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The intricate relationship of G-
Quadruplexes and bacterial 
pathogenicity islands
Bo Lyu*, Qisheng Song*

Division of Plant Science and Technology, University of Missouri, Columbia, United 
States

Abstract The dynamic interplay between guanine-quadruplex (G4) structures and pathogenicity 
islands (PAIs) represents a captivating area of research with implications for understanding the 
molecular mechanisms underlying pathogenicity. This study conducted a comprehensive analysis of 
a large-scale dataset from reported 89 pathogenic strains of bacteria to investigate the potential 
interactions between G4 structures and PAIs. G4 structures exhibited an uneven and non-random 
distribution within the PAIs and were consistently conserved within the same pathogenic strains. 
Additionally, this investigation identified positive correlations between the number and frequency 
of G4 structures and the GC content across different genomic features, including the genome, 
promoters, genes, tRNA, and rRNA regions, indicating a potential relationship between G4 struc-
tures and the GC-associated regions of the genome. The observed differences in GC content 
between PAIs and the core genome further highlight the unique nature of PAIs and underlying 
factors, such as DNA topology. High-confidence G4 structures within regulatory regions of Esche-
richia coli were identified, modulating the efficiency or specificity of DNA integration events within 
PAIs. Collectively, these findings pave the way for future research to unravel the intricate molecular 
mechanisms and functional implications of G4-PAI interactions, thereby advancing our under-
standing of bacterial pathogenicity and the role of G4 structures in pathogenic diseases.

eLife assessment
This fundamental study explores the relationship between guanine-quadruplex structures and 
pathogenicity islands in 89 bacterial strains representing a range of pathogens. Guanine-quadruplex 
structures were found to be non-randomly distributed within pathogenicity islands and conserved 
within the same strains. These compelling findings shed light on the molecular mechanisms 
of Guanine-quadruplex structure-pathogenicity island interactions and will be of interest to all 
microbiologists.

Introduction
The discovery of the DNA double helix by Watson and Crick in 1953 revolutionized our understanding 
of genetics and laid the foundation for the modern field of molecular biology (Watson and Crick, 
1953). Nonetheless, the intricate nature of DNA continues to surprise us even today. One such capti-
vating feature is the DNA guanine (G)-quadruplex (G4) structure, a unique arrangement that defies 
the conventional double helix (Rhodes and Lipps, 2015; Spiegel et al., 2020). A G4 consists of four 
guanine bases and is stabilized by Hoogsteen hydrogen bonds. These stacked tetrads are intercon-
nected by loop regions, which can vary in length and sequence, adding further complexity to the 
structure (Figure 1). It is important to consider the inherent directionality of nucleic acids, with all four 
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strands having the possibility to run in the same 5' to 3' direction, referred to as ‘parallel,’ or alterna-
tively, they can run in different directions, known as ‘antiparallel.’. G4 regions can be very stable in vitro, 
particularly in the presence of K+ (Stegle et al., 2009). G4 structures are often found in regions of the 
genome with crucial regulatory functions, such as telomeres, promoters, and enhancers (Rhodes and 
Lipps, 2015; Huppert, 2010). These structures play a role in various biological processes, including 
gene expression, DNA replication, and telomere maintenance (Rhodes and Lipps, 2015; Zybailov 
et al., 2013). Further research into G4 structures will undoubtedly uncover new insights into their 
functions and facilitate the development of innovative technologies.

PAIs are genomic regions that contribute to the virulence and pathogenic potential of various micro-
organisms (Schmidt and Hensel, 2004; Groisman and Ochman, 1996). PAIs are distinct segments of 
the bacterial genome that exhibit unique characteristics compared to the rest of the DNA (Hacker and 
Kaper, 2000). They are often large in size, ranging from tens of kilobases to hundreds of kilobases, 
and can be integrated into the chromosome or exist as extra-chromosomal elements, such as plas-
mids. PAIs often exhibit close proximity to tRNA genes, suggesting a putative mechanism where 
tRNA genes act as anchor points for the integration of foreign DNA acquired through horizontal gene 
transfer (Figure 1E). One notable feature is their variable GC content, which tends to deviate from the 
average GC content of the genome in various organisms, such as Streptomyces (Kers et al., 2005), 
Salmonella (Kombade and Kaur, 2021), and Yersinia (Carniel, 1999). PAIs typically contain clusters 
of genes involved in pathogenesis, including those encoding secretion systems (e.g. LEE (locus of 
enterocyte effacement) in Escherichia coli), superantigen (e.g. SaPI1 and SaPI2 in Staphylococcus 
aureus), and enterotoxin (e.g. she PAI in Shigella flexneri). PAIs can be acquired through the transfer 
of mobile genetic elements, such as plasmids, phages, or integrative and conjugative elements (ICEs), 
facilitating the incorporation of pathogenicity-associated genes into the recipient genome (Schmidt 
and Hensel, 2004; Syvanen, 2012; Chen et al., 2015). One question raised in PAI is that PAIs often 
exhibit distinct base composition (G+C contents) compared to the core genome. The underlying 
reasons for this variation remain unknown, but the preservation of a genus- or species-specific base 
composition represents a noteworthy characteristic of bacteria (Schmidt and Hensel, 2004). Schmidt 
and Hensel proposed a hypothetical mechanism to explain the observed variation, suggesting that 
factors such as DNA topology and codon message in the virulence regions present could contribute 
to the preservation of the distinct base composition (Schmidt and Hensel, 2004). Hopefully, the 
availability of genome sequences from pathogenic bacteria and their non-pathogenic counterparts 
presents an exceptional opportunity to explore the intricate structure variance and underlying mech-
anisms within PAIs.

Growing evidence has shown that G4 structures exhibit a striking colocalization with functional 
regions of the genome, and their high conservation across different species suggests a selective pres-
sure to maintain these sequences at specific genomic regions (e.g. genome islands, resistance islands, 
CpG islands, and PAIs) (Rhodes and Lipps, 2015; Frees et al., 2014; König et al., 2010). The possi-
bility of interactions between G4 structures and pathogens has been suggested, although this field of 
study is still in its nascent phase. Some studies observed that bacterial genomes possess G4-forming 
sequences within their genome regions (Yadav et al., 2021; Harris and Merrick, 2015). G4 struc-
tures are formed by G-rich DNA sequences, and their stability is influenced by the G+C content and 
arrangement of G tetrads. Interestingly, PAIs often exhibit an altered GC content, putatively contrib-
uting to the propensity of G4 structure formation within these regions. The G4 structures in PAIs 
might modulate the accessibility of transcription factors, DNA-binding proteins, or RNA polymerase in 
pathogens, as documented in eukaryotes (Rhodes and Lipps, 2015; Varshney et al., 2020), thereby 
influencing the expression of virulence-associated genes (Cahoon and Seifert, 2009). The formation 
of G4 structures within PAIs may serve as an additional layer of regulation that fine-tunes the expres-
sion of genes critical for pathogenesis. Hence, the investigation of G4 structures within PAIs may 
open new avenues for the development of therapeutic strategies aimed at disrupting the regulatory 
mechanisms of pathogenicity-associated genes.

https://doi.org/10.7554/eLife.91985
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Figure 1. Structural and functional aspects of G-quadruplex (G4) structures and pathogenicity islands (PAIs). (A) Schematic representation of a 
guanine tetrad stabilized by Hoogsten base pairing and a positively charged central ion, illustrating the key elements of G4 structures. (B) Structural 
heterogeneity of G4 structures. G4 structures exhibit polymorphism and can be categorized into different families, such as parallel or antiparallel, 
based on the orientation of the DNA strands. They can fold either intramolecularly or intermolecularly, leading to diverse structural configurations. 
(C) General sequence formula for G4, highlighting the repeated occurrence of guanine-rich sequences that form G4 structures. (D) Regulatory roles 
of G4 in transcription. G4 can regulate transcription by blocking RNA polymerase from binding to promoter sequences or aiding in single-stranded 

Figure 1 continued on next page
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Results
Genomic information, PAI patterns, and the presence of G4 structures 
in 89 reported pathogenic strains
A dataset of PAIs was compiled from 89 reported pathogenic strains of bacteria, encompassing 
222 distinct types of PAIs. Pathogens exhibiting similar PAIs displayed closely clustered patterns on 
phylogenetic branches, such as LEE in E. coli strains (Figure 2A). Additional information, including 
the genome length (bp), G+C content (%), rRNA density, tRNA density, and PAI length (bp), was 

DNA (ssDNA) formation, thereby enhancing transcription. (E) General structure of pathogenicity islands (PAI). PAIs are characteristic regions of DNA 
found within the genomes of pathogenic bacteria, distinguishing them from nonpathogenic strains of the same or related species. Repeat sequences 
are DNA segments duplicated within the PAI and can serve as recognition sites for various enzymes involved in the integration and excision of the PAI 
from the bacterial chromosome. tRNA genes act as anchor points for the insertion of foreign DNA acquired through horizontal gene transfer. Virulence 
genes encode proteins or factors that play crucial roles in the virulence and pathogenicity of the bacterium, contributing to adhesion, invasion, immune 
evasion, toxin production, or other pathogenic mechanisms. Insertion elements include transposons, bacteriophages, or plasmids, enabling the PAI to 
be transferred between bacterial cells and potentially disseminated to different strains or species.
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Figure 2. Analysis of pathogenicity islands (PAIs) and G-quadruplexes (G4) in pathogen genomes. (A) Phylogenetic analysis of pathogen genomes 
based on 89 bacterial strains, showing the evolutionary relationships among species. Additional genomic information, including genome size, GC 
content, rRNA density, tRNA density, and PAI length, is provided. The same color indicates the same species. (B) Genomic location of specific PAIs in 
bacterial genomes, divided into ten regions. PAIs are represented by green triangles, and their names are indicated. The tRNA insertion sites are also 
marked. (C) Heatmap illustrating the relative abundance of G4 structures in bacterial genomes, divided into ten regions. Red indicates a higher relative 
abundance, while blue indicates a lower relative abundance. (D & E) Correlation analysis between the number of G4 structures, the frequency of G4 
structures, and GC content in various genomic features, including the whole genome, genes, promoters, rRNA, and tRNA. R-squared and p-values were 
derived through linear regression analysis performed in GraphPad Prism.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlation analysis between the number of G4s, the frequency of G4s, and GC content in various genomic features, including 
the whole genome, genes, promoters, rRNA, and tRNA, using G4 scores of 1.4 and 1.6.

https://doi.org/10.7554/eLife.91985
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present and showed conserved patterns in the same species (Figure 2A; Supplementary file 1a). 
PAIs commonly exhibit mosaic-like patterns, exemplified by the presence of distinct PAIs like FPI in 
Francisella tularensis, SaPIbov in Staphylococcus aureus, and Hrp PAI in Xanthomonas campestris 
(Figure 2B). Many PAIs were present associated with tRNAs, such as the insertions of tRNAThr, tRNAPhe, 
and tRNAGly in E. coli strains (Figure 2B; Supplementary file 1b). The presence of PAIs distributes in 
similar genomic regions across different pathogens or strains, showing non-random patterns and func-
tionally clustered. Employing the G4Hunter search algorithm, the study identified a total of 225,376 
putative G4 sequences in these 89 pathogenic genomes (Supplementary file 1a). The heatmap also 
showed that the number of G4 structures was diverse in the pathogen genomes (Figure 2C).

Interaction between PAIs and G4 structures in different genomic 
features
The analysis of G4 structures across all pathogen species demonstrated a positive correlation between 
the number of G4 structures and the GC content in various genomic features, including the whole 
genome, gene, promoter, rRNA, and tRNA regions (Figure  2D). The frequency of G4 structures, 
measured as the frequency of predicted G4-forming sequences per 1000 base pairs (bp), also showed 
a positive correlation with the GC content across the analyzed genomic elements (Figure 2E). A G4 
score of 1.4 and 1.6 consistently supported a positive correlation between the number and frequency 
of G4 structures and the GC content across diverse genomic features (Figure 2—figure supplement 
1). Additionally, this study observed that the GC contents in the genome region were significantly 
higher compared to the corresponding PAIs region that was classified into five parts according to the 
genome datasets (Figure 3A–E). Nonetheless, this study noted a unique pattern in the frequency of 
G4 structures within diverse regions of the PAIs, particularly in regions with GC contents less than 30% 
and greater than 60%.

Putative functions of G4 structures in PAIs
The study used E. coli as an example to investigate the potential regulatory role and function of 
genes covered by G4 structures in PAIs. E. coli contains at least ten types of PAIs in different strains, 
and one of the well-known PAIs is LEE (Figure 3F), harboring genes responsible for causing attaching 
and effacing lesions (Franzin and Sircili, 2015; Jores et al., 2004). One stable G4 structure with a 
G4Hunter score of 1.6 was identified at position 37,085 in the LEE PAI of E. coli str. O103:H2 12009 
(Figure 3G), located between an IS element and a tRNA insertion site. The tRNA region generally 
contains a higher G4 frequency compared with transfer-messenger RNA (tmRNA) and rRNA regions 
in the bacterial genome (Bartas et al., 2019). Interestingly, this G4 structure was found in E. coli str. 
O103:H2 12009 was present in close proximity to a tRNA region, suggesting a potential regulatory 
role of G4 structures in the tRNA gene, or upstream- and downstream-genes that are responsible for 
LEE virulence. Additionally, another stable G4 sequence with a score of 1.381 was discovered at posi-
tion 12,457 in the E. coli str. CFT073 PAI II to provide more evidence of G4 in PAI regions (Figure 3H). 
Functional enrichment analysis was conducted to explore the putative functions of G4-covered genes 
in the two E. coli strains (Supplementary file 1c and d). The results revealed that the genes covered by 
G4 structures were predominantly involved in genetic information processes, including DNA binding, 
DNA integration, and nucleic acid metabolism processes (Figure 3I & J).

Discussion
This study found that the non-random distribution of G4 structures within PAIs across different bacte-
rial species, signifies a potential regulatory role in bacterial pathogenicity. The conservation of G4 
structures within the same pathogenic strains suggests a crucial and possibly conserved function 
in regulating pathogenic traits. The findings are similar to previous reports that showed that the 
G4 structures display uneven distribution patterns in eukaryotic and prokaryotic genomes and are 
conserved evolutionary groups (Bartas et al., 2019; Du et al., 2009; Puig Lombardi et al., 2019). 
To understand the origin of G4 structures within PAIs, we hypothesized that these G4 sequences 
could be acquired through three types of horizontal gene transfer mechanisms: conjugation, trans-
formation, and transduction (Figure  3K). These mechanisms serve as means for genetic material 
exchange between different organisms. Considering the presence of G4 sequences within the PAIs, 

https://doi.org/10.7554/eLife.91985
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it is plausible that these sequences are transferred along with the PAIs through these horizontal 
gene transfer mechanisms. Additionally, the presence of G4 structures within the promoter, rRNA, 
and tRNA regions may have functional implications for the regulation of DNA replication, ribosome 
biogenesis, protein synthesis, and other RNA-related processes (Zybailov et al., 2013; Ivanov et al., 
2014; Mestre-Fos et al., 2019). Throughout evolution, there seems to be a greater frequency of G4 
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Figure 3. Comparison and functional annotation of G-quadruplexes (G4) within pathogenicity islands (PAIs). (A–E) Comparison of GC content (left 
panel) and GC frequency (right panel) between the genome and PAIs, categorized into five regions (20–30%, 30–40%, 40–50%, 50–60%, and 60–70%). 
*/**/***/**** indicates significant difference (p<0.05/0.01/0.001/0.0001). (F) Evolutionary relatedness of 10 types of PAIs (categorized into six main 
categories) in E. coli strains. (G & H) Examples of G4 structures within PAIs in E. coli strains. The gray bar represents the virulence region, the red box 
indicates a virulence gene, the blue box represents an insertion site region or repeat, the green box denotes an integrase, the purple triangle indicates 
a tRNA insertion site, and the yellow triangle indicates an effector. (I &J) Functional annotation analysis of G4-covered genes within PAIs in two E. coli 
strains, including biological process (BP), cellular component (CC), and molecular function (MF) categories. (K) Hypotheses on the origin of G4 structures 
within PAIs, involving gene horizontal transfer mechanisms (conjugation, transduction, and transformation).
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structures in regulatory genes, such as the tRNA region, compared to other genes, enabling intricate 
control of gene expression in signal transduction pathways (Wu et al., 2021).

The study found that the genomic regions surrounding the PAIs (i.e. core genome) tend to have a 
higher GC content than PAI regions, which was consistent with the fact that PAIs often exhibit distinct 
base compositions compared with the core genome (Schmidt and Hensel, 2004). The variation was 
explained by the presence of G4 sequences within the PAIs, whereas the results were surprising. This 
study observed a distinct pattern in the frequency of G4 structures within different regions of the PAIs. 
This differential distribution of G4 structures suggests that (i) specific genomic segments within the PAIs 
may be more prone to induce G4 formation discrepancy; (ii) the variation of base composition between 
core genome and PAIs is partially correlated with the presence of G4 structures; (iii) the frequency of G4 
structures in PAIs present stable as the core genome in the most situation; (iv) an alternative hypothesis, 
other factors, such as i-motif (i.e. the anti-G4 structure) and CpG island, may work synergistically with G4 
and potentially contribute the base composition variation (Deaton and Bird, 2011; Sushmita, 2020).

Enrichment analysis indicated a predominant involvement of these G4-covered genes in genetic 
information processes, encompassing DNA binding, DNA integration, and nucleic acid metabolism. 
This suggests that G4 structures may play a regulatory role in these essential cellular processes, 
especially gene expression and DNA-related functions. For instance, G4 structures in the promoter 
regions of certain transcription factors may influence their binding affinity to DNA and subsequently 
affect downstream gene expression patterns (Niu et al., 2018; Xiang et al., 2022). These elements 
frequently utilize DNA integration mechanisms mediated by integrases, recombinases, or transposases 
to transfer or incorporate genetic material into the bacterial genome (Arkhipova and Rice, 2016; 
Wozniak and Waldor, 2010). One compelling illustration is a study that identified a 16-base pair cis-
acting G4 sequence near the pilin locus in Neisseria gonorrhoeae, demonstrating its pivotal role in 
antigenic variation and directing recombination to a specific chromosomal locus (Cahoon and Seifert, 
2009; Cahoon and Seifert, 2013). Disruption of the G4 structure in this context impeded pilin antigenic 
variation and recombination, highlighting its significance in immune evasion mechanisms. Additionally, 
considering the distance between G4 structures and the beginning site of gene (e.g. transcription 
start site (TSS)) in the analysis of promoter regions is pivotal for a comprehensive understanding of 
their regulatory impact on gene expression (Huppert, 2010). The spatial proximity to the TSS influ-
ences interactions with regulatory elements, potentially modulating the binding of transcription factors 
and RNA polymerase. This spatial relationship affects accessibility, with G4 structures closer to the 
TSS potentially acting as direct impediments to transcription initiation. Acknowledging these spatial 
nuances would provide crucial insights into the functional implications of G4 structures in promoters.

Overall, the conserved evolutionary relatedness of PAIs, the detection of stable G4 structures in 
specific genomic positions, and the enrichment of G4-covered genes in genetic information processes 
collectively support the hypothesis that G4 structures may have regulatory functions in key biological 
processes in pathogens. However, it is important to acknowledge and address certain limitations 
that could potentially affect the interpretation of the results. One such limitation is the reliance on 
genome sequences obtained from external laboratories and datasets, which introduces a level of 
uncertainty regarding the accuracy and completeness. Furthermore, the dynamic nature of bacte-
rial genomes, including genetic rearrangements and horizontal gene transfer events, can complicate 
the accurate assembly and annotation of genome sequences. Lastly, the stability of G4 structures 
seems to be important for their function according to recent evidence (Jara-Espejo and Line, 2020). 
Hence, exploring the relationship between G4 stability and function is a valuable and intriguing topic 
that could provide insights into the nuanced ways G4 structures contribute to cellular processes and 
potentially offer new avenues for therapeutic interventions or molecular engineering. To overcome 
these constraints, fostering collaboration among research teams and participating in data-sharing 
endeavors becomes imperative to guarantee access to high-quality genome data for exhaustive anal-
yses. Moreover, it is crucial to interpret the results with caution and continue refining this under-
standing through validation experiments and collaborative efforts.

Methods
Selection and extraction of DNA sequences
A total of 89 genomes corresponding to the identified pathogens from the Pathogenicity Island Data-
base (PAIDB) were included in the study. The complete bacterial genomic DNA sequences and their 
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corresponding annotation files ​in.​gff ​and.​fna formats were obtained from the Genome database of 
the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/genome). To 
ensure the reliability and completeness of the dataset, only completely assembled genomes were 
included in the analysis. To avoid redundancy and incomplete sequences, one representative genome 
was selected for each species or strain. The selection of representative genomes was based on a 
careful examination of the supplementary material (Supplementary file 1a) accompanying the study. 
TBtools II (Toolbox for Biologists, RRID:SCR_023018, v2.042) (https://cj-chen.github.io/tbtools), a 
versatile bioinformatics tool with extensive applications in both eukaryotes and prokaryotes (Chen 
et al., 2020; Chen et al., 2023), was employed for extracting genomic sequences. This tool facili-
tated the retrieval of gene regions, promoters (2 kb upstream of the genes), tRNA regions, and rRNA 
regions from the selected genomes. PAI regions were downloaded following previously documented 
information in PAIDB (Supplementary file 1a and b). Default thresholds and parameters were applied 
during extraction to maintain consistency across all genomes.

Data process and detection of G4 structures in genomic features
The G4Hunter algorithm, a widely used tool for G4 prediction, was employed for the identification of 
G4 motifs in the genomic sequences (Brázda et al., 2019). The G4Hunter parameters were set to a 
window size of ‘25’ and a G4 score threshold of 1.2, which ensured the identification of potential G4 
sequences (Bartas et al., 2019; Brázda et al., 2020). The study additionally utilized G4 scores of 1.4 
and 1.6 as a means of cross-verification for the results. The study quantified the predicted number 
of putative G4-forming sequences within different genomic features, including the whole genome, 
gene, promoter, tRNA, rRNA, and PAI regions. The density of G4 motifs was determined by dividing 
the number of G4 sequences by the total length of the genome, while the length ratio of G4 motifs 
was calculated by dividing the total length of the G4 sequences by the total length of the genome.

Relationship between G4 structures and PAIs
The heatmap was used to show the distribution of G4 motifs in the genome divided by ten parts as 
PAI regions using R package ‘pheatmap.’ The correlation between the number of G4 structures and 
the GC content was analyzed across various genomic elements, including the whole genome, gene, 
promoter, rRNA, and tRNA regions. The analysis utilized the R-squared value (R2) to determine the 
fit goodness of the correlation. The correlation’s significance was evaluated through p-values along 
with a 95% confidence interval. Subsequently, a ROC analysis, yielding an area greater than 0.90, 
was employed to quantify sensitivity and specificity. The GC content in the genome regions and 
corresponding PAI regions was compared and classified into different ranges to explore the variation 
in base composition. GraphPad Prism (V.5.02, GraphPad Software, Inc) was employed to conduct 
Normality and Lognormality Tests. The K-S test and F-test were used to assess normal distribution and 
variances, and the Student’s t-test was used to identify significant differences.

Phylogenetic tree construction
The exact Taxonomy ID (taxid) for each analyzed group was obtained from the NCBI Taxonomy Data-
base using the Taxonomy Browser. The Neighbor-Joining (NJ) method was employed to construct the 
phylogenetic trees for the analyzed groups. The phylogenetic trees were generated using MEGA11 
software (https://www.megasoftware.net/), which offers robust algorithms and comprehensive tools 
for phylogenetic analysis. To assess the reliability and statistical support of the phylogenetic tree 
branches, bootstrap analysis was performed. One thousand bootstrap replicates were used to esti-
mate the confidence levels of the branching patterns in the phylogenetic trees. The phylogenetic 
trees, along with the bootstrap support values, were displayed and visualized using the Interactive 
Tree of Life (ITOL) platform (https://itol.embl.de/).

Gene functional annotation
The gene sequences covered by G4 structures within PAIs were subjected to gene ontology (GO) 
annotation (https://geneontology.org/). The gene sequences were translated into protein sequences 
using the Expasy online toolkit (https://web.expasy.org/translate/). This tool performs the translation 
based on the standard genetic code, converting the DNA nucleotide sequence into its corresponding 
amino acid sequence. The GO annotation database assigned GO terms to the protein sequences 
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based on their predicted functions and known biological process (BP), molecular function (MF), and 
cellular component (CC). Fisher’s exact test was employed to determine the statistical significance of 
the enrichment results. The obtained p-values indicated the overrepresentation of specific GO terms, 
with lower p-values suggesting higher significance.

Statistics and reproducibility
All genomic data utilized in this study, including the species-specific datasets, were obtained from 
publicly available sources. Statistical analyses, such as the Student’s t-test, Wilcoxon test, correlation 
test, and linear regression analysis, were performed using GraphPad Prism software. The samples 
used in the statistical analyses corresponded to the genomic data, PAIs, or specific genes under 
investigation.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Saenz HL 2007 Intracellular pathogen 
isolated from wild rats

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA28109/

NCBI BioProject, 
PRJNA28109

Gartemann KH 2008 Phytopathogen that causes 
bacterial wilt and canker of 
tomato

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA19643/

NCBI BioProject, 
PRJNA19643

University of Helsinki 2021 Clostridium perfringens 
isolates and their heat 
resistance

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA707150/

NCBI BioProject, 
PRJNA707150

Bielefeld University 2012 Corynebacterium 
diphtheriae 241 genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42407/

NCBI BioProject, 
PRJNA42407

Bielefeld University 2012 Corynebacterium 
diphtheriae C7 (beta) 
genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42401/

NCBI BioProject, 
PRJNA42401

Bielefeld University 2012 Corynebacterium 
diphtheriae CDCE 8392 
genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42405/

NCBI BioProject, 
PRJNA42405

Bielefeld University 2012 Corynebacterium 
diphtheriae HC03 genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42415/

NCBI BioProject, 
PRJNA42415

Bielefeld University 2012 Corynebacterium 
diphtheriae INCA 402 
genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42419/

NCBI BioProject, 
PRJNA42419

Sanger Institute 2003 Causative agent of 
diphtheria

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA87/

NCBI BioProject, PRJNA87

Bielefeld University 2012 Corynebacterium 
diphtheriae PW8 genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA42403/

NCBI BioProject, 
PRJNA42403

Bielefeld University 2012 Corynebacterium 
pseudotuberculosis 1002 
genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA40687/

NCBI BioProject, 
PRJNA40687

University Federal of 
Minas Gerais

2020 Corynebacterium 
pseudotuberculosis strain 
C231, whole genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA40875/

NCBI BioProject, 
PRJNA40875

Bielefeld University 2019 Corynebacterium 
pseudotuberculosis FRC41 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA48979/

NCBI BioProject, 
PRJNA48979

Rede Paraense 
de Genômica e 
Proteômica

2019 Corynebacterium 
pseudotuberculosis I19 
genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA52845/

NCBI BioProject, 
PRJNA52845

The Enterobacter 
sakazakii Genome 
Sequencing Project

2007 Isolated from dried infant 
formula and causes infant 
septicemia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA12720/

NCBI BioProject, 
PRJNA12720

TIGR 2003 Opportunistic pathogen 
that transfers vancomycin 
resistance to other bacteria

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA70/

NCBI BioProject, PRJNA70

Baylor College of 
Medicine

2012 reference genome for the 
Human Microbiome Project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA30627/

NCBI BioProject, 
PRJNA30627
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Author(s) Year Dataset title Dataset URL Database and Identifier

University Iowa State 2006 Avian pathogenic strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA16718/

NCBI BioProject, 
PRJNA16718

Genentech 2020 Escherichia coli CFT073 
isolate:199310 Genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA624646/

NCBI BioProject, 
PRJNA624646

University of Tokyo 2009 Enterohemorrhagic strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA32509/

NCBI BioProject, 
PRJDA32509

University of Tokyo 2009 This strain will be used 
for comparative genome 
analysis

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA32511/

NCBI BioProject, 
PRJDA32511

University of Tokyo 2009 This strain will be used 
for comparative genome 
analysis

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA32513/

NCBI BioProject, 
PRJDA32513

University of 
California San Diego

2014 Escherichia coli O157:H7 
str. EDL933 Genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA253471/

NCBI BioProject, 
PRJNA253471

GIRC 2018 Enterohemorrhagic 
Escherichia coli

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA226/

NCBI BioProject, 
PRJNA226

Genoscope 2008 Urinary tract infection 
isolate

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA33415/

NCBI BioProject, 
PRJNA33415

DOE Joint Genome 
Institute

2008 Causative agent of 
tularemia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA19571/

NCBI BioProject, 
PRJNA19571

Los Alamos National 
Laboratory

2015 Francisella tularensis 
tularensis Schu_S4 Genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA239340/

NCBI BioProject, 
PRJNA239340

BioHealthBase 2007 Causative agent of 
tularemia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA18459/

NCBI BioProject, 
PRJNA18459

Wuerzburg Univ 2003 Causes hepatitis, typhlitis, 
hepatocellular tumors, and 
gastric bowel disease

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA185/

NCBI BioProject, 
PRJNA185

RIPCM 2012 Helicobacter pylori 26695 
Genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA175543/

NCBI BioProject, 
PRJNA175543

Bielefeld University 2010 Helicobacter pylori B8 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA41831/

NCBI BioProject, 
PRJEA41831

The University of 
Tokyo

2011 Helicobacter pylori F16 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA50589/

NCBI BioProject, 
PRJDA50589

The University of 
Tokyo

2011 Helicobacter pylori F30 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA50591/

NCBI BioProject, 
PRJDA50591

The University of 
Tokyo

2011 Helicobacter pylori F32 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA50593/

NCBI BioProject, 
PRJDA50593

The University of 
Tokyo

2011 Helicobacter pylori F57 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA50595/

NCBI BioProject, 
PRJDA50595
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https://www.ncbi.nlm.nih.gov/bioproject/PRJDA50593/
https://www.ncbi.nlm.nih.gov/bioproject/PRJDA50593/
https://www.ncbi.nlm.nih.gov/bioproject/PRJDA50595/
https://www.ncbi.nlm.nih.gov/bioproject/PRJDA50595/
https://www.ncbi.nlm.nih.gov/bioproject/PRJDA50595/
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Author(s) Year Dataset title Dataset URL Database and Identifier

Icahn School of 
Medicine at Mount 
Sinai

2015 Multi-strain, long-read 
bacterial genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA281410/

NCBI BioProject, 
PRJNA281410

Max von Pettenkofer-
Institut für Hygiene 
und Medizinische 
Mikrobiologie, 
Ludwig-Maximilians-
Universität München

2008 Clinical isolate https://www.​ncbi.​nlm.​
nih.​gov/​search/​all/?​
term=​PRJNA32291

NCBI BioProject, 
PRJNA32291

Wuhan Institute of 
Virology, Chinese 
Academy of Sciences

2008 Mosquito larvae pathogen https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA19619/

NCBI BioProject, 
PRJNA19619

Microbial Genome 
Center of ChMPH

2007 Unknown strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA16393/

NCBI BioProject, 
PRJNA16393

TIGR 2005 Causes meningitis and 
septicemia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA251/

NCBI BioProject, 
PRJNA251

IREC 2010 Rhodococcus equi strain 
103S whole genome 
sequencing project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA41335/

NCBI BioProject, 
PRJEA41335

Sanger Institute 2008 An opportunistic pathogen 
in normal gut flora

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA12624/

NCBI BioProject, 
PRJNA12624

TIGR 2003 Causes plant rot https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA359/

NCBI BioProject, 
PRJNA359

Chang Gung 
Genomic Medical 
Center, Chang Gung 
Memorial Hospital

2005 Extremely invasive 
Salmonella that causes 
severe disease in pigs and 
humans

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA9618/

NCBI BioProject, 
PRJNA9618

Sanger Institute 2003 Human-specific Salmonella 
that causes Typhoid fever

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA236/

NCBI BioProject, 
PRJNA236

Wisconsin Univ 2003 Human-specific Salmonella 
that causes Typhoid fever

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA371/

NCBI BioProject, 
PRJNA371

Washington 
University Genome 
Sequencing Center

2016 Major laboratory strain of 
Salmonella typhimurium

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA241/

NCBI BioProject, 
PRJNA241

Microbial Genome 
Center of ChMPH

2011 Human-specific pathogen 
that causes endemic 
dysentery

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA310/

NCBI BioProject, 
PRJNA310

Wisconsin Univ 2003 Human-specific pathogen 
that causes endemic 
dysentery

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA408/

NCBI BioProject, 
PRJNA408

Minnesota Univ 2005 Associated with mastitis in 
cattle

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA63/

NCBI BioProject, PRJNA63

IntegratedGenomics 2013 Staphylococcus aureus 
subsp. aureus CN1 
Genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA162343/

NCBI BioProject, 
PRJNA162343

TIGR 2005 Methicillin resistant strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA238/

NCBI BioProject, 
PRJNA238

 Continued

 Continued on next page

https://doi.org/10.7554/eLife.91985
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA281410/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA281410/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA281410/
https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA32291
https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA32291
https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA32291
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA19619/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA19619/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA19619/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA16393/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA16393/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA16393/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA251/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA251/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA251/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEA41335/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEA41335/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEA41335/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA12624/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA12624/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA12624/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA359/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA359/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA359/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA9618/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA9618/
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Author(s) Year Dataset title Dataset URL Database and Identifier

University of 
Edinburgh

2009 Staphylococcus aureus 
ED98 genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA39547/

NCBI BioProject, 
PRJNA39547

University of 
Edinburgh

2010 Staphylococcus aureus 
subsp. aureus ED133 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA41277/

NCBI BioProject, 
PRJNA41277

Sanger Institute 2004 Methicillin resistant strain 
from the UK

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA265/

NCBI BioProject, 
PRJNA265

Sanger Institute 2004 Methicillin sensitive strain 
from the UK

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA266/

NCBI BioProject, 
PRJNA266

Univ Juntendo 2004 Methicillin and vancomycin 
resistant strain

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA263/

NCBI BioProject, 
PRJNA263

NITE 2004 Methicillin resistant strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA306/

NCBI BioProject, 
PRJNA306

Univ Juntendo 2004 Methicillin resistant strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA264/

NCBI BioProject, 
PRJNA264

University Medical 
Centre Utrecht

2010 Staphylococcus aureus 
subsp. aureus ST398

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA29427/

NCBI BioProject, 
PRJEA29427

Juntendo University 
School of Medicine, 
Department of 
Bacteriology

2007 An opportunistic pathogen 
in humans and animals

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDA18801/

NCBI BioProject, 
PRJDA18801

University of 
California, San 
Francisco

2006 A methicillin resistant strain 
of Staphylococcus aureus

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA16313/

NCBI BioProject, 
PRJNA16313

Chinese National 
HGC Shanghai

2002 Used for detection of 
residual antibiotics in food 
products

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA279/

NCBI BioProject, 
PRJNA279

TIGR 2005 Pathogenic clinical 
isolate that causes toxic-
shock syndrome and 
staphylococcal scarlet fever

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA64/

NCBI BioProject, PRJNA64

The Wellcome Trust 
Sanger Institute

2009 Causes strangles disease https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA30765/

NCBI BioProject, 
PRJEA30765

Herz- und 
Diabeteszentrum 
Nordrhein-Westfalen 
Universitätsklinik 
der Ruhr-Universität 
Bochum

2011 Streptococcus gallolyticus 
subsp. galloyticus ATCC 
BAA-2069 genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA63179/

NCBI BioProject, 
PRJEA63179

Department 
ofMicrobiology 
University of 
Kaiserslautern

2010 Clinical isolate https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA16302/

NCBI BioProject, 
PRJNA16302

UniversityChang 
Gung

2012 Streptococcus 
parasanguinis FW213 
Genome sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA76769/

NCBI BioProject, 
PRJNA76769
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Author(s) Year Dataset title Dataset URL Database and Identifier

Wellcome Trust 
Sanger Institute

2009 multidrug resistant strain https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA31233/

NCBI BioProject, 
PRJEA31233

Institute Broad 2012 Genome sequencing with 
short reads

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA76613/

NCBI BioProject, 
PRJNA76613

Lab of Human 
Bacterial 
Pathogenesis

2005 Causative agent of a wide 
range of human and animal 
infections

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA13888/

NCBI BioProject, 
PRJNA13888

Lab of Human 
Bacterial 
Pathogenesis

2005 Causative agent of a wide 
range of human and animal 
infections

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA13887/

NCBI BioProject, 
PRJNA13887

Beijing Institute of 
Genomics, Chinese 
Academy of Sciences

2007 Causes disease in pigs and 
occasionally humans

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA17153/

NCBI BioProject, 
PRJNA17153

Beijing Institute of 
Genomics, Chinese 
Academy of Sciences

2007 Causes disease in pigs and 
occasionally humans

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA17155/

NCBI BioProject, 
PRJNA17155

Wellcome Sanger 
Institute

2019 Updated VC N16961 
reference genome

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEB22249/

NCBI BioProject, 
PRJEB22249

Centers for Disease 
Control and 
Prevention

2011 Vibrio cholerae O1 str. 
2010EL-1786 genome 
sequencing project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA59943/

NCBI BioProject, 
PRJNA59943

University of Oslo 2019 Vibrio cholerae O395 
isolate:TCP2 Genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA586749/

NCBI BioProject, 
PRJNA586749

Sao Paulostate (Brazil) 
Consortium

2003 Plant-specific pathogen 
that causes citrus canker

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA297/

NCBI BioProject, 
PRJNA297

Chinese National 
HGC Shanghai

2005 Causes black rot and citrus 
canker

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA15/

NCBI BioProject, PRJNA15

Sao Paulostate (Brazil) 
Consortium

2002 Plant-specific pathogen 
that causes black rot

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA296/

NCBI BioProject, 
PRJNA296

GenomicsBacterial, 
LaboratoryEvolution 
and CSIR-Institute of 
Microbial Technology, 
Sector 39-A, 
Chandigarh, India

2017 Xanthomonas campestris 
pv. vitistrifoliae 
strain:LMG940 Genome 
sequencing and assembly

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA298596/

NCBI BioProject, 
PRJNA298596

NIAB, Rural 
Development 
Administration

2005 Causes rice bacterial blight 
disease

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA12931/

NCBI BioProject, 
PRJNA12931

Sanger Institute 2007 Food and waterborn 
pathogen that causes 
gastroenteritis

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA190/

NCBI BioProject, 
PRJNA190

Academy of Military 
Medical Sciences, 
The Institute of 
Microbiology and 
Epidemiology, China

2004 Extremely virulent organism 
that causes plague

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA10638/

NCBI BioProject, 
PRJNA10638
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Author(s) Year Dataset title Dataset URL Database and Identifier

Sanger Institute 2003 Extremely virulent organism 
that causes plague

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA34/

NCBI BioProject, PRJNA34

J. Craig Venter 
Institute

2009 Yersinia pestis KIM D27 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA41469/

NCBI BioProject, 
PRJNA41469

TIGR 2007 Serotype 1b strain isolated 
from a patient in Russia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA16070/

NCBI BioProject, 
PRJNA16070

Los Alamos National 
Laboratory

2015 Yersinia pseudotuberculosis 
IP 32953 Genome 
sequencing

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA239344/

NCBI BioProject, 
PRJNA239344

The Wellcome Trust 
Sanger Institute

2011 Staphylococcus aureus 
subsp. aureus MSHR1132 
genome sequencing 
project

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEA62885/

NCBI BioProject, 
PRJEA62885
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