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Abstract Spatial and temporal associations between sympatric species underpin biotic interac-
tions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, 
the resilience of interspecific spatiotemporal associations to human activity remains poorly under-
stood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we 
applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey 
dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent 
human activities in mountain forests influence species associations within terrestrial mammal commu-
nities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five 
ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of 
positive associations in habitats with higher levels of human modification (87%) and human presence 
(83%) compared to those located in habitats with lower human modification (64%) and human pres-
ence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing 
levels of human disturbance, corresponding to more frequent encounters between pairs of species. 
Our findings indicate that human activities can push mammals together into more frequent encoun-
ters and associations, which likely influences the coexistence and persistence of wildlife, with poten-
tial far-ranging ecological consequences.

eLife assessment
In this study, camera trapping and species distribution models are used to show that human distur-
bance in mountain forests in the eastern Himalayas pushes medium-sized and large mammal species 
into narrower habitat space, thus increasing their co-occurrence. While the collected data provide 
a useful basis for further work, the study presents incomplete evidence to support the claim that 
increased co-occurrence may indicate positive interactions between species.

Introduction
Pervasive human activities can disrupt invisible facets of biodiversity such as species associations, with 
potential cascading ecosystem effects (Naeem et al., 1994; Parsons et al., 2022). Human encroach-
ment into natural ecosystems squeezes the spatiotemporal niches of wildlife species (Gilbert et al., 
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2022), altering the number and magnitude of associations in a community (Burkle et al., 2013), and 
accelerating species decline and loss (Jones et al., 2018). Humans play a role as ‘super predators’ 
in shaping the co-occurrence of other species with complicated indirect modifications to multiple 
interactions between organisms (Gilbert et al., 2022; Moll et al., 2021). Human disturbance, such 
as chronic landscape modification and acute direct human presence, may significantly alter spatio-
temporal distribution of species and fundamentally change the way that species interact (Li et al., 
2022a; Sévêque et al., 2020). For example, expanding human footprints have compressed the space 
and time available for mammals to share by restricting animal movements (Tucker et al., 2018) and 
increasing wildlife nocturnality (Gaynor et  al., 2018). As human and animal activities increasingly 
overlap in time and space, it is important to assess and quantify the potential for human-induced 
changes in species association to ecosystem structure and function (Penjor et al., 2022).

Species are not distributed independently of each other; rather, they co-occur in time and space 
and interact (Tilman, 1994; Wisz et al., 2013). The spatiotemporal co-occurrence of species, termed 
interspecific associations, provides unique ecological information and has important consequences 
for ecosystem integrity (Gorczynski et al., 2022; Keil et al., 2021). However, segregated species 
co-occurrence could be generated by processes such as negative interspecific interaction, distinct 
environment requirements, and dispersal limitations; similarly, aggregated species pairs may reflect 
positive interspecific interaction but could also reflect shared environmental preferences (Kathleen 
Lyons et al., 2016; Song et al., 2020). Although interspecific co-occurrence or avoidance cannot 
be used to directly estimate species interactions (Blanchet et al., 2020), animals cannot interact if 
their spatiotemporal niches do not overlap (Gilbert et al., 2022) and strong interactions should be 
expected to lead to significant associations. Thus, interspecific associations convey key information 
about interactions between sympatric species (Boron et al., 2023).

Disruptions to the spatiotemporal relationships of species can result in serious ecological conse-
quences including alteration of community structure (Tulloch et al., 2018), upsetting the competitive 
balance between species (Boron et al., 2023), increasing disease transmission (Hassell et al., 2017), 
and accelerating local extinction (Fidino et al., 2019). This can significantly distort the distribution of 
ecological functions that species provide, ultimately influencing ecosystem dynamics (Gardner et al., 
2019). Taken as a whole, interactions between sympatric species play a fundamental role in commu-
nity assembly and are intricately related to ecosystem stability and resilience (Boron et al., 2023). 
Thus, understanding how interspecific spatiotemporal associations change across human disturbance 
gradients provides valuable insight into the long-term implications of human impacts on ecosystem 
function and recovery relevant to biodiversity conservation in the Anthropocene.

Species interactions are known to be context-dependent such that they can vary across space 
and time, for example along environmental gradients (Chamberlain et al., 2014; Davis et al., 2018; 
Pellissier et al., 2018; Perrin et al., 2022). For example, gradients in stress are associated with vari-
ation in the outcomes of pairwise species interactions (Chamberlain et al., 2014). A key challenge 
in community ecology is to identify the conditions under which negative and positive species inter-
actions are more likely to occur. For example, the controversial stress-gradient hypothesis predicts 
that positive interactions should increase as environmental conditions become more severe. Alpine 
bird communities have been shown to have a higher frequency of positive associations in grasslands 
with low productivity compared with forests with high productivity (García‐Navas et al., 2021) and 
Savanah ungulates are more likely to form mixed-species groups in areas where there is predation 
risk (Beaudrot et  al., 2020). Increasingly, major stresses on wild communities derive from human 
activity, and understanding how species interactions vary in response to human disturbance is pivotal 
in making robust ecological predictions about biodiversity responses to changing environmental 
conditions (Dangles et al., 2018; Perrin et al., 2022). However, a review of the literature indicates 
that the impact of human activity on interspecific interactions of terrestrial mammals remains poorly 
understood (Boron et al., 2023), particularly in mountain forests where anthropogenic impacts are 
often pervasive and increasing.

Medium and large-sized terrestrial mammals are key components of mountain forest communities. 
They play crucial roles in maintaining biodiversity and ecosystem functions (Lacher et al., 2019), and 
are especially vulnerable to anthropogenic activities (Li et al., 2022b). Here, we set out to investigate 
the spatial and temporal patterns of occurrence and the interspecific associations within a terres-
trial mammalian community along human disturbance gradients. We executed a systematic camera 

https://doi.org/10.7554/eLife.92457


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Li et al. eLife 2023;12:RP92457. DOI: https://doi.org/10.7554/eLife.92457 � 3 of 18

trapping survey spanning 4100 km2 of the Yarlung Zangbo Grand Canyon National Nature Reserve 
in the eastern Himalayas at a total of 322 camera trapping stations, obtaining detections of both 
wildlife and humans. We classified human disturbances into two groups: human modification (i.e. 
relating to habitat modifications by humans) or human presence (i.e. referring to the direct presence 
of humans) disturbances. We employed a context-dependent joint species distribution model (JSDM; 
Tikhonov et  al., 2017) to infer pairwise species associations along human disturbance gradients. 
We used kernel density distributions of animal diel activity and time between detections of species 
pairs (time-to-encounter) to compare temporal associations at low and high human disturbances. 
We consider two hypotheses regarding temporal and spatial interspecific associations. The spatial 
compress hypothesis posits that human modification of habitats would suppress space available for 
animals to share (Tilman et al., 2017), resulting in increased positive spatial associations between 
species. The temporal compress hypothesis postulates that fear of direct human presence would 
compress diurnal activity in animals (Gaynor et al., 2018), resulting in reduced encounter time (or 
increased encounter rate) between species (Figure 1). Our study incorporates two different types of 
human disturbances in the analysis to elucidate the effects of humans on multidimensional (i.e. space 
and time) species associations. We then consider implications for conservation.

Results
Our camera traps obtained 10,388 independent detections of 17 focal species (12 carnivores and five 
ungulates) from 322 stations over 43,163 camera days of effort (Table 1). We documented a number 
of species and subspecies of conservation concern, including Bengal tiger Panthera trigris, clouded 
leopard Neofelis nebulosa, and dhole Cuon alpinus. We also captured 2224 independent detections 
of humans during the survey period.

Human disturbance

C
o-

ecnerrucco
Spatial associations

Pairwise encounter time

Hypothesis 1: Human disturbance
would compress space available for
animals to share resulting in increased
spatial associations between species

Hypothesis 2: Human disturbance
would suppress diurnal activity in
animals resulting in reduced encounter
time between species pairs

Human modification and presence

Figure 1. Conceptual framework illustrating the community-level effects of human disturbance on spatiotemporal associations among mountain forest 
terrestrial mammal species.
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Species-specific response to habitat covariates
Species varied in their responses to habitat covariates. Nine out of 17 species showed a strong posi-
tive response to forest cover (Figure 2, Figure 2—source data 1). Human presence had apparent 
negative effects on the occurrence of clouded leopard (mean = –0.967, 95% CI=−2.35 to −0.025), 
taking Budorcas taxicolor (mean = –0.449, 95% CI=−0.935 to −0.071) and red goral Naemorhedus 
baileyi (mean = –0.806, 95% CI=−0.935 to −0.071), but was apparently positively associated with the 
occurrence of wild boar Sus scrofa (mean = 0.521, 95% CI=0.045 to 1.093) and golden cat Catopuma 
temminckii (mean = 0.427, 95% CI=0.165 to 0.804; Figure 2—source data 1). Human modification 
was apparently negatively associated with the occurrence of dhole (mean = –0.24, 95% CI=−0.493 to 
-0.027), red fox Vulpes vulpes (mean = –1.588, 95% CI=−2.656 to −0.769), Asiatic black bear Ursus 
thibetanus (mean = –0.234, 95% CI=−0.42 to −0.056), red goral (mean = –0.665, 95% CI=−1.129 to 
−0.238) and Mainland serow Capricornis sumatraensis (mean = –0.477, 95% CI=−0.697 to −0.26), 
but was positively apparently associated with muntjac Muntjac spp. (mean = 3.632, 95% CI=0.946 to 
9.999), masked palm civet Paguma larvata (mean = 2.076, 95% CI=1.26 to 3.145), large Indian civet 
Viverra zibetha (mean = 0.782, 95% CI=0.175 to 1.558) and marbled cat Pardofelis marmorata (mean 
= 0.689, 95% CI=0.232 to 1.236; Figure 2, Figure 2—source data 1).

Effects of human disturbances on spatial co-occurrence
Out of the 136 estimated pairwise residual correlation coefficients in occupancy, 87 (64 %) were posi-
tive at lower human modifications (Figure 3a). At the moderate and higher modifications, the species 
pairs with positive associations increased to 107 (79 %) and 118 (87%), respectively (Figure 3b and 

Table 1. Independent detection of ground-dwelling medium- and large-bodied mammal species 
based on camera trapping survey in the Yarlung Zangbo Grand Canyon, southeast Tibet.

Order Family Genus Species
Independent 
detections

IUCN 
category

Cetartiodactyla Bovidae Budorcas Budorcas taxicolor 92 VU

Cetartiodactyla Bovidae Capricornis
Capricornis 
milneedwardsii 2992 NT

Carnivora Felidae Catopuma
Catopuma 
temminckii 232 NT

Carnivora Canidae Cuon Cuon alpinus 256 EN

Carnivora Mustelidae Martes Martes flavigula 469 LC

Cetartiodactyla Cervidae Muntiacus
Muntiacus 
muntjak 4696 LC

Cetartiodactyla Bovidae Naemorhedus
Naemorhedus 
baileyi 254 VU

Carnivora Felidae Neofelis Neofelis nebulosa 45 VU

Carnivora Viverridae Paguma Paguma larvata 223 LC

Carnivora Felidae Panthera Panthera tigris 26 EN

Carnivora Felidae Pardofelis
Pardofelis 
marmorata 54 NT

Carnivora Felidae Prionailurus
Prionailurus 
bengalensis 164 LC

Carnivora Prionodontidae Prionodon
Prionodon 
pardicolor 28 LC

Cetartiodactyla Suidae Sus Sus scrofa 269 LC

Carnivora Ursidae Ursus Ursus thibetanus 463 VU

Carnivora Viverridae Viverra Viverra zibetha 37 LC

Carnivora Canidae Vulpes Vulpes vulpes 88 LC

https://doi.org/10.7554/eLife.92457
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c). At lower modifications, correlation coefficients for 18 species pairs were positive and had a 95 % 
CI that did not overlap zero (Figure 3—figure supplement 1), and the number increased to 65 in 
moderate modifications (Figure 3—figure supplement 2) but dropped to 29 at higher modifications 
(Figure 3—figure supplement 3).

Along human presence gradients, 88 pairwise residual correlation coefficients (65%) at lower 
human presence habitats were positive or close to neutral (Figure 4a). At the moderate and higher 
human presence habitats, the species pairs with positive associations increased to 115 (85%) and 
113 (83%), respectively (Figure 4b and c). The significant positive associations at low, moderate, and 
higher human presence habitats were 6 (4%, Figure 4—figure supplement 1), 76 (56%, Figure 4—
figure supplement 2), and 44 (32%, Figure 4—figure supplement 3), respectively.

Effects of human disturbances on temporal co-occurrence
Human presence was associated with significantly increased nocturnality of carnivores (mean = 0.163, 
95% CI=0.089 to 0.236, Figure 5a), but showed no significant effects on ungulates (mean = –0.004, 
95% CI=−0.031 to 0.023, Figure 5b) and combination of guilds (mean = –0.001, 95% CI=−0.028 to 
0.026; Figure 5c). Human modification had no strong effects on nocturnality of any guilds and combi-
nation of guilds (i.e. 95% CIs include zero, Figure 5—figure supplement 1).

Bengal tiger

Black bear

Clouded leopard

Dhole

Golden cat

Large civet

Leopard cat

Marbled cat

Masked palm civet

Muntjac

Red fox

Red goral

Serow

Spotted linsang

Takin

Wild boar

Yellow throated marten

−7.5 −5.0 −2.5 0.0 2.5

    (a) Elevation (m)

0 5 10 15 20
Beta effect size

    (b) Percent of forest cover (%)

−5 0 5 10 15 20

    (c) Human modified area (0−1)

Figure 2. The effects of environmental and anthropogenic variables on terrestrial mammals in the Yarlung Zangbo Grand Canyon.

The online version of this article includes the following source data for figure 2:

Source data 1. Standardized beta coefficients, and 95% credible intervals, for the influence of anthropogenic and environmental covariates on the 
probability a species used an area during our camera-trap survey in Medog region.
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Both human modification and human presence were associated with significantly reduced time 
between detections of pairs (human modification: mean = –1.07, 95% CI=−1.39 to −0.73; human 
presence: mean = –0.69, 95% CI=−0.92 to −0.46; Figure 6).

Discussion
Despite accumulating evidence of widespread impacts of humans on wildlife distribution and activity 
patterns, our understanding of how different types of anthropogenic pressures reshape species 
associations remains limited (VanScoyoc et  al., 2023). Here, we compared the impacts of human 
modification (spatial compress effects) and human presence (temporal compress effects) on spatio-
temporal associations among threatened terrestrial mammals based on systematic camera-trapping 
data in an understudied Himalayan landscape. Our results show a strong influence of humans on 
species co-occurrence patterns. The overall results of the spatiotemporal associations across levels of 
human modification and human presence suggest that humans are associated with increasing positive 
spatiotemporal associations among species. Specifically, we detected a higher incidence of positive 
associations in habitats with moderate and higher levels of human modification and human pres-
ence compared to those located in habitats with lower disturbance levels (Figures 3 and 4). On the 
temporal axis, we detected a significant reduction of pairwise encounter time at increasing levels of 
human disturbance (Figure 5). Our results, therefore, demonstrate that human disturbance can upset 
interspecific associations both on spatial and temporal niche dimensions.

Interspecific spatial associations can arise from species interaction, response to environmental 
covariates, and common dispersal barriers (Blanchet et al., 2020; de Jonge et al., 2021; Poggiato 
et al., 2021). Our context-dependent JSDM, which accounts for similarities and disparities in species-
specific response to habitat covariates considered relevant to medium- and large-bodied mammal 
species, detected a higher prevalence of interspecific spatial associations in human-disturbed habi-
tats. Humans can have ‘bottom-up’ impacts on animal distribution and associations by land use 
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Figure 3. Estimates of associations between 17 terrestrial mammals across camera trapping stations with different human modifications in the 
Yarlung Zangbo Grand Canyon. Associations are shown for the region’s (a) minimum (Lower), (b) mean (Moderate), and (c) maximum (Higher) human 
modifications.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. 95% confidence intervals of residual associations between species pairs at lower human modification level.

Figure supplement 2. 95% confidence intervals of residual associations between species pairs at moderate modification level.

Figure supplement 3. 95% confidence intervals of residual associations between species pairs at higher modification level.
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change and habitat modification (Riggio et  al., 2020; Tucker et  al., 2018). Human activities can 
also have top-down impacts on spatiotemporal associations among animals by directly or indirectly 
changing the landscape of fear (Palmer et al., 2022; Suraci et al., 2019). Previous studies suggest 
that human disturbance may compress the space and time available for communities to use, resulting 
in an increased frequency of positive associations (Gilbert et al., 2022; Sévêque et al., 2022). We 
interpret our results to mean that anthropogenic presence and disturbance reduce available habitats 
for wildlife, causing a greater predominance of positive associations in anthropogenic landscapes. On 
the one hand, human presence, such as while grazing livestock and gathering resources, generates 
landscapes of fear for wildlife (Gaynor et al., 2019; Palmer et al., 2022; Suraci et al., 2019) and may 
downgrade habitat quality by overexploitation (Filazzola et al., 2020). On the other hand, human 
modification such as land-use change often constrains the realized niche space of wildlife, restricting 
animal movement (Smith et al., 2018; Tucker et al., 2018). Overall, our study provides one of the 
first tests of whether positive spatiotemporal associations between terrestrial mammals increase along 
gradients of different types of anthropogenic pressures. Our results add to the growing body of 
evidence that suggests anthropogenic activities reduce available niche space for animals, causing 
observed positive spatial associations among species (Gilbert et al., 2022; Gorczynski et al., 2022; 
Murphy et al., 2021).

Identifying thresholds of anthropogenic activity that shift species behavior and co-occurrence will 
be key to drawing useful inferences from human impact studies and improving our knowledge on 
when altered associations may lead to reverberating impacts on ecosystems (VanScoyoc et al., 2023; 
Wilson et  al., 2020). We note that the number of species pairs with significant positive associa-
tions rapidly increased from lower to moderate levels of human disturbance, but dropped from mean 
to higher levels of human disturbance (Figure  3—figure supplements 1–3 and Figure  4—figure 
supplements 1–3). Such patterns are consistent across human modification and human presence 
levels, indicating a threshold after which the positive effects of human disturbance on species asso-
ciations were dampened. Human disturbance is an important factor in shaping species distributions 
(Jones et al., 2018; Samia et al., 2015). Wildlife often has a limited tolerance threshold to human 
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Figure 4. Estimates of associations between 17 terrestrial mammals across camera trapping stations with different human presence in the Yarlung 
Zangbo Grand Canyon. Associations are shown for the region’s (a) minimum (Lower), (b) mean (Moderate), and (c) maximum (Higher) human presence.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 95% confidence intervals of residual associations between species pairs at lower human presence level.

Figure supplement 2. 95% confidence intervals of residual associations between species pairs at moderate human presence level.

Figure supplement 3. 95% confidence intervals of residual associations between species pairs at higher presence level.
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activity (Polaina et al., 2018; Samia et al., 2015; Smith et al., 2019). When human pressures reach 
levels that preclude a species from occurring at a site (Polaina et al., 2018), prediction of species 
associations in an anthropogenic context may become uninformative. More work needs to be done to 
further clarify the mechanisms driving the observed co-occurrence patterns.

Anthropogenic activities can also shift temporal niche of animals (Gaynor et al., 2018; Li et al., 
2022a), possibly altering encounter rates among species and trophic dynamics that structure commu-
nities (Gilbert et al., 2022; Karanth et al., 2017; Mills and Harris, 2020). Congruent with our hypoth-
esis, we observed a significant reduction of pairwise encounter time at increasing levels of human 
disturbance, corresponding to more frequent encounters between the pairs (Gilbert et al., 2022). 
Although we did not find a significant shift in nocturnality at community level, we detected a signifi-
cant shift to nocturnal activity of carnivores, indicating different sensitivities to human presence among 
the carnivores and ungulates in our study system. Fear of humans may explain the temporal response 
of wildlife to human presence. Numerous studies have shown that fear of humans as ‘super predators’ 
can have suppressive effects on wildlife activity, which may contribute to increased temporal overlap 
among species (e.g. Sévêque et al., 2022; Suraci et al., 2019).
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Figure 5. Density distributions of encounter time between successive detections of species pairs (in log-transformed days) in low- and high-human 
modification (a) and human presence (b) habitats, and differences in time-to-encounter between species pairs in low- and high-human modification 
(c) and human presence (d) habitats. The solid vertical lines in (c) and (d) represent mean differences, and the dashed vertical lines indicate 95% 
confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Shifts in nocturnality of carnivores (a), ungulates (b), and combination of carnivores and ungulates (c) in the lower- and higher-
human modification habitats.
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All in all, our results indicate that both human modification and human presence may rewire species 
interactions by increasing spatial and temporal co-occurrence. Studies on the impacts of humans 
on wildlife communities should explicitly account for different types of co-occurring disturbances (Li 
et al., 2022a). Our camera trapping survey observed that human presence is pervasive even inside 
this remote protected area in the Tibetan Autonomous Region, indicating that wildlife and their habi-
tats are exposed to frequent human disturbance. Humans exploit resources in protected areas in 
many ways, including through livestock herding, resource gathering, illegal hunting, and recreation, 
all of which impact wildlife and their habitats to varying degrees (Harris et al., 2019; Mills and Harris, 
2020). Our results demonstrate prevalent disruptions to species co-occurrence patterns from humans. 
If we are to preserve biodiversity in protected areas, we must work to understand the negative effects 
on multiple facets of biodiversity from co-occurring anthropogenic pressures. Only then can we design 
effective mitigation measures.

Although interspecific associations should not be directly interpreted as a signal of biotic interac-
tions between pairs of species (Blanchet et al., 2020; Poggiato et al., 2021), it describes a unique 
facet of biodiversity, and can provide important insights into the coexistence and persistence of wild-
life as well as ecosystem function in settings with anthropogenic activity (Keil et al., 2021; Lai et al., 
2020; VanScoyoc et al., 2023). Since interspecific associations often increases with the ecological 
similarity of species involved (Gorczynski et al., 2022), the tendency of many species towards positive 
associations with increase in anthropogenic pressures indicates a trend towards homogenization of 
terrestrial mammal communities. Such human-mediated changes in species co-occurrence patterns 
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Figure 6. Location of study area in the Yarlung Zangbo Grand Canyon National Nature Reserve in the southeast of the Tibetan Autonomous Region of 
China.
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can have serious ecological consequences at multiple scales (Gilbert et al., 2022; Gorczynski et al., 
2022). For individual species, increased positive associations may affect fitness and population 
dynamics, increasing local extinction rates (Kuussaari et al., 2009; Parsons et al., 2022). Increase 
in spatial aggregation among functionally similar species may be indicative of a hidden extinction 
debt (Kuussaari et al., 2009). At the community level, increased positive associations may depress 
co-occurrence network complexity and stability, amplify interactions such as predation, and simplify 
communities with similar traits or co-occurrence patterns (Manlick and Pauli, 2020; Mills and Harris, 
2020). Also, increased encounter rates between species may expand disease transmission across 
communities (Hassell et al., 2017). In addition, wildlife can host a variety of zoonotic diseases (Wicker 
et al., 2017) and populations unnaturally associated with humans are more likely to transmit patho-
gens (Jones et al., 2013). We observed that several species such as masked palm civet and wild boar 
are positively associated with humans in our study area, indicating a substantial overlap between their 
habitats and human activity. Ongoing habitat modification, livestock grazing, and resource gathering 
in this region may increase probability of pathogen exchange.

The effects of human disturbance on species associations might be scale-dependent (Gilbert 
et al., 2022). At present, our sampling design only considers the effects of cumulative human modifi-
cation and instantaneous local human presence on spatial associations and temporal encounter time 
at each camera trapping station. We are not able to compare the effects of human disturbance at 
broader scales (e.g. landscape scale) as such an analysis requires adequate data from hierarchical 
samplings. Estimating the effects of human disturbance at different spatial scale on species associa-
tions is a promising approach. Thus, we encourage future work to further clarify the multiscale ecolog-
ical effects of human disturbance on species associations.
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In conclusion, our study demonstrated that anthropogenic pressures increase spatiotemporal asso-
ciations of terrestrial mammals from low to mean levels of human disturbances, but the frequency of 
positive spatial associations dropped from mean to higher levels of human disturbances. Such varia-
tions in species associations likely influence the coexistence and persistence of wildlife, with poten-
tially far-ranging ecological consequences. Because terrestrial mammals like carnivores and ungulates 
play fundamental roles in regulating montane forest ecosystems, the prevalent disruptions to their 
associations may precipitate biodiversity loss and impair ecosystem function. With increasing human 
presence and human modification of areas throughout the world, identifying thresholds of anthropo-
genic activity that shift species relationships, limiting human activity, and increasing landscape connec-
tivity across protected areas may be imperative to maintain interspecific spatiotemporal associations 
that underpin ecosystem resilience. Moreover, the methods we applied highlight the utility of camera 
trapping surveys in studying the spatiotemporal relationships among elusive species in settings with 
anthropogenic activities.

Materials and methods
Study area
The study was carried out inside the Yarlung Zangbo Grand Canyon National Nature Reserve 
(29°05′–30°02′ N, 94°39′–96°6′ E) in Nyingchi City in the southeast Tibet Autonomous Region of China 
(Figure 7). This area is situated within the Eastern Himalaya Biodiversity Hotspot, a globally important 
region for biodiversity conservation (Li et al., 2021). The Yarlung Zangbo Grand Canyon is the deepest 
in the world, with an elevation drop of more than 7000 m, and has the reputation of ‘Gene Bank of 
Mountain Biological Resources’ and ‘Natural Vegetation Museum’ (Duan et al., 2022). This region is 
characterized by dramatic vertical zonation of vegetation. From the valley bottom to the mountain 
peak, the main vegetation types consist of low mountain tropical monsoon rain forest, subtropical 
mountain evergreen broad-leaved forest, mid-mountain warm coniferous forest, sub-alpine cold conif-
erous forest, alpine subrigid shrub meadow, and periglacial alpine vegetation (Deng et al., 2011). The 
complete landscapes in the region harbors endangered species such as Bengal tiger Panthera tigris 
tigris (Li et al., 2023). Human activities such as decentralized residential settlements and free-ranging 
livestock grazing are prevalent in the region, even within the protected area (Li et al., 2021).

Camera trap sampling
Camera trap detections of terrestrial mammals were collected during the dry season between 
November 2020 and April 2021 and November 2021 and April 2022 to avoid the heavy rainy seasons 
in the region. The mean trapping efforts were 134 days (89–147 days range). We used Yianws L720 
camera traps to conduct the survey. To determine how anthropogenic factors shape spatiotemporal 
associations among terrestrial mammals, we set up camera trapping stations within the nature reserve 
based on the intensity of human activities and distance to nearest human settlement. We deployed 
350 camera stations in the reserve with different degrees of anthropogenic disturbance, maintaining 
at least 800 m between them (range 886–2233 m, median 1219). This distance may not satisfy the 
assumption of population closure and there may be some degree of pseudo-replication as observa-
tions of wide-ranging animals may not be independent. For these species, the occupancy estimate can 
be thought of as an estimate of the probability that the species used the area where the camera trap-
ping station was located, rather than true occupancy (Li et al., 2018). Our camera trapping stations 
spanned a gradient of forest areas with varying levels of human activities and habitat modifications 
in the surrounding area. We affixed camera traps to trees between 80 and 100 cm off the ground, 
and they were not baited. Camera sensitivity was set to ‘low’ to reduce false detections triggered 
by nonanimal movements. We set cameras to take three photos per detection event, with 3 s delay 
between subsequent detections. Camera trap photos were later identified to species when possible. 
We combined all human presence photos into a single ‘Human’ categorization representing a variety 
of human activities detected around a camera station (e.g. resource gathering, livestock grazing, 
recreation, etc.). All photos of the same species (including humans) at the same camera station were 
considered independent detections if separated by at least 1 hr (Li et  al., 2021). Several camera 
stations were invalid due to camera malfunctions or lost cameras. The total valid sampling effort was 
43,163 camera days from 322 camera stations that operated effectively. The target species consisted 

https://doi.org/10.7554/eLife.92457


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Li et al. eLife 2023;12:RP92457. DOI: https://doi.org/10.7554/eLife.92457 � 12 of 18

of ground-dwelling mammal species observed in more than 10 camera stations and weighing more 
than 1 kg. Thus, the occurrence dataset consists of presence-absence information on 17 mammal 
species at 322 camera stations.

Anthropogenic and habitat covariates
We derived two different types of human impacts: chronic human modification (e.g. settlement, 
transportation night-time lights, etc.) and acute direct human presence (occurrence of people and 
domestic animals detected by camera traps) to address our hypotheses. We explored the degree of 
habitat modification based on the Human modification (HM) map metric (Kennedy et al., 2019). The 
HM metric provides a cumulative estimate of artificial modification of terrestrial landscapes based 
on 13 anthropogenic stressors caused by five human activities (human settlement, agriculture, trans-
portation, energy production, and electrical infrastructure) at a resolution of 1 km (Kennedy et al., 
2019). The metric is based on both the intensity and extent of impact of each anthropogenic stressor 
and ranges from 0 (no human disturbance) to 1 (highest human disturbance). Our sampling stations 
represent a varied gradient of human modification from 0.04 in minimum to 0.28 in maximum, with a 
mean value of 0.12 (sd = 0.05). We quantified the level of acute direct human presence around each 
camera-trapping station by calculating the independent detections of human-related activities (e.g. 
livestock grazing, forest resource collection, and tourism) per 100 camera-trap days. The range of 
human presence recorded by our camera trapping survey was 0–46.81, with a mean value of 6.42 (sd = 
8.61). We also chose a set of two environmental covariates known to impact spatiotemporal distribu-
tion of mammals (Li et al., 2018) and presumed to affect interspecific associations: (1) elevation, which 
plays a key role in shaping spatial distribution of many species in mountain forests (He et al., 2019; Li 
et al., 2018), and (2) percent of forest cover, which provides food resources, thermal cover and escape 
shelter for animals (Long et al., 2005). We derived percent of forest cover for each camera station 
based on the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (MOD44B 
Vegetation Continuous Fields (VCF) yearly product) of the study area for the period of 2021. For 
each camera trapping station, we derived human modification and percent of forest cover with a 
buffer radius of 500 m. This spatial scale should capture the environment that influences both resident 
animals with small home ranges and transient animals moving through the area. Prior to analysis, we 
log-transformed [log (x+0.1)] human presence data to account for its highly skewed distribution. We 
also standardized human modification and other environmental covariates by scaling to have a mean 
of zero and unit variance.

Spatial co-occurrence analysis
We employed a context-dependent joint species distribution model (JSDM; Tikhonov et al., 2017) 
to characterize interspecific spatial associations of sympatric species. JSDMs are able to separate 
spatial associations between species into shared environmental preferences and residual correlations 
that cannot be explained by the environmental factors (Pollock et al., 2014). The context-dependent 
JSDM approach allows residual correlations to vary across the environment by incorporating species- 
and site-specific latent variables in the model (Tikhonov et al., 2017). We followed this approach 
and constructed a context-dependent model by utilizing a latent variable structure, where the factor 
loadings are modeled as a linear regression of covariates, allowing species associations to covary with 
human disturbance covariates. For our camera trap detections, we modeled the presence-absences 
of species j at camera station i as:

	﻿‍ yij Bern
(
Ψij

)
‍�

with ‍Ψij = φ−1(ηij)‍, where ‍Ψij‍ is the species-specific occurrence probability for each camera trapping 
station, and ‍φ

−1
‍ is the inverse of a probit link function. We modeled ‍ηij‍ as:

	﻿‍
ηij =

nc∑
k=1

xikβjk + εij
‍�

where ‍nc‍ denotes the number of fixed covariates (i.e. elevation, percent of forest cover, human modi-
fication, and human presence) plus intercept, ‍βjk‍ denotes the effect of environmental covariate k 
on species j, ‍xik‍ denotes the measured covariates k=1… ‍nc‍ in the sampling unit i. The intercept of 

https://doi.org/10.7554/eLife.92457


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Li et al. eLife 2023;12:RP92457. DOI: https://doi.org/10.7554/eLife.92457 � 13 of 18

the model is included by setting ‍xi1 = 1‍ for all sampling units, so that the number of measured envi-
ronmental covariates is ‍nc−‍ 1. The species associations are modeled through the term ‍εij‍ , which is 
defined by a latent factor model:

	﻿‍
εij =

nf∑
h=1

zihλjh
(
x∗i·
)
‍�

where ‍zih‍ denotes the value of latent factor h=1… ‍nf ‍ at the sampling unit i, ‍λjh
(
x∗i·
)
‍ denotes the 

response (factor loading) of species j to latent factor h, given a vector of predictors ‍x
∗
i·‍ . The predictors 

‍x
∗
i·‍ = (‍x

∗
i1, . . . , x∗in∗c ‍) on which the species associations are assumed to depend can be arbitrary, usually 

a subset of environmental predictors (Tikhonov et al., 2017). Here, we model the factor loadings of 
species as a function of the two types of human disturbances (i.e. human modification and human 
presence):

	﻿‍
λjh

(
x∗i·
)

=
n∗c∑

k=1
x∗ikλjhk

‍�

where ‍n∗c ‍ denotes the number of covariates assumed to impact residual correlations plus intercept. 
The intercept is included in the regression part by setting ‍x

∗
i1 = 1‍ for all sampling units. In this study, 

assume  ‍nf ‍ =3, as our Deviance information criteria did not improve notably with the addition of 
more latent variables. We defined the covariance matrix of species factor loading as a function of 
human disturbances as ‍εi· ∼ N(0,Ω(x∗i. ))‍, where ‍Ω

(
x∗i·
)

= Λ
(
x∗i·
)
Λ
(
x∗i·
)T

‍ , and ‍Λ
(
x∗i·
)
‍ is the matrix of 

factor loadings, which depends on the human disturbances. We then scale this covariance matrix ‍Ω‍ 
to interspecific correlation matrices R by defining ‍Rj1j2 = Ωj1j2/

√
Ωj1j1Ωj2j2 ‍ for each pair of species, 

which represents disturbance-dependent associations between species that are not explained by 
fixed species-specific effects of environmental predictors. These resulted in values between –1 and 1, 
with negative values representing negative association between species, and positive values implying 
the opposite.

We estimated changes in species associations over continuous gradients of human modification 
(range: 0.04–0.28) and human presence gradients (range: 0.00–46.81). After fitting the model to data, 
we used the parameterized model to infer how species associations depend on human presence and 
human modification and generated predictions at minimum (lower), mean (moderate), and maximum 
(higher) conditions of the two variables separately.

We fitted the model based on a Bayesian approach using the greta R-package (Golding, 2019) 
as described by Perrin et al., 2022. We specified uninformative normally distributed priors for all 
parameters. We made inferences from 3000 samples on three chains after a burn-in of 2000 samples.

Temporal co-occurrence analysis
For temporal co-occurrence analysis, we defined ‘Low’ and ‘High’ categories of human presence 
and human modification. We ranked camera trapping stations based on human presence and human 
modification separately, and filtered detections from the 25% most- (‘High’ category) and least- (‘Low’ 
category) disturbed camera trap stations and pooled detections within each category. We used kernel 
density distributions of animal diel activity and time between detections of species pairs (time-to-
encounter) to compare temporal associations at lower and higher human disturbances. To examine 
if changes in species diel activity patterns were a mechanism behind anthropogenic impacts, we 
computed the nocturnal probability and time between consecutive detections of species pairs from 
lower- and higher-disturbance habitats. We transformed the detection time stamp to ‘solar time’ to 
eliminate the impacts of day-length variation in day length (Nouvellet et al., 2012). We retained only 
those species that had at least 30 independent detections in the low- and high-disturbance catego-
ries. For nocturnality analysis, we excluded detections within the hour around sunrise and sunset to 
avoid the effects of crepuscular activities on nocturnal probability. Thus, we defined nocturnal records 
as detections 1 hr after sunset up to 1 hr before sunrise. We conducted a binomial t-test to evaluate 
shifts in species nocturnality in the low- and high-disturbance categories.

To calculate time between detections of species pairs, we filtered camera stations to only those 
that detected at least two species for each disturbance category. We then calculated the time (in 
days) between successive detections across species pairs at each camera station. For analysis, we 
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log-transformed the time-to-encounter values to account for their markedly skewed distribution. 
We used 10,000 bootstrapped samples to evaluate 95% confidence interval (CI) shifts in time-
to-encounter of species pairs from camera stations in the low- and high-disturbance categories. 
Results were considered to be significant if the key values fell outside of the 95% Confidence 
Interval.
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