of fMRIPrep. Head-motion param-
eters with respect to the BOLD reference (transformation matrices, and six corresponding rotation 
and translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9; 
Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 
(Cox and Hyde, 1997; RRID:SCR_005927). The BOLD reference was then co-registered to the T1w 
reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve and 
Fischl, 2009). Co-registration was configured with six degrees of freedom. The BOLD time series were 
resampled with a single interpolation step by composing all the pertinent transformations (i.e. head-
motion transform matrices, and co-registrations to anatomical and output spaces). BOLD time series 
were resampled onto their original, native space, as well as standard space (MNI152NLin6Asym), 
using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 
effects of other kernels (Lanczos, 1964). Striatal data in standard space was combined with resam-
pled BOLD time series on the fsaverage surface to produce Grayordinates files (Glasser et al., 2013) 
containing 91k samples, using fsaverage as the intermediate standardized surface space. Resampling 
onto fsaverage was performed using mri_vol2surf (FreeSurfer).

A set of 34 motion and physiological regressors were extracted in order to mitigate the impact of 
head motion and physiological noise. The six head-motion estimates calculated in the correction step 
were expanded to include temporal derivatives and quadratic terms of each of the original and deriv-
ative regressors, totaling 24 head-motion parameters (Satterthwaite et al., 2013). Ten component-
based physiological regressors were estimated using the aCompCor approach (Behzadi et al., 2007; 
Muschelli et al., 2014), where the top five PCs were separately extracted from WM and CSF masks. 
PCs were estimated after high-pass filtering the preprocessed BOLD time series (using a discrete 
cosine filter with 128 s cut-off).

Regional time-series extraction
For each participant and scan, the average BOLD time series were computed from the grayordi-
nate time series for (1) each of the 998 regions defined according to the Schaefer 1000 parcellation 
(Schaefer et al., 2018; two regions are removed from the parcellation due to their small parcel size) 
and (2) each of the 12 striatal regions defined according to the Harvard-Oxford atlas (Frazier et al., 
2005; Makris et  al., 2006), which included the caudate, putamen, accumbens, pallidum, hippo-
campus, and amygdala. Region time series were denoised using the above-mentioned confound 
regressors in conjunction with the discrete cosine regressors (128  s cut-off for high-pass filtering) 
produced from fMRIprep and low-pass filtering using a Butterworth filter (100 s cut-off) implemented 
in Nilearn. Finally, all region time series were z-scored.

Neuroimaging data analysis
Covariance estimation and centering
For every participant, region time series from the task scans were spliced into three equal-lengthed 
task epochs (210 imaging volumes each), after having discarded the first six imaging volumes (thus 
avoiding scanner equilibrium effects). This allowed us to estimate functional connectivity from contin-
uous brain activity over the corresponding 70 trials for each epoch; Baseline comprised of the initial 
70 trials in which subjects performed the motor task in the absence of any reward feedback, whereas 
the early and late learning epochs consisted of the first and last 70 trials after the onset of reward 
feedback, respectively. Then, we separately estimated functional connectivity matrices for each epoch 
by computing the region-wise covariance matrices using the Ledoit–Wolf estimator (Ledoit and Wolf, 
2004). Note that our use of equal-length epochs for the three phases ensured that no biases in cova-
riance estimation were introduced due to differences in time-series length.

Next, we centered the connectivity matrices using the approach advocated by Zhao et al., 2018, 
which leverages the natural geometry of the space of covariance matrices (Areshenkoff et al., 2022; 
Areshenkoff et al., 2021). In brief, this involved adjusting the covariance matrices of each partici-
pant to have a common mean, which was equivalent to the overall mean covariance, thus removing 
subject-specific variations in functional connectivity. First, a grand mean covariance matrix, ‍

−
Sgm‍ , was 
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computed by taking the geometric mean covariance matrix across all ‍i‍ participants and ‍j‍ epochs. 
Then, for each participant we computed the geometric mean covariance matrix across task epochs, 

‍
−
Si‍ , and each task epoch covariance matrix ‍Sij‍ was projected onto the tangent space at this mean 
participant covariance matrix ‍Si‍ to obtain a tangent vector
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where log denotes the matrix logarithm. We then transported each tangent vector to the grand mean 

‍
−
Sgm‍ using the transport proposed by Zhao et al., 2018, obtaining a centered tangent vector
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i ‍ . This centered tangent vector now encodes the same difference in covariance, 

but now expressed relative to the grand mean. Finally, we projected each centered tangent vector 
back onto the space of covariance matrices, to obtain the centered covariance matrix
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where ‍exp‍ denotes the matrix exponential. For the benefits of this centering approach, see Figure 2, 
and for an additional overview, see Areshenkoff et al., 2022.

Note that we have implemented many of the computations required to replicate the analysis in an 
publicly available R package spdm, which is freely available from GitHub (Areshenkoff, 2023).

Manifold construction
Connectivity manifolds for all centered functional connectivity matrices were derived in the following 
steps. First, consistent with previous studies (Gale et al., 2022; Hong et al., 2020; Margulies et al., 
2016; Vos de Wael et al., 2020), we applied row-wise thresholding to retain the top 10% connections 
in each row, and then computed cosine similarity between each row to produce an affinity matrix that 
describes the similarity of each region’s connectivity profiles. Second, we applied PCA to obtain a set 
of PCs that provide a low-dimensional representation of connectivity structure (i.e., connectivity gradi-
ents). We selected PCA as our dimension reduction technique based on recent work demonstrating 
the improved reliability of PCA over nonlinear dimensionality reduction techniques (e.g., diffusion 
map embedding; Hong et al., 2020).

To provide a basis for comparing changes in functional network architecture that arise during 
learning specifically, we constructed a template manifold using the same aforementioned manifold 
construction procedures from a group-average baseline connectivity matrix that was derived from the 
geometric mean (across participants) of all centered baseline connectivity matrices. We aligned all 
individual manifolds (36 participants × 3 epochs; 108 total) to this baseline template manifold using 
Procrustes alignment. All analyses on the aligned manifolds were performed using the top three PCs, 
which cumulatively explained ~70% of the total variance in the template manifold. Across participants 
and epochs, the top three PCs, following Procrustes alignment, had an average correlation of r = 0.88 
with their respective PCs in the template manifold, thus demonstrating good overall reliability and 
alignment across participants and epochs. Together, this approach enabled us to uniquely examine 
the learning-related changes in manifold structure (during early and late learning), and specifically 
how these deviate from the baseline task functional architecture.

Manifold eccentricity and analyses
Recent work has quantified the embedding of regions and networks in low-dimensional spaces using 
Euclidean distance as a measure (Bethlehem et al., 2020; Park et al., 2021a; Park et al., 2021b; Valk 
et al., 2023). ‘Eccentricity’ refers to the Euclidean distance between a single region and the mani-
fold centroid (Park et al., 2021a), which, in the case of PCA, is equivalent to a region’s magnitude, 
or vector length. Note that eccentricity provides a scalar index of network integration and segre-
gation, in which distal regions with greater eccentricity are more segregated than proximal regions 
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that integrate more broadly across functional networks (Park et al., 2021a; Park et al., 2021b; Valk 
et al., 2023). To validate this interpretation with our own data, we correlated the baseline template 
manifold eccentricity with three graph theoretical measures of functional integration and segrega-
tion. These measures were calculated on the row-wise thresholded template connectivity matrix and 
included node strength, which is the sum of a region’s connectivity weights; within-module degree 
z-score, which measures the degree centrality of a region within its respective network; and participa-
tion coefficient, which measures the network diversity of a region’s connectivity distribution (Rubinov 
and Sporns, 2010). Regions were assigned to their respective intrinsic functional networks (Schaefer 
et al., 2018; Thomas Yeo et al., 2011) for calculations of within-module degree z-score and partici-
pation coefficient.

We computed eccentricity for each brain region for all individual manifolds (each participant 
and epoch). This allowed us to observe manifold expansions (increases in eccentricity) and contrac-
tions (decreases in eccentricity) throughout early and late learning, thereby probing learning-related 
changes in functional segregation and integration (e.g., see Figure 4). We compared region eccen-
tricity between the baseline, early, and late learning epochs by performing a series of region-wise 
paired t-tests between these three key epochs. We applied FDR correction (q < 0.05) across regions 
for each contrast.

Seed connectivity analyses
In order to understand the underlying changes in regional covariance that ultimately give rise to the 
observed changes in manifold eccentricity, we performed seed connectivity contrasts between the 
different task epochs. To this end, we selected several seed regions that were statistically significant 
in the early learning > baseline contrast, which included areas in the left MPFC, left premotor cortex 
(PMd), and left PMC, thereby allowing us to characterize some of the cortical and striatal changes 
that are associated reward-based learning. For completeness, we also selected homologous regions 
in the right hemisphere (see Figure 5—figure supplement 1). For each seed region, we generated 
functional connectivity maps for the epochs of interest in every participant and computed region-wise 
paired t-tests for both the early > baseline and late > early contrasts. For all contrasts, we opted to 
show the unthresholded t-maps so as to visualize the complete multivariate pattern of connectivity 
changes that drive changes in eccentricity (a multivariate measure). In addition, we constructed spider 
plots further characterizing these changes at the network level by averaging the t-values across indi-
vidual regions according to their network assignment (Thomas Yeo et al., 2011). Note that these anal-
yses are mainly intended to provide characterization (and interpretation) of the connectivity changes 
of representative regions from our main eccentricity analyses.

Behavioral correlation analyses
To investigate the relationship between changes in manifold structure and individual differences in 
learning performance, we computed a correlation, across participants, between learning score and 
each region’s change in eccentricity from baseline to early learning (Figure 6C) and from early to 
late learning (Figure 6D). This produced two correlation maps, one for each contrast. We found that 
the spatial specificity of significant regions in these correlation maps overlapped substantially with 
the dorsal attention A (DAN-A) network, from the 17-network Schaefer 1000 assignments (Schaefer 
et al., 2018). This was determined by evaluating the mean correlation (across regions) for each of 
the 17-network assignments against a null distribution generated by projecting each brain region’s 
correlation onto their respective Schaefer 1000 parcels on the 32k fsLR spherical mesh and performing 
1000 iterations of the Váša spin-testing permutation procedure (Markello et al., 2022; Váša et al., 
2018). This allowed us to generate, for each brain network and pairwise comparison (baseline to early 
learning and early to late learning), a topographical distribution of correlations that could be expected 
simply due to chance from spatial autocorrelations in the brain maps (see Figure 6E and F). We then 
empirically assessed the statistical significance of our real correlation values against this spatial null 
distribution for each brain network. Because the spin-testing procedure assesses only the probability 
of having observed a given correlation value, and not whether that correlation value itself differs from 
zero, we incorporated the additional stipulation that an effect would be deemed significant only if the 
real correlation value was also statistically different from zero (at p<0.05).
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To explore the underlying changes in functional connectivity that give way to these brain–be-
havior correlations, we performed seed connectivity contrasts, using paired t-tests on the 17-network 
parcellation, between the different task epochs (early > baseline and late > early). As with the ‘Seed 
connectivity analyses’ section above, we opted to show the unthresholded t-maps so as to visualize 
the complete multivariate pattern of connectivity that underlies the brain–behavior correlations 
(Figure 6G). Together, these complementary approaches enabled us to explore how individual differ-
ences in performance relate to changes in manifold structure at the region- and network levels.
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